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Abstract. The normal, or Dedekind-MacNeille, completion δ(L)
of a distributive lattice L need not be distributive. However, δ(L)
does contain a largest distributive sublattice β(L) containing L,
and δ(L) is distributive if and only if β(L) is complete if and only
if δ(L) = β(L). In light of these facts, it may come as a surprise to
learn that β(L) was developed (in [1]) for reasons having nothing
to do with distributivity.

In fact, the cuts of β(L) can be readily identified as those having
the property we here term exactness. This provides a useful crite-
rion for testing whether the normal completion of a given lattice is
distributive. We illustrate the utility of this criterion by providing
a simple demonstration that the normal completion of a Heyting
algebra is distributive.

We prove these facts by simple arguments from first princples,
and then bring out the geometry of the situation by developing the
construct in Priestley spaces. While the elements of L appear as
clopen up-sets of the (ordered) space, the elements of both exten-
sions δ(L) and β(L) are manifested as well defined more general
types of open up-sets.

Introduction

It is well known that the normal completion δ(L) (also known as
the Dedekind-MacNeille completion) does not preserve distributivity.
A necessary and sufficient condition for the distributivity of δ(L) was
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developed in [2] by means of convergence and Cauchy structure tech-
niques. Without appealing to these techniques, we highlight and re-
confirm this result by easy arguments from first principles. The crucial
construct is the distributive extension β(L) 1.

Our purpose is to bring out the geometrical aspects of the situation
by means of Priestley duality (see, e.g., [10, 11]). Both extensions β
and δ emerge naturally as families of subsets of the Priestley space X
of the lattice L in question. While the elements of L are represented by
the clopen up-sets of X, the elements of δ(L) appear as the bi-regular
open up-sets, which is to say the up-sets of X that are down-interiors
of their up-closures. The exact cuts are then characterized by an easy
formula concerning the two-sided interior.

The utility of the resulting criterion for testing the distributivity of
δ(L) is exemplified by an easy demonstration that Heyting algebras
have distributive completions: their cuts are clearly exact. (The dis-
tributivity of the completion of a Heyting algebra is known, and, in
fact, more is true. The completion of a Heyting algebra is itself a
Heyting algebra; see [7].) In the geometrical representation, the fact
that Heyting algebras have distributive completions follows from the
nature of their Priestley spaces, in which the two-sided interiors of
up-sets coincide with their down-interiors.

For the standard facts about posets see, e.g., [5].

1. Preliminaries

1.1. Notation. In a poset P = (P,≤) we will denote, for a subset
A ⊆ P , as usual,

↓A = {x | ∃a ∈ A, x ≤ a}, ↑A = {x | ∃a ∈ A, x ≥ a},

and write ↓ a resp. ↑ a for ↓ {a} resp. ↑ {a}. The set of all lower

resp. upper bounds of A ⊆ P will be denoted by

l(A) resp. u(A).

Thus, l(A) =
⋂

{ ↓ a | a ∈ A} and u(A) =
⋂

{ ↑ a | a ∈ A}, while
↓A =

⋃

{ ↓a | a ∈ A} and ↑A =
⋃

{ ↑a | a ∈ A} .

1.2. We will be mostly concerned with (bounded) distributive lattices

L, but an important auxilliary role will be played by the modular ones,
that is, the lattices satisfying the implication

a ≤ c ⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c.

1We use the notation β(L) in conformity with the notation of [2], see Section 3
below.
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Recall that modular lattices are well known to be precisely those lat-
tices that do not contain this subconfiguration.
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The labelling will be used in some proofs below.
Also, we will be interested in Heyting algebras, that is, bounded

lattices with an extra operation→ satisfying

a ∧ b ≤ c iff a ≤ b→c

and with the dually defined co-Heyting ones. Note that the adjunc-
tion between − ∧ b and b→− makes Heyting algebras automatically
distributive (and more).

1.3. We set

a ↓ b = {x | x ∧ b ≤ a} and a ↑ b = {x | x ∨ a ≤ b}.

Remarks. 1. This is a special case of the operations A ↓ B and
A ↑ B with subsets A, B ⊆ L used, e.g., in [1, 2, 3]. For our purposes,
the one-point sets will do.

