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Abstract

We introduce a notion of strong d-collapsibility. Using this notion,
we simplify the proof of Matoušek and the author [MT08] showing that
the nerve of a family of sets of size at most d is d-collapsible.

1 Introduction

Simplicial complexes and d-collapsibility. A finite simplicial complex

K is a collection of subsets (called faces or simplices) of a finite set X which
is downwards closed, i.e, if σ ∈ K and τ ⊂ σ then τ ∈ K. The dimension

of a face σ ∈ K is defined to be the value |σ| − 1. The dimension of K is
the maximum of the dimensions of faces contained in K. Zero-dimensional
faces are called vertices. Often it is assumed that X is the set of vertices; in
particular we will work with this assumption.

Wegner in his seminal 1975 paper [Weg75] introduced d-collapsible sim-
plicial complexes. To define this notion, we first introduce an elementary

d-collapse. Let K be a simplicial complex and let σ, τ ∈ K be faces (simplices)
such that

(i) dimσ ≤ d− 1,
(ii) τ is an inclusion-maximal face of K,
(iii) σ ⊆ τ , and
(iv) τ is the only face of K satisfying (ii) and (iii).
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Then we say that σ is a d-collapsible face of K and that the simplicial
complex K

′ := K \ {η ∈ K : σ ⊆ η ⊆ τ} arises from K by an elementary
d-collapse. If we want to emphasize σ, we write K →σ

K
′ (note that K

′ is
uniquely determined by σ and K). A simplicial complex K is d-collapsible

if there exists a sequence of elementary d-collapses that reduces K to the
empty complex ∅.

The motivation of introducing d-collapsibility comes from combinatorial
geometry as a tool for studying intersection patterns of convex sets. Our
task in this short note is not to describe this interesting connection; however,
we refer, e.g., to [Weg75, KM05, MT08] for more background.

A nerve and its d-collapsibility. Given a finite collection C = {C1, . . . , Cn}
of sets, the nerve N(C) of this collection is a simplicial complex where C is
the (multi)set of its vertices and where its faces are collections Ci1 , . . . , Cik

of vertices such that Ci1 ∩ · · · ∩ Cik is non-empty. We emphasize that it is
allowed that Ci = Cj for i 6= j; i.e., C is a multiset. In particular for such
Ci and Cj there are two (twin) vertices in the nerve.

Matoušek and the author [MT08] studied, how far is the notion of d-
collapsibility form its geometrical motivation. As one of the main tools they
proved the following proposition.

Proposition 1. Suppose that C is a collection of sets of size at most d.

Then N(C) is d-collapsible.

We will introduce a notion of strong d-collapsibility and using this notion
we simplify the proof of Matoušek and the author. We also hope that this
notion can be used in a different context as well.

Strong d-collapsibility.1 Assume that η is a face of a complex K. The
link of η in K is a simplicial complex defined by lk(η,K) = {ϑ ∈ K : ϑ ∩ η =
∅, ϑ ∪ η ∈ K}.

Assume that v is a vertex of K such that lk({v},K) is (d− 1)-collapsible.
By an elementary strong d-collapse of K we mean the simplicial complex K

′

obtained by removing all the faces containing v, i.e. K′ = K− v = {ϑ ∈ K :
v 6∈ ϑ}. If we want to emphasize v, we write K ⇒v

K
′. A simplicial complex

is strongly d-collapsible if it can be vanished by a sequence of elementary
strong d-collapses.2

1The introduction of this notion is motivated by strong collapsibility in topology.
2In an elementary strong d-collapse we could also use an inductive definition where

lk({v},K) would be assumed to be strong (d − 1)-collapsible and strong 0-collapsible
would mean being a simplex. Thus we would get a similar (but perhaps different) notion
of strong d-collapsibility. The forthcoming results would remain unchanged.
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Figure 1: A complex which is 2-collapsible, but not strongly 2-collapsible.

We will prove the following results.

Proposition 2. Let d be a non-negative integer. Assume that a simplicial

complex K is strongly d-collapsible then it is d-collapsible as well.

Theorem 3. Let d be a positive integer. Suppose that C is a collection of

sets of size at most d. Then N(C) is strongly d-collapsible.

Proposition 1 is an obvious consequence of these two results.

2 Properties of Strong d-collapsibility

First, we prove Proposition 2.

Proof. It is sufficient to show that an elementary strong d-collapse K ⇒v
K
′

can be simulated by a sequence of elementary d-collapses. Let L = lk({v},K).
We know that L is (d − 1)-collapsible. Let L →σ1 L2 →σ2 · · · →σk ∅ be
a sequence of elementary d-collapses. Then it is routine to check that
K →σ1∪{v} K2 →σ2∪{v} · · · →σk∪{v} K

′ is a sequence of elementary d-
collapses which indeed ends up with K

′. (For this we remark that Ki =
K
′ ∪ {ϑ ∪ {v} : ϑ ∈ Li}.)

We remark that there are complexes which are d-collapsible, but not
strongly d-collapsible. An example of such a complex is drawn in Figure 2.
The thick lines are identified according to the arrows. There are higher-
dimensional analogues of this complex; see the construction of complex C(ρ)
in [Tan08].
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3 Strong d-collapsibility of a nerve

Here we prove Theorem 3.
Let a be a point which is not contained in the vertex set of a given

complex K. The cone of K is a simplicial complex given by aK = K∪{σ∪{a} :
σ ∈ K}.

Lemma 4. Suppose that K is d-collapsible then aK is d-collapsible as well.

Proof. Let K →σ1 K2 →
σ2 · · · →σk ∅ be a sequence of elementary d-collapses

of K. Then aK →σ1 aK2 →σ2 · · · →σk a∅ = ∅ is a sequence of elementary
d-collapses of aK.3

Proof of Theorem 3. We proceed by induction on d and on the size of C.
Theorem 3 is surely true if C contains a single set or if d = 1.

Let C1 ∈ C be a set of maximal size. We want to show that

N(C) ⇒C1 N(C \ {C1}).

Then N(C \ {C1}) is strongly d-collapsible by induction.
It is sufficient to check that lk(C1,N(C)) is (d − 1)-collapsible. Let us

denote CC1
= {C ∩ C1 ∈ C : C ∈ C \ {C1}}. Then lk(C1,N(C)) = N(CC1

).
If there is no set of size d in CC1

, then lk(C1,N(C)) is (d− 1)-collapsible by
induction and we are done.

For otherwise, let D = {D1, . . . ,Dm} ⊆ CC1
be the collection of all

sets of size d in CC1
. For every D ∈ D we thus have D = C1. It means

that lk(C1,N(C)) = D1D2 . . . DmN(CC1
\ D), where D1D2 . . . Dm stands for

(iterated) cone with vertices D1, . . . ,Dm. By Lemma 4 and induction it
follows that lk(C1,N(C)) is (d− 1)-collapsible.
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3Purely formally, one has to be a bit careful here and distinguish a simplicial complex
{∅} containing a single empty face from ∅ containing no face.
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