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Abstract

Frick and Grohe [J. ACM 48 (2006), 1184–1206] introduced a notion of graph classes
with locally bounded tree-width and established that every first order logic property can be
decided in almost linear time in such a graph class. Here, we introduce an analogous notion
for matroids (locally bounded branch-width) and show the existence of a fixed parameter
algorithm for first order logic properties in classes of regular matroids with locally bounded
branch-width. To obtain this result, we show that the problem of deciding the existence
of a circuit of length at most k containing two given elements is fixed parameter tractable
for regular matroids.

1 Introduction

Classes of graphs with bounded tree-width play an important role both in structural and
algorithmic graph theory. Their importance from the structural point of view stems from
their close relation to graph minors. One of the main results in this area asserts that graphs in
a minor-closed class of graphs admit a tree-like decomposition into graphs almost embeddable
on surfaces. In particular, a minor-closed class of graphs has bounded tree-width if and only if
one of the forbidden minors for the class is planar [22]. With respect to algorithms, there have
been an enormous amount of reports on designing efficient algorithms for classes of graphs
with bounded tree-width for various NP-complete problems. Most of such algorithms have
been put into a uniform framework by Courcelle [2] who showed that every monadic second
order can be decided in linear-time for a class of graphs with bounded tree-width. The result
can also be extended to computing functions given in the monadic second order logic [3].

Not all minor-closed graph classes have bounded tree-width and though some important
graph properties can be tested in linear or almost linear time for graphs from these classes.
One example of such property is whether a graph has an independent or a dominating set
of size at most k. Clearly, such a property can be tested in polynomial time for a fixed k.
However, for the class of planar graphs, these properties could be tested in linear time for any
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fixed k. More generally, if a class of graphs have locally bounded tree-width (e.g., this holds
the class of planar graphs), the presence of a subgraph isomorphic to a given fixed subgraph
H can be tested in linear time [7, 8]. Frick and Grohe [9] developed a framework unifying such
algorithms. They showed that every first order logic property can be tested in almost linear
time for graphs in a fixed class of graphs with locally bounded tree-width. Here, almost linear
time stands for the existence of an algorithm Aε running in time O(n1+ε) for every ε > 0.
More general results in this direction apply to classes of graphs locally excluding a minor [4]
or classes of graphs with bounded expansion [6].

Matroids are combinatorial structures generalizing graphs and linear independance. The
reader is referred to Section 2 if (s)he is not familiar with this concept. For the exposition
now, let us say that every graph G can be associated with a matroid M(G) that captures
the structure of cycles and cuts of G. Though the notion of tree-width can be generalized
from graphs to matroids [16, 17], a more natural decomposition parameter for matroids is
the branch-width which also exists for graphs [23]. The two notions are closely related: if G
is a graph with tree-width t and its matroid M(G) has branch-width b, then it holds that
b ≤ t+ 1 ≤ 3b/2 [23].

Hliněný [11, 13] established an analogue of the result of Courcelle [2] for classes of ma-
troids with bounded branch-width that are represented over a fixed finite field. In particular,
he showed that every monadic second order logic property can be decided in cubic time for
matroids from such a class which are given by their representation over the field (the decom-
position of a matroid needs not be a part of the input as it can be efficiently computed, see
Subsection 2.4 for more details). Since any graphic matroid, i.e., a matroid corresponding to a
graph, can be represented over any (finite) field and its representation can be easily computed
from the corresponding graph, Hliněný’s result generalizes Courcelle’s result to matroids.

The condition that a matroid is given by its representation seems to be necessary as there
are several negative results on deciding representability of matroids: Seymour [26] argued
that it is not possible to test representability of a matroid given by the independance oracle
in subexponential time. His construction readily generalizes to every finite field and it is
possible to show that the matroids appearing in his argument have branch-width at most
three. If the input matroid is represented over rationals, it can be tested in polynomial-time
whether it is binary [25] even without a constraint on his branch-width, but for every finite
field F of order four or more and every k ≥ 3, deciding representability over F is NP-hard [14]
for matroids with branch-width at most k given by their representation over rationals.

In this paper, we propose a notion of locally bounded branch-width and establish structural
and algorithmic results for such classes of matroids. In particular, we aim to introduce an
analogue of the result of Frick and Grohe [9] for matroids in the spirit how the result of
Hliněný [13] is an analogue of that of Courcelle [2]. Our main result (Theorem 14) asserts
that testing first order logic properties in classes of regular matroids with locally bounded
branch-width that are given by the independance oracle is fixed parameter tractable.

The first issue to overcome on our way is that the definition of graph classes with locally
bounded tree-width is based on distances between vertices in graphs, a concept missing (and
impossible to be analogously defined) in matroids. Hence, we introduce a different sense of
locality based on circuits of matroids and show in Section 3 that if a class of graphs has locally
bounded tree-width, then the corresponding class of matroids has locally bounded branch-
width, justifying that our notion is appropriately defined. We then continue with completing
the algorithmic picture (see Table 1) by establishing that every first order logic property is
fixed parameter tractable for classes of regular matroids with locally bounded branch-width.
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Properties Graphs Matroids

First order logic bounded tree-width [2] bounded branch-width and
represented over a finite
field [13]

Monadic second
order logic

locally bounded tree-
width [9]

locally bounded
branch-width and
regular

Table 1: Fixed parameter algorithms for testing first order and monadic second order logic
properties for classes of graphs and matroids. Our result is printed in bold font.

Recall that all graphic matroids are regular. Let us remark that we focus only on establishing
the fixed parameter tractability of the problem without attempting to optimize its running
time.

In one step of our algorithm, we need to be able to decide the existence of a circuit contain-
ing two given elements with length at most k in a fixed parameter way (when parametrized
by k). However, the Maximum likelihood decoding problem for binary inputs, which is known
to be W[1]-hard [5], can be reduced to this problem (in the Maximum likelihood decoding
problem, one is given a target vector v and a matrix M and the task is to decide whether
there exists a vector v′ with at most k non-zero coordinates such that v =Mv′). Hence, it is
unlikely that the existence of a circuit with length at most k containing two given elements
is fixed parameter tractable. So, we had to restrict to a subclass of binary matroids. We
have chosen regular matroids and established the fixed parameter tractability of deciding the
existence of a circuit containing two given elements with length at most k in this class of
matroids (Theorem 11). We think that this result might be of independent interest.

2 Notation

In this section, we introduce notation used in the paper.

2.1 Tree-width and local tree-width

A tree-decomposition of a graph G with vertex set V and edge set E is a tree T such that
every node x of T is assigned a subset Vx of V . To avoid confusion, we always refer to vertices
of graphs as to vertices and those appearing in tree-decompositions or branch-decompositions
as to nodes. The tree-decomposition must satisfy that

• for every edge vw ∈ E, there exists a node x such that {v,w} ⊆ Vx, and

• for every vertex v ∈ V , the nodes x with v ∈ Vx induce a subtree of T .

