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Abstract

We present a new class of vertex cover and set cover games. The price of
anarchy bounds match the best known constant factor approximation guarantees for
the centralized optimization problems for linear and also for submodular costs – in
contrast to all previously studied covering games, where the price of anarchy cannot
be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In particular, we describe a vertex
cover game with a price of anarchy of 2. The rules of the games capture the structure
of the linear programming relaxations of the underlying optimization problems, and
our bounds are established by analyzing these relaxations. Furthermore, for linear
costs we exhibit linear time best response dynamics that converge to these almost
optimal Nash equilibria. These dynamics mimic the classical greedy approximation
algorithm of Bar-Yehuda and Even [3].

1 Introduction

Combinatorial optimization has for several decades dictated the landscape of algorithm
design. The extent of its impact can be appreciated by the fact that almost by default the
main judging criterion of a polytime algorithmic solution is the approximation guarantee
it offers, regardless of other parameters that may affect the applicability of the solution
in practice (simplicity of implementation, robustness to input errors, etc.)

One such limiting assumption is the existence of an omnipotent centralized authority
that has access to all the relevant information and has the power to enforce any solution
of its choice. Over the last decade, the soundness of such assumptions has increasingly
come into question following a number of paradigm-shifting socioeconomic events such
as the rapid rise of the Internet, the painful realization of the extent of inter-connectivity
of the global economy as well as the emergence of global sustainability concerns.

Algorithmic game theory strives for global optimization in such decentralized settings
that consist of self-interested individuals. In these more challenging scenarios, tractability
can be compromised along two largely independent axes: due to individual incentive issues
or due to computability issues.

Price of Anarchy. The competition between individual incentives and social optimal-
ity is of fundamental concern in distributed systems as it can lead to highly inefficient
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outcomes. The price of anarchy literature [26] examines exactly what are the worst case
repercussions of such a policy. Formally, price of anarchy is defined as the maximal ratio
between the social cost of a Nash equilibrium and that of the global optimal configuration.
Intuitively, a low price of anarchy implies that upon converging to a socially stable out-
come, the quality of the acquired solution is almost optimal from a central optimization
perspective.

Unfortunately, in many cases of interesting games the price of anarchy is prohibitively
high. Vertex cover, due to its prominent position within combinatorial optimization, has
been studied in the context of game theory from different approaches, all of which so far
have shared this limiting characteristic.

Specifically, Cardinal and Hoefer in [6] define a vertex cover game where the edges of
a network are owned by k agents. An agent’s goal is to have each of his edges supplied
by a service point at least one of its endpoints. There is a cost c(v) ≥ 0 associated to
building a service point at vertex v. The strategy of an agent is a vector consisting of
offers to the vertices. Service points will be installed at vertices where the total offer
exceeds the cost of the vertex. Similar games are defined by Buchbinder et al. [5] and by
Escoffier et al. [11] for the more general set cover problem.

A different approach was followed by Balcan et al. [2]. Here the agents are the
vertices of the graph, and their strategies are deciding whether they open a service point.
If opening a service point, vertex v incurs a cost c(v). If he decides not to open, he has
to pay a penalty for all edges incident to v whose other endpoints are uncovered.

The price of anarchy is Θ(k) in [6] and Θ(n) in [2]. Indeed, if the underlying network
is a star, and each edge is owned by a different agent in the first case, we get Nash
equilibria with all leaves being service points. These guarantees are significantly worse
than the ones available in the centralized setting, where simple factor 2-approximation
algorithms exist.

In contrast, in our paper, we shall present a simple vertex cover game with a price
of anarchy 2. As in [2], the agents are the vertices, and the regulations delegate the
responsibility of covering every edge of the network to its two endpoints: both incur a
high penalty if the edge is left uncovered. The difference from the setting of [2] is that
those who open a service point can demand compensation from their neighbors. This
is justified since if u opens a service point, every neighbor v benefits from this as the
common responsibility of covering uv is taken over by u.

In the description, we use intuitive terminology of a Mafia (service points) which
provides “security” (covers edges). The vertices may choose to join Mafia or to remain
civilians. Each edge of the graph has to be “secured”, that is, at least one endpoint
must be in Mafia. For agent v, there is an initial cost c(v) to join Mafia. Mafiosi can
collect ransoms as the price of security of the incident edges: if a vertex v chooses to
be a mafioso, his strategy also includes a ransom vector, so that the total ransom he
demands from his neighbors is c(v). It is a one-shot game and mafiosi can ransom both
their civilian and mafioso neighbors.

If v is a civilian, he has to pay to his neighbors in the Mafia all ransom they demand.
Furthermore, if there is an incident uncovered edge uv, that is, u is also a civilian, both
of them have to pay a huge penalty. In contrast, if v is a mafioso, he has to pay c(v) for
joining, and he receives whatever he can collect from ransoms. However, mafiosi ransomed
excessively obtain a protected status: if the total demand from v is more than c(v), he
satisfies only a proportional fraction of the demands. It is important to note that the
payoff function is defined locally: besides his own strategy, the payoff of an agent depends
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only on the strategies of agents at distance at most 2 from him (i.e. immediate neighbors
and neighbors of neighbors). Also note that if M is a vertex cover, then the total utility
of the agents is −c(M). Consequently, an optimal solution to the optimization problem
gives a social optimum of the game.

Our approach avoids bad Nash equilibria that are possible in [6] and [2]. As an
example, consider the vertex cover game on a star with all vertices having cost 1. In the
models of [6] and [2] there exists a Nash equilibrium where the leaves form the vertex
cover. In our model, if all leaves are mafiosi, then all of them would demand ransom
from the central agent, who would then have a strong incentive to join the mafia and
obtain the protected status. It can be verified that the only Nash equilibria correspond
to outcomes where the central vertex and at most one leaf are in the Mafia.

As a different interpretation of the game above, consider a road network with the
vertices representing cities. The maintenance of a road must be provided by a facility
at one of the endpoints. The cost of opening the facility dominates the operating cost:
if city v decides to open one at cost c(v), it is able to maintain all incident roads. As
a compensation, the cities can try to recollect the opening cost by asking contributions
from the neighboring cities. A city without a facility has to pay all contributions he is
asked to pay. However, if a city opens a facility, its liability is limited and has to satisfy
demands only up to his opening cost, c(v).

