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Abstract

We show that for every cubic graph G with sufficiently large girth
there exists a probability distribution on edge-cuts of G such that each
edge is in a randomly chosen cut with probability at least 0.88672. This
implies that G contains an edge-cut of size at least 1.33008n, where n
is the number of vertices of G, and has fractional cut covering number
at most 1.12776. The lower bound on the size of maximum edge-cut
also applies to random cubic graphs. Specifically, a random n-vertex
cubic graph a.a.s. contains an edge cut of size 1.33008n.

1 Introduction

An edge-cut in a graph G = (V,E) defined by X ⊆ V is the set of edges
with exactly one end vertex in X (and exactly one end vertex in V \X). A
maximum edge-cut is an edge-cut with the maximum number of edges. The
size of a maximum edge-cut is an important graph parameter intensively
studied both in structural and algorithmic graph theory. For example in
algorithmic theory, it attracted a lot of attention because of an approxi-
mation algorithm based on the semidefinite programming by Goemans and
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Williamson [3] which is the best possible under reasonable computational
complexity assumptions [8]. In this paper, we provide new structural re-
sults on maximum cuts in cubic graphs, i.e., graphs with all vertices of
degree three.

We prove a new lower bound on the size of a maximum edge-cut in a cubic
graph with no short cycle and in a random cubic graph. Let us now mention
some earlier results. In 1990, Zýka [17] proved that the size of the maxi-
mum edge-cut in cubic graphs with large girth is at least 9n/7 − o(n) =
1.28571n− o(n). A better bound 1.3056n can be obtained from a recent re-
sult [7] on independent sets in cubic graphs with large girth. The asymptotic
lower bound for a maximum edge-cut in random cubic graphs of 1.32595n
was given by Dı́az, Do, Serna and Wormald [1]. The experimental evidence
suggests that almost all n-vertex cubic graphs contain an edge-cut of size
at least 1.382n [15]. On the other hand, the best known upper bound is
0.9351m = 1.4026n which applies both to random cubic graphs and cubic
graphs with large girth. The upper bound was first announced by McKay [9],
its rigorous proof can be found in [4]. The problem could also be translated
to a problem in statistical physics and applying non-rigorous methods sug-
gests that the size of a maximum edge-cut for almost all n-vertex graphs is
at most 1.386n [16].

The problems of determining the size of a maximum edge-cut in random
cubic graphs (more generally in random regular graphs) and in cubic (reg-
ular) graphs with large girth are closely related. On one hand, Wormald
showed in [13] that a random cubic graph asymptotically almost surely
(a.a.s.) contains only o(n) cycles shorter than a fixed integer g. There-
fore, we can a.a.s. remove a small number (which means o(n)) of vertices
to obtain a subgraph with large girth and only o(n) vertices of degree less
than three.

On the other hand, Hoppen and Wormald [6] have recently developed
a technique for translating many results for random r-regular graphs to r-
regular graphs with sufficiently large girth. In particular, they are able to
translate bounds obtained by analyzing the performance of so-called locally
greedy algorithms for a random regular graphs. These algorithms and their
analysis provide the currently best known asymptotic bounds to many pa-
rameters of random regular graphs, for example an upper bound on the size
of the smallest dominating set [2]. The main tool for the analysis of such
algorithms as well as for analysis of many other random processes is the dif-
ferential equation method developed by Wormald [14].

Bounds on maximum edge-cuts are closely related to the concept of frac-
tional cut coverings. A fractional cut covering of a graph G is a parameter
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analogous to a fractional coloring of G. It was first introduced by Šámal [10]
under the name cubical colorings and he also related this parameter to graph
homomorphisms. These ideas are further developed in [11, 12]. The aim is
to assign non-negative weights to edge-cuts in G in such a way that for each
edge e of G the sum of weights of the cuts containing e is at least one.
The fractional cut covering number is the minimum sum of weights of cuts
forming a fractional cut covering. Our approach in this paper gives also an
upper bound for the fractional cut covering number of cubic graphs with
sufficiently large girth.

2 New results

The main result of this paper is the following.

Theorem 1. If G is a cubic graph with girth at least 16 353 933, then there

exists a probability distribution such that each edge of G is contained in

an edge-cut drawn according to this distribution with probability at least

0.88672.