The second condition can be reformulated that for any two nodes x and y, all the vertices of
Vx ∩ Vy are contained in the sets Vz for all nodes z on the path between x and y in T . The
width of a tree-decomposition is maxx∈V (T ) |Vx| − 1 and the tree-width of a graph G is the
minimum width of its tree-decomposition. It can be shown that a graph has tree-width at
most one if and only if it is a forest. A class G of graphs has bounded tree-width if there exists
an integer k such that the tree-width of any graph in G is at most k.
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The set of vertices at distance at most d from a vertex v of G is denoted by NG
d (v) and it

is called the d-neighborhood of v. A class G of graphs has locally bounded tree-width if there
exists a function f : N → N such that the tree-width of the subgraph induced by the vertices
of NG

d (v) is at most f(d) for every graph G ∈ G, every vertex v of G and every non-negative
integer d. Unlike the notion of tree-width, there is no notion of local tree-width for a single
graph and the notion is defined for classes of graphs.

2.2 Matroids

We briefly introduce basic definitions related to matroids; further exposition on matroids can
be found in several monographs on the subject, e.g., in [20, 28]. A matroid is a pair (E,I)
where E are the elements of M and I is a family of subsets of E whose elements are referred
as independent sets and that satisfies the following three properties:

1. the empty set is contained in I,

2. if X is contained in I, then every subset of X is also contained in I, and

3. if X and Y are contained in I and |X| < |Y |, then there exists y ∈ Y such that X ∪{y}
is also contained in I.

The set E is called the ground set of M . Clearly, if M = (E,I) is a matroid and E′ ⊆ E,
then (E′,I ∩ 2E

′
) is also a matroid; we say that this matroid is the matroid M restricted to

E′.
The maximum size of an independent subset of a set X is called the rank of X and it

can be shown that all inclusion-wise maximum subsets of X have the same size. Clearly, a
set X is independent if and only if its rank is |X|. The rank function of a matroid, i.e., the
function r : 2E → N ∪ {0} assigning a subset X its rank, is submodular which means that
r(A ∩ B) + r(A ∪ B) ≤ r(A) + r(B) for any two subsets A and B of E. The inclusion-wise
maximal subsets contained in I are called bases. An element e of M such that r({e}) = 0 is
called a loop; on the other hand, if r(E \ {e}) = r(E)− 1, then e is a coloop.

Two most classical examples of matroids are vector matroids and graphic matroids. In
vector matroids, the elements E of a matroid are vectors and a subset X of E is independent
if the vectors in X are linearly independent. The dimension of the linear hull of the vectors
in X is equal to the rank of X. We say that a matroid M is representable over a field F

if it is isomorphic to a vector matroid over F; the corresponding assignment of vectors to
the elements of M is called a representation of M over F. A matroid representable over the
two-element field is called binary.

If G is a graph, its cycle matroid M(G) is the matroid with ground set formed by the
edges of G and a subset X is independent in M(G) if G does not contain a cycle formed
by some edges of X. A matroid is graphic if it is a cycle matroid of a graph. Dually, the
cut matroid M∗(G) is the matroid with the same ground set as M(G) but a subset X is
independent if the graphs G and G \X have the same number of components. The matroid
M∗(G) is sometimes called the bond matroid of G. Cut matroids are called cographic.

We now introduce some additional notation related to matroids. Inspired by a graph
terminology, a circuit of a matroid M is a subset X of the elements of M that is an inclusion-
wise minimal subset that is not independent. The following is well-known.

Proposition 1. Let C1 and C2 be two circuits of a matroid with C1 ∩ C2 6= ∅ and e and f
two distinct elements in C1 ∪ C2. There exists a circuit C ⊆ C1 ∪ C2 such that {e, f} ⊆ C.
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If M = (E,I) is a matroid, then the dual matroid M∗ of M is the matroid with ground
set E such that a set X is independent in M∗ if and only if the complement of X contains
a base of M . A circuit of M∗ is referred to as a cocircuit of M . Dual matroids of graphic
matroids are cographic and vice versa.

A k-separation of a matroid M is a partition of its ground set into two sets A and B such
that r(A)+ r(B)− r(M) = k− 1. A matroid M is connected if it has no 1-separation, i.e., its
ground set cannot be partitioned into two non-empty sets A and B with r(A)+r(B) = r(M).
This is equivalent to the statement that for every pair e1 and e2 of elements ofM , there exists
a circuit in M that contains both e1 and e2. The notions of connectivity for matroids and
graphs are different. A matroid M(G) corresponding to a graph G is connected if and only if
G is 2-connected [20].

We now explain how a binary matroid can be obtained from two smaller binary matroids
by gluing along a small separation. Before doing so, we need one more definition: a cycle is
a disjoint union of circuits in a binary matroid. Let M1 and M2 be two binary matroids with
ground sets E1 and E2, respectively. Suppose that min{|E1|, |E2|} ≤ |E1△E2| and that one
of the following holds.

• E1 and E2 are disjoint.

• E1 ∩ E2 contains a single element which is neither a loop nor a coloop in M1 or M2.

• E1 ∩E2 is a 3-element circuit in both M1 and M2 and E1 ∩E2 contains no cocircuit in
M1 or M2.

We define M = M1△M2 to be the binary matroid with ground set E1△E2 such that a set
C ⊆ E1△E2 is a cycle in M if and only if there exist cycles Ci in Mi, i = 1, 2, such that
C = C1△C2. Based on which of the three cases apply, we say that M is a 1-sum, a 2-sum
or a 3-sum of M1 and M2. Note that if M is a k-sum, k = 1, 2, 3, of M1 and M2, then the
partition (E1 \ E2, E2 \ E1) is a k-separation of M .

A matroid M is regular if it is representable over any field. It is well-known that a
matroid M is regular if and only if it has a representation with a totally unimodular matrix
(over rationals). Seymour’s Regular Matroid Decomposition Theorem [25] asserts that every
regular matroid can be obtained by a series of 1-, 2- and 3-sums of graphic matroids, cographic
matroids and copies of a particular 10-element matroid referred as R10.

2.3 Matroid algorithms

In this paper, we study efficient algorithms for matroids. Since this area involves several
surprising aspects, let us provide a brief introduction. Since the number of non-isomorphic
n-element matroids is double exponential in n, an input matroid cannot be presented to
an algorithm using subexponential space. So, one has to resolve how an input matroid is
given. One possibility is that the input matroid is given by an oracle (a black-box function)
that returns whether a given subset of the ground set is independent. If this is the case,
we say that the matroid is oracle-given. Other possibilities include giving the matroid by
its representation over a field. Since algorithms working with oracle-given matroids are the
most general, we assume in this paper that an input matroid is oracle-given unless stated
otherwise. The running time of algorithms is usually measured in the number of elements of
an input matroid. So, if the matroid is graphic, the running time is measured in the number
of its edges.
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Let us now mention some particular algorithmic results, some of which will be used later.
Though it is easy to construct a representation over GF(2) for an oracle-given binary matroid
in quadratic time (under the promise that the input matroid is binary), deciding whether an
oracle-given matroid is binary cannot be solved in subexponential time [26]. However, it can
be decided in polynomial time whether an oracle-given matroid is graphic [26]. Moreover, if
the matroid is graphic, the corresponding graph can be found efficiently, see, e.g., [28, Chapter
10] for further details.

Theorem 2. There is a polynomial-time algorithm that decides whether an oracle-given ma-
troid M is graphic and, if so, finds a graph G such that M =M(G).

Similarly, one cast test whether a given matroid is regular (also see [27] or [28, Chapter
11]).

Theorem 3 (Seymour [25]). There is a polynomial-time algorithm that decides whether an
oracle-given matroid M is regular and, if so, outputs a sequence containing graphic matroids,
cographic matroids and the matroid R10 along with the sequence 1-, 2- and 3-sums yielding
M .

