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Abstract. The problem of solving       -puzzle sub-optimally in the on-line mode is addressed in 

this manuscript. The task is to rearrange      pebbles on the square grid of the size of     using 

one vacant position to a desired goal arrangement. A new polynomial-time algorithm is proposed 

and experimentally analyzed. The new algorithm is trying to move pebbles in more efficient way 

than existent algorithms by grouping them into so-called snakes and moving them jointly within the 

snake. An experimental evaluation showed that our new snake-based algorithm produces solutions 

that are    to    shorter than solutions generated by the existent state-of-the-art algorithm. 

Keywords:       -puzzle, 15-puzzle, on-line algorithm, polynomial complexity, multi-robot path 

planning, multi-agent coordinated motion.1 

1. Introduction and Motivation 

The       -puzzle [1, 4, 5, 6, 18] represents one of the best known examples of reloca-

tion problem. It is important both practically and theoretically. From the theoretical point 

of view it is interesting for the hardness of its optimization variant which is known to be 

  -hard [5, 6]. Practically it is important since many real-life relocation problems can be 

solved by techniques developed for       -puzzle. Those include multi-robot path 

planning [8, 9, 10, 11], rearranging of shipping containers in warehouses, or coordina-

tion of vehicles in dense traffic. Moreover, the reasoning about relocation/coordination 

tasks should not be limited to physical entities only. Many tasks such as planning of data 

transfer, commodity transportation, and motion planning of units in computer-generated 

imagery can be tackled using techniques originally developed for       -puzzle. 

 In this manuscript, we concentrate ourselves on solving       -puzzle sub-

optimally in the on-line mode, that is by fast polynomial-time algorithm. We are trying to 

improve the basic incremental placing of pebbles as it is done by the existent on-line 

solving algorithm of Parberry [4] by moving them in groups called snakes. Moving peb-

bles jointly in snakes is supposed to be more efficient in terms of the total number of 
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moves than moving them individually as it was originally proposed [4]. A new algorithm 

exploiting snake-line movements is presented. An extensive competitive experimental 

evaluation was done to evaluate qualities of the new algorithm. 

 The presented work originates in the master thesis of the second author [3]. The ma-

nuscript of organized as follows. The problem of       -puzzle is formally introduced 

in Section 2. An overview of existent solving algorithm and other related solving ap-

proaches is given in Section 3. The main part of the paper is constituted by Section 4 and 

Section 5 where the new algorithm is introduced and its experimental evaluation is given 

respectively. 

2. Problem Statement 

The       -puzzle consists of a set of pebbles that are moved over a square grid of size 

    [1, 4, 5, 6, 18]. There is exactly one position vacant on the grid and others are oc-

cupied by exactly one pebble. A pebble can be moved to the adjacent vacant position. 

The task is to rearrange pebbles on the grid into a desired goal state. The formal defini-

tion follows. 

2.1. Formal Definition 

Sets of pebbles, we will be working with, will be denoted as    for    . It holds that 

          for every    . It is supposed that pebbles from a set    are arranged on 

a square grid of the size     where each pebble is placed into one of the cells of the 

grid. There is at most one pebble in each cell of the grid; one cell on the grid remains 

always vacant. See Figure 1 for illustration. 

 

Definition 1 (arrangement in a grid). An arrangement of a set of pebbles    in a square 

grid of the size     with     is fully described using two functions         and 

        that satisfy the following conditions: 

(i)                 and                      ; 

(ii)                                for                (every cell of 

the grid is occupied by at most one pebble) 

(iii)                such that                           (there exists a 

cell in the grid that remains vacant). 

For convenience, we will also use some kind of an inverse to    and    which will be 

called an occupancy function and denoted as                              . 

It holds that           if and only if       such that         and         or 

          if no such pebble   exists (that is, if the cell       is vacant). □ 

 

The arrangement of pebbles in the grid can be changed through moves. An allowed 

move is to shift a pebble horizontally or vertically from its original cell to the adjacent 

vacant cell. Formally, the notion of move is described in the following definition. Four 
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types of moves are distinguished here: left, right, up, and down – only left move is de-

fined formally; right, up, and down moves are analogous. 