Our approach can be extended to the hitting set problem, which is equivalent to the
set cover problem. We are given a hypergraph G = (V, E), and a cost function c : V → R+

on the vertices. Our aim is to find a minimum cost subset M of V intersecting every
hyperedge in E . This problem is known to be approximable within a factor of d, the
maximum size of a hyperedge. In the corresponding Mafia game, the hyperedges shall be
considered as clubs in need of security. A mafioso can assign ransoms to the clubs he is
a member of, that will be distributed equally to all other members of the club.

We shall prove that for the vertex cover and hitting set games, the price of anarchy is 2
and d, respectively. Bar Yehuda and Even gave a simple primal-dual algorithm with this
guarantee in 1981 [3]. No better constant factor approximation has been given eversince.
Furthermore, assuming the Unique Games Conjecture, Khot and Regev [19] proved that
the hitting set problem cannot be approximated by any constant factor smaller than d.

As a further extension, we also investigate the submodular hitting set (or set cover)
problem, that has received significant attention recently. The goal is to find a hitting set
M of a hypergraph minimizing C(M) for a submodular set function C on the ground
set. Independently, Koufogiannakis and Young [25] and Iwata and Nagano [18] gave
d-approximation algorithms. Our game approach extends even to this setting, with the
same price of anarchy d. This involves a new agent, the Godfather, who’s strategy consists
of setting a budget vector in the submodular base polyhedron of C. Otherwise, the game
is essentially the same as the (linear) hitting set game.

The main results of the paper can be summarized as follows.

Theorem 1.1. The Mafia games for vertex cover, hitting set and submodular hitting set
always have pure Nash equilibria, and the price of anarchy is 2 for vertex cover and d for
(submodular) hitting set.

Recent work of Roughgarden et al. [30, 4, 31] has shown that the majority of pos-
itive results in price of anarchy literature can be reduced to a specific common set of
structural assumptions. In contrast, in our work, we use a novel approach by exploring
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connections to the LP relaxations of the underlying centralized optimization problems.
This connection raises interesting questions about the limits of its applicability.

Convergence and Complexity of Dynamics. The world of decentralized compe-
tition is not immune to the results of computational complexity. Hence, a low price of
anarchy although promising does not necessarily yield a usable outcome in the means of
the game dynamics, when agents sequentially have the possibility to change their strate-
gies for a better one. The reasons for these inconsistencies fall in one of two possible
categories: either non-convergence of the dynamics to a Nash equilibrium or too slow
convergence.

Even in a very simple game settings, with a constant number of agents and strategies
and no computational complexity issues, it could be the case that games exhibit only
highly unstable Nash equilibria. In such settings, numerous learning dynamics, even if
they start off from a state close to a Nash equilibrium, they diverge away from it fast
[8, 21].

On the other hand, as the games grow in size, even when there exist simple decen-
tralized dynamics which provably converge to Nash equilibria, it is not necessarily the
case that this convergence is achieved within polynomial time. For example, in the case
of general congestion games, although best response dynamics always converge to a Nash
equilibrium, finding any sample equilibrium (even via a centralized algorithm) has been
shown to be PLS-hard [12], implying that any decentralized dynamic is bound to fail as
well in worst case instances.

In our covering games, we first show that even in simple instances, round robin best
response dynamics1 may end in a loop. However, this can be simply fixed by a slight
modification of the payoff. We introduce a secondary utility, that does not affect the
price of anarchy results, but merely instigates the mafiosi to use more fair (symmetric)
ransoms: r(u, v) = r(v, u). With this secondary objective, we show that actually a single
round of best response dynamics under a simple selection rule of the next agent results
in a Nash-equilibrium. This dynamics in fact simulates the Bar-Yehuda–Even algorithm.
An analogous dynamics is shown in the case of hitting set. Moreover, these dynamics can
be interpreted in a distributed manner, enabling several agents to change their strategies
at the same time.

In our games, the set of strategies is infinite as ransoms can be arbitrary real numbers.
However, if the vertex weights are integers, we can restrict possible ransoms to be integers
as well. All results of the paper straightforwardly extend to this finite game.

1.1 Related work

The basic set cover games in [5], [11] and [2] fall into the class of congestion games [29].
In the models of [5], [11], in the hitting set terminology, the agents are the hyperedges
that choose a vertex to cover them, and the cost of the vertex is divided among them
according to some rule. [5] investigates the influence of a central authority that can
influence choices by taxes and subsidies in a best response dynamics; [11] studies different
cost sharing rules of the vertices (“local taxes”). However, none of these methods achieve
a constant price of anarchy. The model of [2] can achieve a good equilibrium by assuming
a central authority that propagates information on an optimal solution to a fraction of

1These are the dynamics where each agent takes turn playing his best response in a cyclic ordering
according to some fixed permutation.
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the agents. In contrast to [5] and [2], our model is defined locally, without assuming a
central authority.

Cardinal and Hoefer [7] define a general class of covering games, including the vertex
cover game [6], and also the selfish network design game by Anshelevich et al. [1].
The game is based on a covering problem given by a linear integer program. Variables
represent resources, and the agents correspond to certain sets of constraints they have
to satisfy. An agent can offer money for resources needed to satisfy her constraints.
From each variable, the number of units covered by the total offers of the agents will
be purchased and can be used by all agents simultaneously to satisfy their constraints,
regardless to their actual contributions to the resource.

In the vertex cover or hitting set game, the resources are the service points and the
set of constraints belonging to the agents express that every (hyper)edge owned by them
has to be covered. In the model of [1], agent i wants to connect a set of terminals Si in a
graph G = (V,E) with edge costs c. Hence the variables represent the edges of the graph
and the constraints belonging to agent i enforce the connectivity of Si.

Our games can be seen as the duals of these coverings games. That is, the agents
correspond to the variables, and are responsible for the satisfaction of the constraints
containing them. If a constraint is left unsatisfied, the participating variables get pun-
ished. Also, a variable may require compensation (ransoms) from other variables partic-
ipating in the same constraints. These compensations will correspond to a dual solution
in a Nash equilibrium. We hope that our approach of studying dual covering games
might be extended to a broader class of problems, with the price of anarchy matching
the integrality gap.

Our result and the above papers are focused on noncooperative covering games. A
different line of game theoretic study is focused on cost sharing mechanism, e.g. [9, 10,
17, 13, 27, 28].