2. Note that a ↓ b is an ideal and a ↑ b is a filter.
3. In case of a Heyting algebra we have a ↓ b = ↓(b→a). Thus, in a

general case, a ↓ b can be viewed as a “surrogate multivalued Heyting
operation”, with a ↑ b having a similarly co-Heyting connotation.

1.4. A Priestley space is a compact partially ordered topological
space (X,≤, τ) such that for any x � y in X there is a clopen up-set
U such that x ∈ U and y /∈ U .

In a Priestley space denote by τ↓ the topology of all open down-sets,
and by τ↑ the topology of open up-sets. It is a standard fact that τD∪τU

is a subbasis of τ ; in fact, the system of all clopen down-sets generates
τ , and likewise for the family of clopen up-sets. We will denote the
closure operators of the three topologies by c(A), c↑(A), and c↓(A),
respectively, and the corresponding interior operators by i(A), i↑(A),
and i↓(A), respectively.

1.5. Denote by PSp. the category of Priestley spaces and mono-
tone continuous maps (the Priestley maps) and by DLat the category
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of bounded distributive lattices and bounded lattice homomorphisms.
Recall the Priestley duality ([10, 11]) constituted by the contravariant
functors

L : PSp→ DLat, P : DLat→ PSp

defined by

L(X) = ({U | U ⊆ X clopen up-set },⊆), L(f)(U) = f−1[U ],

P(L) = ({x | x prime filter in L},⊆, τ), P(h)(x) = h−1[x]

(τ is the topology of 2L) with the natural equivalences

ρX = (x 7→ {U | x ∈ U}) : X → PL(X),

λL = (a 7→ {x | a ∈ x}) : L→ LP(L).

We will often think of a distributive lattices L as represented in its
Priestley space by identifying L with LP(L). Furthermore, we will
obtain some extensions of L as lattices of more general open sets in
P(L).

2. Cuts and the Dedekind-MacNeille

completion δ(L)

2.1. For subsets A, B of a poset P we write

A ≤ B if ∀a ∈ A ∀b ∈ B a ≤ b, that is, if A ⊆ l(B) and B ⊆ u(A).

If A = l(B) and B = u(A) we speak of the pair (A, B) as of cut in P .
Thus a cut is obviously determined by either of its components. Note
that for each element a ∈ P we have the cut

( ↓a, ↑a).

We refer to these as the principal cuts.
We obviously have

A1 ⊆ A2 ⇒ u(A1) ⊇ u(A2) and B1 ⊆ B2 ⇒ l(B1) ⊇ l(B2)

and

A ⊆ lu(A) and B ⊆ ul(B);

Consequently, we easily infer that

ulu(A) = u(A) and lul(B) = l(B)

and hence the cuts are precisely the pairs of the form (lu(A), u(A))
resp. (l(B), ul(B)).
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2.2. The Dedekind-MacNeille completion. For cuts (A1, B1)
and (A2, B2) we write

(A1, B1) ≤ (A2, B2) if A1 ⊆ A2 and B1 ⊇ B2

Of course, either inclusions implies the other. Thus we obtain the poset
of cuts

δ(P ),

the well-known Dedekind-MacNeille completion of P (see e.g. [4, 9]).
Let us recall some of its properties.

(a) With the order above, δ(P ) is a complete lattice.
(b) The mapping δP = (a 7→ ( ↓ a, ↑ a)) : P → δ(P ) preserves all

the existing suprema and all the existing infima.
(c) If P ⊆ L ⊆ δ(P ), if L is a sublattice of δ(P ), and if L is

complete then L = δ(P ).

2.3. In the sequel we will need concrete formulas for the meets and
joins in δ(P ). It is easy to check that they are as follows

(A1, B1) ∧ (A2, B2) = (A1 ∩A2, u(A1 ∩A2)),

(A1, B1) ∨ (A2, B2) = (l(B1 ∩ B2), B1 ∩B2).