 

Definition 2 (left move). A left move with pebble      can be done if         and 

                   ; it holds for the resulting arrangement after the move described 

by   
  and   

  that   
           and   

                 such that     and 

  
             and   

          . □ 

 

 We are now able to define the       -puzzle using the formal constructs we have 

just introduced. The task is to transform a given initial arrangement of pebbles in the grid 

to a given goal one using a sequence of allowed moves. 

 

Definition 3 (      -puzzle). An instance of       -puzzle is a tuple 

        
    

    
    

   where     is the size of the instance,    is a set of pebbles,   
  

and   
  is a pair of functions that describes the initial arrangement of pebbles in the grid, 

and   
  and   

  is a pair of functions that describes the goal arrangement of pebbles. The 

task is to find a sequence of allowed moves that transforms the initial arrangement into 

the goal one. Such sequence of moves will be called a solution to the instance. □ 
 

 

 
 

Figure 1. An illustration of       -puzzle. The initial and the goal arrangement of pebbles on the 

square grid of size     are shown. Two solutions of the instance are shown as well. 

 

 

 Again it is supposed that the occupancy function is available with respect to the initial 

arrangement   
    

  and the goal arrangement   
    

 ; that is, we are provided with occu-

pancy functions   
  and   

 . To avoid special cases it will be also supposed that 

  
        ; that is, the vacant position is finally in the right bottom corner. 

2.2. Complexity and Variants of the Problem 

It is known that the decision variant of       -puzzle (that is, the yes/no question 

whether there exists a solution to the given instance) is in   [1, 4, 18]. It can be checked 

      

  

  

  

    

      

      

    

        
    

    
    

   

  
    

    
    

  

  =3 

  ={1,2,…,8} 

Solution sequence: 
         

Less efficient solution 
sequence:              
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by using simple parity criterion. Using techniques for rearranging pebbles over graphs [1] 

a solution of length       can be constructed in the worst-case time of       if there 

exists any. An approach dedicated exclusively to       -puzzle is [4] able to generate a 

solution of length       in the worst-case time of      if there exists any. 

 If a requirement on the length of the solution is added, the problem becomes harder. It 

is known that the decision problem of whether there exists a solution to a given     

  -puzzle of at most the given length is   -complete [6]. 

3. The Original Solving Algorithm and Related Works 

A special sub-optimal solving algorithm dedicated for       -puzzle has been pro-

posed by Parberry in [4]. As our new solving algorithm is based on the framework of the 

original one, we need to recall it at least briefly in this section. 

3.1. Algorithm of Parberry 

The algorithm of Parberry [4] sequentially places pebbles into rows and columns. More 

precisely, pebbles are placed sequentially into the first row and then into the first column, 

which reduces the instance to that of the same type but smaller – that is, we obtain a 

          -puzzle. 

 

 

Algorithm 1. The original algorithm of Parberry for solving       -puzzle [4]. The main loop of 

the algorithm is shown. Detailed description of placement of individual pebbles is not shown here –

it will be discussed in the context of new approach for pebble placement. 

 

procedure Solve-N^2-1-Puzzle        
    

    
    

   

/* A procedure that produces a sequence of moves that solves the given       -puzzle. 

Parameters:      - a size of the puzzle and a set of pebbles, 

      
 ,   

    - an initial arrangement of pebbles in the grid, 

      
 ,   

  - a goal arrangement of pebbles in the grid. */ 

1:            
    

   
2: for             do 

3:  for             do {current row is solved – from the left to the right} 

4:       
       

5:   if          
       

      then 

6:             Place-Pebble              

7:              
8:  for               do {current column is solved – from the bottom to the up} 

9:       
       

10:   if          
       

      then 

11:             Place-Pebble              

12:              
13:      ;   

       
;   

       
;   

    
    

;   
    

    
 {restriction on   } 

14: Solve-8-Puzzle      
    

    
    

   {the residual 8-puzzle is solved by A* algorithm} 
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This process of placement of pebbles is repeated until an  -puzzle on the grid of size 

    is obtained. The final case of  -puzzle is then solved optimally by the A* algorithm 

[7]. 

