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with forbidden trees
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Abstract

Let F be a set of relational trees and let Forbh(F ) be the class of all structures that admit

no homomorphism from any tree in F ; all this happens over a fixed finite relational signa-

ture σ. There is a natural way to expand Forbh(F ) by unary relations to an amalgamation

class. This expanded class, enhanced with a linear ordering, has the Ramsey property.
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1 Introduction

Ramsey’s Theorem [16] states the following:

Given any r , n, and µ we can find an m0 such that, if m ≥ m0 and the r -element

subsets of any m-element set Γ are divided in any manner into µ mutually exclusive

classes Ci (i = 1,2, . . . ,µ), then Γ must contain an n-element subset ∆ such that all the

r -element subsets of ∆ belong to the same Ci .

In this paper we study generalizations of Ramsey’s Theorem in the context of the so-called

structural Ramsey theory.

Relational structures. A signature σ is a set of relation symbols; each of the symbols has an

associated arity; the arity of R is ar(R). A σ-structure A is a set of elements, called the domain

of A, together with a relation R A on the domain of arity ar(R) for every relation symbol R ∈ σ.

An ordered σ-structure is a (σ∪ {¹})-structure A such that ¹A is a linear ordering. A σ-struc-

ture A is a substructure of a σ-structure B if dom A ⊆ domB and for each k-ary R ∈ σ we have

R A = RB ∩ (dom A)k . An embedding of A into B is a one-to-one mapping f : dom A → dom B

such that for any R ∈ σ and any tuple x̄ we have x̄ ∈ R A iff f (x̄) ∈ RB , where f is applied on x̄

component-wise. If σ⊂ τ, the σ-reduct of a τ-structure A is the σ-structure A∗ obtained from A

by leaving out all the relations R A for R ∈ τ\σ. (In some literature a reduct is called a shadow.)
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Ramsey classes. For any structures A, B , let
(B

A

)

denote the set of all embeddings of A into B .

The partition arrow C → (B )A
r means that whenever

(C
A

)

= E1 ∪E2 ∪ ·· · ∪Er (a colouring with r

colours), then there exists g ∈
(C

B

)

and j ≤ r such that
(g [B ]

A

)

⊆ E j . In this case we call g (or g [B ])

a monochromatic copy of B in C .

Let C be a class of finite structures and let A ∈ C . The class C has the A-Ramsey property if

for any B ∈ C and any natural number r there exists C ∈ C such that C → (B )A
r . The class C is

called a Ramsey class if it has the A-Ramsey property for all A ∈C .

The most notable result about Ramsey classes is most likely the following:

Theorem 1.1 (Nešetřil–Rödl [9]). Let σ be a finite relational signature. Then the class of all finite

ordered σ-structures is a Ramsey class.

The presence of orderings is indeed essential; cf. the discussion in [6].

Classes with forbidden homomorphic images. Let A, B be σ-structures. A homomorphism

of A to B is a mapping f : dom A → domB such that for any R ∈ σ and any x̄ ∈ R A we have

f (x̄) ∈ RB .

The interest of this paper lies in classes of finiteσ-structures that can be defined by forbidding

the existence of a homomorphism from a given set of structures. More explicitly, for a set F of

σ-structures let Forbh(F ) be the class of all finite σ-structures A such that whenever F ∈ F ,

there exists no homomorphism of F to A. We also say that A is F -free.

In general, such classes are not Ramsey classes. A Ramsey class of structures always has

the amalgamation property (see [6]) but these classes will usually not possess it. Following

Hubička–Nešetřil [4], however, there is a canonical way to add new relations to the signature σ

in order to obtain the amalgamation property. Thus it is natural to ask whether this expanded

class, enhanced with a linear ordering, is a Ramsey class.

Main result. It has recently been announced by Nešetřil [8] that the ordered expanded class is

a Ramsey class if F is a finite set of finite connected σ-structures. Here a similar result is shown

for infinite F , but under the assumption that all its elements are (relational) trees. See next

section for the definition of a relational tree.

Proof method. We use the partite method of Nešetřil and Rödl [10, 11, 13]. To prove the partite

lemma, which is often proved by an application of the Hales–Jewett theorem (as in [12, 13, 14]),

we apply induction. Our proof is inspired by one of Prömel and Voigt [15].

