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Abstract. The guarding game is a game in which several cops try to
guard a region in a (directed or undirected) graph against a robber. The
robber and the cops are placed on the vertices of the graph; they take
turns in moving to adjacent vertices (or staying), cops inside the guarded
region, the robber on the remaining vertices (the robber-region). The goal
of the robber is to enter the guarded region at a vertex with no cop on it.
The problem is to determine whether for a given graph and given number
of cops the cops are able to prevent the robber from entering the guarded
region. Fomin et al. [Fomin, Golovach, Hall, Mihalák, Vicari, Widmayer:
How to Guard a Graph? Algorithmica, DOI: 10.1007/s00453-009-9382-
4] proved that the problem is NP-complete when the robber-region is
restricted to a tree. Further they prove that is it PSPACE-complete when
the robber-region is restricted to a directed acyclic graph, and they ask
about the problem complexity for arbitrary graphs. In this paper we
prove that for arbitrary graphs (directed or undirected) the problem is
E-complete. 1

Key words: pursuit game, cops and robber game, graph guarding game,
computational complexity, E-completeness

1 Introduction and motivation

The guarding game (G, VC , c), introduced by Fomin et al. [2], is played on a graph

G = (V,E) (or directed graph
−→
G = (V,E)) by two players, the cop-player and

the robber-player, each having his pawns (c cops and one robber, respectively) on
V . There is a protected region (also called cop-region) VC ⊂ V . The remaining
region V \ VC is called robber-region and denoted VR. The robber aims to enter
VC by a move to a vertex of VC with no cop on it. The cops try to prevent
this. The game is played in alternating turns. In the first turn the robber-player
places the robber on some vertex of VR. In the second turn the cop-player places
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his c cops on vertices of VC (more cops can share one vertex). In each subsequent
turn the respective player can move each of his pawns to a neighbouring vertex
of the pawn’s position (or leave it where it is). However, the cops can move only
inside VC and the robber can move only on vertices with no cops. At any time of
the game both players know the positions of all pawns. The robber-player wins
if he is able to move the robber to some vertex of VC in a finite number of steps.
The cop-player wins if the cop-player can prevent the robber-player from placing
the robber on a vertex in VC indefinitely. Note that after exponentially many
(in the size of the graph G) turns the positions has to repeat and obviously if
the robber can win, he can win in less than 2|V |(c+1) turns, Note that 2|V |c+1

is the upper bound on the number of all possible positions of the robber and all
cops, so after that many turns the position has to repeat. Thus, if the robber
can win, he can win in less than 2|V |c+1 turns. Consequently, we may define the
robber to lose if he does not win in 2|V |c+1 turns.

For a given graph G and guarded region VC , the task is to find the minimum
number c such that cop-player wins. Note that this problem is polynomially
equivalent with the problem of determining the outcome of the game for a fixed
number c of cops.

The guarding game is a member of a big class called the pursuit-evasion
games, see, e.g., Alspach [5] for introduction and survey. The discrete version of
pursuit-evasion games on graphs is called the Cops-and-Robber game. This game
was first defined for one cop by Winkler and Nowakowski [6] and by Quilliot [7].
Aigner and Fromme [8] initiated the study of the problem with several cops.
The minimum number of cops required to capture the robber is called the cop
number of the graph. In this setting, the Cops-and-Robber game can be viewed
as a special case of search games played on graphs. Therefore, the guarding game
is a natural variant of the original Cops-and-Robber game. The complexity of
the decision problem related to the Cops-and-Robbers game was studied by
Goldstein and Reingold [12]. They have shown that if the number of cops is not
fixed and if either the graph is directed or initial positions are given, then the
problem is E-complete. Another interesting variant is the “fast robber” game,
which is studied in Fomin et al. [13]. See the annotated bibliography [11] for
reference on further topics.

A different well-studied problem, the Eternal Domination problem (also
known as Eternal Security) is strongly related to the guarding game. The ob-
jective in the Eternal Domination is to place the minimum number of guards
on the vertices of a graph G such that the guards can protect the vertices of G
from an infinite sequence of attacks. In response to an attack of an unguarded
vertex v, at least one guard must move to v and the other guards can either
stay put, or move to adjacent vertices. The Eternal Domination problem is a
special case of the guarding game. This can be seen as follows. Let G be a graph
on n vertices and we construct a graph H from G by adding a clique Kn on
n vertices and connecting the clique and G by n edges which form a perfect
matching. The cop-region is V (G) and the robber-region is V (Kn). Now G has
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an eternal dominating set of size k if and only if k cops can guard V (G). Eternal
Domination and its variant have been considered for example in [16–23].

In our paper we focus on the complexity issues of the following decision
problem: Given the guarding game G = (G, VC , c), who has the winning strategy?

Let us define the computational problem precisely. The directed guarding
decision problem is, given a guarding game (

−→
G, VC , c) where

−→
G is a directed

graph, to decide whether it is a cop-win game or a robber-win game. Analogously,
we define the undirected guarding decision problem with the difference that the
underlying graph G is undirected. The guarding problem is, given a directed or
undirected graph G and a cop-region VC ⊆ V (G), to compute the minimum
number c such that the (G, VC , c) is a cop-win.