The main loop of the algorithm is shown in pseudo-code as Algorithm 1. The algo-

rithm uses two high-level functions Place-Pebble, which conducts placement of a pebble 

to a given position, and Solve-8-Puzzle, which finalizes the solution by solving the resi-

dual  -puzzle. 

The placement of pebbles implemented within the function Place-Pebble will be dis-

cussed in more details later in the context of our improvement. Nevertheless, it is done 

quite naturally by moving a pebble first diagonally towards the goal position if necessary 

and then horizontally or vertically. To be able to conduct diagonal, horizontal and vertical 

movement a vacant position needs to be moved together with the pebble being placed. 

Actually, the vacant position is moving around the pebble always to the front in the direc-

tion of the intended move. After having vacant position in the front, the pebble is moved 

forward. It is necessary to avoid already placed pebbles when placing a new one. 

3.2. Other Related Works 

The       -puzzle represents a special variant of a more general problem of pebble 

motion problem on a graph [1, 11, 18]. The generalization consists in the fact that there is 

an arbitrary undirected graph representing the environment instead of the regular grids as 

it is in the case of       -puzzle. There are also pebbles that are placed in vertices of 

the graph while at least one vertex remains vacant. The allowed state transition is a single 

move with a pebble to a vacant adjacent vertex. The task is expectably to rearrange peb-

bles from a given initial arrangement to a given goal one. 

Although the problem has been studied long time ago [1, 18] recently there has been a 

considerable progress. The first new work showing solvability of every instance of peb-

ble motion problem consisting of bi-connected graph [16, 17] containing at least two 

vacant positions is [10]. The related solving algorithm called BIBOX [10] can produce 

solution of length at most         in the worst-case time of         (  is the set of ver-

tices of the input graph). The BIBOX algorithm also generates solutions that are signifi-

cantly shorter than those generated by algorithms from previous works are [1, 18]. 

 More results followed then. A generalization of BIBOX algorithm called BIBOX-θ is 

described in [11]. It does not need the second vacant position and again can solve in-

stances on bi-connected graphs (notice that the grid of       -puzzle is a bi-connected 

graph; hence BIBOX-θ is applicable to it). Theoretically, it generates solutions of the 

worst-case length of        ; however, practically solutions are much shorter. 

Two years later an algorithm called Push-and-Swap has been published in [2] – it 

shows that for every solvable instance on arbitrary graph containing at least two vacant 

positions a solution of length         can be generated. 

 In all the above results the solution length is sub-optimal and the worst-case time 

complexity is guaranteed (it is polynomial). A progress has been also made in optimal 
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solving of the pebble motion problem. A new technique that can optimally solve a special 

case consisting of a grid with obstacles and relatively small number of pebbles is de-

scribed in [13]. It is based on an informed search, which however does not guarantee time 

necessary to produce a solution (the time may be exponential in the size of the instance). 

Special cases of the problem with large graphs and relatively sparsely arranged peb-

bles are studied in [14, 15]. These new techniques are focused on applications in comput-

er games. The complexity as well as the solution quality is guaranteed by these tech-

niques. Another specialized technique for relatively large graphs and small number of 

pebbles has been developed within [8, 9]. The graph representing the environment is 

decomposed into subgraph patterns, which are subsequently used for more efficient solv-

ing by search. 

Another closely related problem is known as multi-robot path planning [8, 9, 10, 11, 

12] (or as cooperative multi-agent path planning or path-finding [14, 15]). It is a relaxa-

tion of pebble motion on a graph where simultaneous moves that do not conflict with 

each other are allowed in a single time step. Observe, that all the algorithms developed 

for multi-robot path planning applies to pebble motion problems and vice versa. Regard-

ing the optimality of solutions, which in case of multi-robot path planning should be 

defined with respect to its makespan, the situation is again not very optimistic as it is 

shown in [12]. The decision version of the optimization variant of multi-robot path plan-

ning is   -complete. 

 

4. A New Solving Approach Based on ‘Snakes’ 

In this section, we are about to define a new concept of a so-called snake. Informally, a 

snake is a sequence of pebbles that consecutively neighbors with a pebble that proceeds. 

As we will show, moving and placing a snake as a whole is much more efficient than 

moving and placing individual pebbles it consists of.  