2.4 Branch-width and local branch-width

Though the notion of branch-width is also defined for graphs, we will use it exclusively for
matroids. A branch-decomposition of a matroid M = (E,I) is a subcubic tree T with leaves
one-to-one corresponding to the elements of M . Each edge e of T splits T into two subtrees
and thus naturally partitions the elements ofM into two subsets A andB, those corresponding
to the leaves of the two subtrees. The width of the edge e is r(A) + r(B)− r(M) + 1 where r
is the rank function of M , and the width of the branch-decomposition is the maximum width
of its edge. The branch-width of M is the minimum width of its branch-decomposition.

As mentioned earlier, the branch-width of the cycle matroid M(G) of a graph G is closely
related to the tree-width of G.

Proposition 4 ([23]). Let G be a graph. If b is the branch-width of the cycle matroid M(G)
of G and t is the tree-width of G, then b− 1 ≤ t ≤ 3b/2.

Similarly to graphs, the branch-width of a matroid cannot be efficiently computed. How-
ever, for a fixed k, testing whether an oracle-given matroid has branch-width at most k can
be done in polynomial time [19]. For matroids represented over a finite field, a cubic-time ap-
proximation algorithm for the branch-width of a given matroid (for every fixed branch-width)
have been designed in [12] and the result have later been extended to a cubic-time algorithm
deciding whether a given matroid has branch-width at most k:

Theorem 5 (Hliněný and Oum [15]). Let k be a fixed integer and F a fixed finite field. There
is a cubic-time algorithm that decides whether the branch-width of a matroid M represented
over F is at most k and, if so, it constructs a branch-decomposition of M with width at most
k.

One obstacle that needs to be overcome when defining local branch-width is the absence
of the natural notion of distance for matroids. We overcome this in a way similar to that used
in the definition of matroid connectivity from Subsection 2.2, i.e., we utilize containment in
a common circuit. Let M be a matroid. The distance of two elements e and f of M is equal
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to the minimum size of a circuit of M containing both e and f ; if e = f , then the distance
of e and f is equal to zero. Proposition 1 implies that the distance function defined in this
way satisfies the triangle-inequality. For an element e of M and a positive integer d, NM

d (e)
denotes the set containing all elements of M at distance at most d from e, i.e., those elements
f such that there is a circuit of M containing both e and f of size at most d. A class M of
matroids has locally bounded branch-width if there exists a function f : N → N such that for
every matroid M ∈ M, every element e of M and every positive integer d, the branch-width
of the matroid M restricted to the elements of NM

d (e) is at most f(d).

2.5 FOL and MSOL properties

A monadic second order logic formula ψ for a graph property is built up in the usual way
from variables for vertices, edges, vertex and edge sets, the equality and element-set signs =
and ∈, the logic connectives ∧, ∨ and ¬, the quantification over variables and the predicate
indicating whether a vertex is incident with an edge; this predicate encodes the input graph.
A first order logic formula is a monadic second order logic formula with no variables for vertex
and edge sets. A formula with no free variables is called a sentence. We call a graph property
is first order (monadic second order) logic property if there exists a first order (monadic second
order) logic sentence describing the property, respectively. We further abbreviate first order
logic to FOL and monadic second order logic to MSOL.

Similarly, we define first order logic formulas for matroids. Such formulas contain variables
for matroid elements and the predicate indicating whether a set of elements is independent; the
predicate encodes the input matroid. Monadic second order logic formulas contain variables
for elements and their sets and the predicate describing the independent set of matroids, and
first order logic formulas do not contain variables for sets of elements. Analogously, first
order and monadic second order logic matroid properties are those that can be described
by first order and monadic second order logic sentences. An example of a first order logic
property is the presence of a fixed matroid M0 in an input matroid, i.e., the existence of a
restriction of the input matroid isomorphic to M0. For instance, if M0 is the uniform matroid
U2,3 and IndepM the predicate describing the independence in an input matroid M , then the
corresponding first order logic sentence is

∃a, b, c; IndepM ({a, b}) ∧ IndepM ({a, c}) ∧ IndepM ({b, c}) ∧ ¬IndepM ({a, b, c}) .

As indicated in Table 1, monadic second order logic graph properties can be decided
in linear time in classes of graphs with bounded tree-width [2], monadic second order logic
matroid properties can be decided in cubic time in classes of matroids with bounded branch-
width that are given by a representation over a fixed finite field [13] and first order logic graph
properties can be decided in almost linear time in classes of graphs with locally bounded tree-
width [9]. Theorem 14 completes the picture by establishing that first order logic matroid
properties are fixed parameter tractable in classes of oracle-given regular matroids with locally
bounded branch-width.

The aspect of FOL properties exploited in [9] to obtain their algorithmic results is the
locality of FOL properties. Let P1, . . . , Pk be relations on a set E and let ri be the arity of
Pi, i = 1, . . . , k. The Gaifman graph for the relations P1, . . . , Pk is the graph with vertex set
E such that two elements x1 and x2 of E are adjacent if there exist an index i ∈ {1, . . . , k}
and elements x3, . . . , xrk of E such that (x1, . . . , xrk) ∈ Pi. A formula ψ[x] is r-local if all
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quantifiers in ψ are restricted to the elements at distance at most r from x in the Gaifman
graph. Gaifman established the following theorem which captures locality of FOL properties.

Theorem 6 (Gaifman [10]). If ψ0 is a first order logic sentence with predicates P1, . . . , Pk,
then the sentence ψ0 is equivalent to a Boolean combination of sentences of the form

∃x1, . . . , xk





∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ψ[xi]



 (1)

where d(xi, xj) is the distance between xi and xj in the Gaifman graph and ψ is an r-local
first order logic formula for some integer r.

In particular, Theorem 6 reduces deciding FOL sentences to r-local formulas ψ.

3 Local tree-width vs. local branch-width

In this section, we relate graph classes with locally bounded tree-width and matroid classes
with locally bounded branch-width.

Theorem 7. Let G be a class of graphs and M the class of cycle matroids M(G) for graphs
G ∈ G. If the class G has locally bounded tree-width, then M has locally bounded branch-width.

Proof. Assume that G has locally bounded tree-width, and let fG be the function for G
from the definition of a class of locally bounded tree-width. We claim that the function
fM (d) := fG(⌊d/2⌋) + 1 certifies that M has locally bounded branch-width.

Let G be a graph of G and M =M(G). Fix an element e of M and an integer d ≥ 1. We
show that the branch-width of M restricted to NM

d (e) is at most fM(d). Let v and w be the
end vertices of e in G. If f ∈ NM

d (e), then the edges e and f are contained in a circuit with at
most d elements of M . This circuit is a cycle of G of length at most d and thus the distance
of both the end-points of f from v is at most ⌊d/2⌋. In particular, both the end-vertices of
all the edges f ∈ NM

d (e) are contained in NG
⌊d/2⌋(v).

By the definition of a graph class of locally bounded tree-width, the tree-width of the
subgraph of G induced by NG

⌊d/2⌋(v) is at most f(⌊d/2⌋). Hence, the subgraph H of G

comprised of the edges from NM
d (e) has tree-width at most f(⌊d/2⌋) as H is contained in the

subgraph of G induced by NG
⌊d/2⌋(v). Since M restricted to NM

d (e) is the graphic matroid

corresponding to H, the branch-width of M restricted to NM
d (e) is at most fG(⌊d/2⌋) + 1

by Proposition 4. We conclude that fM certifies that M is a class of matroids with locally
bounded branch-width.

