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Abstract

A relational structure is homomorphism-homogeneous (HH-homo-
geneous for short) if every homomorphism between finite induced sub-
structures of the structure can be extended to a homomorphism over
the whole domain of the structure. Similarly, a structure is mono-
morphism-homogeneous (MH-homogeneous for short) if every mono-
morphism between finite induced substructures of the structure can
be extended to a homomorphism over the whole domain of the struc-
ture. In this paper we consider L-colored graphs, that is, undirected
graphs without loops where sets of colors selected from L are assigned
to vertices and edges. A full classification of finite MH-homogeneous
L-colored graphs where L is a chain is provided, and we show that the
classes MH and HH coincide. When L is a diamond, that is, a set
of pairwise incomparable elements enriched with a greatest and a least
element, the situation turns out to be much more involved. We show
that in the general case the classes MH and HH do not coincide.

1 Introduction

A relational structure A is a pair (A,RA), where RA is a tuple (RiA : i ∈ I)
of relations such that RiA ⊆ Aδi (i.e. RiA is a δi-ary relation on A). The
family ∆ = (δi : i ∈ I) is called the type of A. The type is usually fixed and
understood from the context. The underlying set A is called the domain of
A.

Relational structures of type (2) can be seen as directed graphs with
loops. We will also consider undirected graphs without loops as relational
structures of type (2) with one symmetric and irreflexive binary relation.
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For structures A = (A,RA) and B = (B,RB) a homomorphism f :
A → B is a mapping f : A → B such that (x1, x2, . . . , xδi) ∈ RiA implies
(f(x1),f(x2), . . . , f(xδi)) ∈ RiB for each i ∈ I. If f is one-to-one then f is
called a monomorphism. An isomorphism g : A → B is a bijective mapping
g : A→ B such that (x1, x2, . . . , xδi) ∈ RiA ⇔ (g(x1),g(x2), . . . , g(xδi)) ∈ RiB
for each i ∈ I.

An isomorphism from a structure to itself is called an automorphism.
Similarly, an endomorphism is a homomorphism from a structure to itself.
Throughout the paper a we write

f =

(
x1 x2 . . . xn
y1 y2 . . . yn

)
for a mapping f : {x1, x2, . . . , xn} → {y1, y2, . . . , yn} such that f(xi) = yi
for all i ∈ {1, 2, . . . , n}.

A structure A is called ultrahomogeneous if every isomorphism between
two induced finite substructures ofA can be extended to an automorphism of
A. There is a long-standing effort to classify all ultrahomogeneous relational
structures since the work of Fraissé [1] (see, for example [2, 3]).

In this paper we will use the classification of finite undirected graphs
without loops provided by Gardiner in [4]. He has shown that a finite graph
is ultrahomogeneous if and only if it is isomorphic to one of the following
graphs:

1. a disjoint union of complete graphs all of the same size,
⋃k
i=1Kn,

2. multipartite graphs Kn1,n2,...,nk
with ni = nj = . . . = nk,

3. the 5-cycle C5,

4. the line graph L(K3,3).

While this class of finite ultrahomogeneous graphs is important in our
case we will refer to it as the Gardiner’s class or simply as Gardiner graphs.

Quite recently, Cameron and Nešetřil introduced the following variant of
homogeneity [5]. A structure A is called homomorphism-homogeneous (HH-
homogeneous for short) if every homomorphism between finite induced sub-
structures of A can be extended to an endomorphism of A. This notion has
motivated a new classification programme. Finite HH-homogeneous undi-
rected graphs are classified as complete and null graphs [5]. Other classes of
structures where HH-homogeneous structures have been fully classified are,
for example, partially ordered sets in [6] or in [7] and finite tournaments [8].
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Figure 1: The hierarchy of morphism extension classes for a general rela-
tional structure.

Several other variants of homogeneity are also proposed in [5]. For these
we follow the notation used in [5, 7]. We say that a structure A belongs
to a class XY if every x-morphism from a finite substructure of A into A
extends to a y-morphism from A to A where pairs (X,x) and (Y, y) can be
(I, iso), (M,mono) and (H,homo).

Many of these classes are related. For example MH is a subclass of IH.
The obvious inclusions between the morphism extension classes are depicted
in Figure 1. Note that, for simplicity, we omit the inclusions implied by
transitivity in all diagrams.
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HH =

infinite
countable
graphs

(a) Countably infinite graphs
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II

MM

HH

=

=

Finite
graphs

(b) Finite graphs

Figure 2: The hierarchy of morphism extension classes for graphs [9].