 Recall that original algorithm for solving the puzzle [4] places pebbles individually 

into currently solved row or column. This may be inefficient if two or more pebbles that 

need to be placed are grouped together in some location distant from their goal location. 

In such a case, it is necessary that the vacant position is moved together with the pebble 

being placed and then it is moved back to the distant location to allow movement of the 

next pebble. If we manage all the pebbles forming the group to move from their distant 

location to their goal positions jointly, multiple movements of the vacant position be-

tween the distant location and goal positions may be eliminated. 

4.1. Formal Definition of a ‘Snake’ 

Consider a situation shown in Figure 2 where pebbles   and   are grouped together in a 

location distant from their goal positions. The original algorithm consumes        

moves to place both pebbles successfully to their goal positions. If pebbles are moved not 
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one by one but jointly as it is shown in Figure 3, much less movements are necessary. 

Grouping pebbles can save up to    moves. 

This is the basic idea behind the concept of snake. Let us start with definition of a me-

tric on the grid of the puzzle. Then the definition of the snake will follow. 

 

 

 
 

Figure 2. A setup of       -puzzle where the original algorithm [4] is inefficient. Pebbles   and 

  need to be moved from the bottom right corner (a) to the upper left corner (f). First, pebble   is 

moved diagonally to its goal position (b, c, d, and e). After pebble   is successfully placed, vacant 

position is moved towards pebble   and it starts to move in the same way as pebble   to its goal 

position. The whole process of rearranging consumes        moves. 

 

 

Definition 4 (Manhattan distance). A Manhattan distance for the       -puzzle 

            is a metric on the set of pebbles with respect to the arrangement of 

pebbles on the grid such that                                     for any two 

pebbles        . □ 

 

 Having a metric on the grid of the puzzle, we are able to define neighborhood of a 

pebble (which will be a ring around a pebble in our case). 

 

Definition 5 (Manhattan neighborhood). A Manhattan neighborhood of a pebble   

denoted as      is a set of those pebbles that are located directly left, right, above and 

below to   with respect to the arrangement on the grid. That is,         

             . □ 
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 A snake will be defined using the notion of neighborhood as a sequence of pebbles 

that consecutively lies in neighborhood of a pebble that proceeds. 

 

Definition 6 (Snake). A snake   of size   is a sequence of pebbles                

such that                    and                        . Pebble    is called a 

head of the snake; pebble    is called a tail of the snake. □ 
 

 

 
 

Figure 3. Placing grouped pebbles using a snake. The situation from Figure 2 is solved by group-

ing pebbles   and   into a snake, which is then moved as a whole from its original location in 

bottom right corner to the goal position in the upper left corner. The process consumes          

which is approximately    better than the original approach that places pebbles individually. 

 

 

 Notice that each pebble itself forms a trivial snake of size 1. Composed movements of 

a snake horizontally, vertically, and diagonally can be defined analogically as in the case 

of a single pebble. If fact, they are generalizations of composed movements for single 

pebble. It is always assumed that the vacant position is in front of the head of snake in the 

direction of the intended movement. In such a setup, the snake can move forward by one 

position. The vacant position then needs to be moved around the snake in front of its head 

again to allow the next movement forward. See Figure 4 for illustration of composed 

movements for snakes (movements for a snake of length 2 are shown; it is easy to gene-

ralize composed movements for snakes of arbitrary length). 

The horizontal and vertical composed movements consume      moves. The num-

ber of moves consumed by the diagonal movement depends on the shape of a snake in the 

middle section – it is not that easy to express. However, if we need to move a snake of 

length   diagonally forward following the shape from Figure 4, then it consumes    

moves. 

Unfortunately it is rarely the case that a group of pebbles in some distant from goal 

location forms a snake. Even it is not that frequent that pebbles which are to be placed 

consecutively are close to each other. Hence, to take the advantage of moving a group of 
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pebbles as a snake we need first to form a snake of them. This is however not for free as a 

number of moves are necessary to form a snake. Thus, it is advisable to consider whether 

forming a snake is worthwhile. Moreover, there are many ways how to form a snake 

while each may be of different cost in terms of the number of moves. 