Before we present the proof of Theorem 1, let us state three corollaries
of this theorem. First, by considering the expected size of a cut drawn
according to the distribution from Theorem 1, we get the following.

Corollary 2. Every n-vertex cubic graph with girth at least 16 353 933 con-

tains an edge-cut of size at least 1.33008n.

Since a random cubic graph asymptotically almost surely contains only
o(n) cycles shorter than a fixed integer g [13], the lower bound on the size
of an edge-cut also translates to random cubic graphs.

Corollary 3. A random n-vertex cubic graph asymptotically almost surely

contains an edge-cut of size at least 1.33008n.

Proof. Let G be a randomly chosen n-vertex cubic graph. The results
of [13] imply then we can a.a.s. remove o(n) vertices and obtain a sub-
cubic subgraph G′ with girth at least 16 353 933. Let n1 and n2 be the
numbers of vertices of G′ with degree one and two, respectively. Observe
that n1 + n2 = o(n).

Let R be a (2n1 + n2)-regular graph with girth at least 16 353 933. Re-
place each vertex of R with a copy of G′ in such a way that the edges of R
are incident with vertices of degree one and two in the copies of G′ and
the resulting graph is cubic. Observe that the obtained graph H has girth
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at least 16 353 933. Applying Corollary 2 to H yields an edge-cut C of size
at least 1.33008N where N is the number of vertices of H. Observe that
the number of the edges corresponding to those of R among all the edges
of H is o(N). Therefore, at least one copy of G′ in H contains at least
1.33008n− o(n) edges of C.

The last corollary relates Theorem 1 to the problem of fractional cover-
ings the edges with edge-cuts. We show how to construct from the proba-
bility distribution given by Theorem 1 a fractional cut covering.

Corollary 4. Every n-vertex cubic graph G with girth at least 16 353 933
has the fractional cut covering number at most 1.12776.

Proof. Consider the probability distribution given by Theorem 1 for G. If
the probability of a cut C to be drawn in this distribution is p(C), assign C
weight p(C)/0.88672. It is straightforward to verify that we have obtained
a fractional cut covering of weight 1/0.88672 = 1.12776.

3 Structure of the proof

Our proof is inspired by the method which was developed by Hoppen in [5]
for obtaining lower bounds on independent sets and induced forests. In or-
der to prove Theorem 1, we design a randomized procedure for obtain-
ing an edge-cut (of large size) which resembles the procedure used in [1].
The main difference between the procedures is that our procedure produces
a cut where the parts of the cut have different sizes. The key tool for our
analysis is the independence lemma (Lemma 6) which is given in Section 5.
This lemma is used to simplify the recurrence relations appearing in the anal-
ysis. The recurrences describing the behavior of the randomized procedure
are derived in Section 6. The actual performance of the procedure is based
on setting up the parameters of the procedure and solving the recurrences
numerically. This is discussed in Section 7.

The sought probability distribution is obtained by processing a cubic
graph G = (V,E) by the procedure which produces an edge-cut of it. G
is processed in a fixed number of rounds K and the required assumption
on the girth of G will depend only on the number K. We will iteratively
construct two disjoint subsets R ⊆ V and B ⊆ V ; the vertices contained in
R are referred to as red vertices and those in B as blue ones. The aim of
the procedure is to maximize the number of red-blue edges. The vertices
that are neither red nor blue will be called white.
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All vertices are initially white. In every round, each white vertex is re-
colored to red or blue with a certain probability depending on the number of
its red and blue neighbors, as well as on the number of current round. Once
a vertex is colored red or blue, its color stays the same in all the remaining
rounds of the procedure.

4 Detailed description

We now describe the randomized procedure in more detail. We first in-
troduce some notation. Let Ij := {(r, b) : r ∈ N0, b ∈ N0, r + b ≤ j}, i.e.,
the set Ij contains all pairs r and b of non-negative integers such that
r + b ≤ j. For example, I2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}. Note
that |Ij | =

(

j+2
2

)

. Let G = (V,E) be a cubic graph and v a vertex of G.
Throughout the analysis, r(v) will refer to the number of red neighbors of
v and b(v) to the number of its blue neighbors. Therefore, 3 − r(v) − b(v)
is the number of the white neighbors of v. If the vertex v is clear from the
context, we just use r and b instead of r(v) and b(v).

