On Ramsey properties of classes with forbidden trees

Jan Foniok*

Abstract

Let \mathscr{F} be a set of relational trees and let $\operatorname{Forb}_{h}(\mathscr{F})$ be the class of all structures that admit no homomorphism from any tree in \mathscr{F} ; all this happens over a fixed finite relational signature σ . There is a natural way to expand $\operatorname{Forb}_{h}(\mathscr{F})$ by unary relations to an amalgamation class. This expanded class, enhanced with a linear ordering, has the Ramsey property.

Keywords: forbidden substructure; amalgamation; Ramsey class; partite method **MSC2010:** 05C55

1 Introduction

Ramsey's Theorem [16] states the following:

Given any r, n, and μ we can find an m_0 such that, if $m \ge m_0$ and the r-element subsets of any m-element set Γ are divided in any manner into μ mutually exclusive classes C_i ($i = 1, 2, ..., \mu$), then Γ must contain an n-element subset Δ such that all the r-element subsets of Δ belong to the same C_i .

In this paper we study generalizations of Ramsey's Theorem in the context of the so-called *structural Ramsey theory*.

Relational structures. A *signature* σ is a set of relation symbols; each of the symbols has an associated *arity*; the arity of *R* is ar(*R*). A σ -*structure A* is a set of elements, called the *domain* of *A*, together with a relation R^A on the domain of arity ar(*R*) for every relation symbol $R \in \sigma$. An *ordered* σ -*structure* is a ($\sigma \cup \{ \le \}$)-structure *A* such that \le^A is a linear ordering. A σ -structure *A* is a *substructure* of a σ -structure *B* if dom $A \subseteq$ dom *B* and for each *k*-ary $R \in \sigma$ we have $R^A = R^B \cap (\operatorname{dom} A)^k$. An *embedding* of *A* into *B* is a one-to-one mapping $f : \operatorname{dom} A \to \operatorname{dom} B$ such that for any $R \in \sigma$ and any tuple \bar{x} we have $\bar{x} \in R^A$ iff $f(\bar{x}) \in R^B$, where f is applied on \bar{x} component-wise. If $\sigma \subset \tau$, the σ -*reduct* of a τ -structure *A* is the σ -structure A^* obtained from *A* by leaving out all the relations R^A for $R \in \tau \setminus \sigma$. (In some literature a reduct is called a *shadow*.)

^{*}Address: Queen's University, Department of Mathematics and Statistics, Jeffery Hall, 48 University Avenue, Kingston ON K7L 3N6, Canada. E-mail: foniok@mast.queensu.ca

Ramsey classes. For any structures *A*, *B*, let $\binom{B}{A}$ denote the set of all embeddings of *A* into *B*. The partition arrow $C \to (B)_r^A$ means that whenever $\binom{C}{A} = \mathscr{E}_1 \cup \mathscr{E}_2 \cup \cdots \cup \mathscr{E}_r$ (a *colouring* with *r* colours), then there exists $g \in \binom{C}{B}$ and $j \leq r$ such that $\binom{g[B]}{A} \subseteq \mathscr{E}_j$. In this case we call *g* (or *g*[*B*]) a *monochromatic copy* of *B* in *C*.

Let \mathscr{C} be a class of finite structures and let $A \in \mathscr{C}$. The class \mathscr{C} has the *A*-*Ramsey property* if for any $B \in \mathscr{C}$ and any natural number *r* there exists $C \in \mathscr{C}$ such that $C \to (B)_r^A$. The class \mathscr{C} is called a *Ramsey class* if it has the *A*-Ramsey property for all $A \in \mathscr{C}$.

The most notable result about Ramsey classes is most likely the following:

Theorem 1.1 (Nešetřil–Rödl [9]). Let σ be a finite relational signature. Then the class of all finite ordered σ -structures is a Ramsey class.

The presence of orderings is indeed essential; cf. the discussion in [6].

Classes with forbidden homomorphic images. Let *A*, *B* be σ -structures. A *homomorphism* of *A* to *B* is a mapping $f : \text{dom } A \to \text{dom } B$ such that for any $R \in \sigma$ and any $\bar{x} \in R^A$ we have $f(\bar{x}) \in R^B$.

The interest of this paper lies in classes of finite σ -structures that can be defined by forbidding the existence of a homomorphism from a given set of structures. More explicitly, for a set \mathscr{F} of σ -structures let Forb_h(\mathscr{F}) be the class of all finite σ -structures A such that whenever $F \in \mathscr{F}$, there exists no homomorphism of F to A. We also say that A is \mathscr{F} -free.

In general, such classes are not Ramsey classes. A Ramsey class of structures always has the *amalgamation property* (see [6]) but these classes will usually not possess it. Following Hubička–Nešetřil [4], however, there is a *canonical way* to add new relations to the signature σ in order to obtain the amalgamation property. Thus it is natural to ask whether this *expanded class*, enhanced with a linear ordering, is a Ramsey class.

Main result. It has recently been announced by Nešetřil [8] that the ordered expanded class is a Ramsey class if \mathscr{F} is a **finite** set of finite connected σ -structures. Here a similar result is shown for **infinite** \mathscr{F} , but under the assumption that all its elements are (relational) **trees**. See next section for the definition of a relational tree.

Proof method. We use the *partite method* of Nešetřil and Rödl [10, 11, 13]. To prove the *partite lemma*, which is often proved by an application of the Hales–Jewett theorem (as in [12, 13, 14]), we apply induction. Our proof is inspired by one of Prömel and Voigt [15].

Conventions. 1. A tuple has a bar, so $\bar{x} = (x_1, x_2, ..., x_k)$ for some k. If M is the domain of some function f and $\bar{x} \in M^k$, then $f(\bar{x}) = (f(x_1), f(x_2), ..., f(x_k))$.

2. Instead of "substructure of *X* generated by *M*" I write "substructure of *X* induced by *M*" with the intended connotation that the domain of such a substructure is actually M.

