A new bound for the 2/3 conjecture

Daniel Kral™ Chun-Hung Liu' Jean-Sébastien Serenit
Peter Whalen® Zelealem B. Yilmat

Abstract

We show that any n-vertex complete graph with edges colored with three
colors contains a set of at most four vertices such that the number of the
neighbors of these vertices in one of the colors is at least 2n/3. The previous
best value, proved by Erdos et al. in 1989, is 22. It is conjectured that three
vertices suffice.

1 Introduction

Erdds and Hajnal [5] made the observation that for fixed positive integer ¢, positive
real €, and graph G on n > ng vertices, there is a set of ¢ vertices that have a
neighborhood of size at least (1 — (1 + €)(2/3)")n in either G or its complement.
They further inquired whether 2/3 may be replaced by 1/2. This was answered in
the affirmative by Erdés, Faudree, Gyarfas and Schelp [3], who not only proved the
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result but also dispensed with the (1 + €) factor. They also phrased the question as a
problem of vertex domination in a multicolored graph.

Given a color ¢ in an r-coloring of the edges of the complete graph, a subset A of
the vertex set c-dominates another subset B if, for every y € B\ A, there exists a
vertex x € A such that the edge xy is colored c. The subset A strongly c-dominates
B if such a vertex x € A exists for every y € B. (Thus, the two notions coincide
when AN B =(.) The result of Erdés et al. [3] may then be stated as follows.

Theorem 1. For any fized positive integer t and any 2-coloring of the edges of the
complete graph K, on n vertices, there exist a color ¢ and a subset X of size at most
t such that all but at most n/2" vertices of K, are c-dominated by X .

In a more general form, they asked: Given positive integers r, t, and n along with
an r-coloring of the edges of the complete graph K, on n vertices, what is the largest
subset B of the vertices of K, mnecessarily monochromatically dominated by some
t-element subset of K, ? However, in the same paper [3], the authors presented a
3-coloring of the edges of K,, — attributed to Kierstead — which shows that if r > 3,
then it is not possible to monochromatically dominate all but a small fraction of the
vertices with any fixed number ¢ of vertices. This 3-coloring is defined as follows: the
vertices of K, are partitioned into three sets Vi, V5, V5 of equal sizes and an edge xy
with x € V; and y € V} is colored ¢ if 1 < ¢ < 7 < 3. Observe that, if ¢ is fixed, then
at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdos, Faudree,
Gould, Gyarfas, Rousseau and Schelp [4], that if ¢ > 22, then, indeed, at least 2n/3
vertices are monochromatically dominated in any 3-coloring of the edges of K,,. The
authors then ask if 22 may be replaced by a smaller number (specifically, 3). We
prove here that ¢t > 4 is sufficient.

Theorem 2. For any 3-coloring of the edges of K,,, where n > 2, there exist a color
c and a subset A of at most four vertices of K, such that A strongly c-dominates at
least 2n /3 wvertices of K,.

Our proof suggests that Kierstead’s coloring is in some sense extremal, giving more
credence to the conjecture that three vertices would suffice to monochromatically
dominate a set of size 2n/3 in any 3-coloring of the edges of K.

We note that there exists 3-colorings of the edges of K, such that no pair of
vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by
realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices
monochromatically dominate more than 5n/9 + o(n) vertices is o(n~2) by Chernoff’s
bound.



Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov,
which, recently, has led to numerous results in extremal graph and hypergraph theory.
In the following section, we present a brief introduction to the flag algebra framework.
The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what
happens when one increases r, the number of colors? Constructions in the vein of
that of Kierstead — for example, partitioning K, into s parts and using r = <§)
colors — show that the size of dominated sets decreases with increasing r. While it
may be difficult to determine the minimum value of ¢ dominating a certain proportion
of the vertices, it would be interesting to find out whether such constructions do, in

fact, give the correct bounds.

2 Flag Algebras

Flag algebras were introduced by Razborov [11] as a tool based on the graph limit
theory of Lovasz and Szegedy [10] and Borgs et al. [2] to approach problems per-
taining to extremal graph theory. This tool has been successfully applied to various
topics, such as Turdn-type problems [13], super-saturation questions [12], jumps in
hypergraphs [1], the Caccetta-Haggkvist conjecture [9], the chromatic number of
common graphs [7] and the number of pentagons in triangle-free graphs [6, §].

