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Abstract

For permutations π and τ of lengths |π| ≤ |τ |, let t(π, τ) be the proba-
bility that the restriction of τ to a random |π|-point set is (order) isomor-
phic to π. We show that every sequence {τj} of permutations such that
|τj| → ∞ and t(π, τj) → 1/4! for every 4-point permutation π is quasiran-
dom (that is, t(π, τj) → 1/|π|! for every π). This answers a question posed
by Graham.

1 Introduction

Roughly speaking, a combinatorial object is called quasirandom if it has proper-
ties that a random object has asymptotically almost surely. This notion has been
defined for various structures such as tournaments [1], set systems [2], subsets of
Z/nZ [3], k-uniform hypergraphs [6, 7], groups [8], etc.

In particular, quasirandomness has been extensively studied for graphs. Ex-
tending earlier results of Rödl [16] and Thomason [17], Chung, Graham and
Wilson [4] gave seven equivalent properties of graph sequences such that the se-
quence of random graphs {Gn,1/2} possesses them with probability one. These
properties include densities of subgraphs, values of eigenvalues of the adjacency
matrix or the average size of the common neighborhood of two vertices. In par-
ticular, it follows from the results in [4] that if the density of 4-vertex subgraphs
in a large graph is asymptotically the same as in Gn,1/2, then this is true for every

∗Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Mal-
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fixed subgraph. Graham (see [5, Page 141]) asked whether a similar phenomenon
also occurs in the case of permutations.

Let us state his question more precisely. Let Sk consist of permutations on
[k] := {1, . . . , k}. We view each π ∈ Sk as a bijection π : [k] → [k] and call |π| := k
its length. For π ∈ Sk and τ ∈ Sm with k ≤ m, let t(π, τ) be the probability that
a random k-point subset X of [m] induces a permutation isomorphic to π (that
is, τ(xi) ≤ τ(xj) iff π(i) ≤ π(j) where X consists of x1 < . . . < xk). A sequence
{τj} of permutations has Property P(k) if |τj| → ∞ and t(π, τj) = 1/k! + o(1)
for every π ∈ Sk. It is easy to see that P(k + 1) implies P(k). Graham asked
whether there exists an integer m such that P(m) implies P(k) for every k. Here
we answer this question:

Theorem 1. Property P(4) implies Property P(k) for every k.

We also give an example that P(3) does not imply P(4). (It is trivial to see
that P(1) 6⇒ P(2) and an example that P(2) 6⇒ P(3) can be found in [5].)

Since these notions deal with properties of sequences of permutations, we find
it convenient to operate with the appropriately defined “limit object” which is
analogous to that for graphs introduced by Lovász and Szegedy [12]. Here we
use the analytic aspects of permutation limits that were studied by Hoppen et
al [9, 10] and we derive Theorem 1 from its analytic analog (Theorem 3).

Let the (normalized) discrepancy d(τ) of τ ∈ Sn be the maximum over inter-
vals A,B ⊆ [n] of
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Cooper [5] calls a permutation sequence {τj} quasirandom if |τj | → ∞ and
d(τj) → 0. He also gives a few other equivalent properties ([5, Theorem 3.1])
and he discusses various applications of “random-like” permutations. Using the
results of [9, 10], it is not hard to relate quasirandomness and Properties P(k):

Proposition 2. A sequence {τj} of permutations is quasirandom if and only if
it satisfies Property P(k) for every k.

Thus our Theorem 1 implies that P(4) alone is equivalent to quasirandomness.
Finally, let us remark that McKay, Morse and Wilf [14, Page 121] also defined a
notion of quasirandomness for permutations. Their definition, although related,
is different from that of Cooper as it deals with sequences of sets of permutations.

2 Limits of permutations

Here we define convergence of permutation sequences and show how a convergent
sequence can be associated with an analytic limit object. We refer the reader to
[9, 10] for more details.
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Let Z consist of probability measures µ on the Borel σ-algebra of [0, 1]2 that
have uniform marginals, that is, µ(A × [0, 1]) = µ([0, 1] × A) = λ(A) for every
Borel set A ⊆ [0, 1], where λ is the Lebesgue measure on [0, 1].

Fix some µ ∈ Z. Let Vi = (Xi, Yi) for i ∈ [k] be independent random
variables with Vi ∼ µ (that is, each Vi has distribution µ). We view an outcome
(X1, Y1, . . . , Xk, Yk) as an element of [0, 1]2k. For permutations π, τ ∈ Sk, let
Aπ,τ ⊆ [0, 1]2k correspond to the event that

Xi < Xj iff π(i) < π(j) & Yi < Yj iff τ(i) < τ(j).

