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Abstract.
For any positive integer s, a [2, 2s]-factor in a graph G is a connected even factor
with maximum degree at most 2s. We prove that if every induced S(K7 25+1) in
a graph G has at least 3 edges in a block of degree at most two, then G? has a
2, 2s]-factor. This extends the results of Hendry and Vogler and of Abderrezzak
et al.
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1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and we
consider only finite undirected simple graphs, unless otherwise stated.

Let G = (V, E) be a graph with vertex set V and edge set E. Let a(G) denote the
independence number of GG, i.e., the cardinality of a largest independence set in GG. For
any vertex x of G, let dg(x) denote the degree of x in G, Ng(x) the set of all neighbors
of z in G, Ng[z] = Ng(x) U {z}. The square of a graph G, denoted by G2, is the graph
with V(G?) = V(G) in which two vertices are adjacent if their distance in G is at most
two. Thus G C G2.
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For any S C V(G), we denote by G[S] the subgraph of G induced by S. For a
positive integer s, the graph S(K7 2s+1) is obtained from the complete bipartite graph
K 2541 by subdividing each edge once. The graph G is said to be S(K 2541)-free if it
does not contain any induced copy of S(K7 2s+1)-

A connected graph that has no cut vertices is called a block. A block of a graph G
is a subgraph of GG that is a block and is maximal with respect to this property. The
degree of a block B in a graph G, denoted by d(B), is the number of cut vertices of G
belonging to V(B).

A factor in a graph G is a spanning subgraph of GG. A connected even factor in
G is a connected factor in G with all vertices of even degree. A [2,2s]-factor in G is a
connected even factor in G in which degree of every vertex is at most 2s. A graph is
hamiltonian if it has a spanning cycle. In other word, a graph is hamiltonian if and only
if it has a [2, 2]-factor.

The following result concerns the existence of a [2,2]-factor in the square of a 2-

connected graph.
Theorem A [3]. Let G be a 2-connected graph. Then G? is hamiltonian.

Gould and Jacobson in [4] conjectured that for the hamiltonicity of G2, the connec-
tivity condition can be relaxed for S(K 3)-free graphs. Their conjecture was proved by

Hendry and Vogler in [5].

Theorem B [5]. Let G be a connected S(Kj 3)-free graph. Then G? is hamiltonian,

i.e., has a [2,2]-factor.

Moreover, Abderrezzak, Flandrin and Ryjacek in [1] proved the following result in

which graphs may contain an induced S(K 3) of a special type.

Theorem C [1]. Let G be a connected graph such that every induced S(K;3) in G
has at least three edges in a block of degree at most two. Then G? is hamiltonian, i.e.,
has a (2, 2]-factor.

It is a natural question if there exists a [2,2s]-factor in the square of a graph if one
replaces S(Kj3) by S(K12s+1) in Theorems B and C. In this paper, we will give a

positive answer to this question; we will extend Theorems B and C as follows.

Theorem 1. Let G be a connected S(/K 2s+1)-free graph of order at least three and s

a positive integer. Then G? has a [2, 2s]-factor.



Since the square of an S(K 2511) itself has no [2,2s]-factor, Theorem 1 is the best

possible in a sense.

Theorem 2. Let s be a positive integer and G be a connected graph such that every
induced S(K 25+1) has at least three edges in a block of degree at most two. Then G?
has a [2, 2s]|-factor.

Note that Theorem 2 is a strengthening of Theorem 1, but we state Theorem 1

separately because it will be used in the proof of Theorem 2.

2 Preliminaries and auxiliary results

As noted in Section 1, for graph-theoretic notation not explained in this paper, we refer
the reader to [2].

A graph G is even if every vertex of G has even degree. In the subsequent sections,
we frequently take the symmetric difference of two subgraphs of a graph. Let H, H' be
subgraphs of a graph G. The graph H A H' has vertex set V(H) UV (H') and its edge
set is the symmetric difference of E(H) and E(H'). Note that if H and H' are both
even graphs, then H A H’ is also an even graph.