3. For a ($\sigma \cup \tau$)-structure *A*, *A*^{*} almost always denotes the σ -reduct of *A*.

4. Usually $R \in \sigma$ and $S \in \tau$, but sometimes $R \in \sigma \cup \tau$.

2 Amalgamation and other constructions

Amalgamation. A class \mathscr{C} of finite structures has the *joint-embedding property* if for any structures $A_1, A_2 \in \mathscr{C}$ there exists $B \in \mathscr{C}$ such that both A_1 and A_2 admit an embedding into B. A class \mathscr{C} of finite structures has the *amalgamation property* if for any $A, B_1, B_2 \in \mathscr{C}$ and any embeddings $f_1 : A \to B_1$ and $f_2 : A \to B_2$ there exists $C \in \mathscr{C}$ and embeddings $g_1 : B_1 \to C$ and $g_2 : B_2 \to C$ such that $g_1 f_1 = g_2 f_2$. The amalgamation is *free* if dom $C = g_1[\text{dom } B_1] \cup g_2[\text{dom } B_2]$ and $R^C = g_1[R^{B_1}] \cup g_2[R^{B_2}]$ for all $R \in \sigma$. If the latter is true only for $R \in \tau \subset \sigma$, the amalgamation is said to be *free with respect to* τ .

Let \mathscr{F} be a possibly infinite set of finite connected σ -structures. The class Forb_h(\mathscr{F}) is hereditary and closed under taking disjoint unions, hence it has the joint embedding property. We turn it into an amalgamation class by adding new relations.

Incidence graph. The *incidence graph* Inc(X) of a σ -structure X is the bipartite undirected multigraph whose vertex set is dom $X \cup \bigcup \{R^X \times \{R\} : R \in \sigma\}$, and which contains for every $R \in \sigma$, every $\bar{x} \in R^X$, and every i, an edge joining (\bar{x}, R) and x_i .

A σ -structure X is *connected* if Inc(X) is connected; X is a *tree* (or a σ -*tree*) if Inc(X) is a tree. (Thus in particular X is *not* a tree if some tuple of some relation of X contains the same element two or more times.)

Pieces. Without loss of generality let us assume that the domain of each $F \in \mathscr{F}$ is the set $\{1, 2, ..., |F|\}$. A *cut* of some $F \in \mathscr{F}$ is a set $C \subset \text{dom } F$ such that $\text{Inc}(F) \setminus C$ has at least two distinct connected components that contain vertices from dom F; a *minimal cut* is a cut which is inclusion-minimal. Thus *C* is a (minimal) cut of a structure if and only if it is a (minimal) vertex cut of its Gaifman graph.

Let *C* be any minimal cut of *F* and let *D* be the vertex set of some connected component of $\text{Inc}(F) \setminus C$ that contains a vertex from dom *F*. A *piece* of *F* is $\mathfrak{M} = (M, (m_1, ..., m_k))$, where *M* is the substructure of *F* induced by $C \cup (D \cap \text{dom } F)$ and $\{m_1, ..., m_k\} = C$ so that $m_1 < m_2 < \cdots < m_k$.

Remarks. 1. $\{m_1, ..., m_k\} = C$ is the set of all elements of *M* appearing in some tuple of *F* that is not a tuple of *M*.

2. A piece of *F* is a nonempty connected substructure of *F*, $M \neq F$, and $C \neq \text{dom } M$.

3. For any given minimal cut, the corresponding pieces cover dom *F*.

Expansion. Let τ contain a relation symbol $S_{\mathfrak{M}}$ for each piece \mathfrak{M} of each $F \in \mathscr{F}$. Let $\tilde{\mathscr{C}}$ be the class of finite $(\sigma \cup \tau)$ -structures such that A belongs to $\tilde{\mathscr{C}}$ if and only if the σ -reduct A^* of A is in Forb_h(\mathscr{F}) and for any piece $\mathfrak{M} = (M, (m_1, ..., m_k))$ of some $F \in \mathscr{F}$ and any k-tuple $\bar{x} \in (\text{dom } A)^k$ we have

$$\bar{x} \in S^A_{\mathfrak{M}} \quad \iff \quad \exists f : M \to A^* \text{ with } f(m_i) = x_i \text{ for all } i.$$
 (2.1)

Let \mathscr{C} be the class of all substructures of the structures in $\tilde{\mathscr{C}}$. The class \mathscr{C} is called the *expanded class* for Forb_h(\mathscr{F}). The structures in $\tilde{\mathscr{C}}$ are called *canonical*. We can also say that *A* is \mathscr{F} -free

if $A^* \in \text{Forb}_h(\mathscr{F})$; so being \mathscr{F} -free is a necessary but not sufficient condition for membership in \mathscr{C} .

Theorem 2.1. Let σ be a finite relational signature, let \mathscr{F} be a set of finite connected σ -structures and let \mathscr{C} be the expanded class for Forb_h(\mathscr{F}). Then

- (1) the class of all σ -reducts of the structures in \mathscr{C} is Forb_h(\mathscr{F});
- (2) *C* is closed under isomorphism;
- (3) *C* is closed under taking substructures;
- (4) \mathscr{C} has the amalgamation property (free with respect to σ).

This theorem was proved by Hubička and Nešetřil [4] for finite \mathscr{F} but the proof for infinite \mathscr{F} is analogous.

Remarks. 1. If all structures in \mathscr{F} are *irreducible*, that is, any two elements lie in a common tuple, then there are no pieces because there are no cuts. Hence the theorem implies that the class Forb_h(\mathscr{F}) has the amalgamation property (without any new relations).

2. If all structures in \mathscr{F} are trees, then every minimal cut has size one. Thus all the relations in τ are unary. Every piece of a tree is a tree. Moreover, $\{x\}$ is a minimal cut of *F* if and only if *x* is an element of *F* that belongs to more than one tuple of the relations of *F*.

3. If all relations in τ are unary, then $\mathscr C$ has free amalgamation.

4. Every structure in \mathscr{C} satisfies the right-to-left implication in (2.1).

5. If $\mathfrak{M} = (M, (m_1, ..., m_k))$ is a piece such that there is a homomorphism to M from some $F' \in \mathscr{F}$, them $S^A_{\mathfrak{M}} = \emptyset$ for any $A \in \mathscr{C}$.

