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Abstract

We show that for every hereditary permutation property P and
every ε0 > 0, there exists an integer M such that if a permutation
π is ε0-far from P in the Kendall’s tau distance, then a random sub-
permutation of π of order M has the property P with probability at
most ε0. This settles an open problem whether hereditary permuta-
tion properties are strongly testable, i.e., testable with respect to the
Kendall’s tau distance. In addition, our method also yields a proof
of a conjecture of Hoppen, Kohayakawa, Moreira and Sampaio on the
relation of the rectangular distance and the Kendall’s tau distance of
a permutation from a hereditary property.

1 Introduction

Property testing is a topic with growing importance with many connections
to various areas of mathematics (e.g., see [11, 12, 26] for relation to graph
limits) and computer science. A property tester is an algorithm that decides
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whether a large input object has the considered property by querying only
a small sample of it. Since the tester is presented with a part of the input
structure, it is necessary to allow an error based on the robustness of the
tested property of the input. Following [17,18], we say that a property P of
combinatorial structures (e.g., graphs) is testable if for every ε, there exists
a randomized algorithm A such that the number of queries made by A is
bounded by a function of ε independent of the input and such that if the
input has the property P , then A accepts with probability at least 1−ε, and
if the input is ε-far from P , then A rejects with probability at least 1 − ε.
The exact notion depends on the studied class C of combinatorial structures,
the considered properties P and the chosen metric on C. There are also some
variants of this basic notion, e.g., one can allow only a one-sided error, i.e.,
A is required to accept whenever the input has the property P .

The most investigated area of property testing is testing graph properties.
One of the most significant results in this area is that of Alon and Shapira [5]
asserting that every hereditary graph property, i.e., a property preserved by
taking induced subgraphs, is testable, which extends several earlier results [6,
17, 27]. A characterization of testable graph properties can be found in [2].
A logic perspective of graph property testing was addressed in [1,16] and the
connection to graph limits was explored in [26].

Testing properties of other objects have also been intensively studied.
For example, results on testing string properties can be found in [3,7,24], re-
sults related to constraint satisfaction problems in [4] and more algebraically
oriented properties are addressed in [8–10, 28–30]. In this paper, we study
testing properties of permutations.

To state our results, we need to introduce some terminology. A permu-
tation of order N is a bijective mapping from [N ] to [N ] where [N ] denotes
the set {1, . . . , N}. The order of a permutation π is denoted by |π|. If π
is a permutation of order N and X ⊆ [N ], then the subpermutation of π
induced by X, denoted by π � X, is the permutation π′ of order |X| such
that π′(i) < π′(j) if and only if π(xi) < π(xj) for all i, j ∈ [|X|] where
X = {x1, . . . , x|X|} and x1 < · · · < x|X|.

A permutation property P is a set of permutations. If π ∈ P , we say
that a permutation π has the property P . Since we are interested only in
permutation properties in this paper, we often refer to permutation properties
just as properties. A property P is hereditary if it is closed under taking
subpermutations, i.e., if π ∈ P , then any subpermutation of π is in P . An
example of a hereditary property is the set of all permutations not containing
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a fixed permutation as a subpermutation.
There are several notions of distances between permutations, see [15]. The

rectangular distance and the Kendall’s tau distance will be of most interest
to us. Let π and σ be two permutations of the same order N . The rectangular
distance of π and σ, which is denoted by dist�(π, σ), is defined as

dist�(π, σ) := max
S,T

| |π(S) ∩ T | − |π′(S) ∩ T | |
N

where the maximum is taken over all subintervals S and T of [N ]. The
Kendall’s tau distance distK(π, σ) is defined as

distK(π, σ) :=
|{(i, j) such that π(i) < π(j), π′(i) > π′(j) and i, j ∈ [N ]}|(

N
2

) .

The Kendall’s tau distance of two permutations is the minimum number of
swaps of consecutive elements transforming π to σ normalized by

(
N
2

)
. Hence,

the Kendall’s tau distance is considered to correspond to the edit distance
of graphs which appears in the hereditary graph property testing, while the
rectangular distance is considered to correspond to the cut norm appearing in
the theory of graphs limits, see [25]. The latter is demonstrated in the notion
of regularity decompositions of permutations developed by Cooper [13, 14]
and permutation limits introduced by Hoppen et al. [19,20] (also see [13,23]
for relation to quasirandom permutations).