A trail between vertices ug and u, is a finite sequence T = wugejuiesus - - - e, Uy,
whose terms are alternately vertices and edges, with e; = u;_ju;, 1 <1 < r, where the
edges are distinct. A trail T is closed if ug = u,, and it is spanning if V(1) = V(G).
An s-trail between uy and w, is a trail starting at ug, ending at u, and in which every
vertex is visited at most s times. In other words, a [2,2s]-factor in a graph G can be
viewed as a spanning closed s-trail in G and vice versa. We define the degree of a vertex
x in an s-trail as the number of edges incident with x in the corresponding [2, 2s]-factor.

We use the following fact (see [6], Corollary 2.3.1 for a proof).

Theorem D [6]. Let k > 2 be an integer and G a k-connected graph. If o(G) > k
then V(G) can be covered with a(G) — k disjoint paths.

From the proof of this Theorem it follows that the statement is true without the

restrictions on k, in particular for £ = 0.

Corollary 3. Let G be a graph. Then there are at most «(G) disjoint paths covering
V(G).

Let G1,G4y be graphs such that V(G1) N V(G2) = {x}. The symbol G = G12G>
denotes a graph G with V(G) = V(G1) UV (Ge) and E(G) = E(G1) U E(Gs).



Given a subgraph K of a graph H, we define 0 (K) as the set of all edges of H with

exactly one endvertex in V(K). Thus Oy (K) is a (not necessarily minimal) edge-cut.

Lemma 4. Let H be a connected graph and P = xyz a path of length two such that
V(H)NV(P) = {z}. If (HxP)? has a [2,2s]-factor, then one of the following holds:

(a) H? contains a spanning closed s-trail T' such that the degree of x in T is at most

2s — 2, or
(b) H? contains a spanning s-trail T' between x and some 2’ € Ny (z).

Proof. Let F be a |2, 2s]-factor of (HzP)? and let Ky, ..., K, be all the components
of F\ {y,z}, where x € V(Ky). Furthermore, define W = Np(y) \ {2z} and W; =
WNV(K;) (i =0,...,¢). Observe that each W; is nonempty. Clearly, the induced
subgraph @Q of H? on W U {z} is complete.

Since F' covers z, it includes the edges yz and zz. For 0 < ¢ < /, every edge in

Or(K;) is incident with y, except for the edge xz € Op(Kj). Since

and the intersection of any edge-cut with an eulerian subgraph has even cardinality, we
conclude that for 0 <17 </,

|W;| is odd if and only if ¢ = 0.

If w e W; and w # x, then the degree of w in K; is odd and does not exceed 2s — 1. The
same is true for w = x provided that x ¢ W, since then xz is the only edge of dr(Kjy)
incident with x. On the other hand, if x € W, then both xz and xy have this property,
so the degree of x in Ky is even and does not exceed 2s — 2.

For each 7, 0 < ¢ < £, choose a matching M; that covers all except one or two vertices
of W; (one if i = 0, two otherwise) and uses as few edges as possible from F. We argue
that the symmetric difference K; A M; is connected. We may assume that M; uses at
least one edge of F', otherwise there is nothing to prove. For a fixed 7, let X C W,
be the set consisting of vertices incident with edges in E(M;) N E(F), together with
the vertices of W left uncovered by M;. By the choice of M;, K;[X] must be complete
and |X| > 3. All the edges of K; that are removed as a result of taking the symmetric
difference are edges of K;[X]. Since any graph obtained by removing a matching from
a complete graph on at least 3 vertices is connected, the claim follows.

Observe that for ¢« > 1, each K; A M; contains exactly two vertices of odd degree

(and the degree does not exceed 2s — 1). The same is true for ¢ = 0 unless z € W and x



is not incident with My, in which case Ko A Mj is eulerian and the degree of x in this
graph is at most 2s — 2. It follows that if £ = 0, then we can set T := Ky A My and we
are done (7" satisfies condition (a) if x € W \ V(M) and condition (b) otherwise).

If ¢ > 1, then let ug be the vertex of Wy \ V(My), and for ¢ > 1, let W; \
V(M;) = {u;,v;}. Taking the union of all the graphs K; A M; and adding the edges
Ugv1,ULV2, . . ., Uy_1Vp, We obtain a connected graph 7' in which the only vertices of odd
degree are x and uy, and which satisfies condition (b) in the lemma. B

Using a similar argument as in the proof of Lemma 4, one can prove the following.