 

 

 
 

Figure 4. Composed movements of a snake of length 2. The horizontal and diagonal composed 

movements of a snake of length 2 are shown. Other cases as well as generalization for snakes of 

arbitrary length are straightforward. 

 

 

Generally, the simplest way is to move one pebble to the other or vice versa in order 

to form a snake of length 2. It is known by using above calculations what number of 

moves is consumed by moving a snake as well as what number of moves are consumed 

by moving a pebble towards other pebble. Hence, it is easy to estimate the cost of using a 

snake in either of both ways as well as the cost of not using it at all in terms of the num-

ber of moves. Thus, it is possible to choose the most efficient option. This is another core 

idea of our new algorithm. 

4.2. A ‘Snake’ Based Algorithm 

Our new algorithm for solving       -puzzle will use snakes of length 2. The algo-

rithm proceeds in the same way as the original algorithm of Parberry [4]. That is, pebbles 

are placed into the first row and then into the first column and after the first row and the 

first column are finished the task is reduced to the puzzle of the same type but smaller 

(namely, the task is reduced to solve           -puzzle). The trivial case of  -puzzle 

on a grid of the size     is again solved by the A* algorithm [7]. 

Along the solving process, the concept of snakes is used to move pebbles in a more 

efficient way. The basic idea is to make an estimation whether it will be beneficial to 

form a snake of two pebbles that are about to be placed. If so then a snake is formed in 

(ix) 

Horizontal composed movement (right in this case) of a snake 

Diagonal composed movement (right-up in this case) of a snake 

    

(i) 

    

(iii) (vi) (vii) (viii) (xi) 

    

    

(i) 

    

(iii) (iv) (v) (vii) 
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one of the two ways – the first pebble is moved towards the second one or vice versa – 

the better option according to the estimations is always chosen. If forming a snake turns 

out not to be beneficial then pebbles are moved in the same way as in the case of the 

original algorithm; that is, one by one. 

 

 
Algorithm 2. The main function of a new algorithm for solving       -puzzle. The function for 

producing a sequence of moves for placing two consecutive pebbles using snakes (if using snakes 

turns out to be beneficial) is shown. 

 

function Place-Pebbles         
    

      : pair 

/* A function that produces a sequence of moves for placing two consecutive pebbles 

with respect to the order of placement. The new arrangement is returned in a return value. 

Parameters:   ,     - a current arrangement of pebbles in the grid, 

      
 ,   

  - a goal arrangement of pebbles in the grid, 

 ,    - two consecutive pebbles that will be placed. */ 

1:                 
    

        

2:                            
    

        

3:                              
    

        

4: if                      then 

5:  if           then 

6:   let       be a position such that                       

7:            Move-Vacant            

8:                                                                     
9:    let       be a position such that                          

10:            Place-Pebble              

11:  else 

12:   let       be a position such that                       

13:            Move-Vacant            

14:                                                                     
15:    let       be a position such that                          

16:            Place-Pebble              

17:  let         be a snake {actually   and   form a snake at this point} 

18:  let   be a shortest path from                to    
       

      such that 

               
       

      and   does not intersect any position 

containing already placed pebble 

19:  for               do 

20:             Snake-Composed-Movement                      

{when vacant position is moved it should avoid already placed pebbles} 

21: else 

22:           Place-Pebble         
    

     

23:           Place-Pebble         
    

     

24: return         

 

 

Let                       
    

            is a functional that estimates the 

number of moves necessary to place a given two pebbles using the snake like motion. 

More precisely,                       
    

        is the estimation of the number of 
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moves necessary to form a snake by moving pebble   towards   and to place the formed 

snake into the goal location where       and   
    

  denote the current and the goal ar-

rangements respectively. Notice, that                       
    

   can be calculated as 

sum of distances between several sections multiplied by number of moves needed to 

travel a unit of distance in that section. However, as different shapes of snake may occur, 

this calculation may not be exact. Next, let               
    

            be a 

functional that calculates exact number of moves necessary to place given two pebbles 

individually. As the case of individual pebbles is not distorted by any irregularities (such 

as different shapes as in the case of snake) the number of moves can be calculated exactly 

– again it is the sum of distances between given sections multiplied by the number of 

moves needed to travel unit distance in the individual sections. 