The directed guarding decision problem was introduced and studied by Fomin
et al. [2]. The computational complexity of the problem depends heavily on
the chosen restrictions on the graph G. In particular, in [2] the authors show
that if the robber’s region is only a path, then the problem can be solved in
polynomial time, and when the robber moves in a tree (or even in a star), then
the problem is NP-complete. Furthermore, if the robber is moving in a directed
acyclic graph, the problem becomes PSPACE-complete. Later Fomin, Golovach
and Lokshtanov [14] studied the reverse guarding game with the same rules as
in the guarding game, except that the cop-player plays first. They proved in
[14] that the related decision problem is PSPACE-hard on undirected graphs.
Nagamochi [9] has also shown that that the problem is NP-complete even if VR
induces a 3-star and that the problem is polynomially solvable if VR induces
a cycle. Also, Thirumala Reddy, Sai Krishna and Pandu Rangan have proved
[10] that if the robber-region is an arbitrary undirected graph, then the decision
problem is PSPACE-hard.

Fomin et al. [2] asked the following question.

Question 1. Is the guarding decision problem for general graphs PSPACE-complete?

Let us consider the class E = DTIME(2O(n)) of languages recognisable by a
deterministic Turing machine in time 2O(n). We consider log-space reductions,
this means that the reducing Turing machine is log-space bounded. In pursuit
of Question 1 we prove the following result.

Theorem 1. The directed guarding decision problem is E-complete under log-
space reductions.

We would like to point out the fact that we can prove Theorem 1 without
prescribing the starting positions of players. Immediately, we get the following
corollary.

Corollary 1. The guarding problem is E-complete under log-space reductions.

Let us explain here the relevance of Theorem 1 to Question 1. Very little
is known how the class E is related to PSPACE. It is only known [4] that E 6=
PSPACE. The following corollary shows that positive answer to Question 1 would
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give a relation between these two complexity classes. This gives unexpected and
strong incentive to find positive answer to Question 1. (On the other hand, to
the skeptics among us, it may also indicate that negative answer is more likely.)

Corollary 2. If the conjecture of Fomin et al. is true, then E ⊆ PSPACE.

Proof. Suppose the guarding problem is PSPACE-complete. Let L ∈ E. Then
(by Theorem 1) an instance of L can be reduced by a log-space reduction to
an instance of the guarding game, which we suppose to be in PSPACE. Conse-
quently, L ∈ PSPACE.

We also prove Theorem 2, a theorem similar to Theorem 1 for general undi-
rected graphs. We define the guarding game with prescribed starting positions
G = (G, VC , c, S, r), where S : {1, . . . , c} → VC is the initial placement of cops
and r ∈ VR is the initial placement of robber. The undirected guarding deci-
sion problem with prescribed starting positions is, given a guarding game with
prescribed starting positions (G, VC , c, S, r) where G is an undirected graph, to
decide whether it is a cop-win game or a robber-win game. The directed guarding
decision problem with prescribed starting positions is defined analogously.

Theorem 2. The undirected guarding decision problem with prescribed starting
positions is E-complete under log-space reductions.

Here, we would like to point out the fact that with the exception of the
result in [14], all known hardness results for cops and robbers, or pursuit evasion
games are for the directed graph variants of the games [2, 12]. For example, the
classical Cop and Robbers game was shown to be PSPACE-hard on directed
graphs by Goldstein and Reingold in 1995 [12] while for undirected graphs, even
an NP-hardness result was not known until recently by Fomin, Golovach and
Kratochv́ıl [15].

Let us also consider the guarding game GR = (
−→
G, VC , c)

R, where the two
initial turns are different: In the first turn, the cop-player places all cops on ver-
tices of VC , and in the second turn, the robber-player places the robber on some
vertex of VR. Then the game proceeds as usual, starting with the cop-player.
In some sense, this game looks like being harder for the cop-player, because the
robber during his initial placement has better chance to endanger the cop-region.
Analogously with the definition of directed guarding decision problem we define
the reverse directed guarding decision problem.

Fomin, Golovach and Lokshtanov [14] proved that the reverse undirected
guarding problem is PSPACE-hard. We show the following theorem for the di-
rected case.

Theorem 3. The reverse directed guarding decision problem is E-complete un-
der log-space reductions.

For the original Cops-and-Robber game, Goldstein and Reingold [12] have
proved that if the number c of cops is not fixed and if either the graph is directed
or initial positions are given, then the related decision problem is E-complete.
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In a sense, we show analogous result for the guarding game as Goldstein and
Reingold [12] have shown for the original Cops-and-Robber game. Similarly to
Goldstein and Reingold, we can prove the complexity of the undirected guarding
decision problem only when having prescribed the initial positions of players.
Dealing with this issue seems to be a nontrivial task in this family of games.

2 The directed case

In order to prove E-completeness of the directed guarding decision problem, we
first note that the problem is in E.

Lemma 1. The guarding decision problem (directed or undirected) is in E.

Proof. We need to show that there is an algorithm deciding the outcome of a
given guarding game G = (G, VC , c) in 2O(n) time, where n is the size of the
input G in some encoding. Consider the directed graph H of all configurations of
the game G – the vertices of H are all possible legal positions of all cops and the
robber, together with the information whose turn it is. There is also a starting
vertex s representing the empty board and the vertices r1, . . . , r|VR| representing
every possible initial placement of the robber with still no cops placed. More
precisely,

V (H) = {(C, r, t); C {1, . . . , c} → VC , r ∈ V (G), t ∈ {0, 1}} ∪ {s, r1, . . . , r|VR|}.