The converse of Theorem 7 is not true; this does however not harm the view of our results
as a generalization of the result of Frick and Grohe on graph classes with locally bounded
tree-width since our result apply to classes of graphic matroids corresponding to graph classes
with locally bounded tree-width (and, additionally, to several other matroid classes).

Let us give an example witnessing that the converse implication does not hold. Consider
a graph Gk obtained in the following way: start with the complete graph Kk of order k,
replace each edge with a path with k edges and add a vertex v joined to all the vertices of
the subdivision of Kk. Clearly, the class of graphs G = {Gk, k ∈ N} does not have locally
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bounded tree-width since the subgraph induced by NG
1 (v) in Gk contains Kk as a minor and

thus its tree-width is at least k − 1.
Let M be the class of graphic matroids of graphs Gk, and set fM (d) = max{3, d+1}. We

claim that the function fM witnesses that the class M has locally bounded branch-width.
Let M = M(Gk) and fix an element e of M and an integer d ≥ 3; let Gk be the graph
corresponding to M . If k < d, then the tree-width of Gk is at most k + 1 ≤ d and thus the
branch-width of M is at most d+ 1 by Proposition 4. In particular, the branch-width of M
restricted to any subset of its elements is at most d+ 1.

We now assume that k ≥ d. Let w be a vertex incident with e that is different from
the vertex v. Observe that any edge contained in NM

d (e) is incident with a vertex of the
subdivision of Kk at distance at most d − 2 < k from w. Since k ≥ d, the edges in NM

d (e)
contained in the subdivision of Kk form no cycles in Gk and thus they yield a subgraph
of tree-width one. Adding the extra vertex v increases the tree-width by at most one and
thus the tree-width of the subgraph of Gk formed by the edges of NM

d (e) is at most two;
consequently, the matroid M restricted to NM

d (e) has branch-width at most three.

4 Constructing Gaifman graph

Let ϕ be a first order logic sentence which contains the predicate IndepM encoding an in-
put matroid M . Further, let d be the depth of quantification in ϕ. Introduce new predi-
cates C1

M , . . . , C
d
M such that the arity of CkM is k and CkM (x1, . . . , xk) is true if and only if

{x1, . . . , xk} is a circuit of M . For instance, C1(x1) is true if and only if x1 is a loop. For
an oracle-given matroid M , each predicate CkM (x1, . . . , xk), k = 1, . . . , d, can be evaluated in
linear time. The circuit reduction ϕC of ϕ is then the sentence obtained from ϕ by replacing
every IndepM (x1, . . . , xℓ) in ϕ by the conjunction:

∧

1≤k≤ℓ

∧

1≤j1<···<jk≤ℓ

¬CkM(xj1 , . . . , xjk) .

Observe that a sentence ϕ is satisfied forM if and only if its circuit reduction ϕC is. In our
algorithmic considerations, we prefer working with circuit reductions of sentences since their
Gaifman graphs are better-structured and, more importantly, distances in them are related
to distances in matroids. Let GCM,d be the graph with vertex set being the elements of M and
two elements of M are adjacent if they are contained in a circuit of length at most d, i.e.,
their distance inM is at most d. Clearly, the graph GCM,d is the Gaifman graph for the circuit
reduction of ϕ and the matroid M when d is the depth of quantification of ϕ. Proposition 1
yields the following (the bound dℓ is not tight).

Lemma 8. Let ϕ be a first order logic sentence and d an integer. If two elements x and y
in M are at distance ℓ in the graph GCM,d, then there exists a circuit of M containing both x
and y with length at most dℓ. In particular, the distance of x and y in M is at most dℓ.

In the rest of this section, we focus on constructing the graph GCM,d(ϕ) efficiently for an
oracle-given regular matroidM and a first order logic sentence ϕ. To achieve our goal, we will
utilize Seymour’s Regular Matroid Decomposition Theorem. To use this result, we show that
the problem, which we call Minimum dependency weight circuit, is fixed-parameter tractable
for graphic and cographic matroids. In this problem, elements of a matroid are assigned
weights and we seek a circuit containing given elements with minimum weight; however, if
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the circuit contains two elements from one of special 3-element circuits, then the weight of
the sought circuit gets adjusted (this we refer to as dependency). The problem is formally
defined as follows.

Problem: Minimum dependency weight circuit (MDWC)

Parameter: an integer ℓ

Input: a matroid M with a set F of one, two or three elements of M
a collection T of disjoint 3-element circuits of M
a positive integral function w on E(M) \

⋃

T∈T T
non-negative integral functions wT on 2T , T ∈ T , such that
wT (∅) = 0 and wT (A) ≥ |A| for any non-empty A ⊆ T

Output: the minimum weight w(C) of a circuit C with F ⊆ C
where w(C) =

∑

e∈C\
⋃

T∈T

T

w(e) +
∑

T∈T

wT (C ∩ T )

if such minimum weight is at most ℓ

To establish the fixed parameter tractability of MDWC problem for regular matroids, we
start with graphic matroids which are more straightforward to handle than cographic ones.

Lemma 9. Minimum dependency weight circuit problem is fixed parameter tractable in the
class of graphic matroids.

Proof. The statement follows by a simple application of the technique called color coding
introduced in [1]. For completeness, we overview the method.

Let G be the graph corresponding to an input matroid M and f1, . . . , fm edges corre-
sponding to the elements of F . Suppose that the vertices of G are colored with ℓ colors and
our goal is to find a rainbow cycle C containing all f1, . . . , fm with its weight w(C) at most
ℓ. Here, a rainbow cycle stands for a cycle with vertices of mutually distinct colors. Such a
cycle can be found in time 2O(ℓ log ℓ)O(|E(G)|2) as we explain in the next paragraphs.

Note that if the weight w(C) of a cycle C is at most ℓ, then the cycle has length at
most ℓ; this follows from the facts that each element of C not contained in a triple T of T
contributes at least one to the weight of C and each triple T contributes at least |C ∩T | since
wT (C ∩ T ) ≥ |C ∩ T |. So, it is enough to examine cycles of length at most ℓ.

Now, let us try to find a rainbow cycle of length exactly k, 2 ≤ k ≤ ℓ. Fix a cyclic
sequence σ of k distinct colors. We now find a cycle containing f1, . . . , fm with the colors
of vertices given by σ of minimum weight (if such a cycle exists). To find such a cycle, first
check whether the colors of the end-vertices of the edges of F appear consecutively in σ; if
not, such a cycle does not exist. By symmetry, we can assume that σ1 and σk are colors of the
end-vertices of f1; let v1 be the end vertex of f1 with the color σ1 and vk the other end vertex.
Further, let i2 (i3) be the larger index of the color of an end vertex of f2 (f3, respectively).
If m ≤ 2, set i3 to ∞; similarly, if m = 1, set i2 to ∞.

Let Vi be the set of the vertices with color σi, i = 1, . . . , k and set V0 = Vk. Sequentially
for i = 1, . . . , k, we compute for each edge f between Vi−1 and Vi the minimum weight of a
path P starting with the edge f1 = vkv1 that ends with the edge f such that the vertices of P
have colors σk, σ1, . . . , σi (in this order) and such that if i ≥ i2 (i ≥ i3), the path P includes

10



f2 (f3, respectively). The weight of a path P is defined naturally as

wP =
∑

e∈P\
⋃

T∈T

T

w(e) +
∑

T∈T

wT (P ∩ T ) .

