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Abstract

We relate the existence problem of universal objects to the proper-
ties of corresponding enriched categories (lifts or expansions). In par-
ticular, extending earlier results, we prove that for every regular set F
of finite connected structures there exists a (countable) ω-categorical
universal structure U for the class Forbh(F) (of all countable struc-
tures not containing any homomorphic image of a member of F). We
employ a technique known as homogenization. The universal object
U is the shadow (reduct) of an ultrahomogeneous structure U

′.
We also put the results of this paper in the context of homomor-

phism dualities and constraint satisfaction problems. This leads to an
alternative proof of the characterization of finite dualities (given by
Tardif and Nešetřil) as well as of the characterization of infinite-finite
dualities for classes of relational trees given by P. L. Erdős, Pálvölgyi,
Tardif and Tardos.

The notion of regular families of structures is motivated by the re-
cent characterization of infinite-finite dualities for classes of relational
forests (itself related to regular languages). We show how the notion
of a regular family of relational trees can be extended to regular fam-
ilies of relational structures. This gives a partial characterization of
the existence of a (countable) ω-categorical universal object for classes
Forbh(F).

∗The Computer Science Institute of Charles University (IUUK) is supported by grant
ERC-CZ LL-1201 of the Czech Ministry of Education and CE-ITI of GAČR.
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1 Introduction

We review first a few well known concepts and facts.
A relational structure (or simply structure) A is a pair (A, (Ri

A
: i ∈ I)),

where Ri
A
⊆ Aδi (i.e., Ri

A
is a δi-ary relation on A). The family (δi : i ∈ I)

is called the type ∆. The type is usually fixed and understood from the
context. We consider only finite types. If the set A is finite we call A a
finite structure. We consider only countable or finite structures. The class
of all (countable) relational structures of type ∆ will be denoted by Rel(∆).
The class Rel(∆),∆ = (δi; i ∈ I), is fixed throughout this paper. Unless
otherwise stated all structures A,B, . . . belong to Rel(∆).

A homomorphism f : A→ B = (B, (Ri
B
: i ∈ I)) is a mapping f : A→ B

such that (x1, x2, . . . , xδi) ∈ Ri
A

implies (f(x1), f(x2), . . . , f(xδi)) ∈ Ri
B
, for

each i ∈ I. For given structures A and B we will denote the existence of
homomorphism f : A→ B by A→ B and the non-existence by A 9 B. If
f is one-to-one then f is called a monomorphism. A monomorphism f such
(x1, x2, . . . , xδi) ∈ Ri

A
if and only if (f(x1), f(x2), . . . , f(xδi)) ∈ Ri

B
for each

i ∈ I is called an embedding.
Given a family of relational structures F , by Forbh(F) we denote the class

of all relational structures A for which there is no homomorphism F → A,
for any F ∈ F . Formally,

Forbh(F) = {A; ∀F∈FF 9 A}.

Given a class K of countable structures, an object U ∈ K is called uni-
versal for K if for every object A ∈ K there exists an embedding A→ U.

For a class K of countable relational structures, we denote by Age(K) the
class of all finite structures isomorphic to a substructure of some A ∈ K and
call it the age of K. Similarly, for a relational structure A, the age of A,
Age(A), is Age({A}).

A structure A is ultrahomogeneous (sometimes also simply called homo-
geneous) if every isomorphism between two induced finite substructures of A
can be extended to an automorphism of A. A structure G is generic for the
class K if it is universal for K and ultrahomogeneous.

The key property of the age of any ultrahomogeneous structure is de-
scribed by the following concept. Let A,B,C be relational structures, α an
embedding of C into A, and β an embedding of C into B. An amalgamation
of (A,B,C, α, β) is a triple (D, γ, δ), where D is a relational structure, γ an
embedding A→ D and δ an embedding B→ D such that γ ◦α = δ◦β. Less
formally, an amalgamation “glues together” the structures A and B into a
single substructure of D such that copies of C coincide. See Figure 1.
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Figure 1: Amalgamation of (A,B,C, α, β).