The performance of behavioral dynamics in games and specifically establishing fast
convergence to equilibria of good quality has been the subject of intensive recent research
[22, 23, 32]. The importance of such results that go beyond the analysis of performance of
Nash equilibria has been stressed in [21] where it has been shown that even in very simple
games with constant number of agents and strategies, the performance of simple learning
dynamics can be arbitrarily different than (any convex combination of) the payoffs of
Nash equilibria.

The rest of the paper is organized as follows. Section 2 defines the Mafia games for
vertex cover, hitting set, and submodular hitting set, and proves the existence of Nash
equilibria and gives price of anarchy bounds. Section 3 shows that certain simple dynam-
ics rapidly converge to Nash equilibrium for vertex cover and for hitting set. Section 4
discusses possible further research directions.

2 The Mafia games and Price of Anarchy bounds

2.1 Vertex cover

Given a graph G = (V,E), let c : V → R+ be a cost function on the vertices. In the
vertex cover problem, the task is to find a minimum cost set M ⊆ V containing at least
one endpoint of every edge in E. For a vertex v ∈ V , let N(v) = {u : uv ∈ E} denote
the set of its neighbors.
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Game definition. The Mafia Vertex Cover Game is a one-shot game on the agent set
V . The basic strategy of an agent is to decide being a civilian or a mafioso. The set of
civilians shall be denoted by C, the set of mafiosi (Mafia) by M . For civilians, no further
decision has to be made, while for mafiosi, their strategy also contains a ransom vector.
Each mafioso m ∈ M can demand ransoms from his neighbors totaling c(m). The ransom
demanded from a neighbor u ∈ N(m) is r(m, u) ≥ 0, with

∑

u∈N(v) r(m, u) = c(m). The

strategy profile S = (M,C, r) thus consists of the sets of mafiosi and civilians, and the
ransom vectors.

Let us call c(v) the budget of an agent v ∈ V , and let T >
∑

v∈V c(v) be a huge
constant. Let D(v) =

∑

m∈M r(m, v) be the demand asked from the agent v ∈ V .
Let us now define the payoffs for a given strategy profile S. For a civilian v ∈ C, let

Pen(v) = T if v is incident to an uncovered edge, that is C ∩ N(v) 6= ∅, and Pen(v) = 0
otherwise. The utility of v ∈ C is

US(v) = −D(v)− Pen(v).

If v ∈ M and the total demand from v is D(v) > c(v) (i.e. v is asked too much),
we call v protected and denote the set of protected mafiosi by P ⊆ M . The real amount
of money that the protected mafioso p ∈ P pays to his neighbors is scaled down to
c(p)
D(p)

r(u, p). Let F−(v) = min{D(v), c(v)} be the total amount the mafioso v pays for
ransom. Let

F+(v) =
∑

u∈N(v)\P

r(v, u) +
∑

u∈N(v)∩P

c(u)

D(u)
r(v, u)

denote the income of v ∈ M from the ransoms. Then the utility of a mafioso v ∈ M is
defined as

US(v) = −c(v) + F+(v)− F−(v).

This means v has his initial cost c(v) for entering the Mafia, receives full payment from
civilians and unprotected mafiosi, receives reduced payment from protected mafiosi, and
pays the full payment to his neighboring mafiosi if v is unprotected, or reduced payment
if v is protected.

The existence of pure Nash equilibria. Pure Nash equilibria are (deterministic)
strategy outcomes such that no agent can improve her payoff by unilaterally changing
her strategy. We will start by establishing that our game always exhibits such states.
The following is the standard linear programming relaxation of vertex cover along with
its dual.

min
∑

v∈V

c(v)x(v) (P-VC)

x(u) + x(v) ≥ 1 ∀uv ∈ E

x ≥ 0

max
∑

uv∈E

y(uv) (D-VC)

∑

uv∈E

y(uv) ≤ c(u) ∀u ∈ V

y ≥ 0

For a feasible dual solution y we say that the vertex v ∈ V is tight if
∑

uv∈E y(uv) =
c(v). We call the pair (M, y) a complementary pair if M is a vertex cover, y is a feasible
dual solution, and each v ∈ M is tight with respect to y.

Lemma 2.1. If (M, y) is a complementary pair, then M is a 2-approximate solution to
the vertex cover problem.
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Proof. The primal objective is at most twice the dual objective, as

∑

v∈M

c(v) =
∑

v∈M

∑

u∈N(v)

y(uv) ≤ 2
∑

uv∈E

y(uv).

The inequality follows as each edge uv is counted at most twice. �

We shall show that the simple approximation algorithm by Bar-Yehuda and Even
[3] returns a complementary pair, and therefore has approximation factor 2. Our next
lemma proves that a complementary pair provides a Nash equilibrium.

Lemma 2.2. Let (M, y) be a complementary pair, and consider the strategy profile where
the agents in M form the Mafia and C = V \ M are the civilians. For u ∈ M , define
r(u, v) = y(uv) for every v ∈ N(u). Then the strategy profile S = (M,C, r) is a Nash
equilibrium.

Proof. Since D(v) ≤ c(v) for all players, there are no protected mafiosi. If v is a civilian,
his payoff is −D(v). He would not get a protected status if he entered the Mafia as
D(v) ≤ c(v), and thus his payoff would be −c(v) + F+(v)−D(v) ≤ −D(v) by arbitrary
choice of ransoms. If v is a mafioso, he has F+(v) = c(v) as none of his neighbors is
protected. Thus his utility is −D(v), the maximum he can obtain for any strategy. �

The existence of a complementary pair is provided by the algorithm of Bar-Yehuda
and Even [3]. In each step of the algorithm we maintain a feasible dual solution, and M
will be the set of tight vertices.

(0) Set y(uv) := 0 for each uv ∈ E and M = {v ∈ V : c(v) = 0}.

(1) While M is not a vertex cover do

(1-1) Choose an arbitrary edge uv ∈ E with u, v ∈ V −M .

(1-2) Raise y(uv) until u or v becomes tight.

(1-3) Include the new tight endpoint(s) into M .

(2) Return M .

It is straightforward that the algorithm returns a complementary pair (M, y). Using
Lemma 2.2, we obtain the following.