If P is a property, we define the rectangular distance of a permutation π
from P as

dist�(π,P) = min
σ∈P,|π|=|σ|

dist�(π, σ)

and the Kendall’s tau distance to be

distK(π,P) = min
σ∈P,|π|=|σ|

distK(π, σ) .

It can be shown that if two permutations are close in the Kendall’s tau
distance, then they are close in the rectangular distance. The converse is not
true: the rectangular distance of two random permutation is concentrated
around 0 but their Kendall’s tau distance is concentrated around 1/2. Hence,
testing permutation properties with respect to the Kendall’s tau distance is
more difficult than with respect to the rectangular distance (at least in the
sense that every tester designed for testing with respect to the Kendall’s
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tau distance also works for testing with respect to the rectangular distance
but not vice versa in general). However, one of our results asserts that the
converse is true when P is hereditary.

Testing hereditary permutation properties was first addressed by Hoppen,
Kohayakawa, Moreira and Sampaio [21]. They considered testing properties
through subpermutations where the tester is presented with a random subper-
mutation of the input permutation (the size of the subpermutation depends
on the tested property and the required error). Their main result is the
following.

Theorem 1. Let P be a hereditary property. For any real ε > 0, there exists
M such that every permutation π of order at least M with dist�(π,P) > ε
satisfies that a random subpermutation of π of order M has the property P
with probability at most ε.

Theorem 1 implies that hereditary properties are testable through sub-
permutations with respect to the rectangular distance with one-sided error:
the tester accepts if the random subpermutation has the property P and thus
the tester always accepts permutations having the property P .

Kohayakawa [22] asked whether hereditary properties of permutations are
also testable through subpermutations with respect to the Kendall’s tau dis-
tance, which he refers to as strong testability. In this paper, we resolve this
problem in the positive way. We prove an analogue of Theorem 1 with the
rectangular distance replaced with the Kendall’s tau distance (Theorem 6).
Hence, we establish that hereditary properties are testable through subper-
mutations with respect to the Kendall’s tau distance with one-sided error.
Since the Kendall’s tau distance for permutations corresponds to the edit
distance for graphs, this is viewed in [21] as an analogue of the result of Alon
and Shapira [5]. It is also worth noting that, unlike many approaches in
this area, our argument is not based on regularity decompositions or on the
analysis of limit structures.

Hoppen et al. [21] observed that the strong testability through subper-
mutation would be implied by the following statement.

Conjecture 1. Let P be a hereditary property. For every positive real ε0,
there exists δ0 such that any permutation π satisfying dist�(π,P) < δ0 also
satisfies distK(π,P) < ε0.

The conjecture is an analogue of the known relation between the rectan-
gular distance and the edit distance to hereditary graph properties from [26].
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Our method actually gives the proof of this conjecture which we state as The-
orem 7. However, we have decided to include the proof of Theorem 6 instead
of just stating that it can be derived from Theorem 7 for completeness.

2 Branchings

In this section, we present the notion of branchings which are rooted trees
approximately describing hereditary properties. This notion is key in our
analysis of hereditary properties.

Let us start with introducing the notion of patterns. If k is an integer,
then a k-pattern A for an integer k is a sequence A1, . . . , A` of non-empty
subsets of [k]. We refer to ` as the length of A and we write |A| for the length
of A. The basic k-pattern is the k-pattern of length one comprised of the set
[k]. A k-pattern A is simple if each Ai has size one. Finally, a k-pattern A
is monotone if every pair x ∈ Ai and x′ ∈ Ai′ with 1 ≤ i < i′ ≤ |A| satisfies
that x < x′.

Before we proceed further, we have to introduce some auxiliary notation.
If A is a k-pattern, then we write |A|i for the sum |A1| + · · · + |Ai|. For
completeness, we define |A|0 = 0. If a and b are integers, then a mod b is
equal to the integer x ∈ [b] with the same remainder as a after division by b.