Often the vertex sets of structuresA, B andC can be chosen in such a way
that the embeddings α and β are identity mappings. In this case, for brevity,
we shall call an amalgamation of (A,B,C, α, β) simply an amalgamation
of A and B over C. Similarly, for an amalgamation (D, γ, δ) of a given
(A,B,C, α, β) we are often interested in the structure D alone. In this case
we shall call the structure D an amalgamation of (A,B,C, α, β) (omitting
the embeddings γ and δ).

We say that an amalgamation is strong when γ(x) = δ(x′) if and only
if x ∈ α(C) and x′ ∈ β(C). Less formally, a strong amalgamation glues
together A and B with an overlap no greater than the copy of C itself. A
strong amalgamation is free if there are no relations of D spanning both
vertices of γ(A) and δ(B) that are not images of some relations of structure
A or B via the embedding γ or δ, respectively.

A class K of finite relational structures is called an amalgamation class if
the following conditions hold:

1. (Hereditary property) For every A ∈ K and induced substructure B of
A we have B ∈ K.

2. (Amalgamation property) For A,B,C ∈ K and α an embedding of C
into A, β an embedding of C into B, there exists (D, γ, δ),D ∈ K, that
is an amalgamation of (A,B,C, α, β).

3. K is closed under isomorphism.

4. K has only countably many mutually non-isomorphic structures. (This
is always the case in our setting of finite types).
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The following classical result establishes the correspondence between amal-
gamation classes and ultrahomogeneous structures.

Theorem 1.1 (Fräıssé [10, 12]) (a) A class K of finite structures is the
age of a countable ultrahomogeneous structure G if and only if K is an amal-
gamation class.

(b) If the conditions of (a) are satisfied then the structure G is unique up
to isomorphism.

The ultrahomogeneous structure G such that Age(G) = K is called the
Fräıssé limit of K. We say that structure A is younger than structure B
if Age(A) is a subset of Age(B). Every ultrahomogeneous structure G has
the property that it is universal for the class K of all countable structures
younger than G. It follows that all ultrahomogeneous structures are also
universal and generic for the class K.

A countably infinite structure is called ω-categorical if all countable mod-
els of its first order theory are isomorphic. We use the following characteri-
zation of ω-categorical structures given by Engeler [6], Ryll-Nardzewski [20]
and Svenonius [21].

Theorem 1.2 For a countable first order structure A, the following condi-
tions are equivalent:

1. A is ω-categorical.

2. The automorphism group of A has only finitely many orbits on n-tuples,
for every n.

Lifts and shadows. Let ∆′ = (δ′i; i ∈ I ′) be a type containing type ∆.
(By this we mean I ⊆ I ′ and δ′i = δi for i ∈ I.) Then every structure
X ∈ Rel(∆′) may be viewed as a structure A = (A, (Ri

A
; i ∈ I)) ∈ Rel(∆)

together with some additional relations for i ∈ I ′ \ I. To make this more
explicit, these additional relations will be denoted by X i

X
, i ∈ I ′ \ I. Thus a

structure X ∈ Rel(∆′) will be written as

X = (A, (Ri
A
; i ∈ I), (X i

X
; i ∈ I ′ \ I)),

and, abusing notation, more briefly as

X = (A, X1
X
, X2

X
, . . . , XN

X
).

We call X a lift of A and A is called the shadow of X. In this sense
the class Rel(∆′) is the class of all lifts of Rel(∆). Conversely, Rel(∆) is the
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class of all shadows of Rel(∆′). If all extended relations are unary, the lift
is called monadic. In the context of monadic lifts, the color of vertex v is
the set {i; (v) ∈ X i

U
}. Note that a lift is also in the model-theoretic setting

called an expansion (as we are expanding our relational language) and a
shadow a reduct (as we are reducing it). (Our terminology is motivated by
a computer science context; see [14].) Unless stated explicitely, we shall use
letters A,B,C, . . . for shadows (in Rel(∆)) and letters X,Y,Z for lifts (in
Rel(∆′)).

For a lift X = (A, X1
X
, . . . , XN

X
) we denote by Sh(X) the relational struc-

ture A, i.e. its shadow. (Sh is called a forgetful functor.) Similarly, for a
class K′ of lifted objects, we denote by Sh(K′) the class of all shadows of
structures in K′.