Since each of the vectors (X1, . . . , Xk) and (Y1, . . . , Yk) is uniformly distributed
over [0, 1]k, the probability of the degenerate event

Dk := {Xi = Xj or Yi = Yj for some i 6= j} ⊆ [0, 1]2k (1)

is zero. Note that the sets Aπ,τ for π, τ ∈ Sk partition [0, 1]2k \Dk. If we reorder
the indices in an outcome (V1, . . . , Vk) ∈ [0, 1]2k \ Dk so that X1 < . . . < Xk,
then the new relative order on Y1, . . . , Yk ∈ [0, 1] defines a random permutation
σ(k, µ) ∈ Sk. In other words, if we land in Aπ,τ , then we set σ(k, µ) = τπ−1. Let
the density t(π, µ) of π ∈ Sk be the probability that σ(k, µ) ∼= π. Equivalently,

t(π, µ) =
∑

ρ∈Sk

µk(Aρ,πρ) = k!µk(Aτ,πτ ), any τ ∈ Sk, (2)

where the last equality uses the fact that µk(Aρ,πρ) does not depend on ρ ∈ Sk

(because V1, . . . , Vk are independent and identically distributed).
A sequence of permutations {τj} is convergent if |τj | → ∞ and {t(π, τj)}

converges for every permutation π. This is the same definition of convergence as
the one in [9, 10] except we additionally require that |τj | → ∞, cf. [9, Claim 2.4].

It is easy to show that every sequence of permutations whose lengths tend to
infinity has a convergent subsequence, see e.g. [10, Lemma 2.11]. Furthermore,
for every convergent sequence {τj} there is µ ∈ Z such that for every permutation
π we have

lim
j→∞

t(π, τj) = t(π, µ). (3)

For reader’s convenience, we sketch the proof from [9] that µ exists. For π ∈ Sk,
let µπ ∈ Z be obtained by dividing the square [0, 1]2 in k × k equal squares and
distributing the mass uniformly on the squares with indices (i, π(i)), i = 1, . . . , k.
By Prokhorov’s theorem, {µτj} has a subsequence that weakly converges to some
measure µ. We have µ ∈ Z as this set is closed in the weak topology. Finally, µ
satisfies (3) because, for any fixed π, the function t(π,−) : Z → R is continuous
in the weak topology and t(π, τj) = t(π, µτj ) +O(1/|τj|).

We remark that Hoppen et al. [9, 10] proposed a slightly different limit ob-
ject: the regular conditional distribution function of Y with respect to X , where
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(X, Y ) ∼ µ. Lemma 2.2 and Definition 2.3 in [9] show how to switch back and
forth between the two objects.

Now, we are ready to state the analytic version of Theorem 1. Let us call
µ ∈ Z k-symmetric if t(π, µ) = 1/k! for every π ∈ Sk.

Theorem 3. Every 4-symmetric µ ∈ Z is the (uniform) Lebesgue measure on
[0, 1]2. In particular, µ is k-symmetric for every k.

Let us show how Theorem 3 implies Theorem 1. Suppose on the contrary
that some {τj} satisfies P(4) but not P(k). Fix π ∈ Sk and a subsequence
{τ ′j} such that limj→∞ t(π, τ ′j) exists and is not equal to 1/k!. Consider now
a convergent subsequence {τ ′′j } of {τ ′j} and let µ ∈ Z be its limit. By (3), µ
is 4-symmetric and, by Theorem 3, µ is m-symmetric for every m. But then
limj→∞ t(π, τ ′′j ) = t(π, µ) = 1/k!, which is the desired contradiction.

3 Proof of Theorem 3

In this section, let µ ∈ Z be arbitrary with t(π, µ) = 1/4! for every π ∈ S4.
Let λ ∈ Z denote the uniform measure on [0, 1]2. Our objective is to show that
µ = λ.

Let V = (X, Y ) ∼ µ and v = (x, y) ∼ λ be independent. For brevity, let us
abbreviate

∫

[0,1]2
to

∫

. Define a function F : [0, 1]2 → [0, 1] by

F (a, b) := µ([0, a]× [0, b]) =

∫

V≤(a,b)

dV,

where V ≤ (a, b) means that X ≤ a and Y ≤ b. Since µ has uniform marginals,
the function F is continuous.

First, we show that the 4-symmetry of µ uniquely determines certain integrals.

Lemma 4.
∫

F (X, Y )2 dV =

∫

F (X, Y )XY dV =

∫

F (x, y)2 dv =
1

9
.