Theorem 2.3. The Mafia Vertex Cover Game always has a pure Nash equilibrium. �

The Price of Anarchy. For a strategy profile S with α uncovered edges, the sum ot the
utilities is −c(M)−2αT . The Price of Anarchy compares this sum in a Nash equilibrium
at the worst case to the maximum value over all strategy profiles, that corresponds to a
minimum cost vertex cover.

Consider a strategy profile S that encodes a Nash equilibrium. First, observe that
Mafia M is a vertex cover. Indeed, if there were an uncovered edge uv ∈ E, both u and v
would receive the high penalty T , and therefore they would have incentive to join Mafia.
We shall prove that the cost c(M) is at most twice the cost of an optimal vertex cover,
consequently, the price of anarchy is at most 2.

7



Lemma 2.4. Let the strategy profile S = (M,C, r) be a Nash equilibrium. Then there
are no protected mafiosi.

Proof. For a contradiction, suppose P is nonempty. First we show there exists an edge
mp ∈ E such that m ∈ M \ P , p ∈ P and r(m, p) > 0. Indeed, if there were no such
edges, then

∑

p∈P D(p) ≤
∑

p∈P c(p) as the ransoms demanded from protected mafiosi
are all demanded by others P . However, by definition D(p) > c(p) for all p ∈ P , giving
∑

p∈P D(p) >
∑

p∈P c(p), a contradiction.
Consider the edge mp ∈ E as above. We claim that m could choose a better strategy,

and therefore S cannot be a Nash equilibrium. If m does not have any civilian neighbors,
that is, N(m) ⊆ M , then his utility would strictly increase if decides to become a civilian.
Indeed, his income now is F+(m) < c(m) and he has to pay F−(m) = D(m) ≤ c(m). As
a civilian, his utility were −D(m).

Next, assume there exists a v ∈ C, mv ∈ E. Then m may decrease r(m, p) to 0 and
increase r(m, v) by the same amount. Again, this would be a better strategy for m, as v
pays the full amount whereas p payed only a reduced amount. �

Lemma 2.5. Suppose the strategy profile S = (M,C, r) is a Nash equilibrium and let
v ∈ C. Then D(v) ≤ 2c(v).

Proof. Suppose the contrary: letD(v) > 2c(v) and thus US(v) < −2c(v). If joining Mafia,
v receives the protected status and thus gains utility at least −2c(v) as F−(v) = c(v).�

Theorem 2.6. The price of anarchy in the Mafia game is 2.

Proof. Let S = (M,C, r) be a strategy profile in a Nash equilibrium. Using the con-
vention r(u, v) = 0 if u ∈ C, let us define y(uv) = r(u, v) + r(v, u) for every edge
uv ∈ E. We show that

∑

u∈V y(uv) ≤ 2c(v) for every v ∈ V . Indeed, if v ∈ C,
then

∑

u∈V y(uv) =
∑

u∈M r(u, v) = D(v) ≤ 2c(v) by Lemma 2.5. If v ∈ M , then
∑

u∈V y(uv) =
∑

u∈N(v) r(v, u) +D(v) ≤ 2c(v) by Lemma 2.4. Therefore 1
2
y is a feasible

solution to (D-VC) and

∑

uv∈E

1

2
y(uv) =

1

2

∑

m∈M

∑

v∈V

r(m, v) =
1

2

∑

m∈M

c(m).

This verifies that the objective value for 1
2
y is the half of the cost of the primal feasible

vertex cover M , proving that M is a 2-approximate vertex cover. �

2.2 Set cover and hitting set

In this section, we generalize our approach to the hitting set problem. Given a hypergraph
G = (V, E) and a cost function c : V → R+, we want to find a minimum cost M ⊆ V
intersecting every hyperedge. Let d = max{|S| : S ∈ E}.

In the set cover problem, we have a ground set U and a collection of subsets S of
U . For a cost function c : S → R+ we want to find minimum cost collection of subsets
whose union is U . This is equivalent to the hitting set problem, where the ground set is
S, and to each u ∈ U , there is a corresponding hyperedge that is the collection of subsets
containing u.

For simplicity, we define the hitting set game on a d-uniform hypergraph. This can
be done without loss of generality. To verify this, take an arbitrary instance G = (V, E),
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and let T > d
∑

v∈V c(v). Extend V by d − 1 new vertices of cost T , and for every
S ∈ E , extend S by any d − |S| new elements. If there is a d-approximate solution
to the modified instance, it cannot contain any of the new elements. Hence finding a
d-approximate solution is equivalent in the original and in the modified instance.

Game definition. We define the Mafia Hitting Set Game on a d-uniform hypergraph
G = (V, E). The set of agents is V , with v ∈ V having a budget c(v). We shall call the
hyperedges clubs. For an agent v ∈ V , let N (v) ⊆ E denote the set of clubs containing v.
The agents again choose from the strategy of being a civilian or being a mafioso, denoting
their sets by C and M , respectively. The strategies of the mafioso m incorporates the
ransoms r(m,S) for the clubs S containing m, with

∑

S∈N (v) r(m,S) = c(m).

We define the payoffs for the strategy profile S = (M,C, r) similarly to the vertex
cover case. For a civilian v ∈ C, Pen(v) = T for a large constant T if v participates in a
club containing no mafiosi, and 0 otherwise.

In each club S, the ransom r(m,S) of a mafioso m ∈ S ∩M has to be payed by all

other members at equal rate, that is, everyone pays r(m,S)
(d−1)

to m. The demand from an
agent is the total amount he has to pay in all clubs he is a member of, that is,

D(v) =
1

d− 1

∑

S∈N (v)

∑

m∈M∩S

r(m,S).

The utility of a civilian v ∈ C is defined as US(v) = −D(v)− Pen(v).
A mafioso v receives the protected status if D(v) > c(v). The set of protected

mafiosi is denoted by P , and they pay proportionally reduced ransoms. Let F−(v) =
min{D(v), c(v)} be the total amount v pays. The income is defined by

F+(v) =
∑

S∈N (v)

r(v, S)

d− 1



|S \ (P ∪ {v})|+
∑

u∈(S∩P )\{v}

c(u)

D(u)



 .

The utility of a mafioso v ∈ M is then US(v) = −c(v) + F+(v)− F−(v).