Our randomized procedure is parametrized by the following parameters:

• an integer K,

• probabilities P r,b
k (W ) for all k ∈ [K] and (r, b) ∈ I3 ,

• probabilities P r,b
k (R) for all k ∈ [K] and (r, b) ∈ I3 and

• probabilities P r,b
k (B) for all k ∈ [K] and (r, b) ∈ I3 .

We require that P r,b
k (W )+P r,b

k (R)+P r,b
k (B) = 1 for all k ∈ [K] and (r, b) ∈

I3.

The integer K ∈ N0 denotes the number of rounds that are performed.
Throughout the procedure, vertices of the input graphG have one of the three
colors: white (W), red (R) and blue (B). Let Wk ⊆ V (G) denote the set
of white vertices after the k-th round. Analogously, we define Rk and Bk as
the sets of red vertices and blue vertices, respectively. As we have already
mentioned, at the beginning of the process W0 := V,R0 := ∅ and B0 := ∅.
For (r, b) ∈ I3 we define W r,b

k ⊆ Wk to be the set of white vertices with

exactly r red neighbors and b blue neighbors. Hence the sets W r,b
k forms

a partition of Wk for every k. Note that W 0,0
0 = V and W r,b

0 = ∅ for all
(r, b) ∈ I3 \ {(0, 0)}.

Consider the coloring of G obtained after the k-th round. The (k+1)-th

round of the procedure is performed as follows. Let v be a vertex from W r,b
k .
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With probability P r,b
k+1(R) we change the color of v to red, with probability

P r,b
k+1(B) we recolor it to blue, and with probability P r,b

k+1(W ) it remains
white. If v is after the k-th round colored red or blue, it will not change its
color during the (k + 1)-th round.

Before we can proceed further, we have to introduce some additional
notation. For a vertex v ∈ V (G) let T d

v denote the subgraph of G induced
by vertices at the distance from v at most d. Observe that if the girth of G
is larger than 2d+ 1, then the subgraph T d

v is a tree.
Now we show that if the girth of G is sufficiently large, then the prob-

abilities that after the k-th round a vertex v has white, red or blue color,
respectively, do not depend on the choice of v. We start with the following
proposition.

Proposition 5. Let G be a cubic graph with girth at least 2K and v a vertex

of G. For every k ∈ [K] the probability that the subgraph TK−k
v has a certain

coloring after the k-th round is determined by the coloring of TK−k+1
v after

the (k − 1)-th round.

Proof. The color of a vertex u ∈ TK−k
v after the k-th round depends only

on the colors of u and its neighbors after the (k − 1)-th round. Since all
the neighbors of u are contained in TK−k+1

v , the proposition follows.

Suppose that the girth of G is at least 2K. For any k ∈ [K] the structure
of a subgraph TK−k

v does not depend on the choice of v, i.e., it is always
a tree with all inner vertices of degree three. Therefore, we use a simple in-
ductive argument together with Proposition 5 to conclude that the following
probabilities do not depend on the choice of v:

wk := P
[

v ∈ Wk

]

, rk := P
[

v ∈ Rk

]

, bk := P
[

v ∈ Bk

]

.

Analogously, for any k ∈ [K − 1] and (r, b) ∈ I3, the probability that after
the k-th round a vertex v is white and has r red neighbors and b blue
neighbors does not depend on the choice of v as well. Therefore, we can
define

wr,b
k := P

[

v ∈ W r,b
k

∣

∣ v ∈ Wk

]

.

Also observe that if the girth of G is larger than 2d + 2, then for ev-
ery edge uv ∈ E(G) the subgraph of G induced by vertices x satisfying
min {d(x, u), d(x, v)} ≤ d is a tree. If the girth of G is at least 2K + 1,
the same reasoning as before yields the following. The probability that for
an edge uv ∈ E(G) either u is red and v is blue after the k-th round, or v is
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red and u is blue after the k-th round does not depend on the choice of uv.
This probability will be denoted by

pk := P
[

(u ∈ Rk ∧ v ∈ Bk) ∨ (u ∈ Bk ∧ v ∈ Rk)
∣

∣ uv ∈ E(G)
]

.

5 Independence lemma

In this section we present a key tool which we use in the analysis of the ran-
domized procedure. Our analysis follows the approach used in [5].