 

 

 
 

Figure 5. Illustration of snake formation. A snake will be formed by moving pebble 2 towards 

pebble 1 and then the whole snake will move to its goal location. The other way of forming a snake 

is to move pebble 1 towards pebble 2 and then to move the whole snake. 

 

 

A preliminary experimental evaluation has shown that it suitable to use the following 

decision rule: if                            
    

                               
    

   

                          
    

        holds then it is tried to form a snake in the better 

of two ways and to compare the number of moves when snake is used with 

              
    

       . If snake is still better then it is actually used to produce se-

quence of moves into the solution. Otherwise, the original way of placement of pebbles 

one by one is used. 

        
    

    
    

   

    

  
    

    
    

  

(a) 

(b) (c) (d) (e) 

(f)     
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The main function Place-Pebbles for placing a pair of pebbles using snake like mo-

tions is shown using pseudo-code as Algorithm 2. It is supposed that the function is used 

within the main loop of the solving algorithm (Algorithm 1). Several primitives, which 

all gets current arrangement of pebbles as its first two parameters, are used within Algo-

rithm 2: a function Move-Vacant moves the vacant position to a specified new location; a 

function Place-Pebble implements the pebble placement process from the original algo-

rithm of Parberry – here it is used as generic procedure to move pebble from one position 

to another. Finally, a Snake-Composed-Movement is a function that implements com-

posed movements of a specified snake; two positions are specified – the current position 

of the head of snake and the new position for the head. It is also assumed that movement 

of the snake does not interfere with already placed pebbles. An example of snake forma-

tion and its placement is shown in Figure 5. 

4.3. Discussion on Longer Snakes 

We have also considered usage of snakes of length greater than 2. However, certain diffi-

culties preclude using them effectively. There are many more options how to form a 

snake of length greater than 2. In the case of length  , there are at least    basic options 

how a snake can be formed (the order of pebbles is determined and then the snake col-

lects pebbles in this order). Moreover, those do not include all the options (for example, it 

may be beneficial to form two snakes instead of a long one and so on). Therefore consi-

dering all the options and choosing the best one is computationally infeasible. Hence, 

using snakes of length 2 seems to be a good trade-off. 

4.4. Theoretical Analysis 

Although our new algorithm produces locally better sequence of moves for placing a pair 

of pebbles, it may not be necessarily better globally. Consider that different way of plac-

ing the pair of pebbles rearranges other pebbles differently as well, which may influence 

subsequent movements. Hence, theoretical analysis is quite difficult here. To evaluate the 

benefit of the new technique in a more realistic manner, we need some experimental 

evaluation. Nevertheless, theoretical analysis of worst cases can be done at least to get 

basic insight. 

 It has been shown that the original algorithm can always find a solution of the length 

at most      
  

    

 
    ; that is,           [4]. 

 

Proposition 1 (Worst-case Solution Length). Our new algorithm based on snakes can 

always produce a solution to a given instance of       -puzzle of the length of at most 
  

 
        .  

 

Proof. It can be observed that the worst situation for the algorithm using snakes is when 

the two pebbles – let us denote them   and   – that are about to be placed are located in 

the last row or column. In such a case, we need          moves in the worst case. 
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Without loss of generality let us suppose both pebbles   and   to be placed in the last row 

while   is in the first column and   is in the last column. Exactly it is needed: at most 

     moves to move the vacant position near  ; then at most        moves to move 

  towards   which forms a snake; and finally         moves to relocate the snake into 

the first row of the grid. 

The algorithm needs to place     pairs of pebbles and one pebble individually. Ob-

serve that moving one pebble individually to its goal position requires at most    moves. 

Hence, the first row and the first column requires at most             moves where 

        with        . Let      denotes number of moves needed to solve the 

      -puzzle of size     then it holds that                        . 

The solution of this inequality is         

 
        .  

 

Notice, that this result does not show that our new algorithm is actually better than the 

original one. It merely shows that better theoretical estimation of the total number of 

moves can be done for it. 

 

Proposition 2 (Worst-case Time Complexity). Our new algorithm based on snakes has 

the worst case time complexity of      .  