Homogenization. Many naturally defined classes K of relational struc-
tures contain universal structures that are ω-categorical. Because ω-catego-
ricity can be seen as a weaker notion of ultrahomogeneity, it is natural to
construct ω-categorical universal structures as shadows of ultrahomogeneous
structures. Such construction is called homogenization. Covington [5] pro-
vided a sufficient condition for the existence of a universal structure for a
given class K that is a shadow of an ultrahomogeneous structure by means
of amalgamation failures. This concept in fact relaxes the Fräıssé Theorem.

However, not all universal structures are constructed by means of ho-
mogenization. A necessary and sufficient condition for the existence of a
universal structure for the class defined by forbidden monomorphisms from
a finite family F of connected graphs was given by Cherlin, Shelah and Shi
[3]. Here the classes are characterized by means of local finiteness of the
algebraic closure operator. The techniques of [3] are motivated by proofs of
the non-existence of a universal structure for a given class. The universal
structure is not constructed by an explicit amalgamation argument.

Our motivation and results. Our motivation stems from several sources.
First, we seek a more streamlined and combinatorial proof of the following
corollary of the aforementioned result of Cherlin, Shelah and Shi.

Theorem 1.3 ([3]) For every finite family F of finite connected graphs
there is an ω-categorical universal graph for the class Forbh(F).

We prove a stronger form of Theorem 1.3 by an explicit amalgamation
argument. A similar construction can be also be obtained by character-
izing the amalgamation failures and applying Covington’s homogenization
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method. Our lifts are, however, different and, for the first time, we avoid
using the model-theoretic concept of existential completeness.

We are interested in the structure of lifts constructed for a given (pos-
sibly infinite) family F . In special cases we relate lifts to the concept of
homomorphism dualities. Motivated by a recent characterization of infinite-
finite dualities by P. L. Erdős, Pálvölgyi, Tardif, Tardos [7], we introduce a
notion of regular families of relational structures. These (possibly infinite)
families of structures generalize regular forests, used in [7] to characterize
infinite-finite dualities.

In Section 3 we strengthen Theorem 1.3 by proving the existence of a uni-
versal structure for Forbh(F), where F is a regular family of finite connected
structures.

In Section 4 we show the non-existence of an ω-categorical universal struc-
ture for Forbh(F) for certain non-regular families F , and give a partial char-
acterization of such families.

Finally, in Section 5 we relate our results to homomorphism dualities and
constraint satisfaction problems. We show that for the classes F consisting
of regular relational trees the universal structure has a finite retract. This
gives an alternative construction of graph duals and also an alternative proof
of the characterization of homomorphism dualities.

2 Regular families of structures and F-lifts

Let F be a fixed set of finite connected relational structures. For the construc-
tion of a universal structure of Forbh(F) we use special lifts, called F -lifts.
The definition of an F -lift is easy and resembles decomposition techniques
standard in graph theory, and thus we adopt a similar terminology. First we
overview some elementary graph-theoretic notions, see [15, 2] for details.

For a structure A = (A, (Ri
A
, i ∈ I)), the Gaifman graph (in combina-

torics often called 2-section) is the graph GA with vertices A and all those
edges which are a subset of a tuple of a relation of A, i.e., G = (A,E), where
x, y ∈ E if and only if x 6= y and there exists a tuple ~v ∈ Ri

A
, i ∈ I, such

that x, y ∈ ~v.
We adopt the following standard graph-theoretic notions for relational

structures. We call structure A connected if its Gaifman graph GA is con-
nected. For a structure A and subset of its vertices B ⊆ A, we denote by
NA(B) the neighborhood of the set B, that is all vertices of A \B connected
in the Gaifman graph GA by an edge to a vertex of B. We denote by A \B
the structure induced on A \ B by A. Similarly we denote by GA \ B the
graph created from the Gaifman graph GA by removing vertices B.
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A g-cut in A is a subset C of A such that the Gaifman graph GA is
disconnected by removing set C. That is, there are vertices u, v ∈ A\C that
belong to the same connected component of GA but to different connected
components of GA \ C. A cut in A is subset C of A such that there are
vertices u, v ∈ A \C that belong to the same connected component of A but
to different connected components of A \ C.

Observe that not every cut is a g-cut. With relations of arity greater than
2, GA\C may be different from GA \ C.