Fix a k-pattern A. Let Ai = {xi1, . . . , xi|Ai|} where xi1 < · · · < xi|Ai|. For

an integer m, we define a function gA,m : [m · |A||A|]→ [k] as

gA,m(j) := xi
(j−m·|A|i−1)) mod |Ai|

where i is the largest integer such such that m · |A|i−1 < j. For example, if
A = {1, 2, 3}, {1, 4}, {3}, then

gA,4(1), . . . , gA,4(24) = 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 3, 3, 3, 3 .

Note that the sequence gA,m(1)gA,m(2) . . . gA,m(m · |A||A|) has |A| blocks such
that the i-th block consists of m parts each containing the elements of Ai in
the increasing order. Besides using the function gA,m here, this function also
appears later in the definition of a witnessing pattern and in the proofs of
Lemma 3 and Theorem 7.

A permutation π is an m-expansion of a k-pattern A if the following holds:

• the order of π is m · |A||A|, and
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• if gA,m(j) < gA,m(j′) for j, j′ ∈ {1, . . . ,m|A||A|}, then π(j) < π(j′).

In other words, if a permutation π is an m-expansion of A, then the range of
π can be viewed as partitioned into k parts and the permutation π consists
of |A| groups where the i-th group has m blocks of length |Ai| each and the
values of π in each block belong to the parts of the range of π with indices
in Ai in the increasing order. The number of m-expansions of a k-pattern A
is equal to

k∏
j=1

(m · |{i such that i ∈ [|A|] and j ∈ Ai}|)! .

Let P be a hereditary property. A k-pattern A is P-good if there exists
an m-expansion of A in P for every integer m. Otherwise, the pattern A is
P-bad. So, if A is P-bad, there exists an integer m such that no m-expansion
of A is in P . The smallest such integer m is called the P-order of A and it is
denoted by 〈A〉P ; if P is clear from the context, we just write 〈A〉. Observe
that if A is P-bad, then no m-expansion of A is in P for every m ≥ 〈A〉.

If A is a P-bad k-pattern, then any k-pattern A′ obtained from A by
replacing one element, say Ai, by a sequence of at least one and at most
|Ai|〈A〉 proper subsets of Ai is called a P-reduction of A. For example, if the
3-pattern A = {1}, {2, 3}, {1, 3} is P-bad and its P-order is two, then one of
its P-reductions is {1}, {2}, {2}, {3}, {1, 3}.

The k-branching of a hereditary property P is a rooted tree T such that

• each node u of T is associated with a k-pattern Au,

• the root of T is associated with the basic k-pattern,

• if the pattern Au of a node u is P-good or simple, then u is a leaf, and

• if the pattern Au of a node u is P-bad and it is not simple, then the
number of children of u is equal to the number of P-reductions of A
and the children of u are associated with the P-reductions.

Note that the k-branching, i.e., the tree and the association of its nodes with
k-patterns, is uniquely determined by the property P and the integer k.

Let us argue that the k-branching of every hereditary property P is finite.
We define the score of a k-pattern A to be the sequence m1, . . . ,mk where
mi is the number of Ai’s of cardinality k+ 1− i. Observe that the score of a
P-reduction of a P-bad k-pattern A is always lexicographically smaller than
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that of A. Since the lexicographic ordering on the scores is a well-ordering,
the k-branching is finite for every hereditary property P .

Let T be the k-branching of a hereditary property P . We now assign to
every node u of the k-branching of P an integer weight wu. The weight of a
leaf node u is one if Au is P-good. Otherwise, the weight of a leaf node u is
k〈Au〉. If u is an internal node, then wu is equal to 〈Au〉km where m is the
maximum weight of a child of u. In particular, the weight of u is at least the
weight of any of its children.

3 Decompositions

In this section, we introduce a grid-like way of decomposing permutations
which we use in our proof. The domain of a permutation will be split into
K equal size parts and the range into k such parts with k ≤ K.