 

Proof. The total time consumed by calls of Move-Vacant and Place-Pebble is linear in 

the number of moves that are performed. The time necessary to find shortest path avoid-

ing already placed vertices is linear as well since the path has always a special shape that 

is known in advance (diagonal followed by horizontal or vertical). There is no need to use 

any path-search algorithm. 

Time necessary for calculating               is at most the time necessary to finish 

the call of Place-Pebble, that is, linear in the number of moves again. 

Finally, we need to observe that the call of Snake-Composed-Movement consumes 

time linear in the number of moves again since first the shortest path of the special shape 

needs to be found and then a snake needs to be moved along the path.  

 

If theoretical results are summarized, we obtained a better upper bound for worst-case 

length of the solution for our new algorithm than it was obtained for the original one in 

[4]. It means that moving two pebbles together allows us to reduce worst-case estimation 

on the number of moves than if they are moved individually. 

5. Experimental Evaluation 

An experimental evaluation is necessary to explore qualities of our new snake-based 

algorithm comparatively with the algorithm of Parberry as we have only the upper bound 

estimation of the total number of steps so far which however does not show that the new 

algorithm actually produces fewer moves. 
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 Algorithm based on snakes as well as that of Parberry were implemented in C++ to 

make experimental evaluation possible. A series of tests has been conducted to measure 

the total number of moves performed by each algorithm. The runtime necessary to solve 

the given instance has been measured too. 

 Measurements have been done for various sizes of the puzzle ranging from 3 to 50 

(that is,   was ranging from 3 to 50). For each size of the puzzle, 40 solvable instances 

with random initial and goal arrangement of pebbles were generated (notice, that solva-

bility can be detected by permutation parity check). Each generated instance was then 

solved by both algorithms and data was collected during the solving process. 

The complete source and additional experimental data are provided at the website: 

http://ktiml.mff.cuni.cz/~surynek/research/j-puzzle-2011. This is to allow reproducibility 

of presented results. 

5.1. Competitive Comparison 

The competitive comparison of the total number of moves made by the snake-based algo-

rithm and the algorithm of Parberry is shown in Figure 6. The improvement achieved by 

snake-based approach is illustrated as well. For each size of the instance, average out of 

40 random instances is shown. 

 

 

 
 

 

Figure 6. Comparison of the original (Parberry) and snake based algorithm in terms of total num-

ber of steps. Comparison has been done for several sizes of the puzzle ranging from 3 to 50. 40 

random instances were generated for each size of the puzzle. The average number of moves for 

both algorithms is shown in the left part. The absolute improvement that can be achieved by using 

snakes is shown in the right part. 

 

 

It is observable that the growth of the number of moves for growing size of the in-

stance is polynomial indeed. Next, it can be observed that snake-based algorithm 

achieves a stable improvement, which is proportional to the total number of moves. The 
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more detailed insight into the achieved improvement of the total number of moves is 

provided by Figure 7. It clearly indicates that the improvement is becoming stable be-

tween 8% and 9% with respect to the original algorithm, as instances are getting larger. 

 

 

 
 

 

5.2. Individual Instances 

Comparison of the total number of moves on the individual instances of various sizes is 

shown in Figure 8. These results show that using snakes, even though it is locally a better 

choice, can lead to global worsening of the solution. This phenomenon sometimes occurs 

exclusively on small instances. Here it is visible for instances of the size of    . On 

larger instances, the local benefit of using snakes predominates over any local worsening 

of the arrangement so there is stably significant improvement of    and   . Notice, that 

this is not the average improvement calculated from several instances; this is improve-

ment on a single instance. 
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Average Improvement 

  Relative Improvement 

  
Length 

Improvement (%) 

3 0.00 

4 4.48 

5 4.28 

6 5.35 

8 5.66 

10 6.27 

12 6.45 

14 6.57 

16 7.24 

18 7.46 

20 7.52 

22 7.48 

25 7.84 

30 7.84 

35 8.07 

40 8.26 

45 8.26 

50 8.36 

 

Table 1. Relative improvement achieved by using snakes with 

respect to the original algorithm. Again, the improvement has 

been measured for several sizes of the puzzle ranging from 3 to 

50. For each size, 40 random instances were generated and the 

average improvement was calculated. 

 

Figure 7. Illustration of the trend in the average improvement. 