2.4. A topological representation of δ(L).
Consider a bounded distributive lattice L with Priestley space P(L) =

X. Recall from 1.4 that, for a subset U ⊆ X, c↓(U) designates the clo-
sure of U in the topology of open down-sets, so that it is the smallest
closed up-set containing U . Since any closed up-set in X is the inter-
section of basic clopen up-sets, i.e., those of the form λL(a), a ∈ L, we
have

c↓(U) =
⋂

U⊆λL(b)

λL(b)

Likewise i↑(U), the largest open up-set contained within U , is equal to
⋃

λL(a)⊆U λL(a).
We define a cut in X to be a nonempty subset U ⊆ X such that

U = i↑c↓(U),

necessarily an open up-set. For example, each basic open set of the
form λL(a), a ∈ L, is a cut. We denote the set of cuts in X by

L(X) = {U | U is a cut in X}
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2.5. Lemma. Let L be a bounded distributive lattice with Priestley

space X. The maps

δ(L) ∋ (A, B) −→
⋃

A

λL(a) ∈ L(X)

({a | λL(a) ⊆ U}, {b | λL(b) ⊇ U})←− U

are inverse order-preserving bijections. Consequently, L(X) is a lattice,

with

U1 ∧ U2 = U1 ∩ U2 and U1 ∨ U2 = i↑c↓(U1 ∪ U2).

Proof. First observe that, since λL is order-preserving,

c↓

(

⋃

a∈A

λL(a)

)

=
⋂

b∈u(A)

λL(b) and i↑

(

⋂

b∈B

λL(b)

)

=
⋃

a∈l(B)

λL(a)

for all A, B ⊆ L. It follows that i↑c↓
⋃

A λL(a) =
⋃

lu(A) λL(a), so that
⋃

A λL(a) is a cut in X if (A, B) is a cut in L. On the other hand, if, for
a subset U ⊆ X, we set A = {a | λL(a) ⊆ U} and B = {b | λL(b) ⊇ U},
we have

i↑c↓(U) = i↑

(

⋂

B

λL(b)

)

=
⋃

l(B)

λL(a).

Therefore, if U is a cut in X, i.e., if U = i↑c↓(U), it follows that
l(B) ⊆ A, and since A ≤ B it then follows that A = l(B). And if
b ∈ u(A) then λL(b) ⊇

⋃

A λL(a) = U and so b ∈ B. That is, (A, B) is
a cut in L.

Suppose (A, B) is a cut in L and put U =
⋃

A λL(a). If λL(c) ⊆ U for
some c ∈ L then, since A is upper-directed in L and λL(c) is compact, it
follows that c ∈ A, with the result that A = {c | λL(c) ⊆ U}. Likewise,
if λL(c) ⊇ U then c ∈ u(A) = B, so that B = {c | λL(c) ⊇ U}. On the
other hand, if U is any cut in X then U =

⋃

λL(a)⊆U λL(a) for similar
reasons. Finally, the order-preserving nature of the maps is evident. �

2.6. Theorem. For a bounded distributive lattice L, the Dedekind-

MacNeille completion δL : L→ δ(L) is realized by the inclusion of the

LP(L) into LP(L).

3. Exact cuts and the distributive extension β(L)

It can be regarded as a defect of the Dedekind-MacNeille comple-
tion δ(L) of a distributive lattice that it may fail to be distributive.
However, the completion δ(L) does have a largest distributive sublat-
tice containing L. This sublattice, which we refer to as the distributive
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extension of L, and denote by β(L), was developed originaly in [2]. It
may come as a surprise that the motivation and development there had
nothing to do with distributivity. It was the Cauchy completion of L
with respect to an appropriate natural Cauchy structure, and therefore
one spoke of a completion β(L). This refers to a type of completeness
different from order completeness, which we mean by completeness in
this article. Hence we speak here, rather, of an extension then of a
completion.

3.1. A cut (A, B) in a lattice L is said to be exact if there is no pair
c < d such that A ⊆ c ↓ d and B ⊆ c ↑ d. The set of all exact cuts in
L will be denoted by

β(L).

Generally the lattice L is not embedded into β(L) by the map δL from
2.2, but we do have this.

3.1.1. Observation. A lattice L is modular iff each principal cut

( ↓a, ↑a) is exact.

(Recall the configuration from 1.2: obviously ↓ a ⊆ c ↓ d and
↑a ⊆ c ↑ d.)

3.2. Lemma. Let (Ai, Bi), i = 1, 2, be exact cuts in a distributive

lattice L. Let c < d. Then

A1 ∪ A2 ⊆ c ↓ d ⇒ B1 ∩B2 * c ↑ d

and

B1 ∪B2 ⊆ c ↑ d ⇒ A1 ∩ A2 * c ↓ d.