Sum. For two σ -structures *A*, *B*, their sum *A* + *B* is defined by

$$dom(A + B) = (\{A\} \times dom A) \cup (\{B\} \times dom B),$$
$$R^{A+B} = (\{A\} \otimes R^A) \cup (\{B\} \otimes R^B),$$

where

$$\{X\} \otimes R^X = \{ ((X, x_1), (X, x_2), \dots, (X, x_k)) : (x_1, x_2, \dots, x_k) \in R^X \}.$$

The definition can be extended to arbitrary finite sums in the obvious way. We may also write $\coprod \{A_1, A_2, \dots, A_k\}$ for $A_1 + A_2 + \dots + A_k$. If all elements of \mathscr{F} are connected, as we assume throughout this paper, then both Forb_h(\mathscr{F}) and the expanded class \mathscr{C} are closed under taking sums.

Factor structure. If *A* is a σ -structure and ~ is an equivalence relation on dom *A*, let the *factor structure* A/\sim be defined on dom $A/\sim = (\text{dom } A)/\sim$ (the set of all equivalence classes of ~) by letting $(X_1, X_2, ..., X_k) \in R^{A/\sim}$ if and only if there exist $x_1 \in X_1, x_2 \in X_2, ..., x_k \in X_k$ such that $(x_1, x_2, ..., x_k) \in R^A$.

Remark. If all structures in \mathscr{F} are trees, then amalgamation in Theorem 2.1 can be proved by taking the factor structure $(B_1 + B_2)/\sim$, where \sim is the minimal equivalence relation such that $(B_1, f_1(a)) \sim (B_2, f_2(a))$ for all $a \in \text{dom } A$, with the obvious embeddings g_1, g_2 .

Canonizing. Suppose \mathscr{F} is a set of trees, and let \mathscr{C} be the expanded class for $\operatorname{Forb}_{h}(\mathscr{F})$. Given a $(\sigma \cup \tau)$ -structure A, we want to find a superstructure \tilde{A} of A that satisfies the left-to-right implication of (2.1). This is possible assuming that

every one-element substructure of
$$A$$
 is in \mathscr{C} . (2.2)

For every $x \in \text{dom } A$, let A_x be the substructure of A induced by $\{x\}$. By assumption, for every x we have $A_x \in \mathcal{C}$; so there exists $\tilde{A}_x \in \tilde{\mathcal{C}}$ containing A_x . Let

$$A' = A + \coprod \{ \tilde{A}_x \colon x \in \operatorname{dom} A \}$$

and let ~ be the smallest equivalence relation on dom A' such that $(A, x) \sim (\tilde{A}_x, x)$ for all $x \in$ dom A. Let $\tilde{A} = A/\sim$.

By convention, we will still use *x* to denote the element $[(A, x)]_{\sim}$ of \tilde{A} .

Whenever $x \in S_{\mathfrak{M}}^{\tilde{A}}$, then there exists $f : M \to \tilde{A}_x$ such that f(m) = x, because $\tilde{A}_x \in \tilde{\mathscr{C}}$. Hence \tilde{A} satisfies the left-to-right implication of (2.1). Moreover, every one-element substructure of \tilde{A} is isomorphic to a substructure of some \tilde{A}_x , and so in \mathscr{C} .

Proving membership in \mathscr{C} . A *tuple trace* of some $(x_1, x_2, ..., x_k) \in R^A$ is the structure *T* with dom $T = \{1, 2, ..., k\}$; $R^T = \{(1, 2, ..., k)\}$; $\check{R}^T = \{j : x_j \in \check{R}^A\}$ for all unary $\check{R} \in \sigma$; $R'^T = \emptyset$ for any other $R' \in \sigma \setminus \{R\}$; $S^T = \{j : x_j \in S^A\}$ for $S \in \sigma$.

Lemma 2.2. Suppose \mathscr{F} is a set of finite σ -trees; let \mathscr{C} be the expanded class for $\operatorname{Forb}_{h}(\mathscr{F})$. Let X be a $(\sigma \cup \tau)$ -structure. Then $X \in \mathscr{C}$ if and only if each one-element substructure of X belongs to \mathscr{C} , and for any $R \in \sigma$ and any $\bar{x} \in \mathbb{R}^{X}$, the tuple trace of \bar{x} belongs to \mathscr{C} .

Proof. By assumption, *X* satisfies (2.2); apply the canonizing procedure on *X* to get \tilde{X} . We have observed that \tilde{X} satisfies the left-to-right implication of (2.1). Now we shall show that it also satisfies the right-to-left implication.

Let \tilde{X}^* be the σ -reduct of \tilde{X} , let $\mathfrak{M} = (M, (m))$ be a piece of some $F \in \mathscr{F}$ and consider any homomorphism $f: M \to \tilde{X}^*$ such that $f(m) \in \operatorname{dom} X$. We want to show that $f(m) \in S_{\mathfrak{M}}^{\tilde{X}}$. For the sake of contradiction, assume that $f(m) \notin S_{\mathfrak{M}}^{\tilde{X}}$ and that \mathfrak{M} is a minimal such piece, that is, we assume that whenever $N \subset M$ and $\mathfrak{N} = (N, (n))$ is a piece of F, then $f'(n) \in S_{\mathfrak{N}}^{\tilde{X}}$ for any homomorphism $f': N \to \tilde{X}^*$. Because $\{m\}$ is a cut of the tree F, m belongs to a unique tuple \bar{x} of M, $\bar{x} \in R^M$ for some $R \in \sigma$; $m = x_j$; $f(\bar{x}) \in R^X$. As M has more than one tuple, \bar{x} contains at least one element $n \neq m$ such that $\{n\}$ is a minimal cut of F. Let $\mathfrak{N}_1 = (N_1, (n_1)), \mathfrak{N}_2 = (N_2, (n_2)), \ldots,$ $\mathfrak{N}_{\ell} = (N_{\ell}, (n_{\ell}))$ be all the pieces of F corresponding to all minimal cuts $\{n_k\}$ such that $n_k = x_i$ for some $i \neq j$, and $m \notin \operatorname{dom} N_k$. Notice that each $N_k \subset M$; thus by minimality of the counterexample $f(n_k) \in S_{\mathfrak{N}_k}^{\tilde{X}}$ for each $k = 1, \ldots, \ell$. But then the tuple trace of $f(\bar{x}) \in R^X$ is not in \mathscr{C} , a contradiction.