We start with some auxiliary notation. First, [a/b]i denotes the set of all
integers k ∈ [a] such that i− 1 < k/ba/bc ≤ i. Observe that |[a/b]1| = · · · =
|[a/b]b| = ba/bc and |[a/b]b+1| ≤ b− 1. Fix now a permutation π of order N
and integers K ∈ [N ], i ∈ [K], k ∈ [K] and j ∈ [k]. We define RK,k

i,j (π) as

RK,k
i,j (π) := {x ∈ [N/K]i such that π(x) ∈ [N/k]j}

and we set

ρK,ki,j (π) :=
|RK,k

i,j (π)|
bN/Kc

.

Vaguely speaking, ρK,ki,j (π) ∈ [0, 1] is the density of π in the part of the K×k
grid at the coordinates (i, j). If the values of K and k are clear from the
context, we will just write Ri,j(π) and ρi,j(π).

To get used to the definition of the sets Ri,j and the quantities ρi,j, we
prove an auxiliary lemma which we use later in this section.

Lemma 2. Let k and K be positive integers and let ε′ ≤ 1/(k + 1) be a
positive real. For every permutation π of order at least k(k + 1)K and every
x ∈ [K], there exists y ∈ [k] such that ρx,y(π) ≥ ε′.

Proof. Observe that

|Rx,1(π)|+ · · ·+ |Rx,k(π)| ≥ b|π|/Kc − k ≥
(

1− 1

k + 1

)
b|π|/Kc .
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Since ε′ ≤ 1/(k + 1), there must exist y such that ρx,y(π) ≥ ε′ by the
pigeonhole principle.

Fix a permutation π, integers k, K and M such that 1 ≤ k ≤ K ≤ |π|,
and a real 0 ≤ ε′ < 1. If A is a k-pattern, then we say that a K-pattern B
is (A,M, ε′)-approximate for π if the following holds:

• the length of B is |A|,

• B is monotone,

• |B||B| =
∑|B|

i=1 |Bi| ≥ K −M , and

• for every i ∈ [|A|], if x ∈ Bi and y ∈ [k] \ Ai, then ρx,y(π) < ε′.

In other words, an (A,M, ε′)-approximateK-patternB decomposes the whole
index set [K] except for at most M indices into |A| parts such that the indices
contained in the parts determined by B are in the increasing order and for
x ∈ Bi, the only dense sets Rx,y(π) are those with y ∈ Ai.

Suppose that a k-pattern A is P-bad for a hereditary property P . We
say that a K-pattern B is (A, ε′)-witnessing for π if the following holds:

• the length of B is |A|,

• there exist integers 1 ≤ x1 < . . . < x|A||A|·〈A〉 ≤ K such that xj ∈ Bi if
|A|i−1〈A〉 < j ≤ |A|i〈A〉, and

• ρxj ,gA,〈A〉(j)(π) ≥ ε′ for every j ∈ [|A||A| · 〈A〉] (the definition of the
function g can be found in Section 2).

In other words, a K-pattern B which decomposes the index set [K] is (A, ε′)-
witnessing, if it is possible to find indices such that there are |Ai|〈A〉 in-
dices xj in each Bi and all the sets Rxj ,gA,〈A〉(j)(π) are dense. The moti-
vation for this definition is the following: if B is (A, ε′)-witnessing, then
each set Rxj ,gA,〈A〉(j)(π) has at least ε′b|π|/Kc elements and consequently at

least (ε′b|π|/Kc)|A|〈A〉 subsets of [|π|] induce subpermutations that are 〈A〉-
expansions of A. This will allow us to deduce that a random subpermutation
of sufficiently large order does not have the property P with high probability.

We now prove a lemma saying that if a K-pattern B is approximate but
not witnessing with respect to a k-pattern A for a permutation π, then there
exists a reduction A′ of A and a K-pattern B′ such that B′ is approximate
with respect to A′.
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Lemma 3. Let P be a hereditary property, let k, K, m and M be positive
integers and let ε′ ≤ 1/(k + 1) be a positive real. Suppose that a P-bad k-
pattern A and a monotone K-pattern B with |A| = |B|. If the pattern B
is (A,M, ε′)-approximate for a permutation π, |π| ≥ k(k + 1)K, B is not
(A, ε′)-witnessing for π and |Bi| ≥ mk〈A〉 for every i ∈ [|B|], then there
exist a P-reduction A′ of A and a monotone K-pattern B′ such that

• the lengths of A′ and B′ are the same,

• B′ is (A′,M +mk〈A〉, ε′)-approximate for π, and

• |B′i| ≥ m for every i ∈ [|B′|].