Here t = 0 denotes the robber is on move, t = 1 denotes cops are on move, C
is the position of cops and r is the position of the robber. There are edges from
s to every vertex ri and for every ri there are edges to every possible initial
subsequent placement of cops. The edge (k1, k2) belongs to E(H) if and only if
k1 is cop turn and k2 is robber turn (or vice versa) and the pawns of k1 can be
legally moved into pawn positions of k2.

Using the following backwards-labelling algorithm we can decide the outcome
of every position in polynomial time in the size of the graph H . Let us denote
the robber-winning configurations by WR.

1. Construct the graph H .
2. Initially set WR to be all vertices that are a win for the robber-player, i.e.

positions where the robber stands on some v ∈ VC and there is no cop on v.
3. Add to WR all vertices v where robber is on turn and there is an edge

(v, w) ∈ E(H) and w ∈ WR.
4. Add to WR all vertices v where cop is on turn and for every edge (v, w) ∈
E(H) the vertex w ∈WR.

5. Repeat |V (H)|-times the steps 3 and 4.
6. If s ∈ WR the game G is robber-win, otherwise the game G is cop-win.

Note that each step can be computed in time polynomial in the size of H . It
remains to show that the size of H is 2O(n). As mentioned in the introduction,
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the simplest upper bound on |V (H)| is 2|V (G)|c+1, which is unfortunately super-
exponential in n if c is close to n. To find a better upper bound, we use the fact
that the cops are mutually indistinguishable. There are at most |V (G)| positions
of the robber. Counting the number of all positions of the cops is the classical
problem of putting c indistinguishable balls into |VC | baskets. Then, taking into
account also whose turn it is and the number of vertices ri, we get that |V (H)|
is bounded by

|V (H)| ≤ 4|V (G)|

(

|VC |+ c− 1

c

)

≤ 4n

(

n+ c− 1

c

)

≤ 4n2n+c−1 = 2O(n).

Thus the total size of H is 2O(n) as well. ⊓⊔

Let us first study the problem after the second move, where both players have
already placed their pawns. We reduce the directed guarding decision problem
with prescribed starting positions from the following formula-satisfying game F .

A position in F is a 4-tuple (τ, FR(C,R), FC(C,R), α) where τ ∈ {1, 2}, FR
and FC are formulas in 12-DNF both defined on set of variables C ∪R, where C
and R are disjoint and α is an initial (C ∪R)-assignment. The symbol τ serves
only to differentiate the positions where the first or the second player is on move.
Player I (II) moves by changing the values assigned to at most one variable in
R (C); either player may pass since changing no variable amounts to a “pass”.
Player I (II) wins if the formula FR (FC) is true after some move of player I
(II). More precisely, player I can move from (1, FR, FC , α) to (2, FR, FC , α

′) in
one move if and only if α′ differs from α in the assignment given to at most one
variable in R and FC is false under the assignment α; the moves of player II are
defined symmetrically.

According to Stockmeyer and Chandra [3], the set of winning positions of
player I in the game F is an E-complete language under log-space reduction.

Let us first informally sketch the reduction from F to G, i.e., simulating F by
an equivalent guarding game G. The setting of variables is represented by posi-
tions of certain cops so that only one of these cops may move at a time (otherwise
cop-player loses the game). The variables (or more precisely the corresponding
cops) of C are under control of cop-player. However, in spite of being represented
by cops, the variables of R are under control of the robber-player by a gadget in
the graph

−→
G , which allows him to force any setting of cops representing R.

When describing the features of various gadgets, we will often use the term
normal scenario. By normal scenario S of certain gadget (or even the whole
game) we mean a flow of the game that imitates the formula game F . The graph
G will be constructed in such a way that if the player (both cop-player and
robber-player) does not exactly follow the normal scenario S, he loses the game
in a few moves.

There are four cyclically repeating phases of the game, determined by the
current position of the robber. The normal scenario is that robber cyclically goes
through the following phases marked by four special vertices and in different
phases he can enter certain gadgets.
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1. “Robber Move” (RM): In this step the robber can enter the Manipulator
gadget, allowing him to force setting of at most one variable in R.

2. “Robber Test” (RT ): In this step the robber may pass through the Robber
Gate into the protected region VC , provided that the formula FR is satisfied
under the current setting of variables.

3. “Cop Move” (CM): In this step (and only in this step) one (and at most
one) variable cell Vx for x ∈ C is allowed to change its value. This is realized
by a gadget called Commander.

4. “Cop Test” (CT ): In this step, if the formula FC is satisfied under the current
setting of variables, the cops are able to block the entrance to the protected
region forever (by temporarily leaving the Cop Gate gadget unguarded and
sending a cop to block the entrance to VC provided by the Robber Gate
gadgets).

See Fig. 1 for the overview of the construction.

RM RT

CMCT

Manipulators

Commander

Variables

Cop gates

Robber gates

Fig. 1. The sketch of the construction

2.1 The variable cells

Tx

Fx

TFx FTx

Fig. 2. Variable cell Vx

For every variable x ∈ C ∪ R we introduce a variable cell Vx, which is a
directed cycle (Tx, TFx, Fx, FTx) (see Fig. 2). There is one cop (variable cop)
located in every Vx and the position of the cop on vertices Tx, Fx represents the
boolean values true and false, respectively. The prescribed starting position of
the variable cop is Tx if α(x) is true, and Fx otherwise. All the vertices of Vx
belong to VC .
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The cells are organised into blocks C and R. The block C is under control
of cop-player via the Commander gadget, the block R is represented by cops as
well, however, there are the Manipulator gadgets allowing the robber-player to
force any setting of variables in R, by changing at most one variable in his turn.