Conventions. 1. A tuple has a bar, so x̄ = (x1, x2, . . . , xk ) for some k . If M is the domain of some

function f and x̄ ∈ M k , then f (x̄) = ( f (x1), f (x2), . . . , f (xk )).

2. Instead of “substructure of X generated by M” I write “substructure of X induced by M”

with the intended connotation that the domain of such a substructure is actually M .

3. For a (σ∪τ)-structure A, A∗ almost always denotes the σ-reduct of A.

4. Usually R ∈σ and S ∈ τ, but sometimes R ∈σ∪τ.
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2 Amalgamation and other constructions

Amalgamation. A class C of finite structures has the joint-embedding property if for any struc-

tures A1, A2 ∈ C there exists B ∈ C such that both A1 and A2 admit an embedding into B .

A class C of finite structures has the amalgamation property if for any A,B1,B2 ∈ C and any

embeddings f1 : A → B1 and f2 : A → B2 there exists C ∈ C and embeddings g1 : B1 → C and

g2 : B2 →C such that g1 f1 = g2 f2. The amalgamation is free if domC = g1[domB1]∪ g2[domB2]

and RC = g1[RB1]∪ g2[RB2] for all R ∈σ. If the latter is true only for R ∈ τ⊂σ, the amalgamation

is said to be free with respect to τ.

Let F be a possibly infinite set of finite connected σ-structures. The class Forbh(F ) is hered-

itary and closed under taking disjoint unions, hence it has the joint embedding property. We

turn it into an amalgamation class by adding new relations.

Incidence graph. The incidence graph Inc(X ) of a σ-structure X is the bipartite undirected

multigraph whose vertex set is dom X ∪
⋃

{R X × {R} : R ∈σ}, and which contains for every R ∈σ,

every x̄ ∈ R X , and every i , an edge joining (x̄,R) and xi .

A σ-structure X is connected if Inc(X ) is connected; X is a tree (or a σ-tree) if Inc(X ) is a tree.

(Thus in particular X is not a tree if some tuple of some relation of X contains the same element

two or more times.)

Pieces. Without loss of generality let us assume that the domain of each F ∈ F is the set

{1,2, . . . , |F |}. A cut of some F ∈ F is a set C ⊂ dom F such that Inc(F ) \ C has at least two dis-

tinct connected components that contain vertices from domF ; a minimal cut is a cut which is

inclusion-minimal. Thus C is a (minimal) cut of a structure if and only if it is a (minimal) vertex

cut of its Gaifman graph.

Let C be any minimal cut of F and let D be the vertex set of some connected component of

Inc(F )\C that contains a vertex from domF . A piece of F is M= (M , (m1, . . . ,mk )), where M is the

substructure of F induced by C ∪ (D ∩dom F ) and {m1, . . . ,mk } =C so that m1 < m2 < ·· · < mk .

Remarks. 1. {m1, . . . ,mk } =C is the set of all elements of M appearing in some tuple of F that is

not a tuple of M .

2. A piece of F is a nonempty connected substructure of F , M 6= F , and C 6=dom M .

3. For any given minimal cut, the corresponding pieces cover domF .

Expansion. Let τ contain a relation symbol SM for each piece M of each F ∈F . Let C̃ be the

class of finite (σ∪τ)-structures such that A belongs to C̃ if and only if the σ-reduct A∗ of A is in

Forbh(F ) and for any piece M= (M , (m1, . . . ,mk )) of some F ∈F and any k-tuple x̄ ∈ (dom A)k

we have

x̄ ∈ S A
M

⇐⇒ ∃ f : M → A∗ with f (mi ) = xi for all i . (2.1)

Let C be the class of all substructures of the structures in C̃ . The class C is called the expanded

class for Forbh(F ). The structures in C̃ are called canonical. We can also say that A is F -free
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if A∗ ∈ Forbh(F ); so being F -free is a necessary but not sufficient condition for membership

in C .

Theorem 2.1. Let σ be a finite relational signature, let F be a set of finite connected σ-structures

and let C be the expanded class for Forbh(F ). Then

(1) the class of all σ-reducts of the structures in C is Forbh(F );

(2) C is closed under isomorphism;

(3) C is closed under taking substructures;

(4) C has the amalgamation property (free with respect to σ).

This theorem was proved by Hubička and Nešetřil [4] for finite F but the proof for infinite F

is analogous.