Note that for some edges f between Vi−1 and Vi such a path P may not exist.
For i = 1, such a path exists only for f = f1 and its weight is w(f1). For i > 1, the

weights of such paths for edges between Vi−1 and Vi can be computed from the weights for
edges between Vi−2 and Vi−1 in time O(|E(G)|2) including weight adjustments in case that
the consecutive edges are contained in one of the triples of T . Note that such a path may
contain at most two edges from any triple T ∈ T and they must be consecutive unless k = 3
and the path is one of the triples of T . Also note that if i = ij , j ∈ {2, 3}, we ignore all edges
f between Vi−1 and Vi different from fj.

Finally, the minimum weight of a cycle containing all edges f1, . . . , fm with length k and
vertices of colors σ1, . . . , σk is computed based on the weights computed for edges between
Vk−1 and Vk. We discard all edges not leading to vk and adjust weights if the edge between
Vk−1 and Vk and f1 are contained together in a triple of T .

Based on the above algorithm, we have shown that the Minimum dependency weight
circuit problem is fixed parameter tractable if we can construct a small family of vertex
colorings of G such that every cycle of G with length at most ℓ is rainbow in at least one
of these colorings. The above algorithm is applied for each coloring in the family and since
every cycle containing all edges f1, . . . , fm has length at most ℓ, we eventually find a cycle
with minimum weight.

A desired family of vertex colorings of G can be constructed using perfect hash functions.
A family F of hash functions from {1, . . . , n} to {1, . . . , ℓ} is called ℓ-perfect if for every
A ⊆ {1, . . . , n} with |A| = ℓ, there exists f ∈ F mapping the elements of A to mutually
distinct numbers. It is known [24] that there exist explicit families of ℓ-perfect hash functions
of size 2O(ℓ) log2 n. Since the vertex colorings of G given by the functions forming an ℓ-perfect
family of hash functions have the property that each cycle of length at most ℓ is rainbow in
at least one of these colorings, the statement of the lemma follows.

Before we handle the case of cographic matroids, we need one more definition. If M
is a cographic matroid, then a family C of its circuits is simple if there exists a graph G
corresponding to M such that every circuit of C corresponds to a cut around a vertex of G
(in particular, if C is empty, it is simple).

Lemma 10. Minimum dependency weight circuit problem is fixed parameter tractable for
cographic matroids providing that T is simple.

Proof. We adopt the method of Kawarabayashi and Thorup [18] proving that finding an edge-
cut with at most ℓ edges and at least k components is fixed parameter tractable. Compared
to their problem, the cut we seek, besides weight computing issues, is required to include the
edges of F and, more importantly, to be inclusion-wise minimal.

To solve Minimum dependency weight circuit problem, we will show how to solve another
problem which we call Weight dependent powercut. The problem is defined as follows.
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Problem: Weight dependent powercut

Parameter: a positive integer ℓ

Input: a graph G with non-negative integer ranks rv of vertices, v ∈ V (G)
a set T0 of vertices of G, called terminals, such that

|T0|+
∑

v∈V (G)

rv ≤ 4ℓ

a collection T of disjoint sets of one, two or three edges such that
for every T ∈ T , the edges of T have a common end vertex v(T )
a positive integral function w on E(G) \

⋃

T∈T T
non-negative integral functions wT on {1, 2, . . . , 2rv(T )} × 2T , T ∈ T ,
such that wT (i, A) ≥ |A| for any i and A ⊆ T

Output: for every equivalence relation ρ on T0,
for all choices iv ∈ {1, . . . , 2rv}, v ∈ V (G),
a cut C with minimum weight w(C)
where w(C) =

∑

e∈C\
⋃

T∈T

T

w(e) +
∑

T∈T

wT (iv(T ), C ∩ T ) such that

every component of G− C contains at least one terminal and
two terminals are in the same component iff they are ρ-equivalent
if the minimum weight of such cut C is at most ℓ

In the above problem as well as in the rest of the proof, a cut in a graph G is a set of edges of
G joining X and V (G) \X for some X ⊆ V (G). Note that the output of Weight dependent
powercut problem is not a single cut but a (large) family of cuts.

We will design a recursive procedure for computing weight dependent powercuts. The

running time of this procedure will be bounded by O(ℓℓ
ℓO(ℓ)

m3) where m is the number of
edges of the input graph. To solve the problem stated in the lemma, we proceed as follows.
Let G be the graph corresponding to the input matroid. The rank of each vertex is chosen to
be 0 and T0 is set to be the end vertices of the edges corresponding to the elements of F . The
collection T is identical to that in the input and the functions w and wT also coincide (with
setting the first parameter 1 in wT ). Out of the cuts returned by the procedure, we choose a
minimum weight cut among those corresponding to equivalence relations ρ with two classes
(and thus two components) such that the end vertices of each edge of F belong to different
classes. Clearly, this is the sought cut C.

Let us remark at this point that the ranks of vertices play an important role in the recursive
steps of our procedure: if we split along a cut which separates some edges contained in the
same set T of T , the rank of the vertex v(T ) will be increased to allow considering different
possible selections among edges not included in the considered side of the cut. More details
are given when describing the appropriate steps of the procedure.

We now describe the recursive procedure. The input graph can be assumed to be con-
nected: otherwise, we solve the problem separately for each component and combine the
obtained solutions together. Observe that if a minimum cut separating two vertices u and v
of G has at least ℓ + 1 edges, then the vertices u and v are always in the same component
G − C if w(C) ≤ ℓ. Hence, such vertices u and v can be identified. The resulting loops are
removed, causing some sets of T to drop in size. The rank of the new vertex is ru · rv. The

12



weight function w stays the same as well as the functions wT for T with v(T ) 6∈ {u, v}. For
T with v(T ) ∈ {u, v}, we define

w′
T (i, A) :=

{

wT (i mod 2ru , A) if v(T)=u, and
wT (i div 2ru , A) if v(T)=v.

Here, we use a div b := ⌈a/b⌉ and a mod b := a − ((a div b) − 1) · b. Clearly, this change in
the input does not affect the structure of cuts with weight at most ℓ and thus the output of
the problem. So, we may assume that for every pair of vertices u and v, there is a cut with
at most ℓ edges seperating u and v.

Observe that the number of output cuts can be at most (4ℓ)4ℓ since there are at most

|T0||T0| ≤ (4ℓ)|T0| distinct equivalence relations on T0 and at most 2
∑

v∈V (G) rv ≤ 24ℓ−|T0| choices
of iv, v ∈ V (G). These cuts can contain together at most s := ℓ(4ℓ)4ℓ edges.

A vertex of G is said to be big if its degree is at least D = 2s + ℓ. We distinguish three
cases in the procedure.

• The graph G contains at least two big vertices. Let u1 and u2 be two big vertices.
Let C be a cut with minimum number of edges separating u1 and u2 and let G1 and
G2 be the two components of G− C. Since u1 and u2 are big, each of the components
G1 and G2 contains at least 2s edges. By the assumption on the input, it holds that

|V (G1) ∩ T0|+
∑

v∈V (G1)

rv ≤ 2ℓ or |V (G2) ∩ T0|+
∑

v∈V (G2)

rv ≤ 2ℓ .

By symmetry, let the former be the case.