Every variable cell Vy , y ∈ R has assigned the Manipulator gadget My. Ma-
nipulator My consists of directed paths (RM,T ′

y, T
′′
y , Ty) and (RM,F ′

y, F
′′
y , Fy)

and edges (T ′
y, RT ) and (F ′

y , RT ) (see Fig. 3).

Ty

Fy

TFy FTy

Cop region Robber region

RM

RT

T
′′

y

F
′′

y

T
′

y

F
′

y

Fig. 3. The Manipulator gadget My

The vertices {T ′
y, F

′
y, T

′′
y , F

′′
y , RM,RT } ⊂ VR, the rest belongs to VC .

Lemma 2. Let us consider variable cell Vy, y ∈ R, and the corresponding Ma-
nipulator My. Let the robber be at the vertex RM , let the cop be either on Ty
or Fy and suppose no other cop can access any vertex of My in less than three
moves. Then the normal scenario is following: By entering the vertex T ′

y (F ′
y),

the robber forces the cop to move towards the vertex Ty (Fy). Robber then has to
enter the vertex RT .

Proof. If the cop refuses to move, the robber advances to T ′′
y or F ′′

y and easily
reaches VC before the cop can block him. On the other hand, if the robber moves
to T ′′

y or F ′′
y even though the cop moved towards the opposite vertex, then cop

finishes his movement to the opposite vertex and robber cannot move anymore.
⊓⊔

Note that this is not enough to ensure that the variable cop really reaches
the opposite vertex and that only one variable cop from variable cells can move.
We deal with this issue later.

When changing variables of C, we have to make sure that at most one variable
is changed at a time. We ensure that by the gadget Commander (see Fig. 4),
connected to every Vx, x ∈ C. It consists of the vertices {fx, gx, hx; x ∈ C} ∪
{HQ} and the edges

{(HQ, hx), (hx, HQ), (hx, fx), (Tx, fx), (Fx, fx), (gx, fx), (CM, gx); x ∈ C}.
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Cop region Robber region

CM

gx

HQ

hx fx
Tx

Fx

Fig. 4. The Commander gadget

The vertices {gx; x ∈ C} and CM belong to VR, the rest belongs to VC .
There is one cop, the “commander”, whose prescribed starting position is the
vertex HQ. From every vertex w ∈ V \ (VC ∪ {CM} ∪ {gx; x ∈ C}) we add

the edge (w,HQ) to
−→
G , thus the only time the commander can leave HQ is

when the robber stands at CM . The normal scenario is as follows: If the robber
moves to CM , the commander decides one variable x to be changed and moves
to hx, simultaneously the cop in the variable cell Vx starts its movement towards
the opposite vertex. The commander temporarily guards the vertex fx, which is
otherwise guarded by the cop in the cell Vx. Then the robber moves (away from
CM) and the commander has to return to HQ in the next move.

Lemma 3. Let us consider the Commander gadget and the variable cells Vx for
x ∈ C with exactly one cop each, standing either on Tx or Fx. Let the robber
be at the vertex CM and the cop at HQ, with the cop-player on move. Suppose
no other cop can access the vertices in the Commander gadget. Then the normal
scenario is that in at most one variable cell Vx, x ∈ X the cop can start moving
from Tx to Fx or vice versa.

Proof. Only the vertex fx is temporarily (for one move) guarded by the com-
mander. If two variable cops starts moving, some fy is unsecured and robber
exploits it by moving to gy in his next move. ⊓⊔

Note that the Manipulator allows the robber to “pass” changing of his vari-
able by setting the current position of cop in some variable. Also note, that the
robber may stay on the vertex CM , thus allowing the cop-player to change more
than one of his variables. However, in any winning strategy of the robber-player
this is not necessary and if the robber-player does not have a winning strategy,
this trick does not help him as the cops may pass.
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2.2 The gates to VC

For every clause φ of FR, there is one Robber gate gadget Rφ. If φ is satisfied
by the current setting of variables, Rφ allows the robber to enter VC .

zφ

Cop region Robber region

RTz′φ

C ′

R′

Fig. 5. The Robber Gate Rφ

The Robber gate Rφ consists of a directed path (RT, z′φ, zφ) and the following
edges. Let φ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put the

edge (Fx, zφ) to
−→
G . If ℓi = ¬x then we put the edge (Tx, zφ) to

−→
G . See Fig. 5 for

illustration. The vertices {z′φ; φ ∈ FR} and RT belong to VR, the rest belongs
to VC .

Lemma 4. Let φ be a clause of FR, consider a Robber Gate Rφ. Let the robber
stand at the vertex RT and let there be exactly one cop in each Vx, x ∈ φ,
standing either on Tx or Fx. Suppose no other cop can access Rφ in less than
three moves. Then in the normal scenario robber can reach zφ if and only if φ
is satisfied under the current setting of variables (given by the positions of cops
on variable cells).