Remarks. 1. If all structures in F are irreducible, that is, any two elements lie in a common

tuple, then there are no pieces because there are no cuts. Hence the theorem implies that the

class Forbh(F ) has the amalgamation property (without any new relations).

2. If all structures in F are trees, then every minimal cut has size one. Thus all the relations

in τ are unary. Every piece of a tree is a tree. Moreover, {x} is a minimal cut of F if and only if x is

an element of F that belongs to more than one tuple of the relations of F .

3. If all relations in τ are unary, then C has free amalgamation.

4. Every structure in C satisfies the right-to-left implication in (2.1).

5. If M = (M , (m1, . . . ,mk )) is a piece such that there is a homomorphism to M from some

F ′ ∈F , them S A
M

=; for any A ∈C .

Sum. For two σ-structures A, B , their sum A+B is defined by

dom(A+B ) = ({A}×dom A)∪ ({B }×dom B ),

R A+B
= ({A}⊗R A)∪ ({B }⊗RB ),

where

{X }⊗R X
=

{(

(X , x1), (X , x2), . . . , (X , xk )
)

: (x1, x2, . . . , xk )∈ R X
}

.

The definition can be extended to arbitrary finite sums in the obvious way. We may also write
∐

{A1, A2, . . . , Ak } for A1+A2+·· ·+Ak . If all elements of F are connected, as we assume through-

out this paper, then both Forbh(F ) and the expanded class C are closed under taking sums.

Factor structure. If A is a σ-structure and ∼ is an equivalence relation on dom A, let the factor

structure A/∼ be defined on dom A/∼ = (dom A)/∼ (the set of all equivalence classes of ∼) by

letting (X1, X2, . . . , Xk ) ∈ R A/∼ if and only if there exist x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk such that

(x1, x2, . . . , xk ) ∈ R A.

Remark. If all structures in F are trees, then amalgamation in Theorem 2.1 can be proved by

taking the factor structure (B1 +B2)/∼, where ∼ is the minimal equivalence relation such that

(B1, f1(a)) ∼ (B2, f2(a)) for all a ∈ dom A, with the obvious embeddings g1, g2.
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Canonizing. Suppose F is a set of trees, and let C be the expanded class for Forbh(F ). Given

a (σ∪τ)-structure A, we want to find a superstructure Ã of A that satisfies the left-to-right im-

plication of (2.1). This is possible assuming that

every one-element substructure of A is in C . (2.2)

For every x ∈ dom A, let Ax be the substructure of A induced by {x}. By assumption, for every x

we have Ax ∈C ; so there exists Ãx ∈ C̃ containing Ax . Let

A′
= A+

∐

{Ãx : x ∈ dom A}

and let ∼ be the smallest equivalence relation on dom A′ such that (A, x) ∼ (Ãx , x) for allx ∈

dom A. Let Ã = A/∼.

By convention, we will still use x to denote the element [(A, x)]∼ of Ã.

Whenever x ∈ S Ã
M

, then there exists f : M → Ãx such that f (m) = x, because Ãx ∈ C̃ . Hence

Ã satisfies the left-to-right implication of (2.1). Moreover, every one-element substructure of Ã

is isomorphic to a substructure of some Ãx , and so in C .

Proving membership in C . A tuple trace of some (x1, x2, . . . , xk ) ∈ R A is the structure T with

domT = {1,2, . . . ,k}; RT = {(1,2, . . . ,k)}; ŘT = { j : x j ∈ Ř A} for all unary Ř ∈ σ; R ′T = ; for any

other R ′ ∈σ\ {R}; ST = { j : x j ∈ S A} for S ∈σ.

Lemma 2.2. Suppose F is a set of finite σ-trees; let C be the expanded class for Forbh(F ). Let X

be a (σ∪τ)-structure. Then X ∈C if and only if each one-element substructure of X belongs to C ,

and for any R ∈σ and any x̄ ∈ R X , the tuple trace of x̄ belongs to C .

Proof. By assumption, X satisfies (2.2); apply the canonizing procedure on X to get X̃ . We have

observed that X̃ satisfies the left-to-right implication of (2.1). Now we shall show that it also

satisfies the right-to-left implication.