Next we show that \tilde{X} is \mathscr{F} -free. Suppose there is some $F \in \mathscr{F}$ and a homomorphism $f : F \to \tilde{X}^*$. Then the image of f contains elements of X. If F has only one element, then the oneelement substructure f[F] of X is not in \mathscr{C} . If F has more than one element but it is irreducible (that is, if it contains exactly one tuple of a relation of arity more than one), then the tuple trace of f[F] is not in \mathcal{C} , a contradiction. Hence there is a cut $\{m\}$ of F such that $f(m) \in \text{dom } X$. Also, for any piece $\mathfrak{N} = (N, \{m\})$ of F the restriction $g = f \upharpoonright N$ is a homomorphism $N \to \tilde{X}^*$ such that g(m) = f(m). Thus $f(m) \in S^X_{\mathfrak{N}}$ for any such piece \mathfrak{N} . But then the 1-element substructure of X induced by $\{f(m)\}$ is a substructure of no canonical structure, hence it is not in \mathcal{C} : again a contradiction. We conclude that $\tilde{X}^* \in \text{Forb}_h(\mathcal{F})$.

Therefore $\tilde{X} \in \tilde{\mathscr{C}}$, and so $X \in \mathscr{C}$.

The converse implication: If $X \in \mathcal{C}$, then each substructure of X is in \mathcal{C} as well. Let T be the tuple trace of some $(x_1, \ldots, x_k) \in \mathbb{R}^X$. Let A_i be the substructure of X induced by $\{x_i\}$; $i = 1, \ldots, k$. Since $A_i \in \mathcal{C}$, there exists $\tilde{A}_i \in \tilde{\mathcal{C}}$ that contains A_i as a substructure. Let $T' = T + A_1 + \cdots + A_k$ and let \sim be the minimal equivalence relation on dom T' such that $(T, i) \sim (A_i, x_i)$. Let $\tilde{T} = T'/\sim$. It is not difficult to show that $\tilde{T} \in \tilde{\mathcal{C}}$ and therefore $T \in \mathcal{C}$.

Note that the "tuple trace" is a necessary complication due to the context of arbitrary relational structures. If σ were the signature of digraphs (one binary relation), we could simply test all one- and two-element substructures of *X*.

3 Partite lemma

Orderings. An *ordered v*-*structure* is a $(v \cup \{ \le \})$ -structure *A* such that the relation \le^A is a linear ordering.

Definition 3.1. Let σ be a finite relational signature and let \mathscr{F} be a set of finite connected σ structures. The *ordered expanded class* for Forb_h(\mathscr{F}) is the class $\vec{\mathscr{C}}$ of ordered ($\sigma \cup \tau$)-structures
such that $A \in \vec{\mathscr{C}}$ if and only if \leq^A is a linear ordering and the ($\sigma \cup \tau$)-reduct of A is in the expanded
class \mathscr{C} for Forb_h(\mathscr{F}).

Rectified structures. Let $A \in \vec{\mathcal{C}}$. An *A*-rectified structure is a pair (X, ι_X) such that $X \in \vec{\mathcal{C}}$, $\iota_X : \operatorname{dom} X \to \operatorname{dom} A$, $x \leq^X x'$ implies that $\iota_X(x) \leq^A \iota_X(x')$, and for any $R \in \sigma \cup \tau$ and any $\bar{x} \in (\operatorname{dom} X)^{\operatorname{ar}(R)}$ we have

 $\bar{x} \in R^X \quad \iff \quad \iota_X \text{ is injective on } \bar{x} \text{ and } \iota_X(\bar{x}) \in R^A.$ (3.1)

Observe that *X* is uniquely determined by *A*, dom *X* and ι_X via (3.1).

A mapping $e : \text{dom } X \to \text{dom } Y$ is an embedding of *A*-rectified structure (X, ι_X) into (Y, ι_Y) if $e : X \to Y$ is an embedding of $(\sigma \cup \tau \cup \{ \le \})$ -structures and $\iota_X = \iota_Y e$.

Note. (A, id_A) is always *A*-rectified; and for any *A*-rectified (X, ι_X) , any mapping $e : \mathrm{dom} A \to \mathrm{dom} X$ such that $\iota_X e = \mathrm{id}_A$ is an embedding of *A* into *X*, as well as an embedding of (A, id_A) into (X, ι_X) .

Lemma 3.2. Let \mathscr{F} be a set of finite connected σ -structures and let $\vec{\mathscr{C}}$ be the ordered expanded class for Forb_h(\mathscr{F}); let $A \in \vec{\mathscr{C}}$. Let (B, ι_B) be A-rectified, $r \ge 1$. Then there exists A-rectified (E, ι_E) such that $(E, \iota_E) \to (B, \iota_B)_r^{(A, \operatorname{id}_A)}$.

Proof. By induction on |A|. If |A| = 1, take *E* to be the sum (disjoint union) of $r \cdot (|B| - 1) + 1$ copies of *A* with an arbitrary linear ordering \leq^{E} ; ι_{E} is constant.

If $|A| \ge 2$, assume that dom $A = \{0, 1, ..., n\}$. Let A' be the substructure of A induced by the subset $\{1, ..., n\}$; let B' be the substructure of B induced by $\iota_B^{-1}[\{1, ..., n\}]$, and $\iota_{B'} = \iota_B \upharpoonright \text{dom } B'$. Then $(B', \iota_{B'})$ is A'-rectified. Apply induction to get A'-rectified $(E', \iota_{E'})$ such that $(E', \iota_{E'}) \rightarrow (B', \iota_{B'})_{r^k}^{(A', \iota_{A'})}$, where $k = r \cdot (|\iota_B^{-1}(0)| - 1) + 1$. Assuming that dom $E' \cap \{1, 2, ..., k\} = \emptyset$ let dom $E = \text{dom } E' \cup \{1, 2, ..., k\}$ and define $\iota_E(x) = 0$ if $x \in \{1, 2, ..., k\}$ and $\iota_E(x) = \iota_{E'}(x)$ otherwise. Let all $(\sigma \cup \tau)$ -relations of E be defined by (3.1); let \leq^E be an extension of $\leq^{E'}$ that is preserved by ι_E . Thus E' is the substructure of (E, ι_E) on $\iota_E^{-1}[\{1, ..., n\}]$.