Proof. If φ is satisfied, no cop at the variable cells can reach zφ in two (or less)
steps. Therefore, the robber may enter zφ. On the other hand, if φ is not satisfied,
at least one cop is one step from zφ and the robber would be blocked forever if
he moves to z′φ. ⊓⊔

For every clause ψ of FC , there is one Cop Gate gadget Cψ (see Fig. 6).
If ψ is satisfied, Cψ allows cops to forever block the entrance to VC , the ver-
tices zφ from each Robber Gate Rφ. The Cop Gate Cψ consists of directed
paths (CT, b′ψ,x, bψ,x) for each variable x of the clause ψ, the directed cycle
(aψ, a

′
ψ, a

′′
ψ, a

′′′
ψ ) and edges {(aψ, bψ,x), (a

′′
ψ , bψ,x); x ∈ ψ} and {(a′′ψ, zφ); φ ∈

FR}.
Let ψ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put the

edge (Tx, bψ,x) to
−→
G . If ℓi = ¬x then we put the edge (Fx, bψ,x) to

−→
G . From the
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Cop region

Robber region

CT

C ′
R′

zψ1

zψ2

zψ3

a′′

ψ

a′

ψ

aψ

a′′′

ψ
bψ,x

b′ψ,x

Fig. 6. The Cop Gate Cψ

vertices aψ and a′′ψ there is an edge to every bψ,x and from a′′ψ there is an edge
to every zφ (from each Robber Gate Rφ). There is a cop, we call him Arnold,
and his prescribed starting position is aψ. Each Cψ has its own Arnold, it would
be therefore more correct to name him ψ-Arnold, however, we would use the
shorter name if no confusion can occur. The vertices {b′ψ,x; ψ ∈ FC , x ∈ ψ} and
CT belong to VR, the rest belongs to VC .

Lemma 5. Let us consider a Cop Gate Cψ. Let there be one cop at the vertex
aψ (we call him Arnold) and let there be exactly one cop in each Vx, x ∈ ψ,
standing on either Tx or Fx. Let the robber be at the vertex CT and no other cop
can access Cψ in less than three moves. Then in the normal scenario, Arnold
is able to move to a′′ψ (and therefore block all the entrances zφ forever) without
permitting robber to enter VC if and only if ψ is satisfied under the current
setting of variables (given by the position of cops in the variable cells).

Proof. If ψ is satisfied, the vertices bψ,x, x ∈ ψ are all guarded by the vari-
able cops, therefore Arnold can start moving from aψ towards a′′ψ. If the robber
meanwhile moves to some b′ψ,x, the variable cop from Vx will intercept him by
moving to bψ,x and the robber loses the game. On the other hand, if ψ is not
satisfied, there is some bψ,x unguarded by the cop from Vx. Therefore, Arnold
cannot leave aψ, because otherwise robber would reach bψ,x before Arnold or the
cop from Vx could block him. ⊓⊔

2.3 The big picture

We further need to assure that the cops cannot move arbitrarily. This means,
that the following must be the normal scenario:

1. During the “Robber Move” phase, the only cop who can move is the cop in
variable cell Vx chosen by the robber when he enters Manipulator Mx. All
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other variable cops must stand on either Tx of Fx vertices for some variable
x. The cop in Vx must reach the vertex Tx from Fx (or vice versa) in two
consecutive moves.

2. During the “Robber Test” phase, no cop can move.
3. During the “Cop Move” phase, only the commander and the cop in exactly

one variable cell Vx can move. The cop in Vx must reach the vertex Tx from
Fx (or vice versa) in two consecutive moves.

4. During the “Cop Test” phase, no other cop than Arnold may move. Arnold
may move from vertex aψ to a′′ψ and he must do that in two consecutive
steps (and of course Arnold may do that only if the clause ψ is satisfied).

We say that we force the vertex w by the vertex set S, when for every
v ∈ S we add the oriented path Pv,w = (v, pvw, p

′
vw, w) of length 3 to the graph

−→
G . The vertices pvw, p

′
vw belong to VR. We say that we block the vertex w by

the vertex set S, when for every v ∈ S we add the Blocker gadget Bwv. The
Blocker Bwv consists of vertices pv1, p

v
2 ∈ VR and qv1 , q

v
2 ∈ VC and the edges

(v, pvi ), (p
v
i , q

v
i ), (w, q

v
i ) for i = 1, 2.

A cop on a vertex w blocked by v cannot leave w even for one move when the
robber is on v. Note also that if the cop on w enters qvi when it is not necessary
to block pvi , then he is permanently disabled until the end of the game and the
next time the robber visits v he may enter the cop-region through the other pvj .

Forcing serves as a tool to prevent moving of more than one variable cops
(and Arnolds) however, because of the structure of variable cells, we cannot do
it by simply blocking the vertices Tx, Fx and we have to develop the notation of
forcing.

Case 1: For every variable x ∈ C ∪ R do the following construction. Let
Sx = {RM,RT } ∪ {V (My); y ∈ R, x 6= y} where V (My) are the vertices of
Manipulator for variable y. We force the vertices Tx and Fx by the set Sx. Let
S1 = {RM} ∪ {V (My); y ∈ R}. For each Cop Gate Cψ, we force the vertex
aψ by the set S1. Finally, we block the vertex HQ by the set S1. Observe that
whenever a cop from any other Vy than given by the Manipulator Mx is not on
Ty or Fy , the robber can reach VC faster than the variable cop can block him. On
the other hand, if all variable cops are in the right places, the robber may never
reach VC unless being forever blocked. The same holds for Arnold on vertices aψ
and a′′ψ. The commander cannot move because of the properties of the Blocker
gadget. If the variable cop does not use his second turn to finish his movement,
the robber will exploit this by reaching VC by a path from the vertex RT .