Proof. We will prove the first implication, the proof of the second one
is similar. Suppose A1 ∪ A2 ⊆ c ↓ d so that, in particular, A1 ⊆ c ↓ d.
Consequently, by exactness, B1 * c ↑ d, and there is a b1 ∈ B1 such
that

b1 ∨ c � d.

Now we have

c ≤ c′ = (b1 ∨ c) ∧ d < d

and A2 ⊆ c ↓ d ⊆ c′ ↓ d, hence B2 * c′ ↑ d and there is a b2 ∈ B2 such
that b2 ∨ c′ � d. Set b = b1 ∨ b2. Then

(b∨c)∧d = (b2∨ (b1∨c))∧d = (b2∨ ((b1∨c)∧d))∧d = (b2∨c′)∧d < d

so that b∨ c � d and since b ∈ B1 ∩B2 this shows that B1 ∩B2 * c ↑ d
�



8 RICHARD N. BALL AND ALEŠ PULTR

Since obviously, for cuts (Ai, Bi), (B1 ∪B2) ⊆ u(A1 ∩A2) and (A1 ∪
A2) ⊆ l(B1 ∩B2), we easily infer the following important fact from the
formulas in 2.3.

3.2.1. Corollary. If L is a a distributive lattice then β(L) is a

sublattice of δ(L).

3.3. Proposition. Let L be a distributive lattice. Then β(L) is

distributive.

Proof. We want to show that, for exact cuts,

(A, B)∨((A1, B1)∧(A2, B2)) = ((A, B)∨(A1, B1))∧((A, B)∨(A2, B2))

which reduces to showing that

l(B ∩ u(A1 ∩ A2)) ⊇ l(B ∩B1) ∩ l(B ∩B2).

Suppose for contradiction there is an x ∈ l(B ∩ B1) ∩ l(B ∩ B2) and a
y ∈ B ∩ u(A1 ∩ A2) such that x � y and set c = x ∧ y < x = d. Since
x ∈ l(B ∩ B1) we have trivially B ∩ B1 ⊆ c ↑ d and hence by Lemma
3.2, A ∪ A1 * c ↓ d, and since A ⊆ c ↓ d because y ∈ B = u(A), we
have A1 * c ↓ d and we can choose an a1 ∈ A1 such that a1 ∧ d � c.
Set d′ = (a1 ∧ d)∨ c to obtain c < d′ ≤ d. Now B ∩B2 ⊆ c ↑ d ⊆ c ↑ d′

and we have, by the same argument as above, an a2 ∈ A2 such that
a2 ∧ d′ � c. Now a = a1 ∧ a2 satisfies

(a ∧ d) ∨ c = ((a1 ∧ d) ∧ a2) ∨ c = d′ ∧ (a2 ∨ c) = (d′ ∧ a2) ∨ c > c.

Since y ∈ u(A1 ∩ A2) and a ∈ A1 ∩ A2, this contradicts (a ∧ d) ∨ c ≤
(y ∧ d) ∨ c = c and we conclude that β(L) is distributive. �

3.4. Theorem. Let L be a bounded distributive lattice. Then the

following statements are equivalent.

(1) δ(L) is distributive,

(2) δ(L) is modular,

(3) β(L) is complete,

(4) β(L) = δ(L),
(5) if subsets A ≤ B in L satisfy A ⊆ c ↓ d and B ⊆ c ↑ d for some

c < d in L then l(B) * A or u(A) * B,

(6) if subsets A ≤ B in L satisfy A ⊆ c ↓ d and B ⊆ c ↑ d for some

c < d in L then l(B) � u(A).

Proof. (5) and (6) are just reformulations of (4). Note that A ≤ B
generates a unique cut iff l(B) � u(A)).

(4)⇒(3) since δ(L) is complete.
(3)⇒(4) by property (c) in 2.2.
(4)⇒(1) by 3.3, and (1)⇒(2) is trivial.
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(1)⇒(4): Suppose there is a non-exact cut (A, B) witnessed by A ⊆
c ↓ b and B ⊆ c ↑ d. Then the elements (A, B), δL(c) and δL(d)
generate a pentagon from 1.2 violating the modularity. �

3.5. Note. In both 3.2 and 3.3 the distributivity was used rather
inconspicuously. Namely, we have used the equalities

(x∨(y∨c))∧d = (x∨((y∨c)∧d))∧d, (x∧(y∧d))∨c = (x∧((y∧d)∨c))∨c

This was essential, at least for 3.3; it may be of some interest to observe
that, in view of 3.3, a modular lattice is distributive iff it satisfies one
of these equations. On the other hand, Corollary 3.2.1 may perhaps be
proved by other means.