We start with a definition. If G is a cubic graph with girth at least
2K + 1, uv is an edge of G and d is an integer between 0 and K − 1, T d

v,u

denotes the component of T d
v − u containing the vertex v. We refer to v

as to the root of T d
v,u. From the assumption on the girth it follows that

all the subgraphs T d
v,u are isomorphic to the same rooted binary tree T d of

depth d.
Let k ∈ [K]. For a set V ′ ⊆ V (G) let ck(V

′) denote the coloring of
vertices V ′ after the k-th round. The set of all colorings of T K−k such that
the root of the tree is white is denoted by Ck. Observe that by the girth as-
sumption for any γ ∈ Ck the probability P

[

ck
(

TK−k
v,u

)

= γ
]

does not depend
on the edge uv.

We are ready to prove the main lemma of this section.

Lemma 6 (Independence lemma). Consider the randomized procedure with

parameters K and P r,b
i (C), where i ∈ [K], (r, b) ∈ I3 and C ∈ {W,R,B}.

Let G be a cubic graph with girth at least 2K + 1, uv an edge of G, k
an integer smaller than K and γu and γv two colorings from Ck. Conditioned
by the event uv ∈ Wk, the events ck

(

TK−k
v,u

)

= γv and ck
(

TK−k
v,u

)

= γu are

independent. In other words, the probabilities

P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ uv ⊆ Wk

]

(1)

and

P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ v ∈ Wk ∧ ck

(

TK−k
u,v

)

= γu
]

(2)

are equal.

Proof. The proof proceeds by induction on k. After the first round each
vertex has a color C with probability P 0,0

1 (C) independently of the colors of
the other vertices. Hence, the claim holds for k = 1.
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Assume now that k > 1. By the definition of the conditional probability
and the fact that the event uv ⊆ Wk immediately implies that the event
uv ⊆ Wk−1 occurs, (1) is equal to

P
[

ck
(

TK−k
v,u

)

= γv ∧ u ∈ Wk

∣

∣ uv ⊆ Wk−1

]

P
[

uv ⊆ Wk

∣

∣ uv ⊆ Wk−1

] . (3)

Analogously, (2) is equal to

P
[

ck
(

TK−k
v,u

)

= γv ∧ ck
(

TK−k
u,v

)

= γu
∣

∣ uv ⊆ Wk−1

]

P
[

v ∈ Wk ∧ ck

(

TK−k
u,v

)

= γu
∣

∣ uv ⊆ Wk−1

]

. (4)

Now we expand the numerator of (3).
∑

γ′
u∈Ck−1

∑

γ′
v∈Ck−1

P
[

ck−1

(

TK−k+1
u,v

)

= γ′
u

∣

∣ uv ⊆ Wk−1

]

×P
[

ck−1

(

TK−k+1
v,u

)

= γ′
v

∣

∣ v ∈ Wk−1 ∧ ck−1

(

TK−k+1
u,v

)

= γ′
u

]

×P
[

u ∈ Wk

∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′
u ∧ ck−1

(

TK−k+1
v,u

)

= γ′
v

]

×P
[

ck
(

TK−k
v,u

)

= γv
∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′
u ∧ ck−1

(

TK−k+1
v,u

)

= γ′
v ∧ u ∈ Wk

]

.

By the induction hypothesis, for any two colorings γ′u, γ
′
v ∈ Ck−1 the prob-

abilities

P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ v ∈ Wk−1 ∧ ck−1

(

TK−k+1
u,v

)

= γ′u
]

and
P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ uv ⊆ Wk−1

]

are equal.
Since the new color of u is determined only by the colors of the neighbors

of u, it follows that the probabilities

P
[

u ∈ Wk

∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ ck−1

(

TK−k+1
v,u

)

= γ′v
]

and
P
[

u ∈ Wk

∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ v ∈ Wk−1

]

are also equal.
Analogously, for any vertex w ∈ TK−k

v,u \ {v} the new color of w does
not depend on γ′u at all. Applying the same reasoning for v yields that
the probabilities

P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk

]
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and
P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk−1

]

are equal as well. Note that in the last equality we have also used that
the random choices of new colors for two arbitrary vertices in the (k+1)-th
round are independent.