Case 2: Let S2 = {RT } ∪ {z′φ; φ ∈ FR} and let F = {Tx, Fx; x ∈ C ∪R} ∪
{aψ; ψ ∈ FC}. We force every v ∈ F by the set S and we block the vertex HQ
by S2. Observe that in the normal scenario no cop may move.

Case 3: Let S3 = {CM} and let F = {Tx, Fx; x ∈ R} ∪ {aψ; ψ ∈ FC}.
We force every v ∈ F by S3. Now, in normal scenario, no variable cop from Vx,
x ∈ R may move and by Lemma 3, only commander and exactly one variable
cop from Vy, y ∈ C may move.

Case 4: Let S4 = {CT } and let F = {Tx, Fx; x ∈ C ∪ R}. We force every
v ∈ F by S4 and we block the vertex HQ by S4. Observe that in normal scenario
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no variable cop and the commander may move. The rest follows from Lemma 5
and the fact, that a′′ψ is forced by the vertex RM .

Finally, we connect the vertices in a directed cycle (RM,RT,CM,CT ) and
let the prescribed starting position r of the robber be the vertex RM . All the
construction elements so far presented prove the following corollary.

Corollary 3. For every game F = (τ, FC(C,R), FR(C,R), α) there exists a

guarding game G = (
−→
G, VC , c, S, r),

−→
G directed, with a prescribed starting po-

sitions such that player I wins F if and only if the robber-player wins the game
G.

Next we note, that we can modify our current construction so that it fully
conforms to the definition of the guarding game on a directed graph.

Lemma 6. Let G = (
−→
G, VC , c, S, r) be a guarding game with a prescribed start-

ing positions. Let the position r has no in-going edge and let no two cops start at

the same vertex. Then there exists a guarding game G′ = (
−→
G

′
, V ′
C , c

′),
−→
G ⊆

−→
G

′
,

VC ⊆ V ′
C such that

– the robber-player wins G′ if and only if the robber-player wins the game G
– if the cop-player does not place the cops to completely cover S in his first

move, he will lose
– if the robber-player does not place the robber on r in his first move, the cops

win.

Proof. Consider an edge (u, v) ∈ E(
−→
G) such that u ∈ VR and v ∈ VC (a border

edge). Observe, that the out-degree of each such vertex u in our construction is

exactly 1. Let m = |{v ∈ VC ; (u, v) ∈ E(
−→
G ), u ∈ VR}| be the number of vertices

from VC directly threatened (i.e. in distance 1) from the robber region.

Let us define the graph
−→
G

′
= (V ′, E′) such that V ′ = V (

−→
G)∪ {r} ∪ T where

T = {t1, . . . , tm} is the set of new vertices and E′ = E(
−→
G )∪{(r, v); v ∈ T ∪S}.

Consider the game G′ = (
−→
G

′
, V ′
C , c

′) where V ′
C = VC ∪ T and c′ = c + m. See

Fig. 7 for illustration.

S
T

r

Fig. 7. Forcing starting positions

Suppose that the robber-player places the robber in the first move to some
vertex v ∈ VR\{r}. Then there arem vertices in VC directly threatened by edges
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going from VR and because we have at least m cops available, the cops in the
second move can occupy all these vertices and prevent the robber from entering
VC forever. So the robber must start at the vertex r. Then observe, that c cops
must occupy the positions S and m cops must occupy the vertices T . If any cop
does not start either on T or S, the robber wins in the next move. The cops on
T remain there harmless to the end of the game. The cops cannot move until
the robber decides to leave the vertex r. ⊓⊔

Let us have a guarding game G = (
−→
G, VC , c, S, r) with prescribed starting

positions. Note that in our construction no two cops had the same starting
position. We add new vertex r and edge (r, RM) to

−→
G and by the previous

lemma there is an equivalent guarding game G′, G ⊆ G′, without prescribed
starting positions.

Theorem 1 is now proved.

3 The undirected case

In this section we prove Theorem 2. The idea follows: We take the same con-
struction of directed graph

−→
G we used to prove Corollary 3. For each edge we

build a gadget such that whenever the resulting undirected edge is used by cop
(robber) in bad direction, the cop-player (robber-player) will lose the game.

To obtain the undirected graph G, let us take the graph
−→
G , and subdivide

each edge e ∈ E(
−→
G), e = (u, v) by three vertices (see Fig. 8). We number all

vertices by 0, 1, 2, 3, where 0 belongs to starting point of each edge e ∈ E(
−→
G )

and the newly added vertices e1, e2, e3 are numbered by 1, 2, 3 according to the
orientation of e. If u ∈ VR(

−→
G) then e1, e2, e3 ∈ VR(G), otherwise e1, e2, e3 ∈

VC(G). Now forget the orientation.

u v

e

u v

e1 e2 e3

0 1 2 3 0

Fig. 8. Subdividing directed edges

We introduce the gadget Clock (see Fig. 9). The vertices of Clock are Ω,
c0, . . . , c3, c