Lemma 5. Let H be a connected graph and P = xy an edge such that V(H)NV(P) =
{x}. If (HzP)? has a [2, 2s]-factor, then H? has a spanning s-trail 7' between 2’ € Ny[z]

and some vertex x” € Ny (z).

The following theorem will be used in the proof of Theorem 2.

Theorem E [3]. Let y and z be arbitrarily chosen vertices of a 2-connected graph
G. Then G? has a hamiltonian cycle C such that the edges of C incident with y are in
G and at least one of the edges of C' incident with z is in G. If y and z are adjacent in

(G, then these are three different edges.

3 Proofs

The purpose of this section is to prove Theorem 2. As mentioned in Section 1, the proof
makes use of Theorem 1 which we derive next.

Proof of Theorem 1. This proof is inspired by the proof in [5]. We prove our
result by induction on |V(G)|. Clearly G? is hamiltonian (hence has a [2, 2]-factor) for
graphs with |V (G)| < 6, since G is S(K 3)-free. By Theorem A, we may assume that
G has cut vertices. If all cut vertices have degree two, then G is a path and hence G? is
hamiltonian. So we may assume that there is a cut vertex u such that dg(u) = d > 3.
Since G is connected, we may take a spanning tree S of G such that S contains all
edges of G incident with u. We label the neighbors of v by wuq,us,--- ,ug in such a way
that dg(u;) > 2 for 1 < i < m and dg(u;) = 1 for m+1 < i < d. Fori < m, let
GG; be the subgraph of G induced by the vertices in the component of the forest S — u
containing wu;; we fix a neighbour ) of w that is not contained in the same component of
G — u as u; (note that there must be such a vertex since u is a cut vertex of G), and let
H; = G[V(G;)U{u,u}}]. Then H; is a proper S(Kj 2s+1)-free subgraph of G since H; is



an induced subgraph of G and dg(u) > 3. Note that H; is connected. By the inductive
hypothesis, H? has a [2,2s]-factor. Note that dg2(u}) = 2.
By Lemma 4 it follows that at least one of the following facts holds.

(a) there exists a spanning closed s-trail T; in G? such that dr, (u;) < 2s — 2;
(b) there exists a spanning s-trail 7} in G? between u; and some z; € Ng, (u;) .

Without loss of generality we may assume that {uy, uo, ..., Un} C {ug,ug, ..., Um}
is the set of all vertices u; such that G; has an s-trail of type (b), for a suitable m’ < m.
Construct the graph H from G[{uy,ug, ..., Ups, 21,22, ..., 2m }| by contracting edges wu; z;
to a vertex w; for i = 1,...,m’. Since G is S(K1 2s41)-free, a(H) < 2s. By Corollary 3,
there are ¢ < «a(H) vertex-disjoint paths Py, P, ..., P, covering V(H). Without loss
of generality, we may assume that P; = ws, ,+1Ws, ,42...ws,;, for i = 1,..., ¢ (where
so = 0 and sy = m'). Since we contracted edges u;z; to vertices wj, both u; and z; have
a neighbor in {u;4+1, 2511} in G fori=1,...,¢,and j = s,_1+1,...,s;— 1. Hence from
the paths P; (i = 1,...,¢) and s-trails T; (i = 1,...,m') we can obtain the following

s-trails Fj in G2:
- for a trivial (one-vertex) path P;, F; = T;,

- for a nontrivial path P;, we construct F; by joining the trails Ts, ,41,..., Ts, with
the edges xjzj41, where x; € {uj,2;} and xj41 € {uji1, 241} with respect to
P;. Clearly dp,(us, ,+1) < 2s, dp,(xs,) < 2s and F; spans all the vertices of
Gs, ,+1U---UGj,.

Note that the number of s-trails Fj is £ < 2s.

Let T = upy 1T 41Uy 41Uy 2T 12Uy 42 - Uy T U U471 - - - Ug be an s-trail
containing all vertices of Gy,y41 U -+ UGy, and all neighbours of u of degree one in
G. We set F' = w1 F1xs,uxsy Foug, 41Usyt1F3 ... T5,Fptls, | +1Ups41 for even ¢ and F' =
U F1 2, uT sy Fottg, 4 1Usy41F53 . . s, 41 Fps,uttyy 11 for odd £. In both cases, F’ is an
s-trail containing all vertices of G; U --- U G,,y. Finally, we construct a trail F' =
U1 F' Uy g1 Tuguy. Clearly, dp(u) = £ < 2s and F corresponds to a [2, 2s]-factor in G2.
|

Corollary 6. Let G be a simple connected graph with A(G) < 2s. Then G? has a
2, 2s]-factor.