Let us now introduce the terminology related to flag algebras needed in this
paper. Since we deal with 3-colorings of the edges of complete graphs, we restrict
our attention only to this particular case. Let us define a tricolored graph to be a
complete graph whose edges are colored with 3 colors. If GG is a tricolored graph,
then V(G) is its vertex-set. For a set I, we define RF to be the set of all formal
linear combinations of elements of F' with real coefficients. Let F, be the set of
non-isomorphic tricolored graphs with ¢ vertices (two tricolored graphs are considered
to be isomorphic if they differ by a permutation of the vertices and a permutation
of the edge colors). The elements of F3 are shown in Figure 1. We set F := UpenTFy.
Given a tricolored graph o, we define ] to be the set of tricolored graphs F' on
¢ vertices with a fixed embedding of o, that is, an injective mapping v from V(o)
to V(F) such that Im(v) induces in F' a subgraph that differs from o only by a
permutation of the edge colors. We set F7 := U;enIF7.

The central notions are factor algebras of F and F? equipped with addition and
multiplication. Let us start with the simpler case of F. Let F be RIF factorised by
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Figure 1: The elements of F3. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

the subspace of RIFF generated by all combinations of the form

H — Z p(H, HH',

H'€F|m141

where p(H, H') is the probability that a randomly chosen subset of |V (H)| vertices
of H' induces a subgraph isomorphic to H. We set A := RF.
Next, we define the multiplication on A based on the elements of [ as

Hy-Hy:= Z p(Hy, Hy; H),

HER 1y |41y

where p(Hy, Hy; H) is the probability that two randomly chosen disjoint subsets of
vertices of H with sizes |V (H;)| and |V (Hz)| induce subgraphs isomorphic to H; and
H,, respectively. The multiplication is linearly extended to RIF. Further, it can be
shown that the result of the multiplication falls into the same class of A independently
of the choice of the elements of F in their classes.

The definition of A? follows the same lines. Let H and H' be two tricolored
graphs in F? with embeddings v and v/ of . Let p(H, H') be the probability that
V' (V (o)) together with a randomly chosen subset of |V(H)| — |V (o)| vertices in
V(H')\ V' (V(0)) induce a subgraph that is isomorphic to H through an isomorphism
f that preserves the embeddings, that is, v/ = f o v. The set A7 is composed of all
formal real linear combinations of elements of RIF? factorised by the subspace of RIF?
generated by all combinations of the form

H— Y p(H H)H.

H/ERT, |
Similarly, p(Hi, Ho; H) is the probability that v(V (o)) together with two randomly
chosen disjoint subsets of |V (Hy)| — |V (0)| and |V (Hz)| — |V (0)| vertices in V(H) \



v(V (o)) induce subgraphs isomorphic to Hy and Hs, respectively, with the isomor-
phisms preserving the embeddings of . The definition of the product is then analogous
to that in A.

Consider an infinite sequence (G;);en of tricolored graphs with an increasing
number of vertices. Recall that if H € F, then p(H,G;) is the probability that a
randomly chosen subset of |V (H)| vertices of G; induces a subgraph isomorphic to
H. The sequence (G;);en is convergent if p(H,G;) has a limit for every H € F. A
standard argument (using Tychonoff’s theorem [14]) yields that every infinite sequence
of tricolored graphs has a convergent (infinite) subsequence.

Fix now a convergent sequence (G;);en of tricolored graphs. We set ¢(H) =
lim; o p(H, G;) for every H € F, and we linearly extend ¢ to A. The key property is
that ¢ is a homomorphism from A to R. Moreover, for ¢ € F and an embedding v
of o in G;, define pY(H) = p(H,G;). So, for every i € N, the mappings p? form a
random distribution of mappings from A to R, where randomness comes from the
choice of v. Since p(H, G;) converges (as i tends to infinity) for every H € F, the
sequence of these distributions also converges. In what follows, ¢° will be a randomly
chosen mapping from A to R based on the limit distribution. It can be shown that
such a mapping is a homomorphism from A to R. In fact, ¢ fully determines the
random distributions of ¢° for all o.

Let us now have a closer look at the relation between ¢ and ¢°. The “averaging’
operator -] : A7 — A is a linear operator defined on the elements of F” by [H], =
p- H', where H' is the (unlabeled) tricolored graph in F corresponding to H and p is
the probability that a random injective mapping from V(o) to V(H’) is an embedding
of o in H' yielding H. The key relation between ¢ and ¢° is the following:

Y

vH e A%, q([H],) = [ ¢ (H), (1)

where the integration is over the probability space given by the limit random dis-
tribution of ¢°. We immediately conclude that if ¢°(H) > 0 almost surely, then
q([H],) = 0. In particular,

VH e A7, q([H?],) >0. (2)

2.1 Particular Notation Used in our Proof

Before presenting the proof of Theorem 2, we need to introduce some notation and
several lemmas. Recall that o4, o and ¢, the elements of 5, are given in Figure 1.
For i € {A, B,C} and a triple ¢t € {1,2,3}3, let F; be the element of F]* in which the
unlabeled vertex of FY is joined by an edge of color ¢; to the image of the j-th vertex
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Figure 2: The elements oy, ..., 07 of 4. The edges of color 1, 2 and 3 are represented
by solid, dashed and dotted lines, respectively.

of o; for j € {1,2,3}. Two elements of 477 and two of A7 will be of interest in our
further considerations:

wp = 165F5, + 165F5, — 279F 5, — 44F5, + 328F5, + 10F5, + 421 F%,,
why = —580F 5, — 580F5, + 668Ff, — 264F5, + 10FS, + 725F5, + 632F%,,
we = 100, + 100FS,, — 100F5; — 100FS, + 162FS, + 163F5,, and

wy = —10Ff, — 10F5, + 10F5; + 10F G, — TTFS, + 89FS,.