For g-cut C in relational structure A a structure A1 is a g-component
of A with g-cut C if A1 is induced by A on some connected component of
GA \ C.

We will make use of the following simple observation about the neighbor-
hood and g-components.

Observation 2.1 Let A1 be a g-component of A with g-cut C. Then the
neighborhood NA(A1) is a subset of C. Moreover NA(A1) is a g-cut and A1

is one of the g-components of A with g-cut NA(A1).

Given a structure A with g-cut C and two (induced) substructures A1

and A2, we say that C g-separates A1 and A2 if there are g-components
A′

1 6= A′
2 of A with a g-cut C such that A1 ⊆ A′

1 and A2 ⊆ A′
2.

Definition 2.1 Let C be a g-cut in structure A. Let A1 6= A2 be two g-
components of A with g-cut C. We call C minimal g-separating g-cut for
A1 and A2 in A if C = NA(A1) = NA(A2).

For brevity, we can omit one or both g-components when speaking about a
minimal g-separating g-cut. Explicitely, we call g-cut C minimal g-separating
for A1 in A if there exists another structure B such that C is minimal g-
separating for A1 and B in A. A g-cut C is minimal g-separating in A if
there exists structures B1 and B2 such that C is minimal g-separating for
B1 and B2 in A.

The name of minimal g-separating g-cut is justified by the following (prob-
ably folkloristic) proposition.

Proposition 2.1 Let A be a connected relational structure, C a g-cut in A
and A1 and A2 (induced) substructures of A g-separated by C. Then there
exists a minimal g-separating g-cut C ′ ⊆ C that g-separates A1 and A2 in
A. Moreover if NA(A1) ⊆ C (or, equivalently, A1 is a g-component of A
with g-cut C), then C ′ ⊆ NA(A1).
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Figure 2: Construction of a minimal g-separating g-cut C ′ g-separating A1

and A2 in A.

Proof. We will construct a series of g-cuts and g-components as depicted in
Figure 2.

Denote by A′
1 the g-component of A with g-cut C containing A1 (and

thus not containing A2). By Observation 2.1, NA(A
′
1) ⊆ C is g-cut that

g-separates A′
1 and A2 (because A′

1 is also g-component of A with g-cut
NA(A

′
1) and A′

1 do not contain A2).
Now consider g-component A′

2 of A with g-cut NA(A
′
1) containing A2.

Put C ′ = NA(A
′
2). By Observation 2.1, C ′ ⊆ NA(A

′
1) ⊆ C is g-cut and A′

2

(not containing A1) is one of its g-components.
Denote by A′′

1 the g-component of A with g-cut C ′ containing A1. It
follows that C ′ g-separates A′′

1 (that contains A1) and A′
2 (that contains

A2).
To see that C ′ is minimal g-separating for A′′

1 and A′
2 it remains to show

that every vertex in C ′ = NA(A
′
2) is also in NA(A

′′
1). This is true because

every vertex of C ′ is in NA(A
′
1) and A′

1 is substructure of A′′
1.

�

Observe that every inclusion minimal g-cut is also minimal g-separating, but
not vice versa. Every minimal g-separating g-cut C ′ ⊂ C that g-separates
A1 and A2 is however also inclusion minimal g-cut that separates A1 and
A2.

If C is a set of vertices then
−→
C will denote a tuple (of length |C|) of all

the elements of C. Alternatively,
−→
C is an arbitrary linear ordering of C. A

rooted structure P is a pair (P,
−→
R ) where P is a relational structure and

−→
R is

an tuple consisting of distinct vertices of P.
−→
R is called the root of P and the

size of
−→
R is the arity of P. We say that rooted structures P1 = (P1,

−→
R 1) and

P2 = (P2,
−→
R 2) are isomorphic if there is a function f : P1 → P2 that is an
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Figure 3: Pieces of the Petersen graph up to isomorphism (and permutations
of roots).

isomorphism of structures P1 and P2 and f restricted to
−→
R 1 is a monotone

bijection between
−→
R 1 and

−→
R 2 (we denote this f(

−→
R 1) =

−→
R 2).