By changing the order of summation, we conclude that the numerator
of (3) is equal to

(

∑

γ′
u∈Ck−1

P
[

ck−1

(

TK−k+1
u,v

)

= γ′u
∣

∣ uv ⊆ Wk−1

]

× P
[

u ∈ Wk

∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ v ∈ Wk−1

]

)

×

(

∑

γ′
v∈Ck−1

P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ uv ⊆ Wk−1

]

× P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk−1

]

)

.

Along the same lines, the denominator of (3) is equal to

(

∑

γ′
u∈Ck−1

P
[

ck−1

(

TK−k+1
u,v

)

= γ′u
∣

∣ uv ⊆ Wk−1

]

× P
[

u ∈ Wk

∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ v ∈ Wk−1

]

)

×

(

∑

γ′
v∈Ck−1

P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ uv ⊆ Wk−1

]

× P
[

v ∈ Wk

∣

∣ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk−1

]

)

.

Canceling out the sum over γ′u which is the same in both numerator and
denominator of (3), we derive that (1) is equal to

∑

γ′
v∈Ck−1

P
[

ck−1

(

T
K−k+1
v,u

)

= γ
′

v

∣

∣ uv ⊆ Wk−1

]

× P
[

ck

(

T
K−k
v,u

)

= γv
∣

∣ ck−1

(

T
K−k+1
v,u

)

= γ
′

v ∧ u ∈ Wk−1

]

∑

γ′
v∈Ck−1

P
[

ck−1

(

T
K−k+1
v,u

)

= γ
′

v

∣

∣ uv ⊆ Wk−1

]

× P
[

v ∈ Wk

∣

∣ ck−1

(

T
K−k+1
v,u

)

= γ
′

v ∧ u ∈ Wk−1

]

.

(5)
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We apply the same trimming to the numerator and denominator of (4).
The numerator is first expanded to

(

∑

γ′
u∈Ck−1

P
[

ck−1

(

TK−k+1
u,v

)

= γ′u
∣

∣ uv ⊆ Wk−1

]

× P
[

ck

(

TK−k
u,v

)

= γu
∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ v ∈ Wk−1

]

)

×

(

∑

γ′
v∈Ck−1

P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ uv ⊆ Wk−1

]

× P
[

ck

(

TK−k
v,u

)

= γv
∣

∣ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk−1

]

)

and the denominator is then expanded to
(

∑

γ′
u∈Ck−1

P
[

ck−1

(

TK−k+1
u,v

)

= γ′u
∣

∣ uv ⊆ Wk−1

]

× P
[

ck

(

TK−k
u,v

)

= γu
∣

∣ ck−1

(

TK−k+1
u,v

)

= γ′u ∧ v ∈ Wk−1

]

)

×

(

∑

γ′
v∈Ck−1

P
[

ck−1

(

TK−k+1
v,u

)

= γ′v
∣

∣ uv ⊆ Wk−1

]

× P
[

v ∈ Wk

∣

∣ ck−1

(

TK−k+1
v,u

)

= γ′v ∧ u ∈ Wk−1

]

)

.

By canceling out the sum over γ′u, we obtain (5). Therefore the expres-
sions (1) and (2) are equal.

6 Recurrence relations

In this section we derive recurrence relations for the probabilities describing
the behavior of the randomized procedure.

Fix parameters K and P r,b
k (C), k ∈ [K], (r, b) ∈ I3 and C ∈ {W,R,B}.

We will inductively show that the probabilities describing the state of the pro-
cedure after the (k + 1)-th round can be computed using only the probabil-
ities describing the state after the k-th round. This yields the recurrence
relations for the probabilities, which is the main goal of this section.
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We start with determining the probabilities after the initialization round.
It is easy to see that the probabilities r1, b1, w1, p1 and wr,b

1 are

r1 = P 0,0
1 (R) ,

b1 = P 0,0
1 (B) ,

w1 = 1− r1 − b1 ,

p1 = 2 · P 0,0
1 (R) · P 0,0

1 (B) and

wr,k
1 =

(

3

r

)(

3− r

b

)

·
(

P 0,0
1 (R)

)r

·
(

P 0,0
1 (B)

)b

·
(

1− P 0,0
1 (R)− P 0,0

1 (B)
)3−r−b

for (r, b) ∈ I3 .