We make use of seven elements o4, ..., 07 out of the 15 elements of [F,. They are
depicted in Figure 2. For i € {1,...,7} and a quadruple ¢ € {1,2,3}*, let F be the
element of IFg* such that the unlabeled vertex of F} is joined by an edge of color g; to
the j-th vertex of o; for j € {1,2,3,4}. Ifi € {1,...,7} and ¢ € {1,2,3}, then F,
is the element of A% that is the sum of all the five-vertex o;-flags F (j such that the
unlabeled vertex is joined by an edge of color ¢ to at least one of the vertices of o,
i.e., at least one of the entries of g is c.

Finally, we define Hy, ..., Hi4 to be the elements of 5 in the way depicted in

Appendix A.

3 Proof of Theorem 2

In this section, we prove Theorem 2 by contradiction: in a series of lemma, we shall
prove some properties of a counterexample, which eventually allows us to establish
the nonexistence of counterexamples.

Let GG be a tricolored complete graph. For a vertex v of G, let A, be the set of the
colors of the edges incident with v. Consider a sequence of graphs (Gy)ren, obtained
from G by replacing each vertex v of G with a complete graph of order k with edges
colored uniformly at random with colors in A,; the colors of the edges between the
complete graphs corresponding to the vertices v and v’ of G being assigned the color

6



i=1 i=2 =3 i=4 i=5 i=6 i=7
c=1 -1/3 0 -1/3 -1/3 0 0 0
c=2 1/2 0 1/6 -1/3 -1/3 -1/3 0
c=3 1/2 1/2 1/2 1/2 1/2 0 0

Table 1: The values e.(o;) for i € {1,...,7} and ¢ € {1,2,3}.

of the edge vv’. This sequence of graphs converges asymptotically almost surely; let
gc be the corresponding homomorphism from A to R.

Let n > 2. We define a counterexample to be a tricolored graph with n vertices
such that for every color ¢ € {1,2,3}, each set W of at most four vertices strongly
c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the
following.

Lemma 3. If G is a counterexample, then every vertex is incident with edges of at
least two different colors.

In the next lemma, we establish an inequality that qq satisfies if G is a counterex-
ample. To do so, define the quantity e.(0;) for i € {1,...,7} and ¢ € {1,2,3} to
be 1/2 if o; contains a single edge with color ¢, —1/3 if each vertex of o; is incident
with an edge colored ¢, 1/6 if o; contains at least two edges with color ¢ and a vertex
incident with edges of a single color different from ¢, and 0, otherwise. These values
are gathered in Table 1.

Lemma 4. Let G be a counterexample with n vertices. For everyi € {1,...,7} and
c € {1,2,3}, a homomorphism qi from A% to R almost surely satisfies the inequality

@) < 24 )

Proof. Fix i € {1,...,7} and ¢ € {1,2,3}. Consider the graph Gy for sufficiently
large k. Let (wy,ws, w3, ws) be a quadruple of vertices of Gy inducing a subgraph
isomorphic to o;. Further, let W be the set of vertices strongly c-dominated by
{wi,...,ws}. We show that |W| < 225 + £.(0;)k + o(k) with probability tending to
one as k tends to infinity. This will establish the inequality stated in the lemma.

For i € {1,2,3,4}, let v; be the vertex of G corresponding to the clique W; of G
containing w;. Let V be the set of vertices of G that are strongly c-dominated by
{v1,...,v4}. Since G is a counterexample, |V'| < 2n/3, and hence, |V| < 2n/3 — 1/3.




If w; and w; are joined by an edge of color ¢ and, furthermore, v; = v;/, then v; is
added to V' as well. Since V is still strongly c-dominated by a quadruple of vertices
in G (replace vy by any of its c-neighbors), it follows that |V| < 2n/3 — 1/3.

The set W can contain the |V|k vertices of the cliques corresponding to the
vertices of V', and, potentially, it also contains some additional vertices if w; has
no c-neighbors among wy, ..., wy. In this case, the additional vertices in W are the
c-neighbors of w; in W;. There are at most k/3 + o(k) such vertices if v; is incident
with edges of all three colors in G, and at most k/2 + o(k) if v; is incident with edges
of only two colors in G.