We now define an instance of Weight dependent powercut problem with the graph G1.
The new set of terminals is formed by V (G1) ∩ T0 and the end vertices of the edges of
C. The ranks of the vertices are equal to the their original ranks with the exception of
the end vertices of the edges of C whose rank is increased by one for each incident edge
of C contained in a set T of T with at least one edge of G1. Observe that the sum of
the number of terminals and the vertex ranks does not exceed 4ℓ.

The edge weights (the function w) are preserved. The functions wT are also the same
for T ∈ T if v(T ) is not incident with an edge of C.

Consider now a vertex v0 incident with an edge of C. Let r be the original and r′ the
new rank of v0. For T ∈ T with v(T ) = v0 and T ∩ C = ∅, define

w′
T (i, A) := wT (i mod 2r, A) for every A ∈ 2T and i ∈ {1, . . . , 2r

′
}.

Let T1, . . . , Tr′−r be the sets of T such that Tk ∩C 6= ∅,, Tk ∩E(G1) 6= ∅ and v(Tk) = v0
(we allow multiplicites if |Tk ∩ C| = 2, but assume that they always appear consecu-
tively). If |Tk ∩ C| = 1 then define

w′
Tk
(i, A) :=

{

wTk(i mod 2r, A) if i div 2r+k−1 is even and
wTk(i mod 2r, A ∪ {ek}) if i div 2r+k−1 is odd.

If |Tk ∩ C| = 2 and Tk = Tk+1, then define

w′
Tk
(i, A) :=















wTk(i mod 2r, A) if i div 2r+k−1 mod 4 = 4,
wTk(i mod 2r, A ∪ {ek}) if i div 2r+k−1 mod 4 = 1,
wTk(i mod 2r, A ∪ {ek+1}) if i div 2r+k−1 mod 4 = 2,
wTk(i mod 2r, A ∪ {ek, ek+1}) otherwise.
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We now solve Weight dependent powercut problem in G1 with respect to the above
defined parameters.

By the definition of Weight dependent powercut problem, at least one of the optimal
solutions of Weight dependent powercut problem of G would be preserved if we con-
tracted the edges of G1 not contained in any of the cuts of the solution of the problem
for G1. After contracting such edges of G1, the number of edges of G is decreased by
at least |E(G1)| − s ≥ s and Weight dependent powercut problem is solved in the new
instance. The contraction of each edge is performed by identifying its end vertices in
the way described earlier.

• The graph G contains no big vertices. If G has less than D2s+6 edges, we solve
Weight dependent powercut problem by brute force. Otherwise, construct greedily a
vertex-minimal connected induced subgraph H0 of G containing at least h = 2(s + 1)2

edges. Observe that H0 has at most h+D ≤ 2h edges since adding a single vertex to a
subgraph can increase the number of edges by at most D. We now construct subgraphs
H1, . . . ,Hs+1. Suppose that we have constructed Hi. The subgraph Hi+1 is a vertex-
minimal subgraph of G \ (V (H0) ∪ · · ·V (Hi)) containing all neighbors of the vertices
of Hi such that each component of Hi+1 has at least D edges or it is a component of
G \ (V (H0) ∪ · · ·V (Hi)).

The components of Hi with at least D edges are called huge and the subgraph of Hi

formed by them is denoted by H ′
i. It can be shown by induction that the number of

vertices of Hi does not exceed 2hD2i. This implies (since G is connected and has at least
D2s+5 vertices) that every subgraph Hi has at least one huge component; in particular,
each H ′

i is non-empty.

For every subgraph H ′
i, i = 1, . . . , s+ 1, we check whether any two (huge) components

of H ′
i are separated by a cut with at most ℓ edges in G. If so, consider the side of this

cut with the number of terminals and the sum of ranks not exceeding 2ℓ and process
it recursively as in the first case. Then, contract all edges of this side not contained in
any of the cuts of the obtained solution and process the resulting graph. Hence, we can
assume that no two components of H ′

i can be separated by a cut of weight at most ℓ
edges.

Let Gi, i = 1 . . . , s+1, be the graph obtained from the subgraph induced by the vertices
V (H0) ∪ · · · ∪ V (Hi) by identifying all vertices of H ′

i to a single vertex vi and consider
the instance of Weight dependent powercut problem for Gi obtained with the set of
terminals {vi} ∪ (T ∩ V (Gi)) where the ranks of vertices of Gi are the same as in G
except for the vertex vi. The rank of vi reflects (in the same way as when splitting along
an edge cut with at most ℓ edges) that some edges between Hi and the rest of the graph
may be in sets of T ; in particular, the rank of vi is bounded from above by the sum of
the ranks of vertices inside Hi and the number of edges of leaving Hi. Though the sum
of the number of terminals and the vertex ranks can (substantially) exceed 4ℓ, Weight
dependent powercut problem can be solved by brute force since the number of vertices
of Gi is at most 2h+ 2hD2 + · · ·+ 2hD2i ≤ 4hD2i. We do so for every i = 1 . . . , s+ 1;
let Ei be the set of edges contained in at least one of the cuts in the solution of the
problem for i.

Consider a solution of the original instance of Weight dependent powercut problem. If
this solution does not use any edge inside H ′

i, the edges not contained in Ei can be
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contracted without affecting the solution. Since the number of edges in the solution is
at most s, it avoids edges inside at least one of the graphs H ′

i, i = 1, . . . , s + 1. So, we
can contract in G the edges of H0 not contained in E1 ∪ · · · ∪Es+1. This decreases the
number of edges of G by at least h − (s + 1)2 ≥ (s + 1)2 and we recursively solve the
new instance of Weight dependent powercut problem.

• The graph G contains one big vertex. This case is handled similarly to the previous
case. Let b be the only big vertex of G. The induced subgraphs H0, . . . ,Hs+1 are
constructed as in the previous case but in G \ b instead of G. The component of Hi

is huge if it contains at least D edges or it contains a vertex adjacent to b; H ′
i is the

induced subgraph of G formed by the vertex b and the vertices of the huge components
of Hi.

From now on, the procedure runs in the same way as in the previous case. First,
every pair of the components of H ′

i is checked for the existence of an edge cut with at
most ℓ edges (and if one is found, the case is handled recursively). Next, the edge sets
E1, . . . , Es+1 in graphs G1, . . . , Gs+1 are computed and the edges of H0 not contained
in E1 ∪ · · · ∪ Es+1 are contracted. The new instance is solved recursively.

The running time of the algorithm when an edge cut with at most ℓ edges is found is bounded
as follows: at least half of the edges of the graph in the first call are discarded, so the overall
running time can be estimated by the sum of the running times of the two recursive calls. The
running time in the second and the third cases when no small edge cut is found is bounded
by DO(s) = sO(s); since each step decreases the number of edges of the input graph by at
least s2, the number of these steps does not exceed O(m). Each step requires time O(m2)
as there can be O(m) pairs of huge components tested for the existence of a small edge
cut, each test requiring O(m) time (we are looking for edge cuts of with at most ℓ edges).
Hence, the total running time of the algorithm to solve Weight dependent powercut problem

is O(ℓℓ
ℓO(ℓ)

m2).

We can now prove the main theorem of this section.

Theorem 11. The problem of deciding the existence of a circuit of length at most d containing
two given elements of a regular matroid is fixed parameter tractable when parameterized by d.

Proof. We solely focus on presenting the algorithm witnessing the fixed parameter tractability
of the problem without trying to optimize its running time. Let M be the input matroid and
f1 and f2 the two given elements.