Thus E' is the substructure of (E, ι_E) on $\iota_E^{-1}[\{1, ..., n\}]$. Next, to prove that $(E, \iota_E) \to (B, \iota_B)_r^{(A, \text{id}_A)}$, consider any r-colouring χ of $\binom{(E, \iota_E)}{(A, \text{id}_A)}$. Define $\chi' : \binom{(E', \iota_{E'})}{(A', \iota_{A'})} \to \{1, ..., r\}^{\iota_E^{-1}(0)}$ by $\chi'(e') = (c \mapsto \chi(e' \cup (0 \mapsto c)))$, that is, the vector of colours of all extensions of $e' \in \binom{(E', \iota_{E'})}{(A', \text{id}_{A'})}$ to some $e \in \binom{(E, \iota_E)}{(A, \text{id}_A)}$. By the definition of $(E', \iota_{E'})$, there is a monochromatic $g' \in \binom{(E', \iota_{E'})}{(B', \iota_{B'})}$. Hence for any fixed $c \in \iota_E^{-1}(0)$, the mapping $\varphi_c : h' \mapsto \chi((g'h') \cup (0 \mapsto c))$ is constant on $\binom{(B', \iota_{B'})}{(A', \text{id}_{A'})}$. Define $\psi : \iota_E^{-1}(0) \to \{1, ..., r\}$ by setting $\psi(c)$ to be the constant value of φ_c . Since $|\iota_E^{-1}(0)| = k > r(|\iota_B^{-1}(0)| - 1)$, there exists a subset $M \subseteq \iota_E^{-1}(0)$ with $|M| = |\iota_B^{-1}(0)|$ such that ψ is constant on M. Define $g \in \binom{(E, \iota_{E})}{(B, \iota_B)}$ to be an extension of g' by the \leq -preserving bijection of $\iota_B^{-1}(0)$ and M. Then g is monochromatic.

Finally, to show that (E, ι_E) is *A*-rectified we need only to check that $E \in \mathcal{C}$. First, the σ reduct E^* of *E* is \mathscr{F} -free, for if there were a homomorphism $f : F \to E^*$ of some $F \in \mathscr{F}$, then $\iota_E f$ would be a homomorphism $F \to A^* - \text{but } A$ is \mathscr{F} -free. Moreover, because $A \in \mathcal{C}$, *A* is a substructure of a canonical \tilde{A} . Let dom $\tilde{E} = \text{dom } E \cup (\text{dom } \tilde{A} \setminus \text{dom } A)$ (assuming dom *E* and dom \tilde{A} are disjoint) and let the relations of \tilde{E} be defined by (3.1), with $\iota_{\tilde{E}} = \iota_E \cup \text{id}_{\text{dom } \tilde{E} \setminus \text{dom } E}$. Clearly \tilde{E} is
canonical and *E* is a substructure of \tilde{E} .

4 Main result

Recall Definition 3.1 of the ordered expanded class for $Forb_h(\mathscr{F})$.

Theorem 4.1. Let σ be a finite relational signature and let \mathscr{F} be a set of finite σ -trees. Then the ordered expanded class for Forb_h(\mathscr{F}) has the Ramsey property.

The remainder of this section is devoted to the proof of this theorem.

Partite structures. Let *P* be an ordered σ -structure and let $\vec{\mathcal{C}}$ be the ordered expanded class for Forb_h(\mathscr{F}). A *P*-partite $\vec{\mathcal{C}}$ -structure is a pair (A, ι_A) where $A \in \vec{\mathcal{C}}$ and $\iota_A : \text{dom } A \to \text{dom } P$ is a homomorphism of the $(\sigma \cup \{ \leq \})$ -reduct A^* of *A* to *P* that is injective on any tuple of the relation R^A for any $R \in \sigma$, and such that the restriction of ι_A to any one-element substructure of A^* is an embedding of this one-element $(\sigma \cup \{ \leq \})$ -structure into *P*. A *P*-partite $\vec{\mathcal{C}}$ -structure (A, ι_A) is *transversal* if ι_A is an embedding of A^* to *P*.

A mapping $e: \operatorname{dom} A \to \operatorname{dom} B$ is an embedding of a *P*-partite $\vec{\mathscr{C}}$ -structure (A, ι_A) into (B, ι_B) if $e: A \to B$ is an embedding of $(\sigma \cup \tau \cup \{\leq\})$ -structures and $\iota_A = \iota_B e$.

Lemma 4.2 ("rectification"). Let $\vec{\mathcal{C}}$ be the ordered expanded class for Forb_h(\mathscr{F}), where \mathscr{F} is a set of finite σ -trees. Let (C, ι_C) be a P-partite $\vec{\mathcal{C}}$ -structure for some σ -structure P. If (D, ι_D) is defined by setting

$$dom D = dom C,$$

$$\iota_D = \iota_C,$$

$$S^D = S^C \text{ for } S \in \tau,$$

$$\leq^D = \leq^C,$$

$$for R \in \sigma, \, \bar{x} \in R^D \iff \iota_D \text{ is injective on } \bar{x}, \text{ and}$$

$$\exists \bar{y} \in R^C : \iota_C(\bar{y}) = \iota_D(\bar{x}) \text{ and } \forall i, \forall S \in \tau : x_i \in S^D \Leftrightarrow y_i \in S^C,$$

$$(4.1)$$

then (D, ι_D) is a *P*-partite $\vec{\mathcal{C}}$ -structure.

Proof. It is straightforward that ι_D is a homomorphism of the reduct D^* to P because ι_C is a homomorphism of C^* to P. By definition, ι_D is injective on any tuple of any σ -relation of D, and every one-element substructure of D is isomorphic to the corresponding one-element substructure of C.