The existence of pure Nash equilibria. The standard LP-relaxation extends the
formulations (P-VC) and (D-VC).

min
∑

v∈V

c(v)x(v) (P-HS)

∑

u∈S

x(u) ≥ 1 ∀S ∈ E

x ≥ 0

max
∑

S∈E

y(S) (D-HS)

∑

S∈N (u)

y(S) ≤ c(u) ∀u ∈ V

y ≥ 0

Again, for a feasible dual solution y, v ∈ V is called tight if the corresponding in-
equality in (D-HS) holds with equality. A pair (M, y) of a hitting set M and a feasible
dual y is called a complementary pair if the dual inequality corresponding to any v ∈ M
is tight. The following simple claim generalizes Lemma 2.1.

Lemma 2.7. If (M, y) is a complementary pair, then M is a d-approximate solution to
the hitting set problem. �

The algorithm of Bar-Yehuda and Even [3], outlined in Section 2.1 naturally extends
to the hitting set problem, and delivers a complementary pair.
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Lemma 2.8. Let us define strategies in the Mafia Hitting Set Game based on a comple-
mentary pair (M, y) as follows. Let agents in M be the Mafia and V \M be the civilians.
For each v ∈ M , define r(v, S) = y(S) for every S ∈ E containing v. Then the strategy
profile S = (M,C, r) is a Nash equilibrium.

Proof. For each v ∈ V , D(v) ≤ 1
d−1

∑

S∈N (v) y(S)|(S ∩ M) \ {v}| ≤ c(v) and therefore
there are no protected mafiosi. The proof that nobody has an incentive to change his
strategy is the same as for Lemma 2.2. �

As the algorithm of Bar-Yehuda and Even [3] provides a complementary pair, this
immediately yields the following.

Theorem 2.9. The Mafia Hitting Set Game always has a pure Nash equilibrium.

The Price of Anarchy.

Lemma 2.10. Let the strategy profile S = (M,C, r) be a Nash equilibrium. Then there
are no protected mafiosi.

Proof. The proof follows the same lines as for Lemma 2.4. For a contradiction, assume
P 6= ∅. First, it is easy to show that there exists an unprotected m ∈ M \ P and S ∈ E ,
S ∩ P 6= ∅, such that r(m,S) > 0 by comparing the total in-demand and out-demand of
protected mafiosi. For such m, if there exists no set S ′ ∈ E with S ′ ∩M = {m}, then he
could increase his utility by leaving the Mafia. Otherwise, he could increase his utility
by decreasing r(m,S) and increasing r(m,S ′). �

The following lemma is the analogue of Lemma 2.5, yet the proof is more complicated.

Lemma 2.11. Let the strategy profile S = (M,C, r) be a Nash equilibrium and let v ∈ C.
Then D(v) ≤ d

d−1
c(v).

Proof. Suppose the contrary, let there be a v ∈ C such that D(v) > d
d−1

c(v). His current
utility is US(v) = −D(v).

We show that v could join Mafia and set ransoms that provide him a strictly larger
utility. If F+

S′(v) is the income for such a strategy profile S ′, then US′(v) = F+
S′(v)−2c(v),

as he would obtain the protected status. To get US′(v) > US(v), we need to ensure
F+
S′(v) > 2c(v)−D(v). As D(v) > d

d−1
c(v) is assumed, it suffices to give an S ′ with

F+
S′(v) ≥

d− 2

d− 1
c(v). (1)

We define the ransoms r′(v, S) by “stealing” the strategies of the other mafiosi. That
is, for each club S ∈ N (v), 1

d−1

∑

m∈M∩S r(m,S) is the total ransom v has to pay to the
members of this club. We define r′(v, S) proportionally to this amount:

r′(v, S) :=
c(v)

(d− 1)D(v)

∑

m∈M∩S

r(m,S).

By Lemma 2.10, we know that there are no protected mafiosi in the Nash equilibrium
S. We show that after v enters Mafia, even if some of the old mafiosi become protected,
they are only slightly overcharged. More precisely, we shall show that

D′(t) ≤
d

d− 1
c(t) ∀t ∈ M. (2)

10



From this bound, (1) immediately follows. Indeed, everybody will pay at least d
d−1

fraction

of the demands, and therefore F+
S′(v) ≥ d−1

d
c(v) ≥ d−2

d−1
c(v).

It is left to prove (2). The demand of v from some t ∈ M can be bounded as follows:

1

d− 1

∑

S∈N (v)∩N (t)

r′(v, S) =
c(v)

(d− 1)2D(v)

∑

S∈N (v)∩N (t)



r(t, S) +
∑

t′∈(S∩M)\{t}

r(t′, S)





<
1

d(d− 1)
(c(t) + (d− 1)D(t)) ≤

1

d(d− 1)
d · c(t) =

c(t)

d− 1
.

Here we used that D(t) ≤ c(t) as t was not protected in S. Using this fact once more,
we get

D′(t) ≤ D(t) +
c(t)

d− 1
≤

d

d− 1
c(t).

�

Theorem 2.12. The price of anarchy for the Mafia Hitting Set Game is d.

Proof. Let S = (M,C, r) be a strategy profile in a Nash equilibrium. Then M is a
hitting set, as if there was an uncovered club, all members would be unhappy due to
the term Pen(v). We show that the cost of M is within a factor d from the optimum.
Let us set y(S) =

∑

v∈M∩S r(v, S) for each S ∈ E . Lemmas 2.10 and 2.11 easily imply
∑

S∈S:v∈S y(S) ≤ d · c(v) for every v ∈ V , and thus 1
d
y is a feasible dual solution to

(D-HS). Then

∑

S∈S

1

d
y(S) =

∑

s∈S

1

d

∑

m∈M∩S

r(m,S) =
∑

m∈M

1

d

∑

S∈N (m)

r(m,S) =
1

d

∑

m∈M

c(m),

showing that M is a d-approximate solution to (P-HS). �

2.3 Submodular hitting set

In the submodular hitting set problem, we are given a hypergraph G = (V, E) with a
submodular set function C : 2V → R+, that is, C(∅) = 0, and

C(X) + C(Y ) ≥ C(X ∩ Y ) + C(X ∪ Y ) ∀X, Y ⊆ V.

We shall assume also that C is monotone, that is, C(X) ≤ C(Y ) if X ⊆ Y . Our aim is
to find a hitting set M minimizing C(M).

Koufogiannakis and Young [25], and Iwata and Nagano [18] obtained d-approximation
algorithms for this problem, where d is the maximum size of a hyperedge. We shall present
the primal-dual algorithm in [18], a natural extension of the Bar-Yehuda–Even algorithm.