The following is the principal notion of this paper:

Definition 2.2 Let A be a connected relational structure and R a minimal
g-separating g-cut for structure P in A. A piece of a relational structure A

is then a rooted structure P = (P,
−→
R ), where the tuple

−→
R consists of the

vertices of the g-cut R in a (fixed) linear order.

Note that since P is the union of a g-component and its neighborhood it fol-
lows that the pieces of a connected structure are always connected structures.
As an example, pieces of the Petersen graph are shown in Figure 3.

Given rooted structures (P,
−→
R ) and (P′,

−→
R ′) such that |R| = |R′|, denote

by (P,
−→
R )⊕(P′,

−→
R ′) the (possibly rooted) structure created as a free amalgam

of P and P′ with corresponding roots being identified (in the order of
−→
R and

−→
R ′). Note that (P,

−→
R ) ⊕ (P′,

−→
R ′) is defined only if the rooted structure

induced by P on
−→
R is isomorphic to the rooted structure induced by P′ on

−→
R ′.

A piece P = (P,
−→
R ) is incompatible with a rooted structure A if P ⊕ A

is defined and there exists F ∈ F that is isomorphic to P ⊕A. (In the other
words, there exists F′ isomorphic to some F′′ ∈ F , such that P is piece of F′

and A is a structure induced on F ′ \ (P \R) by F′ rooted by
−→
R .)

Assign to each piece P a set IP containing all rooted structures that are
incompatible with P. For two pieces P1 and P2 put P1 ∼ P2 if and only if
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IP1
= IP2

. Observe that every equivalence class of ∼ contains pieces of the
same arity n. We also call n the arity of the equivalence class of ∼.

Definition 2.3 A family of finite structures F is called regular if there are
only finitely many equivalence classes of ∼ on the family of all pieces of F .

The notion of regular family is a generalization of that of a regular family
of forests, introduced in [7]. (The term used in [7] was motivated by the
connection to regular languages we explain in the following examples.)

Example. All finite families F of finite structures are regular. Examples
of infinite families F include the following:

1. The family Fodd consisting of all graph cycles of odd length. All pieces
of Fodd are paths rooted by initial vertex and terminal vertex. There
are only two equivalence classes of the pieces: paths of odd length and
paths of even length.

2. The family Foriented consisting of those orientations of graph cycles
where all edges are oriented in the same direction. Pieces of Foriented

are oriented paths with all edges in a forward direction with roots on
initial and terminal vertex. Consequently there are only two equiva-
lence classes of pieces: paths with first root on initial vertex and second
root on terminal vertex, and paths with first root on terminal vertex
and second root on initial vertex.

3. Oriented paths can be described by words on alphabet {←,→}. It
follows that every language of words on this alphabet corresponds to a
family of oriented paths. It is not difficult to show that all regular lan-
guages correspond to a regular family of paths. Consequently regular
families may have a rich structure; see [7].

Consider for example the family created by words of the form →→
(→←→)n →→, n ≥ 1, where (→←→)n stands for n repetitions of
→←→. All these paths are cores and form an antichain. Several other
examples of regular families of directed graphs are discussed in [8].

We continue our construction with the following:

Definition 2.4 We denote by E1, . . . EN the equivalence classes of ∼ corre-
sponding to pieces of structures in F . Put I ′ = {1, 2, . . . , N}. The relational
structure X = (A, (X i

X
: i ∈ I ′)) is called the F -lift of the relational structure

A when the arities of relations X i
X
, i ∈ I ′, correspond to the arity of Ei.
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For a relational structure A, we define the canonical lift

L(A) = (A, X1
L(A), X

2
L(A), . . . , X

N
L(A))

by putting (v1, v2, . . . , vl) ∈ X i
L(A) if and only if there is a piece P = (P,

−→
R ) ∈

Ei such that there is a homomorphism f : P→ A with f(
−→
R ) = (v1, v2, . . . , vl).

Example. As an introduction we provide an explicit description of some
lifts of the regular families discussed above.

1. For the family Fodd there are two new binary relations. In a canonical
lift L(A) there is (u, v) ∈ X1

L(A) if and only if there is a walk of odd

length between vertices u and v and (u, v) ∈ X2
L(A) if and only if there

is a walk of even length between u and v.