′
0, . . . , c

′
3 and V ′ = {v′; v ∈ VR}. The vertices Ω and ci, c

′
i, i =

0, 1, 2, 3, belong to VC , the set V ′ belongs to VR. There are edges {{v, v′}; v ∈
VR}, the neighbours of ci for i = 0, 1, 2, 3 are c(i+1) mod 4, c(i−1) mod 4, c

′
i and

c′(i−1) mod 4. If the number of v ∈ VR is j, then the vertex v′ is connected to c′j .
From the vertex Ω there are edges to every vertex zφ from each Robber gate
gadget and to vertices c′0, . . . , c

′
3. Every subdivided edge is connected to Clock

as in Fig. 9.
There is one cop (we call him Chuck) in the Clock, whose prescribed starting

position is the vertex c0. His purpose is following: If the robber is on vertex
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with number i and moves to vertex with number j = (i + 1) mod 4, the only
thing Chuck can do is to go to vertex cj (otherwise he loses the game). However,
whenever robber does a stupid move (to a vertex with number j = (i−1) mod 4),
Chuck may enter Ω, thus winning the game. Therefore, this gadget forces the
robber to pass through undirected edges only in the direction from the old graph
−→
G .

Ω

c0 c1

c2c3

c′
1

c′
0

c′
2c′

3

cop region

robber region

0 1 2 3 0 13

g3 e0 e1 e2 e3 f0 f1

u v

g′
3

e′
0

e′
1

e′
2

e′
3

f ′

0
f ′

1

Fig. 9. The Clock gadget

Lemma 7. Let there be exactly one cop in the Clock gadget (we call him Chuck).
Let the robber be at a vertex with number i and let Chuck be at the vertex ci.
Then the normal scenario is that robber must move to a vertex with number
j = (i+ 1) mod 4 and Chuck must move to vertex cj.

Proof. Suppose first that the robber moved to a vertex vj with number j and
Chuck did not move to cj (he may be at c′i, c

′
(i−1) mod 4, c(i−1) mod 4 or stay at

ci). Then robber may move to v′j and Chuck cannot prevent him from entering
cop-region in the next move.

Suppose now that the robber moved to vertex vk with number k = (i −
1) mod 4. Then Chuck goes to c′k, preventing robber from moving to e′k, c

′
k. In

the next move, robber may or may not enter v′k. Is he does so, Chuck moves
c′k and guards it until the robber leaves. In both cases, Chuck moves afterwards
to Ω, thus being able to block all entrances to the cop-region. Note that Chuck
needs only to be able to block vertices zφ and c′i, because other entrances to the
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cop-region in other gadgets are protected by cops staying at these gadgets, as
proved in appropriate lemmas.

If the robber does not move in his turn, Chuck enters c′i. If robber moves to
some v′i with number i, Chuck keeps guarding c′i until robber leaves v

′
i and then

Chuck moves to Ω. Using the same argument as above, the cop is able to win
the game.

It remains to show that robber may not enter some vertex v′i with number
i. If he does so, Chuck will move to c′i, preventing the robber from entering VC ,
and guarding there until robber leaves v′i. Then Chuck moves to Ω and again
wins the game using the same argument as above. ⊓⊔

We have ensured the correct movement of robber, imitating the functionality
of the graph

−→
G on an undirected graph. We still have to do similar thing for

cops, as they have to respect the edge orientation as well. In our argument, every
pawn has to move in his move. Because staying at one vertex may be a desired
part of the cop-player’s strategy, for every v ∈ VC(G) we glue a subdivided loop
lv of length 4 to v, such that the pawn will move, but in fact stay at one vertex
of the original graph

−→
G . The vertices of lv are again numbered as above.

There will be four CopDir gadgets D0, D1, D2, D3. The task of the gadget Di

is to ensure that whenever the robber moves from vertex with number i − 1 to
a vertex with number i, all cops must move to a vertex with number i. If they
don’t, the robber will be given a chance to enter the cop-region.

The gadget Di (for i = 0, 1, 2, 3) consists of vertices k1i , . . . , k
c
i ∈ VC and

ℓ1i , . . . , ℓ
c
i ∈ VR, where c is the number of cops in the original

−→
G , and edges

{k1i , ℓ
1
i }, . . . , {k

c
i , ℓ

c
i}. Let ui ∈ VR and vi ∈ VC be vertices of G with number i.

For ui, vi we add new vertices u′i ∈ VR and m1
vi
, . . . ,mc

vi
and edges {ui, u

′
i} and

{{u′i, ℓ
j
i}, {k

j
i ,m

j
vi
}, {mj

vi
, vi}; j = 1, . . . , c}. See Fig. 10 for illustration. This

means that all vertices vi and ui with number i are connected to the gadget Di

via this construction.

Lemma 8. Let us have the CopDir gadgets Di for every ui ∈ VR and vi ∈ VC
with number i, i = 0, 1, 2, 3, and let all pawns be on a vertex with number i,
robber being on move. Suppose the robber moves to a vertex with number j =
(i+1) mod 4. Then the normal scenario is that the cop on the vertex with number
i moves to a vertex with number j.