Let X̃ ∗ be the σ-reduct of X̃ , let M = (M , (m)) be a piece of some F ∈ F and consider any

homomorphism f : M → X̃ ∗ such that f (m) ∈ dom X . We want to show that f (m) ∈ S X̃
M

. For the

sake of contradiction, assume that f (m) ∉ S X̃
M

and that M is a minimal such piece, that is, we

assume that whenever N ⊂ M and N = (N , (n)) is a piece of F , then f ′(n) ∈ S X̃
N

for any homo-

morphism f ′ : N → X̃ ∗. Because {m} is a cut of the tree F , m belongs to a unique tuple x̄ of M ,

x̄ ∈ R M for some R ∈ σ; m = x j ; f (x̄) ∈ R X . As M has more than one tuple, x̄ contains at least

one element n 6= m such that {n} is a minimal cut of F . Let N1 = (N1, (n1)), N2 = (N2, (n2)), . . . ,

Nℓ = (Nℓ, (nℓ)) be all the pieces of F corresponding to all minimal cuts {nk } such that nk = xi

for some i 6= j , and m ∉ dom Nk . Notice that each Nk ⊂ M ; thus by minimality of the coun-

terexample f (nk ) ∈ S X̃
Nk

for each k = 1, . . . ,ℓ. But then the tuple trace of f (x̄) ∈ R X is not in C , a

contradiction.

Next we show that X̃ is F -free. Suppose there is some F ∈ F and a homomorphism f : F →

X̃ ∗. Then the image of f contains elements of X . If F has only one element, then the one-

element substructure f [F ] of X is not in C . If F has more than one element but it is irreducible
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(that is, if it contains exactly one tuple of a relation of arity more than one), then the tuple trace

of f [F ] is not in C , a contradiction. Hence there is a cut {m} of F such that f (m) ∈ dom X .

Also, for any piece N= (N , {m}) of F the restriction g = f ↾ N is a homomorphism N → X̃ ∗ such

that g (m) = f (m). Thus f (m) ∈ S X
N

for any such piece N. But then the 1-element substructure

of X induced by { f (m)} is a substructure of no canonical structure, hence it is not in C : again a

contradiction. We conclude that X̃ ∗ ∈ Forbh(F ).

Therefore X̃ ∈ C̃ , and so X ∈C .

The converse implication: If X ∈C , then each substructure of X is in C as well. Let T be the

tuple trace of some (x1, . . . , xk ) ∈ R X . Let Ai be the substructure of X induced by {xi }; i = 1, . . . ,k .

Since Ai ∈ C , there exists Ãi ∈ C̃ that contains Ai as a substructure. Let T ′ = T + A1 + ·· ·+ Ak

and let ∼ be the minimal equivalence relation on domT ′ such that (T, i ) ∼ (Ai , xi ). Let T̃ = T ′/∼.

It is not difficult to show that T̃ ∈ C̃ and therefore T ∈C .

Note that the “tuple trace” is a necessary complication due to the context of arbitrary rela-

tional structures. If σ were the signature of digraphs (one binary relation), we could simply test

all one- and two-element substructures of X .

3 Partite lemma

Orderings. An ordered υ-structure is a (υ∪ {¹})-structure A such that the relation ¹A is a linear

ordering.

Definition 3.1. Let σ be a finite relational signature and let F be a set of finite connected σ-

structures. The ordered expanded class for Forbh(F ) is the class ~C of ordered (σ∪τ)-structures

such that A ∈ ~C if and only if ¹A is a linear ordering and the (σ∪τ)-reduct of A is in the expanded

class C for Forbh(F ).

Rectified structures. Let A ∈ ~C . An A-rectified structure is a pair (X , ιX ) such that X ∈ ~C ,

ιX : dom X → dom A, x ¹X x ′ implies that ιX (x) ¹A ιX (x ′), and for any R ∈ σ∪ τ and any x̄ ∈

(dom X )ar(R) we have

x̄ ∈ R X
⇐⇒ ιX is injective on x̄ and ιX (x̄) ∈ R A. (3.1)

Observe that X is uniquely determined by A, dom X and ιX via (3.1).

A mapping e : dom X → domY is an embedding of A-rectified structure (X , ιX ) into (Y , ιY ) if

e : X → Y is an embedding of (σ∪τ∪ {¹})-structures and ιX = ιY e .