For A ∈ Forbh(Fodd) there is no (u, v) such that (u, v) ∈ X1
L(A) and

(u, v) ∈ X2
L(A). This means that odd cycles can be recognized by the

existence of both a walk of even length and a walk of odd length in
between a given pair of vertices.

2. For the family Foriented there are two new binary relations. In a canon-
ical lift L(A) there is (u, v) ∈ X1

L(A) if and only if there is an oriented

walk from u to v and (u, v) ∈ X2
L(A) if and only if there is an oriented

walk from v to u.

For A ∈ Forbh(Foriented) there is no (u, v) such that both (u, v) ∈ X1
L(A)

and (v, u) ∈ X1
L(A). The same holds for X2

L(A) and in fact the second
relation is fully redundant in our construction and can be ignored.

3 Construction of the universal structure

Theorem 3.1 Let F be a regular family of finite connected relational struc-
tures (of a finite type). Then there exists an ultrahomogeneous lift U′ with
only finitely many new relations such that its shadow Sh(U′) is a universal
structure for the class Forbh(F).

Moreover, the lift U′ can be constructed in the following way. Denote
by L the class of all induced substructures (sublifts) of canonical lifts L(A),
A ∈ Forbh(F). Then Age(L) is a amalgamation class (closed for strong
amalgams whose shadows are free amalgams) and U′ is the Fräıssé limit of
Age(L).

Denote by n the maximal size of a minimal g-separating g-cut in a struc-
ture in F (by regularity of F the size of g-cuts is bounded). Then the arity
of extended relations is bounded by n.
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This theorem will be proved in the rest of this section. We take time for
a simple Lemma.

Given a piece P = (P,
−→
R ) of structure F, we call P ′ = (P′,

−→
R ′) a subpiece

of P if P ′ is piece of F, P ′ ⊂ P . We show that a subpiece can be freely
replaced by an equivalent subpiece without changing the equivalence class of
a given piece.

Lemma 3.2 Let P1 = (P1,
−→
R 1) be a piece of structure F1 ∈ F , P

′
1 =

(P′
1,
−→
R ′

1) be a subpiece of P1 and P ′
2 = (P′

2,
−→
R ′

2) a piece such that P ′
1 ∼ P

′
2.

Create P2 = (P2,
−→
R 2) as a copy of P1 with P′

1 replaced by P′
2 identifying

−→
R ′

1 with
−→
R ′

2. Then P2 is an isomorphic copy of a piece of some F2 ∈ F , and
moreover P1 ∼ P2.

Proof. Consider some A ∈ IP1
. By definition P1⊕A is isomorphic to some

structure F ∈ F . Let A′ be a rooted structure such that P ′
1 ⊕ A

′ = F.
Because A′ ∈ IP ′

2
= IP ′

1
, we also know that P2 ⊕A = P ′

2 ⊕A
′ is isomorphic

to some structure in F . We thus have IP1
⊆ IP2

. By symmetry we also have
IP2
⊆ IP1

. �

For X ∈ L we denote by W (X) one of the structures A ∈ Forbh(F) such
that the structure X is induced on X by L(A). W (X) is called a witness
of the fact that X belongs to L. Note that in this definition, the witness
of a finite lift may be infinite structure, because Forbh(F) contains infinite
structures.

Proof of Theorem 3.1. Clearly it suffices to prove the second part of the
theorem. By definition the class Age(L) is hereditary, isomorphism-closed,
and has the joint embedding property. Assuming that Age(L) has the amal-
gamation property (with restrictions described), the rest of the theorem fol-
lows from the Fräıssé Theorem and the fact that L is the class of all lifts
younger than the Fräıssé limit U′ of Age(L) and thus U′ is generic for L.

We show the amalgamation property. Consider X,Y,Z ∈ Age(L). As-
sume that structure Z is a substructure induced by both X and Y on Z and
without loss of generality assume that X ∩ Y = Z.

Put
A = W (X),

B = W (Y),

C = Sh(Z).

Because Age(L) is closed under isomorphism, we can assume that A and
B are vertex-disjoint with the exception of vertices of C.
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−→
R

P

f−1(C)

f−1(A \ C)

f−1(B \ C)

f

Figure 4: Construction of an amalgamation.

Let D be the free amalgamation of A and B over vertices of C: the
vertices of D are A∪B and there is ~v ∈ Ri

D
if and only if ~v ∈ Ri

A
or ~v ∈ Ri

B
.