For specific types of relational structures, some classes are known to be
equivalent (such as HH and MH for graphs [5,9]). This leads to simplified
inclusion diagrams. Figure 2 depicts the hierarchy for finite and infinite
countable graphs [9], and Figure 3 the hierarchy for partially ordered sets [7].

The main question of the classification programme is to give a catalogue
of structures belonging to a given class. The full classification of any of the
classes is far from complete. The class II is the most extensively studied
one, while the class HH and other variants are less explored. In Section 2 we
introduce a rather general notion of L-colored graphs where L is a partially
ordered set. (We think of L as a poset of admissible combinations of colors
ordered by inclusion.) In Sections 3 and 4 we provide classifications of finite
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IH = MH = HH

II
countable

posets

IM = MM

(a) Countably infinite posets

IH = MH = HH

finite
posets

IM = MM = II

(b) Finite posets

Figure 3: Hierarchy of morphisms extension classes for partially ordered
sets [7].

MH-homogeneous L-colored graphs where L is a chain or a diamond. In all
the existing classification results, the classes HH and MH coincide. This
leads to the question whether there is a structure that is MH but not HH.
We give a positive answer to this question in Section 4. A few more types
of structures where the classes MH and HH do not coincide are given in
Section 5.

2 Multicolored graphs

Let G = (V,E) with E = (E1, E2, . . . , Em) be a relational structure with
a collection E of symmetric irreflexive binary relations. This structure is
called a multicolored graph. In case m = 2 we say that G is a bicolored
graph, or shortly a bigraph. Finite HH-homogeneous bigraphs have been
classified in [10].

In this paper we propose the study of a related but more general notion
which yields a clearer, unifying presentation. Let L be a partially ordered
set with the ordering relation �, with the least element 0 and the greatest
element 1. An L-colored graph is an ordered triple (V, χ′, χ′′) such that V is
a nonempty set, χ′ : V → L is an arbitrary function and χ′′ : V 2 → L is a
function satisfying the following:

1. χ′′(x, x) = 0; and

2. χ′′(x, y) = χ′′(y, x) whenever x 6= y.

The function χ′ provides colors of vertices of G, while χ′′ provides colors of
edges of G. The two restrictions that we have imposed on χ′′ mean that G
is without loops and undirected.
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A multicolored graph (V, (E1, . . . , Em)) as introduced in [10] can be
thought of as an L-colored graph (V, χ′, χ′′) where L = P({1, 2, . . . ,m})
with set-inclusion as the ordering relation, χ′(x) = ∅ (no colors are assigned
to vertices), and χ′′(x, y) = {j : {x, y} ∈ Ej}.

Consequently, the intuition that we have is that χ′(x) = 0 means that
there are no colors assigned to x, and χ′(x) = 1 means that the vertex x
is colored by all the available colors. Analogously, χ′′(x, y) = 0 means that
x and y are nonadjacent, while χ′′(x, y) = 1 means that the edge {x, y} is
colored by all the available colors.

A homomorphism between two L-colored graphs (V1, χ
′
1, χ
′′
1) and (V2, χ

′
2, χ
′′
2)

is a mapping f : V1 → V2 such that

χ′1(x) � χ′2(f(x)) and χ′′1(x, y) � χ′′2(f(x), f(y)),

for all x and y in V1.
For W ⊆ V , a substructure of (V, χ′, χ′′) induced by W is G[W ] =

(W,χ′|W , χ′′|W ), where χ′|W and χ′′|W denote the restrictions of χ′ and
χ′′ to W , respectively.

For an L-colored graph G = (V, χ′, χ′′) and α ∈ L let Wα = {x ∈ V :
χ′(x) = α} and G(α) = G[Wα].

We say that an L-colored graph G = (V, χ′, χ′′) is homomorphism-
homogeneous (HH-homogeneous for short) if every homomorphism f : S →
T between finite induced substructures of G extends to an endomorphism
of G. We say that an L-colored graph G = (V, χ′, χ′′) is MH-homogeneous
if every monomorphism f : S → T between finite induced substructures of
G extends to an endomorphism of G.