Note. (A, idA) is always A-rectified; and for any A-rectified (X , ιX ), any mapping e : dom A →

dom X such that ιX e = idA is an embedding of A into X , as well as an embedding of (A, idA) into

(X , ιX ).

Lemma 3.2. Let F be a set of finite connected σ-structures and let ~C be the ordered expanded

class for Forbh(F ); let A ∈ ~C . Let (B , ιB ) be A-rectified, r ≥ 1. Then there exists A-rectified (E , ιE )

such that (E , ιE ) → (B , ιB )
(A,idA )
r .
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Proof. By induction on |A|. If |A| = 1, take E to be the sum (disjoint union) of r · (|B | − 1)+ 1

copies of A with an arbitrary linear ordering ¹E ; ιE is constant.

If |A| ≥ 2, assume that dom A = {0,1, . . . ,n}. Let A′ be the substructure of A induced by the

subset {1, . . . ,n}; let B ′ be the substructure of B induced by ι−1
B [{1, . . . ,n}], and ιB ′ = ιB ↾ dom B ′.

Then (B ′, ιB ′) is A′-rectified. Apply induction to get A′-rectified (E ′, ιE ′) such that (E ′, ιE ′) →

(B ′, ιB ′)
(A′,ιA′ )

r k , where k = r ·
(

|ι−1
B (0)|−1

)

+1. Assuming that domE ′∩ {1,2, . . . ,k} = ; let dom E =

domE ′ ∪ {1,2, . . . ,k} and define ιE (x) = 0 if x ∈ {1,2, . . . ,k} and ιE (x) = ιE ′(x) otherwise. Let all

(σ∪τ)-relations of E be defined by (3.1); let ¹E be an extension of ¹E ′

that is preserved by ιE .

Thus E ′ is the substructure of (E , ιE ) on ι−1
E [{1, . . . ,n}].

Next, to prove that (E , ιE ) → (B , ιB )
(A,idA )
r , consider any r -colouring χ of

( (E ,ιE )
(A,idA )

)

. Define χ′ :
((E ′,ιE′ )

(A′,ιA′ )

)

→ {1, . . . ,r }ι
−1
E (0) by χ′(e ′) =

(

c 7→ χ(e ′∪ (0 7→ c))
)

, that is, the vector of colours of all exten-

sions of e ′ ∈
( (E ′,ιE′ )

(A′,idA′ )

)

to some e ∈
( (E ,ιE )

(A,idA )

)

. By the definition of (E ′, ιE ′), there is a monochromatic

g ′ ∈
((E ′,ιE′ )

(B ′,ιB ′ )

)

. Hence for any fixed c ∈ ι−1
E (0), the mapping ϕc : h′ 7→ χ((g ′h′)∪ (0 7→ c)) is constant

on
( (B ′,ιB ′ )

(A′,idA′ )

)

. Define ψ : ι−1
E (0) → {1, . . . ,r } by setting ψ(c) to be the constant value of ϕc . Since

|ι−1
E (0)| = k > r

(

|ι−1
B (0)|−1

)

, there exists a subset M ⊆ ι−1
E (0) with |M | = |ι−1

B (0)| such that ψ is

constant on M . Define g ∈
((E ,ιE )

(B,ιB )

)

to be an extension of g ′ by the ¹-preserving bijection of ι−1
B (0)

and M . Then g is monochromatic.

Finally, to show that (E , ιE ) is A-rectified we need only to check that E ∈ ~C . First, the σ-

reduct E∗ of E is F -free, for if there were a homomorphism f : F → E∗ of some F ∈ F , then

ιE f would be a homomorphism F → A∗ – but A is F -free. Moreover, because A ∈ ~C , A is a sub-

structure of a canonical Ã. Let dom Ẽ = domE ∪ (dom Ã \ dom A) (assuming dom E and dom Ã

are disjoint) and let the relations of Ẽ be defined by (3.1), with ιẼ = ιE ∪iddom Ẽ\domE . Clearly Ẽ is

canonical and E is a substructure of Ẽ .

4 Main result

Recall Definition 3.1 of the ordered expanded class for Forbh(F ).

Theorem 4.1. Let σ be a finite relational signature and let F be a set of finite σ-trees. Then the

ordered expanded class for Forbh(F ) has the Ramsey property.

The remainder of this section is devoted to the proof of this theorem.