Proof. If B is not (A, ε′)-witnessing for π, then there exists an index j ∈
[|B|] such that there is no |Aj|〈A〉-tuple x1 < · · · < x|Aj |〈A〉 in Bj satisfying

ρxi,yi(π) ≥ ε′ where yi = gA,〈A〉(|A|j−1〈A〉 + i). Fix such an index j for the
rest of the proof.

If |Aj| = 1, then an 〈A〉-tuple with the properties given in the previous
paragraph is formed by any 〈A〉 elements of Bj by Lemma 2. So, we assume
that |Aj| ≥ 2 in the rest of the proof. Define x1 to be the smallest index
in Bj such that ρx1,y1)(π) ≥ ε′. Suppose that we have defined the indices
x1, . . . , xi and define xi+1 to be the smallest index in Bj that is larger than
xi such that ρxi+1,yi+1

(π) ≥ ε′. If no such index exists, we stop constructing
the sequence. Let ` be the number of the indices defined. By the choice of
j, ` < |Aj|〈A〉. For completeness, set x0 = 0 and x`+1 = K + 1.

Define Ci, i ∈ [`+ 1], to be the set of the elements of Bj strictly between
xi−1 and xi. If the subset Ci has size less than m, remove it from the sequence
and let C ′1, . . . , C

′
`′ be the resulting sequence. Observe that

|Bj| −
∑`′

i=1 |C ′i| ≤ `+ (`+ 1)(m− 1) ≤ (`+ 1)m− 1
≤ m|Aj|〈A〉 − 1 ≤ mk〈A〉 − 1

(1)

since the sets C ′1, . . . , C
′
`′ contain all the elements of Bj except for the el-

ements x1, . . . , x` and the elements contained in the sets C1, . . . , C`+1 with
cardinalities at most m − 1. In particular, we can infer from |Bj| ≥ mk〈A〉
that `′ ≥ 1.

Next, define C ′′i , i ∈ [`′], to be the set of y ∈ [k] such that there exists
x ∈ C ′i with ρx,y(π) ≥ ε′. Lemma 2 implies that the sets C ′′1 , . . . , C

′′
`′ are

non-empty. We infer from the way we have chosen the indices x1, . . . , x` that
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each set C ′′i is a proper subset of Aj. Finally, define the k-pattern A′ to be
the K-pattern A with Aj replaced with C ′′1 , . . . , C

′′
`′ and the K-pattern B′ to

be the K-pattern B with Bj replaced with C ′1, . . . , C
′
`′ . By the definition of

C ′′1 , . . . , C
′′
`′ and by (1), the K-pattern B′ is (A′,M +mk〈A〉, ε′)-approximate

for π. By the choice of C ′1, . . . , C
′
`′ , we have that |B′i| ≥ m for every i ∈ [|B′|].

Finally, since `′ ≤ ` ≤ |Aj|〈A〉 and every C ′i, i ∈ [`′], is a proper subset of
Bj, A

′ is P-reduction of A.

We finish this section with the following lemma on approximating the
structure of a sufficiently large permutation π with respect to a hereditary
property.

Lemma 4. Suppose P is a hereditary property. For all integers k and reals ε
and ε′, 0 < ε ≤ 1 and 0 < ε′ ≤ 1/(k+ 1), there exists an integer K such that
for every permutation π of order at least k(k + 1)K, there exist a k-pattern
A and a K-pattern B with the same lengths such that

• A is P-bad and B is (A, ε′)-witnessing for π, or

• A is P-good and B is (A, bεKc, ε′)-approximate for π.

Proof. Let T be the k-branching with respect to P . Let d be the depth of
T , i.e., the maximum number of vertices on a path from the root to a leaf,
and let w0 be the weight of the root of T . We show that K := ddw0/εe has
the properties claimed in the statement of the lemma.