Now we show how to compute the probabilities rk+1, bk+1 and wk+1

from rk, bk, wk and wr,b
k . We start with the formula for rk+1. If a vertex

v is colored red after the (k + 1)-th round, then after the k-th round, it
was either already colored red, or it was white, had r red neighbors, b blue
neighbors and it was recolored to red. The latter happened with probability
P r,b
k+1(R). The probability of the first event is rk and that of the second

event is wk · w
r,b
k · P r,b

k+1(R). This yields that

rk+1 = rk + wk ·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(R) .

Analogously, we can compute

bk+1 = bk +wk ·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(B) ,

and finally wk+1 is given by

wk+1 = 1− rk+1 − bk+1 .

Before we proceed with the recurrences for pk+1 and wr,b
k+1, let us in-

troduce some auxiliary notation. All of the following quantities are fully
determined by wr,b

k , but this notation will help to make the formulas sim-
pler. We start with probability that a vertex v has white color after the
(k + 1)-th round conditioned by the event it had white color after the k-th
round. This quantity will be denoted by w→k+1. It is straightforward to
check that

w→k+1 := P
[

v ∈ Wk+1

∣

∣ v ∈ Wk

]

=
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(W ) .
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Next, we consider the probability that the vertex u is white after the k-th
round conditioned by the event that a fixed neighbor v of u is white. This
will be denoted by qW−W

k . Again it is easy to check that

qW−W
k := P

[

uv ⊆ Wk

∣

∣ v ∈ Wk

]

=
∑

(r,b)∈I2

3− r − b

3
· wr,b

k .

Finally, for a color C ∈ {W,R,B} and an edge e = uv, q
(C)
→k+1 denotes

the probability that u has the color C after the (k+1)-th round conditioned
by the event that both u and v were white after the k-th round. We infer
from the definition of the conditional probability that

q
(R)
→k+1 := P

[

u ∈ Rk+1

∣

∣ uv ⊆ Wk

]

=
∑

(r,b)∈I2

wr,b
k · (3− r − b) · P r,b

k+1(R)

3 · qW−W
k

,

q
(B)
→k+1 := P

[

u ∈ Bk+1

∣

∣ uv ⊆ Wk

]

=
∑

(r,b)∈I2

wr,b
k · (3− r − b) · P r,b

k+1(B)

3 · qW−W
k

,

q
(W )
→k+1 := P

[

u ∈ Wk+1

∣

∣ uv ⊆ Wk

]

=
∑

(r,b)∈I2

wr,b
k · (3 − r − b) · P r,b

k+1(W )

3 · qW−W
k

.

Now we are ready to present the remaining recurrences. We start with
pk+1, i.e., the probability than an edge e = uv is red-blue after the (k + 1)-
th round. Note that once we color a vertex x with either red or blue color,
the color of x in the future rounds will stay the same. Therefore, we can
split the contribution to pk+1 to the following four types.

1. e ∩ Wk = ∅ : This event happens with probability pk and the colors
stay the same.

2. e ∩Wk = {v} : Suppose first that u is blue. The probability that we

have such configuration after k-th round is wk ·
∑

(r,b)∈I3
wr,b
k · b/3. In

this case, the edge e become red-blue after the (k + 1)-th round with

probability P r,b
k+1(R). Analogously, if u is red, the contribution of this

case is wk ·
∑

(r,b)∈I3
wr,b
k · P r,b

k+1(B) · r/3 .

3. e ∩Wk = {u} : This case is symmetric to the previous one.

4. e ⊆ Wk : The probability that v has white color is wk. With proba-
bility wr,b

k · (3− r − b)/3, v has r red neighbors, b blue neighbors and

u is white. The probability that v becomes red is P r,b
k+1(R), and using

12



the independence lemma (Lemma 6) the neighborhood of u does not
depend on the colors of the other neighbors of v. Therefore, the proba-

bility that u becomes blue is q
(B)
→k+1. On the other hand, the probability

that v becomes red and u becomes blue is P r,b
k+1(B) · q

(R)
→k+1.

The analysis just presented yields that

pk+1 = pk +
wk

3
·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(R) ·
(

2b+ (3− r − b) · q
(B)
→k+1

)

+
wk

3
·
∑

(r,b)∈I3

wr,b
k · P r,b

k+1(B) ·
(

2r + (3− r − b) · q
(R)
→k+1

)

.