Partite structures. Let P be an ordered σ-structure and let ~C be the ordered expanded class

for Forbh(F ). A P-partite ~C -structure is a pair (A, ιA) where A ∈ ~C and ιA : dom A → domP is

a homomorphism of the (σ∪ {¹})-reduct A∗ of A to P that is injective on any tuple of the rela-

tion R A for any R ∈σ, and such that the restriction of ιA to any one-element substructure of A∗

is an embedding of this one-element (σ∪ {¹})-structure into P . A P-partite ~C -structure (A, ιA)

is transversal if ιA is an embedding of A∗ to P .

A mapping e : dom A → domB is an embedding of a P-partite ~C -structure (A, ιA) into (B , ιB )

if e : A → B is an embedding of (σ∪τ∪ {¹})-structures and ιA = ιB e .
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Lemma 4.2 (“rectification”). Let ~C be the ordered expanded class for Forbh(F ), where F is a set

of finite σ-trees. Let (C , ιC ) be a P-partite ~C -structure for some σ-structure P. If (D, ιD ) is defined

by setting

domD = domC ,

ιD = ιC ,

SD
= SC for S ∈ τ,

¹
D
=¹

C ,

for R ∈σ, x̄ ∈ RD
⇐⇒ ιD is injective on x̄, and

∃ȳ ∈ RC : ιC (ȳ) = ιD (x̄) and ∀i ,∀S ∈ τ : xi ∈ SD
⇔ yi ∈ SC ,

(4.1)

then (D, ιD ) is a P-partite ~C -structure.

Proof. It is straightforward that ιD is a homomorphism of the reduct D∗ to P because ιC is a

homomorphism of C∗ to P . By definition, ιD is injective on any tuple of any σ-relation of D,

and every one-element substructure of D is isomorphic to the corresponding one-element sub-

structure of C .

To show that D ∈ ~C , first apply the “only if” direction of Lemma 2.2 to prove that the tuple

trace of any ȳ ∈ RD is in C . Then observe that the tuple trace of any ȳ ∈ RD is equal to the

tuple trace of some x̄ ∈ RC . Also, any one-element substructure of D is isomorphic to some

one-element substructure of C . Finally apply the “if” direction of Lemma 2.2.

Observe that the P-partite C -structure (D, ιD ) from Lemma 4.2 is rectified in the following

sense:

For any R ∈σ and any ȳ ∈ RD , if x̄ is a tuple such that ιD (x̄)= ιD (ȳ),

ιD is injective on x̄, and yi ∈ SD
⇔ xi ∈ SD for any i and any S ∈ τ, then x̄ ∈ RD . (4.2)

Note that if (C , ιC ) satisfies (4.2) and (D, ιD ) is defined by (4.1), then (D, ιD ) = (C , ιC ). An impor-

tant special case: if (C , ιC ) is transversal.

Lemma 4.3. Let (D, ιD ) be a P-partite ~C -structure satisfying (4.2), and let (A, ιA) be a transversal

P-partite ~C -structure. Suppose there is an embedding of (A, ιA) into (D, ιD ). Define

dom B =
{

x ∈ dom D : ιD (x) ∈ ιA[dom A] and for any S ∈ τ : x ∈ SD
⇔ ι−1

A (ιD (x)) ∈ S A
}

(4.3)

and let B be the substructure of D induced by dom B. Set ιB = ι−1
A (ιD ↾ domB ). Then (B , ιB ) is

A-rectified.

Proof. First, B ∈ ~C because it is a substructure of D ∈ ~C . Since (D, ιD ) is P-partite, ιD is injective

on any tuple of any relation of B , and so is ιB . Because there exists an embedding of (A, ιA)

into (D, ιD ), it follows from (4.2) that a mapping e : dom A → domD such that ιA = ιD e is an

embedding of (A, ιA) into (D, ιD ) if and only if for any a ∈ dom A and any S ∈ τ we have a ∈ S A ⇔

e(a)∈ SD . Therefore (B , ιB ) satisfies (3.1).
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Proof of Theorem 4.1. Let F be a set of finite σ-trees and let C be the expanded class and
~C the ordered expanded class for Forbh(F ). Consider A,B ∈ ~C and a positive integer r . We

construct C ∈ ~C such that C → (B )A
r .