Let π be a permutation of order at least k(k+1)K. Based on π, we define
a path from the root to one of the nodes in T in a recursive way. In addition
to choosing the nodes ui on the path, we also define monotone K-patterns
Bi such that Bi is (Au

i
, i ·w0, ε

′)-approximate for π and |Bi
j| ≥ wui for every

j ∈ [|Bi|].
Let u0 be the root of T and set B0 to be the basic K-pattern. Clearly,

B0 is (Au
0
, 0, ε′)-approximate for π. Suppose that the node ui on the path

has already been chosen and we now want to choose the next node. If ui is
a leaf node, we stop. If ui is not a leaf node, then the k-pattern Au

i
must be

P-bad. If Bi is (A, ε′)-witnessing for π, we also stop. Otherwise, Lemma 3
applied with m equal to the maximum weight of a child of ui (note that
|Bi

j| ≥ mk〈Aui〉 for every j ∈ [|Bi|]) implies that there exist a P-reduction

A′ of Au
i

and a K-pattern Bi+1 such that Bi+1 is (A′, i · w0 + mk〈Aui〉, ε′)-
approximate for π and |Bi+1

j | ≥ m for every j ∈ [|Bi+1|]. Choose ui+1 to be
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the child of ui such that Au
i+1

= A′. Since mk〈Aui〉 ≤ w0, we obtain that
Bi+1 is (Au

i+1
, (i+ 1)w0, ε

′)-approximate for π.
Let ` be the length of the constructed path. We claim that the k-pattern

Au
`

and the K-pattern B` have the properties described in the statement of
the lemma.

If u` is not a leaf node, then Au
`

is P-bad and B` is (Au
`
, ε′)-witnessing

for π (since we have stopped at u`). If u` is a leaf node and Au
`

is P-bad, then
B` is (Au

`
, ε′)-witnessing for π by Lemma 3 applied for m = 1 (Au

`
cannot

have a P-reduction because it is simple). Finally, if u` is a leaf node and Au
`

is P-good, B` is (Au
`
, bεKc, ε′)-approximate for π since dw0 ≤ bεKc.

4 Testing

In this section, we establish our main result. The next lemma, which says that
every permutation that is far from a hereditary property P in the Kendall’s
tau distance has a witnessing K-pattern for a suitable choice of k and K, is
the core of our proof.

Lemma 5. Let P be a hereditary property. For every real ε0 > 0, there exist
integers k, K and M , and a real ε′ > 0 such if π is a permutation of order
at least M with distK(π,P) ≥ ε0, then there exist a P-bad k-pattern A and
a K-pattern B with the same length such that B is (A, ε′)-witnessing for π.

Proof. Without loss of generality, we can assume that ε0 < 1. Set k =
d10/ε0e, ε = ε0/10 and ε′ = ε0/(10k+ 10) ≤ 1/(k+ 1). Let K be the integer
from the statement of Lemma 4 applied for P , k, ε and ε′. Using this value,
set

M = max

{
k(k + 1)K,

⌈
10k

ε0

⌉
,

⌈
10K

ε0

⌉ }
.

We show that this choice of k, K, M and ε′ satisfies the assertion of the
lemma.

Let π be a permutation of order N ≥M . Apply Lemma 4 to π. Let A be
the k-pattern and B the K-pattern as in the statement of the lemma. Either
A is P-bad and B is (A, ε′)-witnessing for π, which is the conclusion of the
lemma, or A is P-good and B is (A, εK, ε′)-approximate for π. Hence, we
assume the latter and deduce that distK(π,P) < ε0.

To reach our goal, we define two auxiliary functions fB : [N ] → [|B|]
and fA : [N ] → [k]. Informally speaking, when searching for a permutation
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in P close to π, we consider an m-expansion of A for a very large integer
m and we show that one of its subpermutations is close to π. As explained
after the definition of an m-expansion, every m-expansion can be viewed as
consisting of |A| = |B| blocks where the i-th block has m · |Ai| elements. In
the subpermutation we construct, we choose the element corresponding to
x ∈ [N ] in the fB(x)-th block of an m-expansion of A and the value of gA,m

for this element will be the fA(x)-th smallest element of AfB(x).
Let us now proceed in a formal way. First, we define the function fB. Let