If e.(0;) = —1/3, then all the vertices wy,...,ws have a c-neighbor among
w1, ..., ws and thus W contains only vertices of the cliques corresponding to the
vertices V. We conclude that |W| < (2n;1)k + o(k), as required.

If e.(0;) = 0, then all but one of the vertices wy, ..., w4 have a c-neighbor among
wy, ..., ws and the vertex w; that has none is incident in o; with edges of the two
colors different from c. In particular, either w; has no c-neighbors inside W; or v, is

incident with edges of three distinct colors in GG. This implies that |W| < w +o(k)
in the former case and [W| < 2% + o(k) in the latter case. So, the bound holds.

If e.(0;) = 1/6, then all but one of the vertices among wy, . .., wy have a c-neighbor
among wy, . .., ws. Let w; be the exceptional vertex. Since w; has at most k/2 + o(k)
c-neighbors in W, it follows that [W| < 225 + & 4 o(k).

Finally, if .(0;) = 1/2, then two vertices w; and wj; among wy,...,ws have
no c-neighbors in {wy,...,ws}. The vertices w; and w; have at most k/2 + o(k)
c-neighbors each in W, and Wj/, respectively. Moreover, since o; contains edges of all
three colors, one of w; and wj is incident in o; with edges of the two colors different
from c. Hence, this vertex has at most k/3 + o(k) c-neighbors in W;. We conclude

that the set W contains at most [V|k + 5k/6 + o(k) < 22% + & + o(k) vertices. [

As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For everyi € {1,...,7} and
c € {1,2,3} such that e.(0;) < 0, it holds that

go([20:/3 = F»] )= 0.

(ex?

We now prove that in a counterexample, at most two colors are used to color the
edges incident with any given vertex. As we shall see, this structural property of
counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three
colors.



Proof. Let G be a counterexample and ws € A be the sum of all elements of Fx
that contain a vertex incident with at least three colors. By the definition of g¢, the
graph G has a vertex incident with edges of all three colors if and only if gg(ws) > 0.
Lemma 5 implies that g5 (H) is non-negative for each element H of A corresponding
to any column of Table 2 (in Appendix B). In addition, (2) ensures that ¢ (H) is also
non-negative for each element H of A corresponding to any of the first four columns
of Table 3 (in Appendix B). Summing these columns with coefficients

23457815885978657985 134730108347752975 134730108347752975
1029505785512512 7 4596007971038 7 4596007971038
15852088219609163945 196791037567187109905 33245823856447882025
514752892756256 _ 12354069426150144 _ 7 24708138852300288 7
395662414%67%%92415 30762195734543710715 20816545085118359705
772129339134384 772129339134384 7 4118023142050048 7
74313622711306287405 48968798259015 393156342699665
2059011571025024 7 514752892756256 6177034713075072°
15977347300925119 8880723226482731
32944185136400384 7 24708138852300288

respectively, yields an element wqy of A given in the very last column of Table 3. As
¢c is a homomorphism from A to R, it follows that gg(wg) > 0. Since wy < —ws, we
deduce that gg(ws) < 0, which therefore implies that qg(ws3) = 0, as desired. ]

We are now in a position to prove Theorem 2, whose statement is recalled below.

Theorem 7. Let n > 2. Every tricolored graph with n vertices contains a subset of
at most four vertices that strongly c-dominates at least 2n/3 vertices for some color c.

Proof. Suppose, on the contrary, that there exists a counterexample GG. Recall that
A, is the set of colors that appear on the edges incident to the vertex v. Now, by
Lemmas 3 and 6, it holds that |A,| = 2 for every vertex v of G. Hence, V(G) can
be partitioned into three sets V;, V5 and V3, where v € V; if and only if i ¢ A,.
Without loss of generality, assume that [Vi| > [Va| > [V5]. Pick w € V4 and v € V4.
As A,NA, = {3} for all w € V,, we observe that V5 is 3-dominated by {u}. Similarly,
V1 is 3-dominated by {v}. Therefore, the set {u,v} strongly 3-dominates V; U V5,
which has size at least 2n/3. O
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A The Elements of [F;
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Hize



B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors
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Hy
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0
0

0
0
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0
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0
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0
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0
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0
0
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0
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0
0
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0
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0
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0
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0
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0
0

0
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0 -1/90  -1/90 0
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0
0
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Hos

0
0

0

0
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0
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1/180 0
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0
0

Hoy

1/90 0
Continued on next page

0

0

-1/90

Hoag




Table 2 — Continued from previous page

g g g g g g g g 3 5

ol - - < - - - S

2 = =2 2 s @ =8 =2 2 =8

S S S S N N 5 S S S

LA LA A LA A A A A a [a]