We finish this section with the recurrence relations for the probabilities
wr,b
k+1. Observe that

wr,b
k+1 =

P
[

v ∈ W r,b
k+1

]

P
[

v ∈ Wk+1

] =
P
[

v ∈ W r,b
k+1

∣

∣ v ∈ Wk

]

P
[

v ∈ Wk+1

∣

∣ v ∈ Wk

] . (6)

The second equality holds because each of the events v ∈ Wk+1 and v ∈
W r,b

k+1 immediately implies that the event v ∈ Wk occurs. The denominator
of (6) is equal to w→k+1, so it remains to derive the formula for the numer-
ator.

Let NW
k (v) denote the set of white neighbors of v after the k-th round.

Using the same argument as for deriving the formula for pk+1, the color
after the (k + 1)-th round of a white neighbor u ∈ NW

k (v) will be red with

probability q
(R)
→k+1. Analogously, it will be blue with probability q

(B)
→k+1 and

white with probability q
(W )
→k+1. Finally, by Lemma 6 and the fact that in all

rounds we recolor each white vertex independently of the others, the new
color of a neighbor u1 ∈ NW

k (v) does not depend on the new color of another

neighbor u2 ∈ NW
k (v). Therefore, it holds for each (r, b) ∈ I3 that

w
r,b

k+1 =
∑

r≤r

b≤b

w
r,b

k · P
r,b

k+1(W ) ·
(

3−r−b

r−r

)(

3−r−b

b−b

)

·

(

q
(R)
→k+1

)r−r

·

(

q
(B)
→k+1

)b−b

·

(

q
(W )
→k+1

)3−r−b

w→k+1
..

7 Setting up the parameters

In this section we set up the parameters in the randomized procedure. In
the first round, we pick a vertex with a small probability p0 and color it

13



either red or blue. The next rounds of the procedure are split into two
phases, which consist ofK1 andK2 rounds, respectively. Therefore, the total
number of rounds K is equal to K1 +K2 + 1.

In the rounds of the first phase, with probability pB (pR), where pR ≪
pB , we color a vertex with exactly one red (blue) neighbor by blue (red).
If a vertex has at least two neighbors of the same color, we color it with
the other color with probability one. In all the other cases we do nothing.

With one exception, the rounds of the second phase are performed iden-
tically to the rounds of the first phase. The exception is that a white vertex
with one red, one blue and one white neighbor is colored red with probabil-
ity pRB/2 or blue with probability pRB/2. The choice of pRB is such that
pRB ≪ pR.

Specifically, we set:

• K := K1 +K2 + 1,

• P 0,0
1 (R) := p0/2 , P 0,0

1 (B) := p0/2 ,

• P r,b
k (R) := 1 for (r, b) ∈ I3 ∩ {(r, b) : b ≥ 2} for k ∈ [2, . . . ,K] ,

• P r,b
k (W ) := 1 for (r, b) ∈ I3 ∩ {(r, b) : r ≥ 2} for k ∈ [2, . . . ,K] ,

• P 0,1
k (R) := pR , P 1,0

k (B) := pB for k ∈ [2, . . . ,K] ,

• P 1,1
k (R) := pRB/2 , P 1,1

k (B) := pRB/2 for k ∈ [K1 + 2, . . . ,K] ,

• P r,b
k (R) := 0 for all the other choices of r and b,

• P r,b
k (B) := 0 for all the other choices of r and b and

• P r,b
k (W ) := 1− P r,b

k (R)− P r,b
k (B) for (r, b) ∈ I3.

The recurrences presented in this chapter were solved numerically using a
computer program. The particular choice of parameters used in the program
was p0 = 10−5, pB = 1/10, pR = 10−5, pRB = 10−6, K1 = 1672 413 and
K2 = 6504 552.

The choice of K1 was made in such a way that at the end of the first
phase, i.e. after the (K1+1)-th round, the probability that a vertex is white
and has exactly one non-white neighbor is less than 10−7. Analogously,
the choice of K2 was made in a way that at the end of the process, i.e. after
the K-th round, the probability that a vertex is white is less than 10−7. We
also estimated the precision of our calculations based on the representation

14



of float numbers to avoid rounding errors affecting the presented bound on
significant digits. Solving the recurrences for the above choice of parameters
we have obtained that pK > 0.88672.
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