x ∈ [N ] and let i be the integer such that x ∈ [N/K]i. Let j be the largest
integer such that i is smaller than all the elements of Bj; if no such set exists,
let j = |B| + 1. Set fB(x) := max{1, j − 1}. Clearly, fB is non-decreasing
and if i ∈ Bj, then fB(x) = j for every x ∈ [N/K]i. We now proceed with
defining the function fA. If i ∈ BfB(x), π(x) ∈ [N/k]i′ such that i′ ∈ [k] and
ρi,i′(π) ≥ ε′, set fA(x) = i′′ where i′′ is the number of elements of AfB(x)

smaller or equal to i′. Otherwise, set fA(x) = 1.
Since A is P-good, there exists an N -expansion σ of A that is in P . Set

zx := |A|fB(x)−1N + x|AfB(x)|+ fA(x) for x ∈ [N ].

Observe that 1 ≤ z1 < · · · < zN ≤ N · |A||A|. In the rest of the proof, we
establish that the subpermutation π′ of σ induced by {z1, . . . , zN} satisfies
distK(π, π′) ≤ ε0. Since P is hereditary and σ ∈ P , this implies distK(π,P) ≤
ε0.

We now define five types of pairs (x, x′), 1 ≤ x < x′ ≤ N . Suppose that
x ∈ [N/K]i, π(x) ∈ [N/k]j, x

′ ∈ [N/K]i′ and π(x′) ∈ [N/k]j′ .

• The pair (x, x′) is of Type I if i = K + 1 or i′ = K + 1.

• The pair (x, x′) is of Type II if j = k + 1 or j′ = k + 1.

• The pair (x, x′) is of Type III if it is not of Type I and i 6∈ BfB(x) or
i′ 6∈ BfB(x′).

• The pair (x, x′) is of Type IV if it is neither of Type I nor of Type II,
and ρi,j < ε′ or ρi′,j′ < ε′.

• The pair (x, x′) is of Type V if it is not of Type II and j = j′.

We now estimate the number of pairs (x, x′), 1 ≤ x < x′ ≤ N , of each
of the five types. The number of pairs of Type I is at most K(N − 1) ≤
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ε0N(N − 1)/10 since |[N/K]K+1 ∩ [N ]| ≤ K. Similarly, the number of pairs
of Type II is at most k(N − 1) ≤ ε0N(N − 1)/10 since |[N/k]k+1 ∩ [N ]| ≤ k.
The number of pairs of Type III is at most εN(N − 1) = ε0N(N − 1)/10
since K − (|B1|+ · · ·+ |B|B||) ≤ εK.

For i ∈ [K] and j ∈ [k] with ρi,j(π) < ε′, the number of the choices of
x ∈ [N/K]i with π(x) ∈ [N/k]j is at most ε′N/K. Hence, the number of x
with this property for some i and j is at most ε′kN < ε0N/10. Consequently,
the number of pairs of Type IV is strictly less than ε0N(N − 1)/10. Finally,
for x with π(x) ∈ [N/k]j, the number of choices of x′ 6= x with π(x′) ∈ [N/k]j
is at most N/k − 1. Hence, the number of pairs of Type V is strictly less
than N(N/k − 1) ≤ N(N − 1)/k ≤ ε0N(N − 1)/10.

We conclude that the number of pairs (x, x′), 1 ≤ x < x′ ≤ N , that are
of at least of one of Types I–V is at most ε0N(N − 1)/2.

We claim that if the pair (x, x′), 1 ≤ x < x′ ≤ N , is not of any of the
Types I–V, then π(x) < π(x′) if and only if π′(x) < π′(x′). Let i, i′, j and
j′ be chosen as in the previous paragraph. Suppose π(x) < π(x′). If (x, x′)
is not of any of the Types I–V, then it holds that i ∈ BfB(x), i

′ ∈ BfB(x′),
j 6= j′, ρi,j(π) ≥ ε′ and ρi′,j′(π) ≥ ε′. This implies that the fA(x)-th smallest
element of AfB(x) is smaller than the fA(x′)-th smallest element of AfB(x′).
Consequently, π′(x) < π′(x′) by the choice of zx and zx′ . Analogously, one
can show that if π(x) > π(x′), then π′(x) > π′(x′).