Hyy -1/90 0 0 0 0 0 0 0 0 0
Hy -1/180 -1/180 -1/180 0O 0 0  -1/360 -1/360 0 0
Hs; -1/180 -1/180  1/90 0 -1/180 1/90 1/180 -1/360 0 0
Hy;, 0 -1/60 -1/60 0 0 0 0 0 0 0
Hs; 0 -1/90 1/180 0 0 0  -1/360 1/180 0 0
Hy 0 -1/90 -1/90  1/90 0 0 0 0  -1/90 0
Hs; 0 0 0 0 0 0 0 0 0 0
Hys 0 -1/180 1/90 0 0 0 1/90 -1/180 0 0
Hy; 0 0 0 0 0 0  -1/180 -1/180 0 0
Hsys 0 1/90  1/90 0 0 0 0 0 0 0
Hyg 0 -1/180 -1/180 0 0 0 0 0 0 0
Hypy 0 0 0 -1/90 0 0 0 0 0 0
Hip 0 0 0 0 0 0 0 0 0 0
Hiy 0 0 0 -1/90 0 0 0 0 0 0
Hy  -1/90 0 0 0 1/90 -1/180 0 0 0 0
Hy 1/180 0 0 -1/180 0 0 0 0 0 0
Hy;s -1/180 0 0 -1/90 0 0  1/180 1/180 0 0
Hys  -1/90 0 0 0 0 0 0 0 1/45 0
Hi 0 0 0 0 0 0 0 0 0 0
Hi 0 0 0 0 0 0 0 0 0 0
Hiy 0 0 0 0 0 0 0 0 0 0
Hyy 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hs; -1/180 0 0 0  -1/180 -1/180 -1/360 -1/360 0 0
Hs, -1/180 0 0 -1/180 0 0 -1/360 -1/360 0 0
Hss -1/180 0 0 0 -1/180 -1/180 0 0 1/180 0
Hsy 0 0 0 0 0 0 0 0 0 0
Hss 0 0 0 0 0 0  -1/180 -1/180 0 0
Hss 0  -1/180 -1/180 0  -1/90 -1/90 0 0 0 0
Hs; -1/180 -1/180 -1/180 0 0 0  -1/360 -1/360 0 0
Hss 0 -1/180 -1/180 0 0 0  1/360 -1/180 1/180 0
Hsy 0  -1/180 1/90 0  -1/90 -1/90 0 0 1/180 0
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g g g g g g g g 3 5
ol - - < - - - S
| | | | | | | | I |
= O O3 O O3 O3 O3 % 0%
s &8 & & & & & & & B
Hey 0  -1/180 1/90 -1/180 0 0  -1/180 -1/180 0 0
Hg, 0  -1/180 -1/180 1/90 0 0 0 0  -1/45 0
He; -1/180 0 0 0 0 0  -1/360 -1/360 0 0
Hes -1/180 0 0 0 0 0  1/360 1/360 0 0
Hey 0 0 0 0 0 0 1/90 -1/180 0 0
Hes 0 0 0 1/90 0 0 -1/360 -1/360 0 0
Hes 0 -1/180 -1/180 0 0 0  -1/180 -1/180 0 0
Heg 0 -1/180 -1/180 0O 0 0 0 0 0 0
Hes 0  -1/180 1/90 0 1/90 -1/180 1/360 -1/180 0 0
Hey 1/90 -1/90 1/180 0 0 0 0 0 0 0
Hz 0 -1/180 -1/180 1/90 0 0 -1/360 1/180 0  -1/120
Hny 0 0 0 0 0 0  -1/180 -1/180 1/180 0
Hy 0 0 0 1/90 0 0 0 0 0 -1/60
Hzy 0 0 0 -1/60 0 0 0 0 0 0
Hyy  -1/90  1/90  1/90 -1/180 0 0 0 0 0 0
Hps  -1/45 0 0 0 0 0 0 0 0 0
Hzg  -1/90 0 0  -1/90 1/90  1/90 0 0 0 0
Hzr -1/90 0 0 0 0 0 1/90 -1/180 0 0
Hzg  -1/90 0 0 0 0 0 0 0 0 0
Hzy -1/90  1/45  -1/90 0 -1/180 1/90 0 0 0 0
Hyy -1/180 0 0 0  -1/180 -1/180 -1/360 -1/360 0 0
Hsi  1/90 0 0 0 0 0  1/360 -1/180 0 0
Hgy -1/180 -1/180 -1/180 0O 0 0  1/180 -1/360 1/180 0
Hgs 1/90  1/60  -1/60 0 0 0 -1/360 1/180 0 0
Hyy  -1/90 0 0 0  -1/90  1/45 0 0 0 0
Hgs  -1/90 0 0 0 0 0 -1/180 1/360 -1/90 0O
Hss -1/180 -1/180 -1/180 0  -1/180 -1/180 -1/360 -1/360 0 0
Hg;  1/90 -1/180 -1/180 -1/180 -1/180 1/90 -1/360 -1/360 0 0
Hgs 1/90 -1/180 -1/180 0 1/90 -1/180 0 0  -1/90 -1/120
Hgy -1/180 -1/180 -1/180 0  1/180 1/180 -1/360 -1/360 0 0
Hyy 1/90 -1/180 -1/180 0 0 0  -1/180 1/90 0 -1/120
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g g g g g g g g 3 5