For a submodular function C, it is natural to define the following two polyhedra. The
submodular polyhedron is

P (C) = {z ∈ RV : z ≥ 0, z(Z) ≤ C(Z) ∀Z ⊆ V },

and the submodular base polyhedron is

B(C) = {z ∈ RV : z ≥ 0, z(Z) ≤ C(Z) ∀Z ( V, z(V ) = C(V )}.
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Given a vector z ∈ P (C), the set Z is tight with respect to z if z(Z) = C(Z). An
elementary consequence of submodularity is that for every z ∈ P (C), there exists a
unique maximal tight set. Note that B(C) ⊆ P (C) and z ∈ P (C) is in B(C) if and only
if V is tight.

In the LP relaxation, we assign a primal variable ξ(Z) to every subset Z ⊆ V . In an
integer solution, ξ(Z) = 1 if Z is the chosen hitting set and 0 otherwise.

min
∑

Z⊆V

C(Z)ξ(Z)

∑

Z∈N (u)

ξ(Z) = x(u) ∀u ∈ V

∑

u∈S

x(u) ≥ 1 ∀S ∈ E

(P-SHS)

ξ ≥ 0

max
∑

S∈E

y(S)

∑

S∈N (u)

y(S) = z(u) ∀u ∈ V

z ∈ P (C) (D-SHS)

y ≥ 0

Note that in the dual program, y uniquely defines z. Therefore we will say that y is a
feasible dual solution if the corresponding z is in P (C). For the special case of the (linear)
hitting set problem, where C(Z) =

∑

v∈Z c(z) for some c : V → R+, this is equivalent to
y satisfying (D-HS).

Accordingly, we say that a set Z is tight for a feasible dual y if z(Z) = P (C). For a
hitting set M and a feasible dual solution y, we say that (M, y) is a complementary pair
if M is tight for y. The following is the generalization of Lemmas 2.1 and 2.7.

Lemma 2.13. If (M, y) is a complementary pair, then M is a d-approximate solution of
the hitting set problem.

Proof. The primal objective is at most d times the dual objective, as

C(M) =
∑

v∈M

z(m) =
∑

v∈M

∑

S∈N (v)

y(S) ≤ d
∑

S

y(S).

The inequality follows as each S is counted |S| ≤ d times. �

The algorithm by Iwata and Nagano [18] is as follows.

(0) Set y(S) := 0 for each S ∈ E , z(v) := 0 for v ∈ V , and let M be the unique maximal
set with C(M) = 0.

(1) While M is not a hitting set do

(1-1) Choose an arbitrary hyperedge S ∈ E , S ∩M = ∅.

(1-2) Compute ε = max{λ : z + λχZ ∈ P (C)}.

(1-3) Increase y(S) and every z(v) for v ∈ Z by ε.

(1-4) Replace M by the new unique maximal tight set.

(2) Return M .
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In step (1-2), χZ is the characteristic function of Z. This step can be performed
in the same running time as a submodular function minimization (see [14]). Note also
that M will always intersect S in step (1-4) and therefore will be strictly extended. It
is immediate that it returns a complementary pair (M, y) and thus Lemma 2.13 proves
d-approximation.

Game definition. The vector z in (D-SHS) plays an analogous role to the budgets
c in the (linear) Mafia Hitting Set Game. We introduce a new agent, the Godfather to
set the budgets of the agents.

The Submodular Mafia Hitting Set Game is defined on a hypergraph G = (V, E) and a
monotone submodular set function C : 2V → R+. There are |V |+ 1 agents, one for each
vertex and a special agent g, called the Godfather.

The strategy of the Godfather is to return a budget vector c̃ ∈ B(C). The basic
strategy of an agent v ∈ V is to decide being a civilian or being a mafioso. The strategy
of a mafioso m further incorporates normalized ransoms r0(m,S) ≥ 0 for clubs S ∈ N (m)
with

∑

S∈N (m) r0(m,S) = 1, that is, r0(m,S) expresses the fraction of the budget of m
he is willing to charge on S.

The sets of civilians and mafiosi will again be denoted by C andM , respectively. Hence
a strategy profile is given as S = (M,C, c̃, r0). The actual ransoms will be r(m,S) =
r0(m,S) · c̃(m).

The utility of the Godfather is the total budget of the Mafia: US(g) = C(M). The
utility of the vertex agents is defined the same way as for the linear Mafia Hitting Set
Game in Section 2.2, with replacing c(v) by c̃(v) everywhere.

For linear cost functions, we have C(Z) =
∑

v∈Z c(z). Then the only vector in B(C)
is c, hence the Godfather has only one strategy to choose. Therefore we obtain the same
game as described in Section 2.2.

Existence of a Nash equilibrium and bounding the Price of Anarchy. As for
vertex cover and hitting set, we show that a complementary solution (M, y) to (P-SHS)
and (D-SHS) provides a solution in Nash equilibrium. Let z(u) =

∑

S∈N (u) y(S). Note

that z ∈ P (C) and M is tight for z. Let us raise the z(v) values for v ∈ C arbitrarily in
order to get a vector in the base polyhedron B(C). Let c̃ denote such a vector.

Lemma 2.14. Let us define strategies in the Mafia Hitting Set Game based on a com-
plementary pair (M, y) with M being the Mafia and V \ M the civilians. Let the God-
father assign the budget vector c̃ as defined above. For u ∈ M and S ∈ N (u), define
r0(u, S) = y(S)/c̃(u). Then the strategy profile S = (M,C, c̃, r0) is a Nash equilibrium.

Proof. The Godfather has no incentive to change as by c̃(M) = C(M), he already receives
the maximum possible utility for the given M . By the definition, r(u, S) = y(S) for each
v ∈ V , hence D(v) ≤ 1

d−1

∑

S∈N (v) y(S)|(S ∩M) \ {v}| ≤ c̃(v) and therefore there are no
protected mafiosi. The proof that nobody has an incentive to change his strategy is the
same as for Lemma 2.2. �

Theorem 2.15. The price of anarchy for the Submodular Mafia Hitting Set Game is d.