Let G = (V, χ′, χ′′) be an L-colored graph, and let θG ⊆ V 2 be the
reflexive transitive closure of θ0G = {(x, y) ∈ V 2 : χ′′(x, y) 6= 0}. Then θG
is an equivalence relation on V whose equivalence classes will be referred to
as connected components of G. An L-colored graph G is connected if θG has
only one equivalence class. Otherwise, it is disconnected. We say that G is
complete if χ′′(x, y) 6= 0 for all x 6= y.

An L-colored graph G = (V, χ′, χ′′) is vertex-uniform if there exists an
α ∈ L such that χ′(x) = α for all vertices x, and it is edge-uniform if
there exists a β ∈ L \ {0} such that χ′′(x, y) = β for all vertices x, y such
that x 6= y. We say that an L-colored graph G = (V, χ′, χ′′) is uniform
if it is both vertex-uniform and edge-uniform. Up to isomorphim, a finite
connected uniform graph is uniquely determined by n = |V |, the color of
vertices α and the color of edges β � 0, and we denote it by U(n, α, β).

If there is no danger of confusion, we shall write simply χ(x) and χ(x, y)
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instead of χ′(x) and χ′′(x, y), respectively. Also, the set of vertices of G will
be denoted by V (G).

Lemma 2.1. Let G be an MH-homogeneous L-colored graph. Assume that
there exist three distinct vertices a0, a1, x ∈ V (G) such that:

(i) χ(a0, a1) � 0 and χ(x, a1) � 0,

(ii) χ(a0, x) � χ(a0, a1) and χ(x) � χ(a1), and

(iii) χ(a0, x) ≺ χ(a0, a1) or χ(x) ≺ χ(a1).

Then G is not finite.

Proof. Let us construct inductively a sequence of mappings f2, f3, . . . , and
a sequence of vertices a2, a3, . . . ∈ V (G) with the following properties:

(1) Let m(n) = max{j ∈ {1, . . . , n} : χ(x, aj) � 0}. (Note that m(n) ≥ 1
due to (i)). The mapping

fn+1 =

(
a0 . . . am(n)−1 am(n)+1 . . . an x

a0 . . . am(n)−1 am(n)+1 . . . an am(n)

)
is a monomorphism from G[a0, . . . , am(n)−1, x, am(n)+1, . . . , an] to
G[a0, . . . , an].

(2) G is MH-homogeneous so there is an endomorphism f∗n+1 of G which
extends fn+1 and we let an+1 = f∗n+1(am(n)).

(3) an+1 /∈ {x, a0, . . . , an}.

(4) χ(ai, aj) � 0 for all i, j ∈ {0, . . . , n+ 1} such that i 6= j.

(5) χ(a0, a1) � χ(a0, aj) and χ(a1) � χ(aj), for all 1 ≤ j ≤ n+ 1.

(6) χ(aj , x) � χ(aj , ak) and χ(x) � χ(ak) for all 0 ≤ j < k ≤ n+ 1.

(7) χ(a0, x) ≺ χ(a0, aj) or χ(x) ≺ χ(aj), for all 1 ≤ j ≤ n+ 1.

The inductive construction proceeds in several steps, and the correspond-
ing L-colored subgraphs can be depicted as in Figure 4.

The mapping f2 =

(
a0 x
a0 a1

)
is a monomorphism fromG[a0, x] toG[a0, a1]

by (ii), while in case n > 2 the requirement (6) for n (inductive hypothesis)
and the fact that χ(aj , x) = 0 for j > m(n) ensure that fn+1 is a monomor-
phism from from G[a0, . . . , am(n)−1, x, am(n)+1, . . . , an] to G[a0, . . . , an]. This
shows (1).

Let us show that (3) holds for an+1 assuming (1)–(7) for n.
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Figure 4: The original subgraph, the first step and general settings for the
inductive construction. Bold lines without arrows represent edges—solid
lines are those having colors � 0 and dashed those having colors � 0. Thin
lines with full arrows represents mappings and thin lines with empty arrows
indicate the direction of the succession in colors.

• if an+1 = x then χ(a0, am(n)) � χ(f∗n+1(a0), f
∗
n+1(am(n))) = χ(a0, x)

and χ(am(n)) � χ(f∗n+1(am(n))) = χ(x), which contradicts (7);

• if an+1 = am(n) then 0 = χ(am(n), an+1) = χ(f∗n+1(x), f∗n+1(am(n))) �
χ(x, am(n)), but χ(x, am(n)) � 0 by definition of m(n) – contradiction;

• if an+1 = aj for some j 6= m(n) then, by (4), 0 ≺ χ(aj , am(n)) �
χ(f∗n+1(aj), f

∗
n+1(am(n))) = χ(aj , an+1) = χ(aj , aj) = 0 – contradic-

tion.