oy [ [ [ - [y Sl S

2 = =2 2 s @ =8 =2 2 =8

S S S S N N 5 S S S

LA LA A LA A A A A a N

Hoy 1/45  -1/90  -1/90 0 0 0 0 0  -1/90 0
Hygy 0 0 0 0 0 0 0 0 0 0
Hys 0 0 0 0 0 0 0 0 0 0
Hyy 0 -1/180 -1/180 0  -1/90 -1/90 0 0 0 0
Hys 0 1/90 -1/180 0 0 0 1/90 -1/180 0 0
Hyg 0  -1/180 1/90 0  -1/90 -1/90 0 0 1/180 0
Hy; 0 1/90 -1/180  1/90 0 0  -1/180 -1/180 0 0
Hos 0 0 0 0 0 0 0 0 -1/30 0
Hygg 0 0 0  -1/60 0 0 0 0 0 0
Hwo 0 -1/90 -1/90 0 0 0 0 0 1/90 0
it 0 2/45  -1/45 0 0 0 0 0 0 0
Hypz 0 -1/90 -1/90 0  -1/90 -1/90 0 0 0 0
Hyps 0 1/45  -1/90 0 1/90 -1/180 -1/180 -1/180 0 0
Hyws O -1/90 -1/90 0 1/45  -1/90 0 0  -1/90 0
Hyps 0 -1/90 -1/90 0 0 0 0 0  -1/90 0
His 0 1/45  -1/90 -1/180 -1/90  -1/90 0 0 0 0
Hypr 0 0 0  -1/45 0 0 0 0 0 0
Hyps 0 0 0  -1/45 0 0 0 0 0 0
Hyy O 0 0 -1/90 0 0 0 0 0 0
Hyo O 0 0 -1/180 0 0  -1/180 -1/180 0 0
Hyi 0 0 0 -1/180 -1/180 -1/180 1/180 -1/360 0 0
Hys 0 0 0 -1/90 0 0 0 0 0 0
Hus 0 0 0  -1/180 -1/180 -1/180 1/180 -1/360 0 0
Hyy O 0 0 -1/90 0 0  1/360 -1/180 0 0
Hys 0 0 0 -1/180 -1/90 -1/90 0 0  -1/90 0
Hug 0 0 0 -1/180 -1/90 1/180 -1/180 -1/180 O 0
Hyr 0 0 0 -1/180 -1/180 -1/180 -1/180 1/360 -1/90 0
Hys 0 0 0 1/180 0 0  -1/180 -1/180 O 0

Hyg 0 0 0 1/90 0 0  -1/360 -1/360 -1/90 -1/120
Hio O 0 0 -1/90 0 0 0 0 0 0
Hi 0 0 0 -1/180 -1/180 1/90 -1/180 1/360 0 0
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g g g g g g g g g 5
oy [ [y [ S [ Sl S
2 = =2 2 s @ =8 =2 2 =8
S S S S N N S S S S
LA LA A LA A A A A LA LA
Hys 0 0 0 -1/180 0 0  -1/360 -1/360 0 0
Hiss 0 0 0  -1/180 0 0  -1/180 -1/180 -1/90 0
Hie 0 0 0 -1/180 0 0  -1/90 1/180 0 0
Hys 0 0 0 1/180 0 0  -1/360 -1/360 0  -1/120
His 0 0 0 -1/180 0 0 -1/180 -1/180 1/180 0
Hyr 0 0 0 -1/180 1/180 -1/90 -1/360 -1/360 0  -1/120
His 0 0 0 1/90 0 0 0 0  -1/90 -1/60
Hiy 0 0 0 0 0 0  -1/180 -1/180 0 0
Hio 0 0 0 0 0 0 0 0 0 0
Hyy 0 0 0 0  -1/180 -1/180 -1/180 -1/180 O 0
Hy, 0 0 0 0 0 0  1/180 -1/90 0 0
Hiz 0 0 0 0  -1/180 -1/180 -1/360 -1/360 1/180 0
Hizg 0 0 0 0  -1/60 0  -1/180 -1/180 0 0
Hys 0 0 0 0 0  -1/60 0 0 0  -1/60
Hys 0 0 0 0  -1/90 -1/90 -1/180 -1/180 -1/90 0
Hizz 0 0 0 0 1/90 -1/180 -1/120 0 0 -1/120
His 0 0 0 0  -1/180 -1/180 -1/180 1/360 -1/45 0
Hiy 0 0 0 0  -1/180 -1/180 -1/360 -1/360 -1/90 -1/120
Hyuo 0 0 0 0 0 0  -1/180 1/90 0  -1/60
Hyu 0 0 0 0 0 0  -1/90 -1/90 0 0
Hyus 0 0 0 0 0 0 0 0  -2/45 0