Before we present the proof of Theorem 2, we give some additional definitions.

Let x be a cut vertex of G, and H' be a component of G — x. Then the subgraph



H = G[V(H") U{xz}] is called a branch of G at z. Let F be a connected subgraph of
G and x some vertex of F. Let P;(x) denote a path on i vertices with end vertex z.
The subgraph F is called to be nontrivial at x if it contains a P3(z) as a proper induced
subgraph (i.e., F' is trivial at = if F' = Ps(x) or V(F') C NJz]).

Now we present the proof of Theorem 2.

Proof of Theorem 2. We prove this theorem by contradiction. Suppose that

Theorem 2 is not true and choose a graph G in such a way that

(1) G is connected and every induced S(K72s41) in G has at least three edges in a

block of degree at most two;
(2) G? has no [2,2s]-factor;
(3) |V(G)| is minimized with respect to (1) and (2).
The following fact is necessary for our proof.

Claim 1. Let x be a cut vertex of G and Fy, Fy two connected subgraphs of G such
that Fy, F> belong to different branches of G at x. Assume that F5 is nontrivial at x,
i.e., Fy contains an induced Ps(x) = xyz as a proper induced subgraph. Then the graph
G’ = F1xPs(x) also satisfies (1).

Proof of Claim 1. If not, there exists in G’ some S(K7 2s4+1) that has no connected
part of order at least 4 in a block of degree at most two. But if so, it is the same in G,
since any S(Kj2s+1) in G’ is also an induced S(Kj 2541) of G. O

Since in our proof we have assumed that G? has no [2,2s]-factor, we know from
Theorem 1 that G contains some S(Kj2s41) as an induced subgraph. By (1), the
S(K12s+1) has at least 3 edges in some block H of G of degree at most 2. Notice that
\V(H)| > 5.

Case 1: d(H) = 1. Let ¢ be the cut vertex of G belonging to H and let R be the
union of all branches of G at ¢ which intersect H only at c.

If H is trivial at ¢, then V(H) — {c} = {b1,b2,...,bp} € N(c). The graph G’ =
Re(chy) satisfies condition (1). So by minimality of G, the graph G’ has a [2, 2s]-factor
and, by Lemma 5, R? has a spanning s-trail T between some ¢ € Ng[c] and some
" € Ng(c). Let F = dTc"by...bpc. Tt is easy to see that F is a [2,2s]-factor in G2, a
contradiction.

Hence H is nontrivial at ¢, i.e., it contains a proper induced path P3(c) = cb1by. By

Theorem E, H? contains a hamiltonian path by Py2c connecting b; and c¢. On the other



hand the graph G” = RePs(c) is connected and, by Claim 1, G” satisfies condition (1).
Since [V(G")| < [V(GQ)], (G")? has a [2, 2s]-factor and by Lemma 4, one of the following
subcases occur.

If the graph R? has a spanning closed s-trail 7" in which d7v(c) < 2s — 2, then
F = cT"cby Py2c is a [2,2s]-factor in G?, a contradiction.

If the graph R? has a spanning s-trail 7" between ¢ and some neighbor ¢ € Ny(c),
then F' = c¢T"¢"by Py2c is a [2, 2s]-factor in G2, contradicting condition (2).

Case 2: d(H) = 2. Let ¢; and ¢y be two cut vertices of G belonging to H and let
B;, 1 = 1,2, be the union of all branches of G at ¢; not containing H. This means that
G = (Bic1H)caBs. The subgraph H is a block and thus, by Theorem E, V(H) can be
covered by two vertex-disjoint paths alPI}Iag and cszlcl in H?, where a; € N (c1) and
as € N(cz). We distinguish, up to symmetry, the following three subcases.

Subcase 2.1: Bj is trivial at ¢; and By is trivial at cs.