Let us show that (4) holds for an+1 assuming (1)–(7) for n. Clearly, it
suffices to show that χ(ai, an+1) � 0 for all 0 ≤ i ≤ n.

• if i 6= m(n) then χ(ai, an+1) = χ(f∗n+1(ai), f
∗
n+1(am(n))) � χ(ai, am(n)) �

0 by the induction hypothesis;

• if i = m(n) then χ(am(n), an+1) = χ(f∗n+1(x), f∗n+1(am(n))) � χ(x, am(n)) �
0 by definition of m(n).
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To see that (5) holds for an+1 we use the induction hypothesis and the
fact that f∗n+1 is a homomorphism:

• χ(a0, a1) � χ(a0, am(n)) � χ(f∗n+1(a0), f
∗
n+1(am(n))) = χ(a0, an+1);

• χ(a1) � χ(am(n)) � χ(f∗n+1(am(n))) = χ(an+1).

Let us show that (6) holds for an+1. As above, from (ii) and (5) we
immediately get χ(x) � χ(a1) � χ(an+1). To see that χ(aj , x) � χ(aj , an+1)
for all j ∈ {0, . . . , n} we consider several cases:

• if j > m(n) then χ(aj , x) = 0 by definition of m(n) so χ(aj , x) �
χ(aj , an+1) holds trivially;

• if j < m(n) then using the induction hypothesis and the fact that f∗n+1

is a homomorphism we get the following:
χ(aj , x) � χ(aj , am(n)) � χ(f∗n+1(aj), f

∗
n+1(am(n))) = χ(aj , an+1);

• if j = m(n) then χ(am(n), x) � χ(f∗n+1(am(n)), f
∗
n+1(x)) = χ(an+1, am(n)).

Finally, (7) follows from (5) and (iii).
Therefore, G contains an infinite sequence a0, a1, a2, . . . of pairwise dis-

tinct vertices, so it cannot be finite.

In the rest of the paper we restrict our attention to two types of partially
ordered sets L: chains and diamonds.

3 L-colored graphs over chains

In this section we classify finite MH-homogeneous L-colored graphs where
L is a bounded chain and show that in this setting the classes MH and
HH coincide. So, let L be a chain with the least element 0 and the greatest
element 1.

Lemma 3.1. Let G be a finite L-colored graph which is MH-homogeneous.
Assume that x, y, z are three distinct vertices of G satisfying χ(x, z) � 0 and
χ(y, z) � 0. Then:

(a) χ(x, y) ≺ χ(x, z) if and only if χ(y) � χ(z);
(b) χ(x, y) = χ(x, z) if and only if χ(y) = χ(z).

Proof. Clearly, (b) follows immediately from (a) because L is a chain. Let
us show (a). Suppose that G is a finite MH-homogeneous L-colored graph,
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and let x, y, z be three distinct vertices of G satisfying χ(x, z) � 0 and
χ(y, z) � 0 but not (a). Then either

χ(x, y) ≺ χ(x, z) and χ(y) � χ(z)

or
χ(x, y) � χ(x, z) and χ(y) � χ(z).

In both cases finiteness of G contradicts Lemma 2.1.

Lemma 3.2. Let G be a finite MH-homogeneous L-colored graph. Then:
(a) for every α ∈ L, every connected component of G(α) is a uniform

graph;
(b) for all x, y ∈ V (G), if χ(x, y) � 0 then χ(x) = χ(y);
(c) every connected component of G is a uniform graph.

Proof. (a) Take any α ∈ L and let S be a connected component of G(α).
Then, by the definition of G(α), we have that χ(x) = α for all x ∈ S.
Let us show that χ(x, y) is constant for all x, y ∈ S satisfying x 6= y. If
|S| = 1 or |S| = 2 the claim is trivial. Assume that |S| ≥ 3. Since S is
a connected component, it suffices to show that whenever x, y, z ∈ S are
three distinct vertices such that χ(x, z) � 0 and χ(y, z) � 0, then χ(x, z) =
χ(y, z) = χ(x, y). So, let x, y, z ∈ S be three distinct vertices satisfying
χ(x, z) � 0 and χ(y, z) � 0. Since χ(y) = χ(z) = α, Lemma 3.1 yields that
χ(x, y) = χ(x, z). Analogously, χ(x, y) = χ(y, z).