Since the number of pairs (x, x′), 1 ≤ x < x′ ≤ N , of at least one of
the five types is at most ε0N(N − 1)/2, we get that distK(π, π′) < ε0 as
desired.

We are now ready to prove our main theorem. Note that Theorem 6 im-
plies that hereditary properties of permutations are strongly testable through
subpermutations: for ε > 0, the tester take a random subpermutation of
order M0 from the statement of Theorem 6 and it accepts if the random
subpermutation has the tested property.

Theorem 6. Let P be a hereditary property. For every positive real ε0,
there exists M0 such that if π is a permutation of order at least M0 with
distK(π,P) ≥ ε0, then a random subpermutation π of order M0 has the
property P with probability at most ε0.

Proof. Without loss of generality, we assume that ε0 < 1. Apply Lemma 5
to P and ε0. Let k, K and M be the integers and let ε′ be the real as in the
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statement of the lemma. Note that we can also assume that ε′ < 1. Set M0

as

M0 = max

{
M,K(K + 1),

log kK
ε0

log K+1
K+1−ε′

}
.

Let π be a permutation of order N ≥M0. Note that the probability that
a random M0-element subset X of [N ] contains no element of a set Ri,j(π)
with ρi,j(π) ≥ ε′ is at most(

1− |Ri,j(π)|
N

)M0

=

(
1− ρi,j(π)

⌊
N

K

⌋
1

N

)M0

≤
(

1− ε′

K + 1

)M0

≤ ε0
kK

.

By the union bound, the probability that there exists i ∈ [K] and j ∈ [k]
with ρi,j(π) ≥ ε′ such that X contains no element from the set Ri,j(π) is at
most ε0. This implies that with probability at least 1 − ε0 a random M0-
element subset X of [M0] contains at least one element from each set Ri,j(π)
with ρi,j(π) ≥ ε′.

By Lemma 5, if distK(π,P) ≥ ε0, there exists a k-pattern A and a K-
pattern B such that A is P-bad and B is (A, ε′)-witnessing for π. Since
a random M0-element subset of [N ] contains an element from each Ri,j(π)
with ρi,j(π) ≥ ε′ with probability at least 1− ε0, a random M0-element sub-
permutation of π contains an 〈A〉-expansion of A as a subpermutation with
probability at least 1 − ε0. Consequently, a random M0-element subpermu-
tation of π is not in P with probability at least 1− ε0.

We are also in a position to prove that, for hereditary properties P , the
function distK(π,P) is continuous with respect to the metric given by dist�
in the sense considered in [21].

Theorem 7. Let P be a hereditary property. For every ε0 > 0, there exists
δ0 > 0 such that any permutation π satisfying dist�(π,P) < δ0 also satisfies
distK(π,P) < ε0.

Proof. Apply Lemma 5 to P and ε0. Let k, K and M be the integers and let
ε′ be the real as in the statement of the lemma. Set M0 to be the maximum
of M and K + 1, and set δ0 to be the minimum of 1/M0 and ε′

4K
.

Suppose that there exists σ ∈ P with |π| = |σ| and dist�(π, σ) < δ0. If
the order of π is smaller than M0, then π and σ must be the same which
yields dist�(π,P) = distK(π,P) = 0. So, we can assume that the order of π
is at least M0.
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Assume to contrary that distK(π,P) ≥ ε0. By Lemma 5, there exists
a P-bad k-pattern A and a K-pattern B such that B is (A, ε′)-witnessing
for π. By the choice of δ0, B is (A, ε′/2)-witnessing for σ (recall that the
order of π is at least K + 1). This yields that Rxj ,gA,〈A〉(j)(σ) 6= ∅ for every
j ∈ [|A|` ·〈A〉] where xj are chosen as in the definition of (A, ε′/2)-witnessing.
In particular, σ contains a subpermutation not in P (choose one element from
each of the sets Rxj ,gA,〈A〉(j) and consider the subpermutation induced by the
chosen elements) which is impossible since P is hereditary.
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