3.6. A topological representation of β(L).
Let U be a cut in a Priestley space X. We say that U is exact if U

is dense in ic↓(U), the two-sided interior of c↓(U).

3.7. Lemma. Let L be a bounded distributive lattice with Priest-

ley space X. Then, in the correspondence of 2.5, the exact cuts in L
correspond to the exact cuts in X.

Proof. Let (A, B) be an inexact cut in L, say A ⊆ c ↓ d and B ⊆ c ↑ d
for some c < d, and let U =

⋃

A λL(a) be the corresponding cut in X.
Then V = λL(d) r λL(c) is a nonempty clopen subset of X, and the
fact that λL(a) ∩ λL(d) ⊆ λL(c) for all a ∈ A implies that U ∩ V = ∅,
while the fact that λL(b) ∪ λL(c) ⊇ λL(d) for all b ∈ B implies that
V ⊆ c↓(U). We have shown that U fails to be dense in ic↓(U).

On the other hand, consider a cut U in X with corresponding cut
(A, B) in L. If U is inexact then it is only because there is some
nonempty basic open set V ⊆ c↓(U) r U . Such a set is of the form
V = λL(d) r λL(c) for some c < d. From the fact that V ∩ U = ∅ it
follows that a ∧ d ≤ c for all a ∈ A, and from the fact that V ⊆ c↓(U)
it follows that b ∨ c ≥ d for all b ∈ B. That is, (A, B) is inexact in L.
�

We denote the set of exact cuts in X by

Lβ(X) = {U | U is an exact cut inX}

It follows from 3.3 that Lβ(X) forms a distributive sublattice of L(X)
containing (the image of) L. More precisely, we have this.

3.8. Theorem. Let L be a bounded distributive lattice. The dis-

tributive extension βL : L → βL is realized by the inclusion LP(L) →
LβP(L).
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4. An application: the Heyting case

4.1. It may seem that the criterion in 3.4.(6) is of little use, but it
can at least help with the Heyting case (cf [7]).

Proposition. Let L be a Heyting or a co-Heyting lattice. Then its

Dedekind-MacNeille completion δ(L) is distributive.

Proof. Let c < d and A ≤ B be such that A ⊆ c ↓ d and B ⊆ c ↑ d.
Then, for each a ∈ A, the fact that a ∧ d ≤ c means that a ≤ d→ c,
which is to say that d→ c ∈ u(A). If we had u(A) ⊆ B then d→ c ∈
c ↑ d, i.e., c∨ (d→c) ≥ d. Since c ≤ d→c in any Heyting algebra, this
yields d ≤ d→ c and finally d ≤ c. The argument in the co-Heyting
case is similar. �

4.2. A topological proof. We will finish by showing how the
statement of 4.1 follows from the Priestley representation in view of
2.4 and 3.6.

First let us recall the well known characterization of the Priestley
spaces dual to Heyting algebras (sometimes called H-spaces).

A Priestley space X is dual to a Heyting algebra iff for each open

U ⊆ X the set ↑U is open.

Thus we obtain an
4.2.1. Observation. In an H-space

i↑(U) = i(U).

for every up-set U .

Proof. We have

i(U) =
⋃

{V | U ⊇ V ∈ τ} =
⋃

{ ↑V | U ⊇ V ∈ τ}

⊆
⋃

{W | U ⊇W ∈ τ↑} = i↑(U) ⊆ i(U).

�

Now we can prove the fact that

the completion δ(L) of a Heyting algebra L coincides with β(L)

as follows:
By 2.4, cuts in L are represented as open up-sets U ⊆ P(L) such that

U = i↑c↓(U). Hence, by 4.2.1, in an H-space they are represented as the
open down-sets U with U = ic↓(U). Now by 3.6, a (representation of a)
cut U is exact if it is dense in i(c↓(U)), that is, if c(U) ⊇ i(c↓(U)). Now
if U is any cut, i(U) = i(i↑c↓(U)) = i(ic↓(U)) = i(c↓(U)) = i↑(c↓(U)) =
U .
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