(b) Assume that there exist x1, x2 ∈ V (G) such that χ(x1, x2) � 0 and
χ(x1) 6= χ(x2). Without loss of generality we can assume that χ(x1) ≺
χ(x2). Let us now construct inductively a sequence of mappings f3, f4, . . . ,
and a sequence of vertices x3, x4, . . . with the following properties:

(1) the mapping fn+1 :

(
xn−1
xn

)
is a monomorphism from G[xn−1] to

G[xn];

(2) G is MH-homogeneous so there is an endomorphism f∗n+1 of G which
extends fn+1 and we let xn+1 = f∗n+1(xn);

(3) χ(xi−1) � χ(xi) for all i ∈ {2, 3, . . . , n}.

The mapping f3 :

(
x1
x2

)
is easily seen to be a monomorphism from G[x1]

to G[x2] since χ(x1) ≺ χ(x2), while in case n ≥ 3, the requirement (3) for
i = n ensures that fn+1 is a monomorphism from G[xn−1] to G[xn]. This
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shows (1), and (3) for i = n + 1 follows immediately from (2). Note, also,
that

χ(xi−1, xi) = χ(f∗i (xi−2), f
∗
i (xi−1)) � χ(xi−2, xi−1), for all i.

Therefore, we have constructed a sequence of vertices x1, x2, x3, . . . such that
χ(x1) � χ(x2) � χ(x3) � . . . and 0 ≺ χ(x1, x2) � χ(x2, x3) � χ(x3, x4) �
. . .. Since χ(x1) ≺ χ(x2) and since G is finite there exists an n such that
χ(xn−2) ≺ χ(xn−1) = χ(xn). Then Lemma 3.1 yields that χ(xn−2, xn−1) =
χ(xn−2, xn) � 0 since χ(xn−1) = χ(xn). By the same lemma we also have
χ(xn−1, xn) ≺ χ(xn−2, xn−1) since χ(xn) � χ(xn−2) . On the other hand,
χ(xn−1, xn) � χ(xn−2, xn−1) by construction. Contradiction.

(c) It follows from (b) that S is a connected component of G if and only
if S is a connected component of G(α) for some α ∈ L. Therefore, every
connected component of G is a uniform graph.

Theorem 3.3. Let G be a finite L-colored graph where L is a chain with the
least element 0 and the greatest element 1. Then the following are equivalent:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G has the following structure:

– every connected component of G is a uniform L-colored graph,
and

– if U(n1, α1, β1) and U(n2, α2, β2) are connected components of G
such that α1 � α2, then n1 ≤ n2 and β1 � β2. Consequently, if
α1 = α2, then n1 = n2 and β1 = β2.

Proof. (3)⇒ (1) is easy.
(1)⇒ (2) is obvious.
(2) ⇒ (3). Let G be a finite MH-homogeneous L-colored graph. We

already know from Lemma 3.2 that every connected component of G is a
uniform graph. So, let S1 and S2 be connected components of G such that
G[S1] ∼= U(n1, α1, β1), G[S2] ∼= U(n2, α2, β2) and assume that α1 � α2. Let

x be an arbitrary vertex of S1 and y an arbitrary vertex of S2. Then f :

(
x
y

)
is a monomorphism from G[x] to G[y], since χ(x) = α1 � α2 = χ(y). So,
by the homogeneity requirement, f extends to an endomorphism f∗ of G.
It is easy to see that an endomorphism maps a connected component of
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G into another connected component of G, so f∗(S1) ⊆ S2, since f∗(x) =
y ∈ S2. Moreover, f∗|S1 is injective (assume that x, y ∈ S1 are two distinct
vertices such that f∗(x) = f∗(y); then χ(f∗(x), f∗(y)) = 0 because G is
without loops; on the other hand, χ(f∗(x), f∗(y)) � χ(x, y) = β1 � 0
by the definition of an edge-uniform L-colored graph – contradiction), so
n1 = |S1| ≤ |S2| = n2. Finally, if x, y ∈ S1 are two distinct vertices, then
β1 = χ(x, y) � χ(f∗(x), f∗(y)) = β2.

4 L-colored graphs over diamonds

In this section we consider L-colored graphs where L is a diamond. We
first consider finite vertex-uniform L-colored graphs and show that in this
case the classes MH and HH coincide. We then provide an example of
an L-colored graph which is MH-homogeneous, but not HH-homogeneous,
proving thus that in the general case the classes MH and HH do not co-
incide for L-colored graphs where L is a diamond. So, let L be a diamond
with the least element 0 and the greatest element 1.