Table 3: The last six vectors

[ws -wpl,, [Ws-wgl,, [we-wcl,, [we wpl,. | ws wo
H, 0 0 0 0 0 0
H, 0 0 0 0 0 0
Hs 0 0 0 0 0 0
Ho0 : : 0|1
Hj 0 0 0 0 0 0
Hg 29161/60 101524/15 0 0 1 -1
H 0 0 0 0 0 0
Hyg 0 0 2000 20 0 0
Hy 0 0 -4000/3 -40/3 0 0
Hyg 0 0 0 0 0 0
—10173977739002723
Hi 1815/2 33640/3 0 0 1 FE1ES0050E0456
Hys 0 0 0 0 0 0
His 0 0 0 0 0 0
Hy o2 5104 0 0 |1 yessenamme
Hys 0 0 0 0 0 0
Hig  -9922/15 -422/3 0 0 1 —537%%267(;@%;%%’%75%9}783%17
—57717650068438077139
g 17 57013/ 60 ‘65634/ 5 0 0 1 148248833113801728
18 0 0 0 0 0 0
o 0 o : 0|1 e
Hyg 29161/60 101524/15 0 0 1 -
Ha o TSL2 377003 0 0|1 e
Z39614888977443071
522 -1804 -580/3 0 0 1 18531104139225216
23 0 0 0 0 0 0
Hoy 0 0 0 0 0 0
Hys 0 0 19723/20  2047/20 | 1 130039 0a0 IS
Hoyg 0 0 0 0 0 0
H27 0 O 540 77 3 1 —88140807390257339
28 f412441§3§§8§g864
H 0 0 0 0 1 —1563854 77199
29 617703%71%0775(%7%
H 0 0 270 77/6 1 —5456161234717178191
H31 0 0 5000 %0 0 37062208278450432
32
Hsg 0 0 -1810/3 -97/6 1 *1517%05%1;517;0171%55”
—327323049775204219
g 34 -32(3)3/ 3 723/ 3 20000/ 3 200/ 3 (1) 6738583323354624
35
—2040849950139277
Hs3g 0 0 0 0 1 1323650295658944
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[we -wBl,, [wp wsl,, [we-wcl,. we-wl,, ‘ w3 wo
—324486989357699
0 0 2187/5 5929/60 1 150414806324880
0 0 -4000/3 -40/3 0 0
177241/60  99856/15 0 0 1 R
Hyp  53792/15 10/3 0 0 1 -1
Hyy 0 0 0 0 0 0
Hyy  53792/15 10/3 0 0 1 -1
Hys -2492 5104 0 0 1 724441892?2%(4)16%%7131
Hy  -19723/60 8018 0 0 1 —}53338%% 4%18%17678225
Hys  19251/20 -46426/5 0 0 1 = 879214113%3553%1
H46 0 0 0 0 1 % 3 36%(%%1 53
I 4743 /20 273885 0 0 R i
47 6177034713075072
Hys 0 0 0 0 0 0
Hyg 0 0 0 0 0 0
HSO 0 0 0 0 1 —103542920030206725301;28933
Hs: 0 0 4401/10 -6853/60 | 1 59;891%%1275?;1;4591%97
Hso 1331/4 24476/3 0 0 1 =S 1%)26131855087
—5522641570007 835
553 _71507/ 30 728308/ 15 8 8 (1) 206497666227603456
54
His 0 0 2187/5 5929/60 | 1 G2 i
H56 0 0 1630/3 —89/3 1 —14807068%% 44854103
Hs, 0 0 270 77/6 1 —52?%?5%%% 7217? ?%2%91
12354069426150
—74%%6 O71055% 91]9 07
Hsg 0 0 0 0 1 148248833113801723
Hsg 0 0 0 0 1 -1
H60 0 0 -540 -77/3 1 —127346913837154513
203 48430/3 0 O/ | —104667550196885ss
0 0 0 0 | R
0 0 0 0 | ISR
0 0 0 0 1 £ s
1323650295658944
-34522/15 316/3 0 0 1 -1
0 0 540 77/3 1 —%gg%%é%ﬁgzg? 3
177241/60 99856/15 0 0 1 LS
0 0 -815/3 89/6 1 —42621413028711205
4631/4 -18328/3 -1000/3 -10/3 1 %%%g%g% 5%%%%%%%
-39153/20  105544/15 -270 -77/6 R e L R
: : 0 0|1 -l
-39153/10  211088/15 0 0 1 —473;431&’22?5?1353;;7563
—673764 13401
17391/4 114896/15 0 0 1 Orsro b ol
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[we -wBl,, [wp wsl,, [we-wcl,. we-wl,, ‘ w3 wo