Proof. Let Vi = (Xi, Yi) ∼ µ, for i = 1, 2, . . ., be independent random variables
distributed according to µ. By Fubini’s theorem, we have

∫

F (X, Y )2 dV =

∫
(
∫

V2≤V1

dV2

)(
∫

V3≤V1

dV3

)

dV1 =

∫

A

d(V1, V2, V3),

where A = {(V1, V2, V3) : V2 ≤ V1& V3 ≤ V1} ⊆ [0, 1]6. Note that

A \D3 =
⋃

π,τ∈S3
π(1)=τ(1)=3

Aπ,τ ,
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where D3 is defined by (1). The 4-symmetry of µ and (2) imply that µk(Aπ,τ ) =
(1/k!)2 for every k ≤ 4 and π, τ ∈ Sk. Since µ3(D3) = 0, we have µ3(A) =
4 · (1/3!)2 = 1/9, as required.

Likewise,
∫

F (X, Y )XY dV =
∫

B
d(V1, . . . , V4), where B ⊆ [0, 1]8 corre-

sponds to the event that V2 ≤ V1, X3 ≤ X1 and Y4 ≤ Y1. The latter integral
is equal to the µ4-measure of the union of Aπ,τ over some (explicit) set of pairs
π, τ ∈ S4. The measure of this set is uniquely determined by the 4-symmetry of
µ. Thus the integral does not change if we replace µ by any other 4-symmetric
measure. Considering the uniform measure λ, we obtain

∫

x2y2 dv = 1/9, as
required.

Next, observe that (X1, Y2) is uniformly distributed in [0, 1]2 because V1 and
V2 are independent and have uniform marginals. Again, the value of

∫

F (x, y)2 dv =

∫

[0,1]4
F (X1, Y2)

2 d(V1, V2) =

∫

V3,V4≤(X1,Y2)

d(V1, . . . , V4),

does not depend on the choice of µ and can be easily computed by taking µ =
λ.

Since X is uniformly distributed in [0, 1], we have
∫

X2 dV = 1/3. Also,

∫

F (x, y)xy dv =

∫

v≥V

xy d(v, V ) =
1

4

∫

(1−X2 − Y 2 +X2Y 2) dV.

We use the above identities and apply the Cauchy-Schwartz inequality twice
to get the following series of inequalities:

1

81
=

(
∫

F (X, Y )XY dV

)2

≤

(
∫

F (X, Y )2 dV

)

·

(
∫

X2Y 2 dV

)

=
1

9

(

4 ·

∫

F (x, y)xy dv −

∫

(1−X2 − Y 2) dV

)

=
1

9

(

4 ·

∫

F (x, y)xy dv −
1

3

)

≤
4

9

√

∫

F (x, y)2 dv ·

√

∫

x2y2 dv −
1

27
=

1

81
.

Thus we have equality throughout. However, the last inequality is equality if and
only if F (a, b) is equal to a fixed multiple of ab almost everywhere with respect
to the uniform measure λ. Since F is continuous, we conclude that F (a, b) = ab
for all (a, b) ∈ [0, 1]2. Thus the measures µ and λ coincide on all rectangles
[0, a] × [0, b]. Since rectangles generate the Borel σ-algebra on [0, 1]2, we have
that µ = λ by the uniqueness statement of the Carathéodory Theorem. This
proves Theorem 3.
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Figure 1: The sets M(0), M(1/3) and M(1).

Remark 5. Our proof gives other sufficient conditions for µ = λ. For ex-
ample, it suffices to require that each of the three integrals of Lemma 4 is
1/9. The proof of the lemma shows that, if desired, these integrals can be ex-
pressed as linear combinations of densities t(π, µ) for π ∈ S4. The single identity
(
∫

F (x, y)xy dv)2 = 1
9

∫

F (x, y)2 dv is also sufficient for proving that µ = λ; how-
ever, if written as a polynomial in terms of permutation densities, it involves
5-point permutations. Our method can give other sufficient conditions in this
manner; the choice of which one to use may depend on the available information
about the sequence.

Remark 6. Also, the argument of Lemma 4 shows that, for every polynomial
P (x, y) and µ ∈ Z, the value of

∫

P (x, y) dµ(x, y) can be expressed a linear
combination of permutation densities. This observation combined with the Stone-
Weierstrass Theorem gives the uniqueness of a permutation limit: if µ, µ′ ∈ Z
have the same permutation densities, then µ = µ′ (cf. [9, Theorem 1.7]).