Lemma 4.1. Let G be a finite MH-homogeneous vertex-uniform L-colored
graph and assume that there exist x0, y0 ∈ V (G) such that χ(x0, y0) = 1.
Then the following holds:

(1) For every vertex x there is a vertex y such that χ(x, y) = 1.

(2) Let x, y, z be distinct vertices. If χ(x, y) = χ(y, z) = 1 then χ(x, z) = 1.

(3) If x and y belong to the same connected component of G then χ(x, y) =
1.

Proof. (1) Let x be an arbitrary vertex. Then f =

(
x0
x

)
extends to an

endomorphism f∗ of G, so χ(x, f∗(y0)) = χ(x0, y0) = 1.
(2) Let χ(x, y) = χ(y, z) = 1. If χ(x, z) ≺ 1, Lemma 2.1 yields that G

then cannot be finite. Contradiction.
(3) Let S be a maximal set of vertices of G such that x ∈ S and χ(u, v) =

1 for all u, v ∈ S with u 6= v. Note that |S| ≥ 2 due to (1). Let us show that
S coincides with the connected component W of G that contains x. Suppose
to the contrary that this is not the case and take any z ∈ W \ S such that
χ(z, y) � 0 for some y ∈ S. Without loss of generality we may assume that
y 6= x (because |S| ≥ 2). Note also that χ(x, z) 6= 1 and χ(y, z) 6= 1. Then
Lemma 2.1 yields that G is not finite. Contradiction.
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Proposition 4.2. Let G be a finite MH-homogeneous vertex-uniform L-
colored graph where every vertex has color α ∈ L. Assume that there exist
x0, y0 ∈ V (G) such that χ(x0, y0) = 1. Then there exists a positive integer
n such that every connected component of G is isomorphic to U(n, α, 1).

Next, we consider finiteMH-homogeneous vertex-uniform L-colored gra-
phs satisfying χ(x, y) = 1 for no x, y ∈ V (G).

Proposition 4.3. Let G be a finite connected MH-homogeneous vertex-
uniform L-colored graph such that χ(x, y) = 1 for no x, y ∈ V (G). Then G
is complete.

Proof. Assume, to the contrary, that G is not complete. Then there exist
x, y ∈ V (G) such that x 6= y and χ(x, y) = 0. Since G is connected, there
exists a sequence v1, v2, . . . , vk of vertices of G such that x = v1, y = vk
and χ(vi, vi+1) � 0 for all i ∈ {1, . . . , k − 1}. Without loss of generality,
we can assume that (v1, v2, . . . , vk) is the shortest such sequence, so that
χ(vi, vj) = 0 whenever j − i > 1. Note that k ≥ 3 beacuse χ(x, y) = 0.

Now, f =

(
v1 v3
v1 vk

)
is a partial monomorphism which, by the homogeneity

assumption, extends to an endomorphism f∗ ofG. Let z = f∗(v2). Note that
χ(x, z) � 0 and χ(y, z) � 0. Therefore, x, y and z provide a configuration
which, by Lemma 2.1, ensures that G is not finite. Contradiction.

If G is a finite vertex-uniform L-colored graph which is connected and
complete, all endomorphisms are automorphisms, and it is easy to see that
G is HH-homogeneous if and only if G is MH-homogeneous if and only if
G is ultrahomogeneous. On the other hand, if G is a finite vertex-uniform
L-colored graph wich is not connected and has the property that χ(x, y) ≺ 1
for all x, y ∈ V (G), then by Proposition 4.3 every connected component of
G is complete and all components have to be be isomorphic. So, we have the
following partial classification result which depends on the classification of
all finite ultrahomogeneous edge colored graphs (and this is a long-standing
open problem):

Theorem 4.4. Let L be a diamond with the least element 0 and the greatest
element 1. The following are equivalent for a finite vertex-uniform L-colored
graph G where every vertex is colored by α ∈ L:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,
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(3) G is a disjoint union of k ≥ 1 copies of H, where

– H is U(n, α, 1) for some positive integer n; or

– H is an ultrahomogeneous L-colored graph such that 0 ≺ χ(x, y) ≺
1 for all x, y ∈ V (G) such that x 6= y, and χ(x) = α for all
x ∈ V (G).