Proof. Consider a strategy profile S = (M,C, c̃, r0) in a Nash equilibrium. We can repeat
the entire argument of Section 2.2 to show that there are no protected mafiosi and that
every civilian is demanded at most d

d−1
c̃. This is since if the Godfather does not change

his strategy, the game is identical to the linear game with fixed budgets c̃ from the
perspective of the vertex agents.
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Finally we define y(S) =
∑

m∈M∩S r(m,S), and then 1
d
y is a feasible dual solution for

(D-SHS). Observe that c̃(M) = C(M), as otherwise the Godfather would have incentive
to decrease the budgets of certain civilians and increase for certain mafiosi. Consequently,
C(M) = c̃(M) =

∑

S∈E y(S), showing that M is a d-approximate solution for (P-SHS).�

3 Convergence to Nash equilibrium

In this section, we investigate if the Mafia Games defined in the previous section converge
under certain best response dynamics. We first show that already in the Mafia Vertex
Cover Game, a round robin best response dynamics may run into a loop.

Motivated by this example, we modify the utilities by adding a secondary payoff, that
instigates the mafiosi to use symmetric ransoms: r(u, v) = r(v, u). With this secondary
objective, we show that a single round of best response dynamics under a simple selec-
tion rule results in a Nash-equilibrium. This dynamics simulates the Bar-Yehuda–Even
algorithm. An analogous result is then proved for hitting set. Finally, we discuss possible
extensions for the submodular case.

3.1 Vertex cover

Let us now show an example where a round robin dynamics does not necessarily converge.
Consider a star on the vertices v1, v2, v3, v4 and the central vertex z. Assume we are
playing round robin in the order z, v1, v2, v3, v4. Let c(vi) = 1 for i = 1, 2, 3 and c(z) = 2,
and let us start with the strategy profile where M = {z}, r(z, v1) = 2. Assume that
whenever z can change his strategy to get a higher utility, he always chooses to demand
his entire budget 2 from one of the civilians among v1, v2, v3, v4 (this is always a best
response).

We claim that this will always be possible as z always stays in the Mafia, and at most
3 vertices among v1, v2, v3, v4 will be in the Mafia at the same time. Indeed, a civilian
will enter only if being ransomed by z. If vi is in the Mafia then his only option is setting
r(vi, z) = 1, and thus if z has at least 3 neighbors in the Mafia, he becomes protected
and thus all his neighbors he is not actually ransoming will have an incentive to leave.

The dynamics never reaches a Nash equilibrium, as if z is ransoming a mafioso vi, he
has incentive to change to ransoming a civilian as vi is protected. On the other hand,
if z ransoms a civilian vi, vi has an incentive to join the Mafia to obtain the protected
status.

If we could incentivize z to change his strategy less drastically and ransom the other
players by at most 1, we could rapidly reach a Nash-equilibrium. To enforce such a
behavior, we introduce a secondary utility function. For a strategy profile S = (M,C, r),
US(v) is the utility as defined in Section 2.1. Let us define ŨS(v) = 0 if v ∈ C and

ŨS(v) = −
∑

uv∈E,u∈M

|r(u, v)− r(v, u)|

if u ∈ M . The total utility is then (US(v), ŨS(v)) in the lexicographic ordering: the
agents’ main objective is to maximize US(v), and if that is the same for two outcomes,
they choose the one maximizing ŨS(v). In the above example, the dynamics would reach
an equilibrium in the second round, with r(z, vi) ≤ 1 for all i.
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ŨS(v) ≤ 0 and equality holds if r(u, v) = r(v, u) for every uv ∈ M , u, v ∈ M .
Therefore all results in Section 2.1 remain valid: in Lemma 2.2 we define a strategy
profile where ŨS(v) = 0 for all agents, hence it also gives a Nash equilibrium for the
extended definition of utilities. The secondary utility term Ũ does not affect the proofs
in Section 2.1.

Consider now the following simple dynamics: Start from the strategy profile where
all agents are civilians. In each step, take an agent who is incident to uncovered edge
and subject to this, minimizes c(v) − D(v), and give him the opportunity to change his
strategy.

Theorem 3.1. After each agent changing his strategy at most once, we obtain a strategy
profile in Nash equilibrium.

Proof. By induction, we shall prove that in every step, c(v) ≥ D(v) and ŨS(v) = 0 for
all v ∈ V . Consider the next move, when a player v incident to some uncovered edges
minimizing c(v) −D(v) moves. He obviously has to enter the Mafia, and can achieve a
maximal (primary and secondary) utility if he sets r(v, u) = r(u, v) for any u ∈ M∩N(v),
and distributes the rest of his ransoms arbitrarily to his civilian neighbors. Note that
this can always be done because c(v) ≥ D(v). Also, note that the total ransom v will
demand from other civilians is c(v)−D(v). By the extremal choice of v, it follows that
none of his civilian neighbors z will violate c(z) ≥ D(z). This also remains true if z ∈ M ,
as D(z) is at most the total ransom z demands due to the symmetry of the ransoms.

Hence the induction hypothesis is maintained by an arbitrary best response of v. A
mafioso who is not protected and has secondary objective 0 has no incentive to change his
strategy. Also, a civilian v with c(v) ≥ D(v) has no incentive to join the Mafia if there are
no uncovered edges incident to v. Consequently, the game ends after all uncovered edges
are gone, and once an agent joins to Mafia, he would not change his strategy anymore.�

Observe that the dynamics is closely related to the Bar-Yehuda–Even algorithm: if
the next agent always ransoms only one of its civilian neighbors, then it corresponds to
a possible performance of the algorithm.

The above dynamics can be naturally interpreted in a distributive manner. In the
proof of Theorem 3.1, we only use that the vertex v changing his strategy is a local
minimizer of c(v)−D(v). The simultaneous move of two agents u and v could interfere
only if uv ∈ E or they have a neighbor t in common. In this case, c(t) < D(t) could
result if both u and v start ransoming t simultaneously.

We assume that the agents have a hierarchical ordering ≺: u ≺ v expresses that v is
more powerful than u. We call an agent v a local minimizer if v ∈ C, v is incident to
some uncovered edges, and c(v)−D(v) ≤ c(u)−D(u) whenever u ∈ C, uv ∈ E. A local
minimizer v is then called eligible if u ≺ v for all local minimizers u whose distance from
v is at most 2.

We start from C = V . In each iteration of the dynamics, we let all eligible agents
change their strategy to a best response simultaneously. As in the proof of Theorem 3.1,
c(v)−D(v) ≥ 0 is maintained for all v ∈ V , and thus the dynamics terminates after each
agent changes his strategy at most once.