If V(By) = {b1,bo,....,05,c1} C Nlci],k > 1, and By = P3(c2) = cadidsa, then
F = Clblbg...ka,lPIl{agdldQCQP?{Cl is even a hamiltonian cycle in G2, which contradicts
the fact that G? has no [2, 2s]-factor.

The proof is similar if B; = Ps(c1) and V(Bsy) C Nlca.

If V(B1) = {b1,ba,...,bg,c1} C NJci] and V(Bs) = {di,ds,...,d;,ca} C Neo], then
F = clblbg...bkalP}Iagdldg...dZCQP]%Icl is also a hamiltonian cycle in G?, contradicting
(2).

Finally, if By = Ps(c1) = ¢1b1bs and By = P3(c2) = cadids, then again the cycle
F = ClbzblCLlPI{,CLQClldQCQPI-Q__rCl gives a similar contradiction.

Subcase 2.2: Bj is nontrivial at ¢; and By is trivial at cs.

Since |V (H) UV (B3)| > 3, there exists some vertex in V(H) UV (Bs) (for example
each vertex in V(B3) \ {¢2}) nonadjacent to ¢1, the subgraph G’ = HcoBs is nontrivial.
Then G’ contains a path Ps(c;) = cining as a proper induced subgraph. Now let
G1 = Bjicining. By Claim 1, G satisfies condition (1). By minimality of G, the graph
G7 has a [2,2s]-factor and thus, by Lemma 4, we have the following two possibilities.

a) The graph B? has a spanning closed s-trail T in which dr(c1) < 2s — 2.

If V(By) = {b1,ba,....,bk,ca} C Nlca],k > 1, then F = CchlalpérCLlebQ...bkCQPIQ_ICl
is a [2,2s]-factor in G2, a contradiction with (2).

If By = P3(c2) = codyids, then F' = C1TCla1P11{CL2d1d202P}2101 is a [2, 2s]-factor in G2,
which contradicts condition (2).

b) The graph B? has a spanning s-trail T" between ¢; and some neighbor ¢ €
Np, (c1).

If V(By) = {b1,b2,...,bg,ca} C Nleo],k > 1, then F = ¢,T'c|ay Pirasbibs...byca Prey



Figure 1: An example showing that a condition in Theorem 2 cannot be relaxed.

is a [2,2s]-factor in G2 and contradicts (2).

If By = P3(c2) = cadida, then F = ¢T'cjay PlasdidacaPhcy is a [2,2s]-factor in
G?, a contradiction with (2).

Subcase 2.3: Bj is nontrivial at ¢; and By is nontrivial at cs.

Let G1 be the same graph as in Subcase 2.2 and in a similar way as in Subcase
2.2 let G5 = Bacomims, where a path comims is a proper induced subgraph of Hc; Bj.
Then, by Claim 1, both G; and Gy satisfy condition (1). By minimality of G, the
graphs G? and G2 have a [2,2s]-factor and thus, by Lemma 4, we have the following
two possibilities.

a) The graph B? has a spanning closed s-trail 7' in which dp(c1) < 2s — 2.

If the graph B2 has a spanning closed s-trail 7" in which d/(cy) < 2s — 2, then
F = ClTCl@lP;IGQCQT,CQPI%—Cl is a [2,2s]-factor in G2 and contradicts (2).

If the graph B3 has a spanning s-trail T between cy and some neighbor ¢, €
Ng,(c2), then F = ¢;Tcia1 PhaacyT"caPhey is a [2,2s]-factor in G2, contradicting con-
dition (2).

b) The graph B? has a spanning s-trail 7% between c; and some neighbor ¢ €
Np, (c1).

If the graph B2 has a spanning closed s-trail 7** in which dr+(c2) < 25 — 2, then
F = ClT*Cllalpj}IGQCQT**CQPI%IC1 is a [2, 2s]-factor in G2, a contradiction.

If the graph B3 has a spanning s-trail T between cy and some neighbor ¢, €
Ng,(c2), then F = c;T*cjay PLaschT®caPiey is a [2,2s]-factor in G? and contradicts
(2). [ |

The graph G in Figure 1 shows that (for s = 1) the constant 3 in Theorem 2 cannot
be decreased. Although every induced S(K 25+1) in G has at least two edges in a block

of degree at most two, G2 has no [2, 2s]-factor.
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