However, if L = M2 is the diamond on four elements 0, b, r, 1 where
0 ≺ b ≺ 1, 0 ≺ r ≺ 1 and where b and r are incomparable (b and r stand for
blue and red, respectively), we can provide the full classification as follows.
For an α ∈M2 let G(α) = (V,Eα) be the (ordinary undirected) graph where
Eα = {{x, y} : χ(x, y) = α}.

Theorem 4.5. The following are equivalent for a finite vertex-uniform M2-
colored graph G where every vertex is colored by α ∈M2:

(1) G is HH-homogeneous,

(2) G is MH-homogeneous,

(3) G is a disjoint union of k ≥ 1 copies of H, where

– H is U(n, α, 1) for some positive integer n; or

– H is vertex uniform, H(r) is one of the Gardiner graphs and H(b)

is its complement.

As the example below shows, Theorems 4.4 and 4.5 cannot be extended
to finite L-colored graphs where L is a diamond and graphs are not required
to be vertex-uniform.

Example 1 Let G be an M2-colored graph on four vertices a, b, c, d where
the vertices and the edges are colored as follows: χ(a) = χ(b) = r, χ(c) =
χ(d) = b, χ(a, c) = χ(c, d) = χ(b, d) = r, χ(a, d) = χ(b, c) = b and χ(a, b) =
0 (see Figure 5).

Then G is clearly an MH-homogeneous graph. To see that G is not an
HH-homogeneous graph it suffices to note that the partial homomorphism

f =

(
a b
a a

)
cannot be extended to an endomorphism of G.

13



a

b

c

d

Figure 5: An example of a finite L-colored graph that is MH-homogeneous
but not HH-homogeneous.

5 Concluding remarks

A simple relational structure presented in Example 1 can easily be gener-
alised to provide a whole class of structures that are all MH-homogeneous
but not HH-homogeneous.

Kn Kn

u v

xi yi

u

Figure 6: A class of finite L-colored graphs which are all MH- but not
HH-homogeneous.

The construction is depicted in Figure 6. Fix n ∈ {1, 2, . . . , ω}. (Note
that in case n = ω we get an example of a countably infinite structure that
is MH-homogeneous but not HH-homogeneous.) Take two cliques both of
size n whose vertices and edges are colored black. Join the vertices of these
two cliques by fat gray edges. Finally, add two new nonadjacent vertices
u and v colored gray, and join the two vertices and the vertices of the two
cliques by black and gray edges as in Figure 6. Then, as in Example 1, we
can show that this graph is MH-homogeneous but not HH-homogeneous.

A question that arises immediately is whether one can avoid the need
for colored vertices at the expense of introducing loops.

Consider the finite edge-colored graph depicted in Figure 7 with no colors

14



Kn

Kn Kn

Kn

Kn

Figure 7: An edge-colored graph with loops that is MH- but not HH-
homogeneous.

assigned to vertices that we construct as follows. Given n > 1, take five
copies of Kn and color their edges gray. Now join these cliques by complete
bipartite graphs using two mutually disjoint 5-cycles where the edges of one
5-cycle are black, while the edges of the other 5-cycle are gray. Furthermore,
add a black loop to each vertex.

This graph is easily seen to be MH-homogeneous. To see that it is not
HH-homogeneous, consider a partial homomorphism unifying two neigh-
boring cliques (this is possible due to black-colored loops). Then every
endomorphism that extends such a partial homomorphism would enforce
the existence of an edge colored both black and gray.

v1

v2

v3v4

v5

v1

v2v2

v3

Figure 8: A digraph with loops that is MH-homogeneous but not HH-
homogeneous.
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Finally in Figure 8 we present a directed graph with loops that is MH-
homogeneous but not HH-homogeneous. To see that this digraph is not

HH-homogeneous consider a partial homomorphism f =

(
v1 v4 v5
v1 v5 v5

)
.

Then every endomorphism that extends f would enforce the existence of a
bidirectional edge.

We close the paper with several open problems whose solutions would
be helpfull in understanding the structure of homogeneous L-colored graphs
with respect to various types of homogeneity discussed in this paper. Let L
be an arbitrary partially ordered set.

Problem 1 Classify all finite HH-homogeneous and MH-homogeneous
L-colored graphs.

Problem 2 Do classes MH and HH coincide for finite vertex-uniform
L-colored graphs?

Problem 3 Do classes MH and HH coincide for countable vertex-uniform
L-colored graphs?
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