-3069,/2 -38744/3 0 0 1 -1
-968 20416 0 0 1 —235173;1?8%7553}552857
-13706/15  -92396/15 0 0 1 =B SBeIaeiisT
o ) X 0| R,
18531104139225216
0 0 0 0 1 -1
—34340368851241376879
0 0 0 0 1 98832555409201152
-4631/15 -13904/5 0 0 1 -1
—10725188546965769537
0 0 0 0 1 21178404730543104
0 0 -2810/3 -39/2 1 -1
0 0 0 0|1 s
121/6 -30595/3 0 0 1 —21 715322664188433
Y AR s |1 e,
18384031884152
1331/4 24476/3 270 77/6 1 —20;5;%6;’53253 f§§§§7’7
-8657/30  -194687/15 -815/3 89/6 1 S0 se ]
: o w0 Tys |1
4631/4 -18328/3 -270 -77/6 1 —f§834§%§37§§§85f¢%§3
—12539 96442
121/3 -61190/3 2000/3 20/3 1 RN
Hygo 0 0 0 0 0 0
Hos 0 0 0 0 0 0
—15461491234942018543
Hogy 0 0 1972320 2047/20 | 1 oS bL
Hys 0 0 0 0 1 L
H96 0 0 -1630/3 89/3 1 —3783%88222&&?1 91565
3311380172
Hor 0 0 -540 -77/3 1 prox Lbil it
Hs 0 0 0 0|1 R
Hoy  T7841/20 111556/5 0 0 1 -1
—35834405989042100849
Hioo 10/3 105125/6 0 0 1 74124416556900864
Hion 0 0 -4000/3 -40/3 0 0
Hp 0 0 1630/3  8o/3 | 1 =lsmelsmn
Hios 0 0 -1630/3 89/3 1 —24442%39;5?9255?%645
Hio 0 0 -1630/3 89/3 1 et
H105 0 0 0 0 1 8126681?22881212%27
Hiog 0 0 -1630/3 89/3 1 823gg§6§27g4181&0(?§661
Hypr  107584/15 20/3 0 0 1 -2
Hys  30504/5 1336/3 0 0 1 —%%ﬂgggﬁ%‘é%%%
Hig  1815/2 33640/3 0 0 1 _1805’117 2997?756 2%522723
- 7 7
Hio 0 0 0 0 1 é%()5%011 15711021302219
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[we -wBl,, [wp wsl,, [we-wcl,. we-wl,, ‘ w3 wo
H 4631/4 -18328/3 0 0 1 —7493427555720786047
o s 0 0 P
—580801801535488 563
Hys  -34522/15 316/3 0 0 1 435566]
mn Ges w0 o |1 U
Hiis 55 -42050/3 26569/60 7921/60 1 =slrea b 182061
Hi 0 0 0 0 1 R b e ARk ts
Hyyo -93/2 24215/3 0 0 ] *%2 éé&éii&?i‘%?f’éé‘gg
235680946108620).
Hiis -1804 -580/3 2187/5 5929/60 1 —3669% ggogfgl%%g%)%%’
Hiqg _70439/30 {177 0 0 1 —12%2?7%241 ois]l 8487%11
His 1815/2 33640/3 0 0 1 —?glfg’gﬁf?)fffﬁ%
Hio 0 0 0 0 1 100 R 143
His  4631/4 -18328/3 0 0 | —2oses %117%%:2%%%2833
His  -328/3 725/3 0 0 | 1500050100400
Hyoy 0 0 0 0 I 155 i
2 11571025024
Hiss  -27249/10 8684/15 0 0 1 —71332 ! 755’% 30152650
His 55 -42050/3 0 0 1 77(1)1 815%5’24?3@9598843
{5805 1P 08I0 7
Hi 0 0 0 0 1 121118;)87404730543104
Hyss  170681/60  103481/15 0 0 1 ;
—1157293995940733471
Hyag 0 0 0 0 1 4632776034806304
Hi39 0 0 0 0 0 0
His 0 0 4401/5 -6853/30 | 1 1
i 0 0 : 0 |1 g
H33 421/6 22910/3 0 0 1 e
Hiaa 0 0 4401/5 -6853/30 1 5Ol Tb 04RO TR0 1181
o 0 " 3501 s,
Hise 0 0 0 0 | TSR s
H 0 0 0 0 | —oibresnsnsdstiilatn
o SRSRToRaR I
i 0 0 : o |1 SR
Hyzg — 421/6 22910/3 0 0 IS e s 65900
Hiso 0 0 0 0 S 171
Hig 0 0 0 0 | iy
2316388017403152
Hiso 20/3 105125/3 0 0 1 1