4 P(3) does not imply P(4)

First, we construct a 3-symmetric measure µ ∈ Z which is not 4-symmetric.
For a ∈ [0, 1], let M(a) be the set of all the points (x, y) ∈ [0, 1]2 such that
x+y ∈ {1−a/2, 1+a/2, a/2, 2−a/2} or y−x ∈ {−a/2, a/2, 1−a/2, a/2−1}. See
Figure 1 for illustrations of this definition. Define µa ∈ Z for a ∈ [0, 1] to be the
permutation limit such that the mass is uniformly distributed on M(a). Because
of the symmetries of µa (invariance under the horizontal and vertical reflections),
we have that t(π, µa) = 1/6 for every π ∈ S3 if and only if t(Id3, µa) = 1/6, where
Id3 is the identity 3-point permutation.

Routine calculations show that t(Id3, µ0) = 1/4 and t(Id3, µ1) = 1/8. Since
t(Id3, µa) is continuous in a, there exists b ∈ [0, 1] such that t(Id3, µb) = 1/6.
Moreover, µb is not 4-symmetric. This can be verified directly; it also follows
from Theorem 3 since µb is not the uniform measure.

Take a sequence {τj} of permutations that converges to µb. For example,
the random sequence {σ(j, µb)} has this property with probability one, see [10,
Corollary 4.3]. Any such sequence {τj} satisfies P(3) but not P(4).
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5 Proof of Proposition 2

Let {τj} be an arbitrary sequence of permutations with |τj | → ∞. Let µj ∈ Z
be the measure associated with τj as is described after (3). It is straightforward
to verify that d(τj) = d(µj) + o(1), where

d(µ) := sup |λ(A× B)− µ(A× B)|

denotes the discrepancy of µ ∈ Z, with the supremum (in fact, it is maximum)
being taken over intervals A,B ⊆ [0, 1]. The uniqueness of a permutation limit
(see Remark 6) implies that {τj} converges to µ if and only if {µj} weakly con-
verges to µ.

First, suppose that {τj} satisfies P(k) for each k. This means that {τj}
converges to the uniform limit λ. For a, b ∈ [0, 1], let Fj(a, b) := µj([0, a]× [0, b])
and F (a, b) := ab. Since d(λ) = 0 and

µj([a1, a2]× [b1, b2]) = Fj(a2, b2)− Fj(a1, b2)− Fj(a2, b1) + Fj(a1, b1),

we conclude that d(µj) ≤ 4 · ‖Fj − F‖∞. The weak convergence µj → λ of
measures in Z gives that Fj → F pointwise. Since F and each function Fj are
continuous and monotone in both coordinates, this implies that

‖Fj − F‖∞ → 0. (4)

Thus d(µj) → 0 and {τj} is quasirandom. (Alternatively, (4) directly follows
from [9, Lemma 5.3].)

Next suppose that d(τj) → 0. One way to establish PropertyP(k) is to use one
of the equivalent definitions of quasirandomness from [5, Theorem 3.1] (namely
Property [mS]). Alternatively, if P(k) fails, then (by passing to a subsequence)
we can assume that {τj} converges to some µ ∈ Z with µ 6= λ. However, it holds
that d(µ) = 0 which implies µ = λ, contradicting our assumption. This finishes
the proof of Proposition 2.

6 Concluding remarks

The theory of flag algebras developed by Razborov [15] can be applied to permu-
tation limits: a permutation π : A → A is viewed as two binary relations, each
giving a linear order on A. For example, Lemma 4 can be stated and proved
within the flag algebra framework. This view has been very helpful for us when
developing our proof.

A graph can be associated with a permutation π ∈ Sn as follows: let G(π)
be the graph on [n] with vertices i < j adjacent if π(i) < π(j). Fix µ ∈ Z and
sample a random permutation σ(n, µ). Define a function W : [0, 1]4 → {0, 1}
by W (x1, y1, x2, y2) = 1 if we have (x1, y1) < (x2, y2) or (x1, y1) > (x2, y2)
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componentwise and let W (x1, y1, x2, y2) = 0 otherwise. In other words, W is
the indicator function of the event that σ(2, µ) is the identity 2-point permu-
tation. Clearly, G(σ(n, µ)) can be generated by sampling independently points
V1, . . . , Vn ∈ [0, 1]2, each with distribution µ, and connecting those i, j ∈ [n] for
which W (Vi, Vj) = 1. The latter procedure corresponds to generating a random
sample G(n,W ), where W is viewed as a graphon represented on Borel subsets
of [0, 1]2 with measure µ, see [12, Section 2.6] for details.

Lovász and Sós [11] and Lovász and Szegedy [13] presented various sufficient
conditions for a graphon W to be finitely forcible which, in the above notation,
means that there is m such that the distribution of G(m,W ) uniquely determines
that of G(k,W ) for every k. As far as we can see, none of these conditions directly
applies to the graphon associated with the uniform measure λ ∈ Z. Since we
answered Graham’s question on quasirandom permutations by other means, we
did not pursue this approach any further.
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