Let A∗, B∗ be the (σ∪{¹})-reducts of A, B , respectively. By Theorem1.1 there exists an ordered

σ-structure P such that P → (B∗)A∗

r . Define (C0, ιC0
) by

domC0 =
( P

B∗

)

×dom B ,

for any k-ary R ∈σ∪τ:

RC0 =

{

(( f , x1), ( f , x2), . . . , ( f , xk )) : f ∈
( P

B∗

)

and (x1, x2, . . . , xk ) ∈ RB
}

,

ιC0
: domC0 → domP is defined by ιC0

: ( f , x) 7→ f (x),

¹
C0 is any linear ordering that is preserved by ιC0

.

Thus C0 is isomorphic to a sum of structures, and each of the summands is isomorphic to B .

See Figure 1. Observe that (C0, ιC0
) is a P-partite ~C -structure.

Figure 1: C0.

If (D0, ιD0
) is obtained from (C0, ιC0

) by (4.1), then each of the basic embeddings x 7→ ( f , x) of B

to C0 is also an embedding of B to D0.

Fix some numbering of
( P

A∗

)

= {e1, . . . ,eN }. We will inductively construct P-partite ~C -struc-

tures (C1, ιC1
), . . . , (CN , ιCN

).

Let k ∈ {1, . . . , N } and suppose (Ck−1, ιCk−1
) has been constructed. If there is no P-partite em-

bedding of (A,ek ) into (Ck−1, ιCk−1
), let (Ck , ιk ) = (Ck−1, ιCk−1

). Otherwise let (Dk−1, ιDk−1
) be de-

fined from (Ck−1, ιCk−1
) by (4.1). Let (Bk , ιBk

) be obtained from (Dk−1, ιDk−1
) as in Lemma 4.3,

using (A,ek ) in place of (A, ιA). Then (Bk , ιBk
) is A-rectified and we can apply the Partite Lemma,
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Lemma 3.2, in order to get A-rectified (Ek , ιEk
) such that (Ek , ιEk

) → (Bk , ιBk
)

(A,idA )
r (w.r.t. embed-

dings of A-rectified structures). Therefore (Ek ,ek ιEk
) → (Bk ,ek ιBk

)
(A,ek )
r (w.r.t. embeddings of

P-partite structures). Set

domCk =dom Ek ∪

(

((Ek ,ιEk
)

(Bk ,ιBk
)

)

× (dom Dk−1 \ dom Bk )

)

.

Define λk :
((Ek ,ιEk

)

(Bk ,ιBk
)

)

×dom Dk−1 → domCk by

λk : (g , x) 7→

{

g (x) if x ∈ domBk ,

(g , x) otherwise.

For any ℓ-ary R ∈σ∪τ, let

RCk =

{

(

λk (g , x1), . . . ,λk (g , xℓ)
)

: g ∈
((Ek ,ιEk

)

(Bk ,ιBk
)

)

, (x1, . . . , xℓ) ∈ RDk−1

}

.

Furthermore define ιCk
: domCk → dom P by

ιCk
: y 7→ ek ιEk

(y) if y ∈ domEk ,

ιCk
: (g , x) 7→ ιDk−1

(x) otherwise.

Finally, let ¹Ck be a linear ordering such that y ¹Ck y ′ if y ¹Ek y ′, λk (g , x) ¹Ck λk (g , x ′) if x ¹Dk−1

x ′, and z ¹Ck z ′ if ιCk
(z) ¹P ιCk

(z ′). See Figure 2.

Figure 2: Ck .
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Note that for a fixed g , the mapping λk (g ,−) : x 7→ λk (g , x) is an embedding of (Dk−1, ιDk−1
)

to (Ck , ιCk
). By definition of Dk−1, λk (g ,−) is an injective homomorphism of (Ck−1, ιCk−1

) to

(Ck , ιCk
). The inclusion mapping is an embedding of Ek to Ck because (Ek , ιEk

) is A-rectified.

Now we claim that (Ck , ιCk
) is a P-partite ~C -structure. First, for R ∈ σ∪τ, if x̄ ∈ RCk , then

x̄ = λk (g , ȳ) for some (g , ȳ). Since ιDk−1
is injective on ȳ and preserves it if R ∈σ, ιCk

is injective

on x̄ and preserves it if R ∈σ. Next, ¹Ck is preserved by ιCk
by definition. The tuple trace of any

tuple of any relation of Ck is the tuple trace of some tuple of the corresponding relation of Dk−1,

hence in ~C . By Lemma 2.2, Ck ∈ ~C .