It can be observed that the relative improvement tends to stabil-

ize between 8% and 9% as instances are getting larger. 

Puzzle size (n) 
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Figure 8. Development of the improvement with the growing size of the puzzle instance. Compari-

son of the number of moves conducted by the algorithm of Parberry and by our snake-based algo-

rithm is shown for four puzzles of the increasing size. Individual instance for each size of the puz-

zle are sorted according to the increasing number of steps made by Parberry algorithm. It is observ-

able that a worsening after applying snake-based approach may appear for small instances. The 

improvement is becoming stable (between 8-9%) for larger instances. 

5.3. Runtime Measurement 

Finally, results regarding runtime are presented in Table 2. The average runtime for puz-

zles of size up to       are shown. Expectably, our algorithm based on snakes is slow-

er as it makes decisions that are more complex (in fact, it is running the original algo-

rithm plus snake placement to compare if snake is locally better). Nevertheless, the slow-

down is acceptable. 

Notice that both algorithms – Parberry and snake-based – are capable of solving puz-

zles with solutions consisting of hundreds of thousands of moves almost immediately. 

Hence, it can be concluded that both algorithms scales up extremely well and they can be 

used in on-line applications. 
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Table 2. Runtime1 measurements of our new algorithm and algorithm of Parberry. Average time is 

calculated for each size of the puzzle out of 40 runs with different random setups. It can be ob-

served that both algorithms scale up well. 

 

  10 30 40 45 50 

Time 
(seconds) 

Parberry < 0.10 < 0.10 < 0.10 0.10 0.10 

Snakes < 0.10 < 0.10 < 0.10 0.10 0.19 

 

5.4. Summary of Experimental Evaluation 

The conducted experimental evaluation clearly shows that our new algorithm based on 

snakes outperforms the original algorithm of Parberry in terms of the quality of generated 

solutions (defined as total number of moves). Experiments support the claim that using 

snakes greedily, that is, if they are locally better, leads to global improvement of solution 

even though the current arrangement may be worsened sometimes from the global point 

of view. As instances are getting larger, the improvement tends to stabilize itself between 

   and    in average. Even on larger instances – that is larger than       – possible 

fluctuations towards worsening the solution are eliminated, hence using snakes expecta-

bly leads to an improvement of    to    on an individual instance. 

 Runtime measurements show that both tested algorithms solve instances of tested 

sizes in less than     . Thus, it can be concluded that scalability is extremely good. 

6. Conclusions and Future Work 

We have presented a new polynomial-time algorithm for solving       -puzzle in an 

on-line mode sub-optimally. The algorithm is based on an idea to move pebbles jointly in 

groups called snakes, which was supposed to reduce the total number of moves. The 

experimental evaluation eventually confirmed this claim and showed that the new algo-

rithm outperforms the existent state-of-the-art algorithm of Parberry [4] by    to    in 

terms of the average length of the solution. Theoretical upper bounds on the length of the 

solution are also better for the new algorithm as we have shown. Regarding runtime the 

new algorithm is marginally slower due to its more complex computations, however this 

is absolutely acceptable for any real-life application as the runtime is linear in the number 

of produced moves (approximately     moves can be produced per second). 

 It will be interesting for future work to add more measures for reducing the total 

number of moves towards the optimum. Observe that choosing a more promising local 

rearrangement among several options can be easily parallelized. 

 
1 All the tests were run on a commodity PC with CPU Intel Core2 Duo 3.00 GHz and 2 GiB of 
RAM under Windows XP 32-bit edition. The C++ code was compiled with Microsoft Visual Stu-
dio 2008 C++ compiler. 
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 We are also interested in generalized variants of       -puzzle where there is more 

than one vacant position. These variants are known as       -puzzle with     [11]. 

Although it seems that obtaining optimal solutions remains hard in this case, multiple 

vacant positions can be used to rearrange pebbles more efficiently in the sub-optimal 

approach. 

 Finally, it is interesting for us to study techniques for optimal solving of this and re-

lated problems; especially the case with small unoccupied space (that is, with     ). 

This is quite open area as today’s optimal solving techniques [13] can manage only small 

number of pebbles compared to the size of the unoccupied space. 
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