To show that $D \in \vec{\mathcal{C}}$, first apply the "only if" direction of Lemma 2.2 to prove that the tuple trace of any $\bar{y} \in R^D$ is in \mathcal{C} . Then observe that the tuple trace of any $\bar{y} \in R^D$ is equal to the tuple trace of some $\bar{x} \in R^C$. Also, any one-element substructure of *D* is isomorphic to some one-element substructure of *C*. Finally apply the "if" direction of Lemma 2.2.

Observe that the *P*-partite \mathscr{C} -structure (D, ι_D) from Lemma 4.2 is *rectified* in the following sense:

For any $R \in \sigma$ and any $\bar{y} \in R^D$, if \bar{x} is a tuple such that $\iota_D(\bar{x}) = \iota_D(\bar{y})$,

 ι_D is injective on \bar{x} , and $y_i \in S^D \Leftrightarrow x_i \in S^D$ for any i and any $S \in \tau$, then $\bar{x} \in R^D$. (4.2)

Note that if (C, ι_C) satisfies (4.2) and (D, ι_D) is defined by (4.1), then $(D, \iota_D) = (C, \iota_C)$. An important special case: if (C, ι_C) is transversal.

Lemma 4.3. Let (D, ι_D) be a *P*-partite $\vec{\mathcal{C}}$ -structure satisfying (4.2), and let (A, ι_A) be a transversal *P*-partite $\vec{\mathcal{C}}$ -structure. Suppose there is an embedding of (A, ι_A) into (D, ι_D) . Define

 $\operatorname{dom} B = \left\{ x \in \operatorname{dom} D: \iota_D(x) \in \iota_A[\operatorname{dom} A] \text{ and for any } S \in \tau : x \in S^D \Leftrightarrow \iota_A^{-1}(\iota_D(x)) \in S^A \right\}$ (4.3)

and let *B* be the substructure of *D* induced by dom *B*. Set $\iota_B = \iota_A^{-1}(\iota_D \upharpoonright \text{dom } B)$. Then (B, ι_B) is *A*-rectified.

Proof. First, $B \in \vec{\mathcal{C}}$ because it is a substructure of $D \in \vec{\mathcal{C}}$. Since (D, ι_D) is *P*-partite, ι_D is injective on any tuple of any relation of *B*, and so is ι_B . Because there exists an embedding of (A, ι_A) into (D, ι_D) , it follows from (4.2) that a mapping $e : \text{dom } A \to \text{dom } D$ such that $\iota_A = \iota_D e$ is an embedding of (A, ι_A) into (D, ι_D) if and only if for any $a \in \text{dom } A$ and any $S \in \tau$ we have $a \in S^A \Leftrightarrow e(a) \in S^D$. Therefore (B, ι_B) satisfies (3.1).

Proof of Theorem 4.1. Let \mathscr{F} be a set of finite σ -trees and let \mathscr{C} be the expanded class and $\vec{\mathscr{C}}$ the ordered expanded class for Forb_h(\mathscr{F}). Consider $A, B \in \vec{\mathscr{C}}$ and a positive integer r. We construct $C \in \vec{\mathscr{C}}$ such that $C \to (B)_r^A$.

Let A^* , B^* be the $(\sigma \cup \{ \le \})$ -reducts of A, B, respectively. By Theorem1.1 there exists an ordered σ -structure P such that $P \to (B^*)_r^{A^*}$. Define (C_0, ι_{C_0}) by

dom $C_0 = {P \choose B^*} \times \operatorname{dom} B$, for any k-ary $R \in \sigma \cup \tau$: $R^{C_0} = \left\{ ((f, x_1), (f, x_2), \dots, (f, x_k)) \colon f \in {P \choose B^*} \text{ and } (x_1, x_2, \dots, x_k) \in R^B \right\},$ $\iota_{C_0} \colon \operatorname{dom} C_0 \to \operatorname{dom} P \text{ is defined by } \iota_{C_0} \colon (f, x) \mapsto f(x),$ \leq^{C_0} is any linear ordering that is preserved by ι_{C_0} .

Thus C_0 is isomorphic to a sum of structures, and each of the summands is isomorphic to *B*. See Figure 1. Observe that (C_0, ι_{C_0}) is a *P*-partite $\vec{\mathcal{C}}$ -structure.

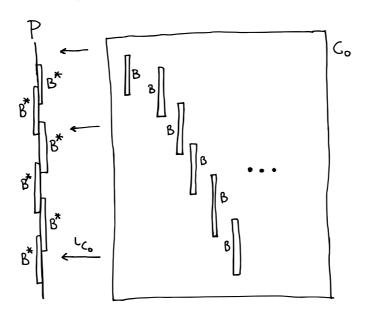


Figure 1: C_0 .

If (D_0, ι_{D_0}) is obtained from (C_0, ι_{C_0}) by (4.1), then each of the basic embeddings $x \mapsto (f, x)$ of *B* to C_0 is also an embedding of *B* to D_0 .

Fix some numbering of $\binom{P}{A^*} = \{e_1, \dots, e_N\}$. We will inductively construct *P*-partite $\vec{\mathcal{C}}$ -structures $(C_1, \iota_{C_1}), \dots, (C_N, \iota_{C_N})$.