If the matroid M is not connected and the two given elements do not lie in the same
component, then there is no circuit containing both of them. Otherwise, if the input matroid
is not connected, we can restrict the input matroid to the component containing the given
element(s). So, we assume the input matroid is connected.

We apply Theorem 3 to obtain the series of 2-sums and 3-sums of graphic matroids,
cographic matroids and matroids isomorphic to R10 that yields the input matroid. Let
M1, . . . ,MK be these matroids. By symmetry, we assume that the element f1 is contained
in M1. Also fix graphs Gi corresponding to graphic and cographic matroids Mi appearing in
this sequence (such graphs can be constructed in polynomial time by Theorem 2).

If we allow some of the M1, . . . ,MK to be isomorphic to matroids obtained from the
matroid R10 by adding elements parallel to its original elements, we can also assume the
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following: if one of 3-sums yielding the input matroid M involves a circuit E, then there
exist indices i1 and i2 such that E ⊆ E(Mij ) for j = 1, 2. This assumption allows us to
create a tree with K vertices representing the way in which the matroid M is obtained from
M1, . . . ,MK . More precisely, there exists a rooted tree TM with a root u1 and additional K-1
nodes u2, . . . , uK such that:

• the nodes u1, . . . , uK of TM one-to-one correspond to the matroids M1, . . ., MK , and

• for every pair of 3-element circuit E appearing in a 3-sum of the construction of M is
contained in matroids Mi and Mj such that ui is a child of uj.

Moreover, this tree TM can be constructed in polynomial time given the sequence M1, . . .,
MK with operations yielding the matroid M ,

For a matroid Mi corresponding to a node ui of TM , we call a set of Mi corresponding
to a sum with the matroid of a child of ui a special set. For i 6= 1, we call the set of Mi

corresponding to the sum with the matroid of its parent a parent set. For i = 1, the parent
set is defined to be {f1}. By a simple extension of the tree TM with additional nodes, one can
achieve that the special 3-element sets of cographic matroids Mi correspond to cuts around
vertices in Gi. So, we assume this to be the case in what follows. Similarly, adding a 2-sum
with the matroid U1,2 allows us to assume that the element f2 is contained in a matroid
corresponding to a leaf node of TM .

Define N1, . . . , NK to be the matroids obtained based on TM by the following recursive
construction from the leaves towards the root. If ui is a leaf node of TM , set Ni to the matroid
Mi. If ui is a node with children uj1 , . . . , ujk , set Ni to the matroid obtained from Mi and
Nj1 , . . . , Njk by sums along the special sets of Mi. Note that the matroid N1 is the input
matroid M .

We will compute the following quantities mi, mi,j and m
′
i,j for the matroids N1, . . . , NK :

• if Ni does not contain the element f2 and its parent set has a single element e1, we
compute the minimum number mi of elements of a circuit C of Ni containing e1,

• if Ni contains f2 and its parent set has a single element e1, we compute the minimum
number mi of elements of a circuit C of Ni containing both e1 and f2,

• if Ni does not contain the element f2 and its parent set has three elements {e1, e2, e3},
for each j = 1, 2, 3, we compute the minimum number mi,j of elements of a circuit C of
Ni with C ∩ {e1, e2, e3} = {ej} and the minimum number m′

i,j of elements of a circuit
C of Ni with C ∩ {e1, e2, e3} = {ej} such that C△{e1, e2, e3} is also a circuit, and

• if Ni contains f2 and its parent set has three elements {e1, e2, e3}, for each j = 1, 2, 3,
we compute the minimum number mi,j of elements of a circuit C of Ni with C ∩
{e1, e2, e3, f2} = {ej , f2} and the minimum number m′

i,j of elements of a circuit C of Ni

with C ∩ {e1, e2, e3, f2} = {ej , f2} such that C△{e1, e2, e3} is also a circuit.

All the minimums above are computed assuming that the number of elements of C does
not exceed d; if it exceeds this quantity, we do not determine the value. Note that m1 is
the minimum number of elements of a circuit of N1 = M containing both f1 and f2. So,
determining these quantities in a fixed parameter way will complete the proof.

The numbers mi, mi,j and m
′
i,j are computed from the leaves towards the root. Consider

a node ui of TM . If the node corresponds to the matroid U1,2 containing f2, set mi = 2. In
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the general case, we proceed as follows. Let T be the set of special 3-element sets of Mi. Let
T = {t1, t2, t3} ∈ T and let Nk be the matroid with the parent set T ; note that the node
corresponding to Nk is a child of ui. Define

wT (∅) = 0, wT ({tj}) = m′
k,j − 1,

wT (T \ {tj}) = max{2,mk,j − 1} and wT (T ) = d+ 1 .

Next, we assign weights to the elements of Mi not contained in a triple of T . The elements of
Mi contained in a 1-element special set summed with a parent set of Nk are assigned weight
mk − 1 and the elements of Mi not contained in a special set are assigned weights one. This
defines the weight function w. Further, if Ni contains f2, then ui has a child ui′ such that
Ni′ contains f2. Fix such i′ (if it exists) for what follows.

We show that the sought quantities can be computed using the Minimum dependency
weight circuit problem. Suppose first that the parent set of Ni has a single element e1. A
simple manipulation using binary representations of Ni andMi and the definition of Ni yields
the following. If Ni does not contain the element f2, the quantity mi is the minimum weight of
a circuit of Mi with respect to the weights w and wT , T ∈ T , containing e1. If Ni contains f2,
then the quantity mi is the minimum weight of a circuit of Mi containing e1 and containing
at least one element of the parent set of Ni′ . Since there are at most three such elements, we
get at most three instances of MDWC problem.

If the parent set of Ni has three elements, say, e1, e2 and e3, the situation gets more
complicated. Again, the fact that Ni and Mi are binary and the way in which Ni is obtained
from Mi gives the following. The quantity mi,j is the minimum weight of a circuit of Mi

containing ej and, if f2 ∈ Ni, at least one element of the parent set of Nk. The quantity m′
i,j

is the minimum weight of a circuit ofMi containing ej+1 and ej+2 and, if f2 ∈ Ni, at least one
element of the parent set of Ni′ . We obtain at most eighteen instances of MDWC problem.

If Mi is graphic or cographic, MDWC problem can be solved using Lemmas 9 and 10.
Note that in the cographic case all 3-element special sets correspond to cuts around vertices
by our assumptions. If Mi is a matroid obtained from R10 by adding elements parallel to its
original elements, we can just enumerate all circuits of Mi (the number of them is bounded
by a polynomial of degree D where D is the maximum length of a circuit of R10) and we solve
MDWC problem by brute force. In all three cases, the exponent in the polynomial bounding
the running time of the algorithm is constant.

Since two elements of a matroid M are adjacent in the graph GCM,d if and only if they are
contained in a common circuit of size at most d, Theorem 11 immediately yields the following.

Corollary 12. The graph GCM,d can be constructed in polynomial time for an oracle-given
regular matroid M and an integer d and the degree of the polynomial in the estimate on its
running time is independent of d.

5 Deciding first order logic properties

Since first order logic formulas are special cases of monadic second order logic formulas, the
results of Hliněný [11, 13] imply the following.

Lemma 13. Let M be a class of regular matroids with locally bounded branch-width. There
exists a cubic-time algorithm that given an oracle-givenM ∈ M, an element x ofM , the graph
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GCM,d and an r-local formula ψ[x] with predicates C1
M , . . . , C

d
M (the locality of ψ is measured

in GCM,d) decides whether ψ[x] is satisfied in M .