There are multiple distributed algorithms in the literature for vertex cover, e.g. [20, 15,
24]. The distributed algorithm by Koufogiannakis and Young [24] computes in O(logn)
rounds a 2-approximation in expectation with high probability. In contrast, we cannot
give good bounds on the number of iterations of our distributed dynamics. For example,
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if the graph is a path v1 . . . vn, and the budgets are c(vi) = i, then only agent i will move
in step i. Yet we believe that our dynamics could be practically efficient.

3.2 Hitting set

The natural generalization of the secondary objective for hitting set is as follows. For a
club S ∈ E , let var(S) denote the maximum difference between ransoms on this edge.
That is, var(S) = 0 if |S ∩M | ≤ 1 and var(S) = maxv∈S∩M r(v, S)− minv∈S∩M r(v, S)
otherwise. For a strategy profile S = (M,C, r), let ŨS(v) = 0 if v ∈ C and

ŨS(v) = −
∑

v∈N (v)

var(S)

if v ∈ M . The utility of an agent is then (US(v), ŨS(v)), under lexicographic ordering.
A natural expectation would be to prove rapid convergence as for vertex cover, if

always the agent minimizing c(v)−D(v) is allowed to play. However, the Bar-Yehuda–
Even algorithm does not seem to be modeled by this dynamics. Instead, we define a
slightly different extremal choice of the next agent. Let

D∗(v) =
∑

S∈N (v)

max
m∈S∩M

r(m,S),

that is, for each club S we consider the largest ransom demanded in this club. Note that
D(v) ≤ D∗(v). Let us consider the following dynamics. We start from the strategy profile
where everyone is civilian, and we always let a civilian play next who is contained in an
uncovered club. Among them, we let the one play who minimizes c(v)−D∗(v).

Theorem 3.2. After each agent changing his strategy at most once, we obtain a strategy
profile in Nash equilibrium.

Proof. We prove by induction, that in every step, c(v) ≥ D∗(v) and ŨS(v) = 0 for all
v ∈ V . Note that this implies that there are no protected mafiosi. If M is not a hitting
set, we let a v minimizing c(v)− D∗(v) play. ŨS(m) = 0 for all m ∈ M means that for
every club S, r(m,S) is equal for every m ∈ M ∩S; let rS denote this common value. As
for the vertex cover case, the best responses of v are to set r(v, S) = rS whenever S was
already covered by the Mafia, and to distribute the remaining ransoms arbitrarily on the
hyperedges covered only by v.

As D∗(v) =
∑

S∈N (v) rS, the remaining amount v distributes is exactly c(v)−D∗(v).

Then by the choice of v, c(z) ≥ D∗(z) shall be maintained for every civilian z, and also
for other mafiosi (note that if z ∈ M , then D∗(z) does not change). It can be seen
analogously as for vertex cover, that we have a Nash equilibrium if there are no more
uncovered clubs. �

Similarly to the vertex cover case, this dynamics essentially simulates the Bar-Yehuda–
Even algorithm. Also, an analogous distributed interpretation can be given.

3.3 Submodular hitting set

One would expect that the Submodular Mafia Hitting Set Game also converges under
some dynamics that simulates the primal-dual algorithm by Iwata and Nagano [18].
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However, if the Godfather does not have a secondary utility, the following example shows
that it can run into a loop even in very simple instances.

Let V = {a, b}, C({a}) = C({b}) = C({a, b}) = 1, and let g be the Godfather. Let
E = {{a, b}}; for simplicity, we use the notation of vertex cover, e.g. r0(a, b) denotes
r0(a, {a, b}). Let us start from the strategy profile C = V , c̃(a) = 1, c̃(b) = 0, and play a
round robin in the order a, b, g.

First, a enters Mafia and sets r0(a, b) = 1. Then b also enters to receive the protected
status and sets r0(b, a) = 1. g has no incentive to move as c̃(M) = 1 is already maximal.
In the next round, a is happier if he leaves Mafia; b has no incentive to change, however g
modifies to c̃(a) = 0 and c̃(b) = 1. This will lead to a loop: a enters again in next round,
b leaves, c̃ is changed again, etc.

The above behavior can be avoided by introducing a secondary utility for g: let
ŨS(g) =

∑

v∈M F+(v), that is, the sum of the actual incomes of the mafiosi. Note that

ŨS(g) ≤ c̃(M) and equality holds if and only if there are no protected mafiosi. With
this secondary utility, after both a and b enter Mafia, g will modify to c̃(a) = c̃(b) = 0.5,
giving a Nash equilibrium.

We conjecture that with this secondary utility and the secondary utilities for the
vertex agents as for hitting set, rapid convergence can be shown under an appropriate
choice of the next agent.

4 Conclusions and further research

We have defined games whose Nash equilibria correspond to certain covering problems,
with the price of anarchy matching the best constant factor approximations. The payoffs
in these games are locally defined, and the analysis is based on the LP relaxations of the
corresponding covering problems. An intriguing question is if a similar game theoretic
approach could be applied for further combinatorial optimization problems.

The first natural direction would be to extend our approach to a broader class of
covering games. The most general approximation result on covering games is [25], giv-
ing a d-approximation algorithm for minimizing a submodular function under monotone
constraints, each constraint dependent on at most d variables. As a first step, one could
study hitting set with the requirement that each hyperedge S must be covered by at least
h(S) ≥ 1 elements; a simple primal-dual algorithm was given in [16]. However, extending
our game even to this setting does not seem straightforward.

One could also try to formulate analogous settings for classical optimization problems
such as facility location, Steiner-tree or knapsack. One inherent difficulty is that in our
analysis, it seems to be crucial that any greedily chosen maximal feasible dual solution
gives a good approximation. Also, we heavily rely on the fact that each constraint contains
at most d variables.

In Section 3, we have shown that the best response dynamics rapidly converges for
vertex cover and hitting set under certain assumptions. Stronger convergence results
might hold: for example, it is open if arbitrary round robin best response dynamics
converge to a Nash equilibrium. For the Submodular Mafia Hitting Set Game, we do not
even have the weaker convergence result.

Acknowledgements We would like to thank Jarik Nešetřil for inspiring us to work on
this problem and for a generous support in all directions.
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