Let $k \in \{1, ..., N\}$ and suppose $(C_{k-1}, \iota_{C_{k-1}})$ has been constructed. If there is no *P*-partite embedding of (A, e_k) into $(C_{k-1}, \iota_{C_{k-1}})$, let $(C_k, \iota_k) = (C_{k-1}, \iota_{C_{k-1}})$. Otherwise let $(D_{k-1}, \iota_{D_{k-1}})$ be defined from $(C_{k-1}, \iota_{C_{k-1}})$ by (4.1). Let (B_k, ι_{B_k}) be obtained from $(D_{k-1}, \iota_{D_{k-1}})$ as in Lemma 4.3, using (A, e_k) in place of (A, ι_A) . Then (B_k, ι_{B_k}) is *A*-rectified and we can apply the Partite Lemma,

Lemma 3.2, in order to get *A*-rectified (E_k, ι_{E_k}) such that $(E_k, \iota_{E_k}) \rightarrow (B_k, \iota_{B_k})_r^{(A, \mathrm{id}_A)}$ (w.r.t. embeddings of *A*-rectified structures). Therefore $(E_k, e_k \iota_{E_k}) \rightarrow (B_k, e_k \iota_{B_k})_r^{(A, e_k)}$ (w.r.t. embeddings of *P*-partite structures). Set

$$\operatorname{dom} C_k = \operatorname{dom} E_k \cup \left(\binom{(E_k, \iota_{E_k})}{(B_k, \iota_{B_k})} \times (\operatorname{dom} D_{k-1} \setminus \operatorname{dom} B_k) \right).$$

Define $\lambda_k : \binom{(E_k, \iota_{E_k})}{(B_k, \iota_{B_k})} \times \operatorname{dom} D_{k-1} \to \operatorname{dom} C_k$ by

$$\lambda_k : (g, x) \mapsto \begin{cases} g(x) & \text{if } x \in \text{dom} B_k, \\ (g, x) & \text{otherwise.} \end{cases}$$

For any ℓ -ary $R \in \sigma \cup \tau$, let

$$R^{C_k} = \left\{ \left(\lambda_k(g, x_1), \dots, \lambda_k(g, x_\ell) \right) \colon g \in \binom{(E_k, \iota_{E_k})}{(B_k, \iota_{B_k})}, \ (x_1, \dots, x_\ell) \in R^{D_{k-1}} \right\}.$$

Furthermore define ι_{C_k} : dom $C_k \rightarrow \text{dom } P$ by

$$\iota_{C_k} : y \mapsto e_k \iota_{E_k}(y) \text{ if } y \in \operatorname{dom} E_k,$$

 $\iota_{C_k} : (g, x) \mapsto \iota_{D_{k-1}}(x) \text{ otherwise.}$

Finally, let \leq^{C_k} be a linear ordering such that $y \leq^{C_k} y'$ if $y \leq^{E_k} y'$, $\lambda_k(g, x) \leq^{C_k} \lambda_k(g, x')$ if $x \leq^{D_{k-1}} x'$, and $z \leq^{C_k} z'$ if $\iota_{C_k}(z) \leq^{P} \iota_{C_k}(z')$. See Figure 2.

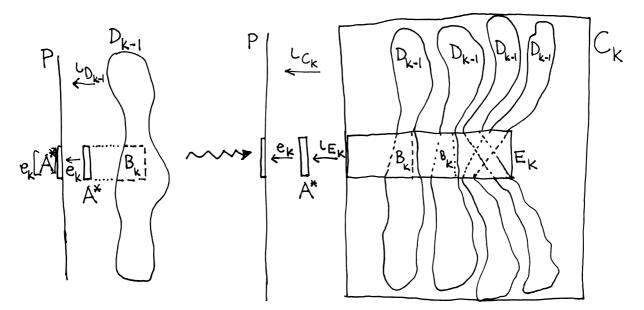


Figure 2: C_k .

Note that for a fixed g, the mapping $\lambda_k(g, -) : x \mapsto \lambda_k(g, x)$ is an embedding of $(D_{k-1}, \iota_{D_{k-1}})$ to (C_k, ι_{C_k}) . By definition of D_{k-1} , $\lambda_k(g, -)$ is an injective homomorphism of $(C_{k-1}, \iota_{C_{k-1}})$ to (C_k, ι_{C_k}) . The inclusion mapping is an embedding of E_k to C_k because (E_k, ι_{E_k}) is *A*-rectified.

Now we claim that (C_k, ι_{C_k}) is a *P*-partite $\vec{\mathcal{C}}$ -structure. First, for $R \in \sigma \cup \tau$, if $\bar{x} \in R^{C_k}$, then $\bar{x} = \lambda_k(g, \bar{y})$ for some (g, \bar{y}) . Since $\iota_{D_{k-1}}$ is injective on \bar{y} and preserves it if $R \in \sigma$, ι_{C_k} is injective on \bar{x} and preserves it if $R \in \sigma$. Next, \leq^{C_k} is preserved by ι_{C_k} by definition. The tuple trace of any tuple of any relation of C_k is the tuple trace of some tuple of the corresponding relation of D_{k-1} , hence in $\vec{\mathcal{C}}$. By Lemma 2.2, $C_k \in \vec{\mathcal{C}}$.

Let $C = C_N$. We show that $C \to (B)_r^A$. Consider any colouring $\chi : \binom{C}{A} \to \{1, ..., r\}$. By downward induction we exhibit injective homomorphisms $h_i : (C_{i-1}, \iota_{C_{i-1}}) \to (C_i, \iota_{C_i})$ for i = N, N - 1, ..., 1 that have certain monochromatic properties.

Suppose h_i is known for i = N, ..., k + 1 (possibly for no i yet). If $(C_k, \iota_{C_k}) = (C_{k-1}, \iota_{C_{k-1}})$, let h_k be the identity mapping. Otherwise define the colouring $\chi_k : \binom{(E_k, \iota_{E_k})}{(A, \text{id}_A)} \to \{1, ..., r\}$ by setting $\chi_k(q) = \chi(h_N h_{N-1} \cdots h_{k+1} q)$. (Observe that the composed mapping is indeed an embedding.) Since $(E_k, \iota_{E_k}) \to (B_k, \iota_{B_k})_r^{(A, \text{id}_A)}$, there exists a χ_k -monochromatic embedding $g_k : (B_k, \iota_{B_k}) \to (E_k, \iota_{E_k})$. Let $h_k = \lambda(g_k, -)$.

Let $h = h_N h_{N-1} \cdots h_1 : (C_0, \iota_{C_0}) \to (C_N, \iota_{C_N})$. Consider any $e_j \in {P \choose A^*}$. Any embedding d of A to C_0 such that $\iota_{C_0}d = e_j$ is also a P-partite embedding of (A, e_j) to (C_0, ι_{C_0}) . Moreover, hd is a P-partite embedding of (A, e_j) to (C_N, ι_{C_N}) . By definition of h_j , all such embeddings take the same colour under χ . Thus we define $\chi_0 : {P \choose A^*} \to \{1, \dots, r\}$ by $\chi_0(e_j) = \chi(hd)$ if there exists $d \in {C_0 \choose A}$ such that $\iota_{C_0}d = e_j$, and arbitrarily otherwise. By definition of P there exists χ_0 -monochromatic $f \in {P \choose B^*}$. Let $c : B \to C_0$ be the embedding given by $c : x \mapsto (f, x)$.