Let C =CN . We show that C → (B )A
r . Consider any colouring χ :

(C
A

)

→ {1, . . . ,r }. By downward

induction we exhibit injective homomorphisms hi : (Ci−1, ιCi−1
) → (Ci , ιCi

) for i = N , N −1, . . . ,1

that have certain monochromatic properties.

Suppose hi is known for i = N , . . . ,k +1 (possibly for no i yet). If (Ck , ιCk
) = (Ck−1, ιCk−1

), let

hk be the identity mapping. Otherwise define the colouring χk :
((Ek ,ιEk

)

(A,idA )

)

→ {1, . . . ,r } by setting

χk (q) = χ(hN hN−1 · · ·hk+1q). (Observe that the composed mapping is indeed an embedding.)

Since (Ek , ιEk
) → (Bk , ιBk

)
(A,idA )
r , there exists a χk -monochromatic embedding gk : (Bk , ιBk

) →

(Ek , ιEk
). Let hk =λ(gk ,−).

Let h = hN hN−1 · · ·h1 : (C0, ιC0
) → (CN , ιCN

). Consider any e j ∈
( P

A∗

)

. Any embedding d of A

to C0 such that ιC0
d = e j is also a P-partite embedding of (A,e j ) to (C0, ιC0

). Moreover, hd is

a P-partite embedding of (A,e j ) to (CN , ιCN
). By definition of h j , all such embeddings take the

same colour under χ. Thus we define χ0 :
( P

A∗

)

→ {1, . . . ,r } by χ0(e j ) =χ(hd ) if there exists d ∈
(C0

A

)

such that ιC0
d = e j , and arbitrarily otherwise. By definition of P there exists χ0-monochromatic

f ∈
( P

B∗

)

. Let c : B →C0 be the embedding given by c : x 7→ ( f , x).

Conclude the proof by observing that hc is a χ-monochromatic embedding of B to C : It is

an embedding because h is a composition of embeddings of (Dk−1, ιDk−1
) to (Dk , ιDk

) and the

copy of B given by hk hk−1 · · ·h1c[B ] remains intact during the “rectification” – application of

Lemma 4.2.

5 Comments

Universal structures. If F is a set of finite connected σ-structures, then the expanded class for

Forbh(F ) has a Fraïssé limit U . The σ-reduct U∗ of U is a universal structure for Forbh(F ). For

finite F this universal structure is ω-categorical; the existence of such a universal ω-categorical

structure (and much more) was proved by Cherlin, Shelah and Shi [3]. If F is infinite, U∗ is no

longer necessarily ω-categorical; however, it is model-complete.

Extreme amenability. By a theorem of Kechris, Pestov and Todorčević [5], the automorphism

group of a Ramsey structure is extremely amenable. Thus Theorem 4.1 provides a continuum

of examples of structures with an extremely amenable automorphism group: take F
′ to be an

infinite antichain of σ-trees; then the Fraïssé limit of the expanded class for Forbh(F ) provides

such an example for any subset F of F
′.
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Problem. It would be interesting to classify all sets F of σ-structures for which the corre-

sponding ordered expanded class for Forbh(F ) is a Ramsey class. In particular, is it the case

for any set F of connected finite σ-structures? Some possible applications of such new results

are hinted at in [1].

Limits of the partite method. Nešetřil [8] asked whether one can prove all Ramsey classes by

a variant of the partite (amalgamation) construction. This is certainly a question worth consid-

ering. It is not very satisfactory that the definition of a partite structure is rather different each

time: compare [2, 7, 10, 11, 12, 13, 14]. Also, the partite lemma is sometimes proved by induction

(such as here and in [2, 15]), sometimes by an application of the Hales–Jewett theorem (such as

in [12, 13, 14]).

Acknowledgements
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[14] J. Nešetřil. Ramsey theory. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook

of Combinatorics, volume 2, chapter 25, pages 1331–1403. Elsevier, 1995.

[15] H. J. Prömel and B. Voigt. A short proof of the restricted Ramsey theorem for finite set

systems. J. Combin. Theory Ser. A, 52(2):313–320, 1989.

[16] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. (2), 30(1):264–286,

1930.

13