Proof. Let fM be the function witnessing thatM is the class of matroids with locally bounded
branch-width. We now briefly describe the algorithm. Given the graph GCM,d, the matroid
M and the element x, construct the set X of elements of M at distance at most r from x in
GCM,d. Let MX be the matroid M restricted to X. The matroid MX is binary (since M is
regular) and thus we can construct in quadratic-time its representation over the binary field.
Moreover, the branch-width of MX is at most fM(rd).

Deciding whether ψ[x] is satisfied now reduces to deciding whether this formula is satisfied
in MX . However, MX is a matroid represented over the binary field and it has branch-width
at most fM(rd). Hence, this can be decided in cubic time using the techniques from [11, 13].
To be more precise, the results from [11, 13] asserts that MSOL properties, which include
FOL properties, can be decided in cubic time for matroids with bounded branch-width that
are represented over a fixed finite field. Here, we have a constant x appearing in our logic
language and a distance constraint but it is straightforward to verify that the techniques
from [11, 13] apply to this setting, too.

We are now ready to prove the main result of this paper. The final part of the argument
is analogous to that used by Frick and Grohe in [9].

Theorem 14. Let ψ0 be a first order logic sentence and M a class of regular matroids
with locally bounded branch-width. There exists a polynomial-time algorithm that decides
whether an oracle-given n-element matroid M ∈ M satisfies ψ0. Moreover, the degree of the
polynomial in the estimate on its running time is independent of ψ0 and M, i.e., testing first
order logic properties in classes of regular matroids with locally bounded branch-width is fixed
parameter tractable.

Proof. Let us start with describing the algorithm. Set d to be the depth of quantification in
ψ0. First, using Corollary 12, construct the graph GCM,d. This can be done in polynomial time
where the degree of the polynomial in the time estimate is independent of d. By Theorem 6,
the circuit reduction ψC0 of ψ0 is equivalent to a Boolean combination of sentences of the form
(1). Hence, it is enough to show how a sentence of the form (1) can be decided in polynomial
time.

Fix a sentence of the form (1) where ψ is an r-local formula with predicates C1
M , . . . , C

d
M .

By Lemma 13, we can test whether ψ[x] is satisfied for every element x of M in cubic time.
Let Xψ be the set of all elements x such that ψ[x] is satisfied. This set can be constructed in
time O(n4) where n is the number of elements of M .

We now have to decide whether Xψ contains k elements at pairwise distance at least 2r+1
in GCM,d. Choose x1 ∈ Xψ arbitrary. If x1, . . . , xi−1 have already been chosen, choose xi to be
an arbitrary element of Xψ at distance at least 2r + 1 from each of the elements x1, . . . , xi−1

(if such xi exists). Let ℓ be the number of elements obtained in this way. Observe that the
list x1, . . . , xℓ can be constructed in time O(n3) given Xψ and GCM,d.

If ℓ ≥ k, the sentence (1) is satisfied. Assume that ℓ < k. Let ξ be the smallest positive
integer such that no two elements of Xψ have distance in GCM,d between 8ξr + 1 and 8ξ+1r

(inclusively). Since the number of pairs of elements in x1, . . . , xℓ is
(ℓ
2

)

≤
(k
2

)

, the number of
different distances between the elements of Xψ is at most k2/2 and thus ξ ≤ k2 (it can be
shown that ξ ≤ k but the quadratic bound suffice for our purposes). Let X ′

ψ be a maximal
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subset of elements x1, . . . , xℓ such that the distance between any two elements of X ′
ψ is at

least 8ξr+1. Further, let ℓ′ = |X ′
ψ|. Since k is bounded, the integer ξ and the set X ′

ψ can be
determined in quadratic time.

For simplicity, let us assume that X ′
ψ = {x1, . . . , xℓ′}. Let Ai, 1 ≤ i ≤ ℓ′, be the set of

elements of M at distance at most 8ξr + 2r from xi in G
C
M,d. Note that if elements a ∈ Ai

and a′ ∈ Ai′ , 1 ≤ i, i′ ≤ ℓ′, are at distance at most 2r, then i = i′ (in particular, the sets
A1, . . . , Aℓ′ are disjoint). Indeed, if the distance of a and a′ were at most 2r, then the distance
between xi and xi′ would be at most 2 · (8ξr+2r) + 2r = 2 · 8ξr+6r ≤ 8ξ+1r by the triangle
inequality, which would contradict the choice of ξ. On the other hand, every element of Xψ

is at distance at most 2r from an element xj , 1 ≤ j ≤ ℓ, and the element xj is at distance at
most 8ξr from one of the elements x1, . . . , xℓ′ by the choice of X ′

ψ. Hence, every element of
Xψ is contained in one of the sets A1, . . . , Aℓ′ .

Since Xψ ⊆ A1 ∪ · · · ∪ Aℓ′ and no two elements contained in distinct sets A1, . . . , Aℓ′ are
at distance at most 2r, the maximum size of a subset of elements Xψ at pairwise distance at
least 2r + 1 is equal to the sum of maximum sizes of such subsets in A1 ∩Xψ, . . . , Aℓ′ ∩Xψ.

Let Bi, 1 ≤ i ≤ ℓ′, be the set of elements of M at distance at most 2dr in M from an
element of Ai. Observe that two elements of Ai are at distance at most 2r in GCM,d if and

only if they are at distance at most 2r in GCMi,d
where Mi is the matroid M restricted to

Bi. In particular, the maximum size of a subset of Ai ∩Xψ formed by elements at pairwise
distance at least 2r+1 in GCM,d is equal to the maximum size of a subset of Ai∩Xψ formed by

elements at pairwise distance at least 2r+1 in GCMi,d
. The matroid Mi is formed by elements

at distance at most (8ξr + 2r)d + 2dr ≤ 8k
2
rd + 4rd from xi and thus its branch-width is

at most fM(8k
2
rd + 4rd) where fM is the function witnessing that the class M has locally

bounded branch-width. Since it can be encoded in the first order logic that the distance
between two elements in GCMi,d

is at most 2r, we can use the results of Hliněný on decidability
of MSOL properties from [11, 13] to determine (in cubic time) whether there exists a subset
of Ai ∩Xψ of a fixed size m, 1 ≤ m ≤ k, formed by elements at distance at least 2r + 1 in
GCMi,d

.
If there exists such a subset of Ai ∩Xψ of size k for some i, 1 ≤ i ≤ ℓ′, then the formula

(1) is true. Otherwise, let mi be the maximum size of such a subset of Ai∩Xψ, 1 ≤ i ≤ ℓ′. As
we have explained, the numbers mi can be determined in cubic time (recall that k does not
depend on the input). The formula (1) is true if and only if m1 + · · ·+mℓ′ ≥ k. This finishes
the description of the algorithm. The correctness and polynomiality of the algorithm where
the degree of the polynomial does not depend on ψ0 and M follows from the arguments we
have given.
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[11] P. Hliněný: On matroid properties definable in the MSO logic, in: Proc. of MFCS 2003,
LNCS vol. 2747, Springer, Berlin, 2003, 470–479.
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[14] P. Hliněný: On matroid representatibility and minor problems, in: Proc. of MFCS 2006,
LNCS vol. 4192, Springer, Berlin, 2006, 505–516.
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