Conclude the proof by observing that hc is a χ -monochromatic embedding of B to C: It is an embedding because h is a composition of embeddings of $(D_{k-1}, \iota_{D_{k-1}})$ to (D_k, ι_{D_k}) and the copy of B given by $h_k h_{k-1} \cdots h_1 c[B]$ remains intact during the "rectification" – application of Lemma 4.2.

5 Comments

Universal structures. If \mathscr{F} is a set of finite connected σ -structures, then the expanded class for Forb_h(\mathscr{F}) has a Fraïssé limit U. The σ -reduct U^* of U is a universal structure for Forb_h(\mathscr{F}). For finite \mathscr{F} this universal structure is ω -categorical; the existence of such a universal ω -categorical structure (and much more) was proved by Cherlin, Shelah and Shi [3]. If \mathscr{F} is infinite, U^* is no longer necessarily ω -categorical; however, it is model-complete.

Extreme amenability. By a theorem of Kechris, Pestov and Todorčević [5], the automorphism group of a Ramsey structure is extremely amenable. Thus Theorem 4.1 provides a continuum of examples of structures with an extremely amenable automorphism group: take \mathscr{F}' to be an infinite antichain of σ -trees; then the Fraïssé limit of the expanded class for Forb_h(\mathscr{F}) provides such an example for any subset \mathscr{F} of \mathscr{F}' .

Problem. It would be interesting to classify all sets \mathscr{F} of σ -structures for which the corresponding ordered expanded class for Forb_h(\mathscr{F}) is a Ramsey class. In particular, is it the case for any set \mathscr{F} of connected finite σ -structures? Some possible applications of such new results are hinted at in [1].

Limits of the partite method. Nešetřil [8] asked whether one can prove all Ramsey classes by a variant of the partite (amalgamation) construction. This is certainly a question worth considering. It is not very satisfactory that the definition of a partite structure is rather different each time: compare [2, 7, 10, 11, 12, 13, 14]. Also, the partite lemma is sometimes proved by induction (such as here and in [2, 15]), sometimes by an application of the Hales–Jewett theorem (such as in [12, 13, 14]).

Acknowledgements

I thank Manuel Bodirsky, Jarik Nešetřil and Claude Tardif for many stimulating discussions, intriguing questions and useful comments.

I am fully supported by a fellowship from the Swiss National Science Foundation. Part of this work was done at Laboratoire d'Informatique (LIX), CNRS UMR 7161, Ecole Polytechnique, Paris, where I was supported by ERC Starting Grant 'CSP-Complexity' no. 257039 of Manuel Bodirsky. Another part was done when I was visiting Fields Institute in Toronto within the Summer Thematic Program on the Mathematics of Constraint Satisfaction. Finally, a part was done at Coffee&Company in Kingston, Ontario. I also acknowledge the support of the Institute for Theoretical Computer Science (ITI), project 1M0545 of the Ministry of Education of the Czech Republic.

References

- [1] A. Atserias and M. Weyer. Decidable relationships between consistency notions for constraint satisfaction problems. In E. Grädel and R. Kahle, editors, *Computer Science Logic*, volume 5771 of *Lecture Notes in Comput. Sci.*, pages 102–116, 2009.
- [2] J. Böttcher and J. Foniok. Ramsey properties of permutations. arXiv:1103.5686v1, submitted.
- [3] G. Cherlin, S. Shelah, and N. Shi. Universal graphs with forbidden subgraphs and algebraic closure. *Adv. in Appl. Math.*, 22(4):454–491, 1999.
- [4] J. Hubička and J. Nešetřil. Homomorphism and embedding universal structures for restricted classes. arXiv:0909.4939, 2009.
- [5] A. S. Kechris, V. G. Pestov, and S. Todorčević. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. *Geom. Funct. Anal.*, 15(1):106–189, 2005.

- [6] J. Nešetřil. Ramsey classes and homogeneous structures. *Combin. Probab. Comput.*, 14(1–2):171–189, 2005.
- [7] J. Nešetřil. Metric spaces are Ramsey. *European J. Combin.*, 28(1):457–468, 2007.
- [8] J. Nešetřil. First order definable Ramsey classes. Workshop on Homogeneous Structures, July 2011. School of Mathematics, University of Leeds.
- [9] J. Nešetřil and V. Rödl. Partitions of finite relational and set systems. *J. Combinatorial Theory Ser. A*, 22(3):289–312, 1977.
- [10] J. Nešetřil and V. Rödl. Simple proof of the existence of restricted Ramsey graphs by means of a partite construction. *Combinatorica*, 1(2):199–202, 1981.
- [11] J. Nešetřil and V. Rödl. Two proofs of the Ramsey property of the class of finite hypergraphs. *European J. Combin.*, 3(4):347–352, 1982.
- [12] J. Nešetřil and V. Rödl. Strong Ramsey theorems for Steiner systems. *Trans. Amer. Math. Soc.*, 303(1):183–192, 1987.
- [13] J. Nešetřil and V. Rödl. The partite construction and Ramsey set systems. *Discrete Math.*, 75(1–3):327–334, 1989.
- [14] J. Nešetřil. Ramsey theory. In R. L. Graham, M. Grötschel, and L. Lovász, editors, *Handbook* of *Combinatorics*, volume 2, chapter 25, pages 1331–1403. Elsevier, 1995.
- [15] H. J. Prömel and B. Voigt. A short proof of the restricted Ramsey theorem for finite set systems. *J. Combin. Theory Ser. A*, 52(2):313–320, 1989.
- [16] F. P. Ramsey. On a problem of formal logic. *Proc. London Math. Soc. (2)*, 30(1):264–286, 1930.