Proof. Suppose that some cop does not move and does not arrive at a vertex
with number j and he chooses some other vertex instead. Then the robber moves
to u′j . All cops must now enter the vertices m1

vj
, . . . ,mc

vj
to protect the vertices

k1j , . . . , k
c
j in the next move. However, since there are c cops in total (not counting

Chuck on the Clock) and one did not go to a vertex with number j, there is one
cop-less mp

vj
. Now the robber chooses to go to ℓpj and in the next move he wins,

because the cops do not have time to cover kpj . Note also, that the robber cannot
also pointlessly approach u′j when all cops are on vertices with number j. All

cops would approachm1
vj
, . . . ,mc

vj
or even k1j , . . . , k

c
j if necessary and then return

back to their original positions when the robber decided to go back. ⊓⊔



On the complexity of the guarding game 17

vi

ui

u
′

i

ℓ
1

i
ℓ
2

i
ℓ
c

i

k
1

i
k

2

i
k

c

i

m
1

vi
m

2

vi

m
c

vi

cop-region

robber-region

· · ·

· · ·

Fig. 10. The CopDir gadget Di

Note that we have now proved that in the normal scenario, at the beginning
of the robber move all pawns stand on vertices with the same number. Observe
that using Lemma 7 and Lemma 8, the following corollary holds.

Corollary 4. For every game F = (τ, FC(C,R), FR(C,R), α) there exist a guard-
ing game G = (G, VC , c, S, r), G undirected, with a prescribed starting positions
such that player I wins F if and only if the robber-player wins the game G.

The proof of Theorem 2 is now complete.

4 Guarding game, where the cops start

Here we prove Theorem 3.

Proof. To prove the theorem, we first use Corollary 3 to obtain the instance of
the guarding game G = (G, VC , c, S, r) with prescribed starting positions. Then
we construct a device forcing the initial positions of all pawns under the reverse
rules that yields exactly the starting positions of the game G.

Let k = |{v ∈ VC ; (u, v) ∈ E(G), u ∈ VR}| be the number of directly threat-
ened vertices (in distance 1 from VR). We introduce new vertices Ω, a1, . . . , ak,
b1, . . . , bk ∈ VC and t ∈ VR. edges {(Ω, ai), (Ω, bi), (r, ai), (t, bi); i = 1, . . . , k},
and edges {(r, s); s ∈ S}. From Ω there will be edges (Ω, v) and (v,Ω) to every
directly threatened vertex v ∈ VC , i.e. each v such that there is some w ∈ VR
with (w, v) ∈ E(G) (with the exception of r and t). There will be also k new
cops, so there will be c+ k cops in total.

In the first turn, the cops are placed. We will show that the only meaningful
placement of cops (not leading to their defeat) is this:

– There must be a cop on each s ∈ S, or for each cop-less u ∈ S there must
be a cop cu able to reach u in one step. This gives c cops in total.
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S
Ω

r

cop-region

robber-region

CM

a1 a2 ak

b1 b2 bk

t

· · ·

· · ·

Fig. 11. Forcing starting positions in reverse game

– There must be at least k cops on the vertices Ω, a1, . . . , ak in total.

– There must be at least k cops on the vertices Ω, b1, . . . , bk in total.

First suppose that there is less than k cops on the vertices {Ω, b1, . . . , bk} in
total. Then in the second turn the robber may be placed on t and the cop-player
does not have enough cops to block all vertices, thus in the next move the robber
can enter VC . If there is less than k cops on the vertices {Ω, a1, . . . , ak} in total,
the robber may be placed on r and again he wins in the next move.

If there is less than c cops on S or able to cover all vertices of S in one move,
then again the robber wins by starting on the vertex r and entering VC through
some unblocked s ∈ S in the next move. Since we have c + k cops together, at
least k cops must start at the vertex Ω.

In the second turn, the robber must be placed at the vertex r. If he starts
at t, the vertices b1, . . . , bk are immediately blocked by the cops from Ω and the
robber loses. If he starts on some other vertex v ∈ VR, the cops from Ω will
immediately block all entrances to VC , thus winning the game.

Therefore the robber must be placed on r. Now in the next step k cops from
Ω must move to cover all vertices a1, . . . , ak and c cops must move to completely
cover the set S. Since we have c + k cops together, all players are now on the
prescribed positions and the k extra cops will remain on the vertices a1, . . . , ak
until the end of the game. From this we also see that on Ω there had to be
exactly k cops placed in the initial move of the game.

No cop may move until the robber leaves r and the game continues as in the
case with prescribed positions (recall that r has no in-going edge and the robber
never returns to r). ⊓⊔
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5 Further questions and Acknowledgements

As we have already mentioned, the relation of the classes PSPACE and E is
unclear as we only know that PSPACE 6= E and the current state of the art
is missing some deeper understanding of the relation. Therefore, the conjecture
of Fomin et al. whether the guarding problem is PSPACE-complete still remain
open. However, we believe that the conjecture is not true.

For a guarding game G = (G, VC , c), what happens if we restrict the size of
strongly connected components ofG? If the sizes are restricted by 1, we get DAG,
for which the decision problem is PSPACE-complete. For unrestricted sizes we
have shown that G is E-complete. Is there some threshold for G to become E-
complete from being PSPACE-complete? This may give us some insight into the
original conjecture. We are also working on forcing the starting position in the
guarding game on undirected graphs in a way similar to Theorem 1.

We would like to thank Ruda Stolař for drawing the pictures, extremely
useful discussions and some ideas. We thank Peter Golovach for giving a nice
talk about the problem, which inspired us to work on it. We would also like to
thank Jarik Nešetřil for suggesting some of the previous open questions and to
Honza Kratochv́ıl for fruitful discussion of the paper structure.
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