We claim that the structure

V = L(D)

is a strong amalgamation of L(A) and L(B) over Z and thus also an amal-
gamation of X,Y over Z. The situation is depicted in Figure 4.

First we show that the substructure induced by V on A is L(A) and
that the substructure induced by V on B is L(B). In the other words, no
new tuples to L(A) or L(B) (and thus none to X or Y either) have been
introduced. Assume to the contrary that there is a new tuple (v1, . . . , vt) ∈
Xk

V
. By symmetry we can assume that {v1, . . . , vt} ⊆ A. Explicitly, we

assume that there is a piece P = (P,
−→
R ) ∈ Ek and a homomorphism f from

P to D such that f(
−→
R ) = (v1, v2, . . . , vt) /∈ Xk

L(A).

The set of vertices of P mapped to L(A), f−1(A), is nonempty, because

it contains all vertices of
−→
R . The set f−1(B \ C) is nonempty f is not

homomorphism from P to A (otherwise we would have (v1, v2, . . . , vt) ∈
Xk

L(A)). Because there are no tuples spanning both vertices A\C and vertices

B\C inD, and because pieces are connected, we also have f−1(C) nonempty.
We will reason about the decomposition of P given by f−1(C) and create

subpieces containing vertices of f−1(B\C). This requires some careful analy-
sis. The process is depicted in Figure 5. Denote by F ∈ F the structure such
that P is piece of F. The vertices of f−1(C) form a g-cut in F g-separating
any vertex in f−1(B \ C) from any vertex in f−1(A \ C) (if such a vertex
exists) as well as any vertex of F \ P .

We further strengthen our assumption on the choice of counter-example

13



P

−→
R

P
′

1

P
′

2

f−1(A \ C)

f−1(C)

f−1(B \ C)

F
′

−→
R 1

−→
R 2

F

Figure 5: The decomposition of piece P.

(consisting of the choice of X, Y, A, B, the piece P and the homomor-
phism f):

(a) No subpiece P ′ = (P′,
−→
R ′) of P is a counter-example with homomor-

phism f . More precisely if f(R′) ⊆ A, then f(
−→
R′) ∈ X i

L(A) for i such

that P ′ ∈ Ei. Similarly if f(R′) ⊆ B, then f(
−→
R′) ∈ X i

L(B) for i such
that P ′ ∈ Ei.

(b) If there is some g-component P′ of F with g-cut f−1(C) contained in
f−1(B \C) such that R ⊆ NP(P

′), then there exists a g-component P′′

of F with g-cut f−1(C) contained in f−1(A\C) such that R ⊆ NP(P
′′).

It easily follows that the existence of counter-example implies the existence
of counter-example satisfying (a) and (b). (a) can be made to hold by consid-
ering the smallest subpiece of P that is still a counter-example. If (b) fails we
can exchange A and B as well as exchange X andY. This is possible because
f−1(C) g-separates any vertex in f−1(A \ C) and any vertex in f−1(B \ C)
and thus the existence of P′ implies R ⊆ f−1(C).

Denote by F′ the substructure of F so that R is a minimal g-separating
g-cut of F′ and P \ R in F. Denote by P′

1,P
′
2, . . . ,P

′
l the substructures

14



induced on P by all connected components of GP \ f
−1(A). We aim to find,

for every i = 1, 2, . . . l, a minimal g-separating g-cut Ri ⊆ f−1(C) of F that
separates P′

i from F′ and moreover Ri 6⊆ R. This implies the existence of

Pi = (Pi,
−→
R i) that is a subpiece of P containing P′

i.
We consider two cases:

1. R 6⊆ NP(P
′
i ): Construct Ri ⊆ NP(P

′
i ) as a minimal g-separating g-cut

that g-separates F′ and P′
i in F (given by Proposition 2 for structure

F and g-cut f−1(C)).

Since pieces are connected and R is a minimal g-separating g-cut in F

for P \R and F′, we know that
−→
R i must contain some vertex v /∈ R.

2. R ⊆ NP(P
′
i ): In this case consider structure P′′ given by (b). Construct

Ri as a minimal g-separating g-cut that g-separates P′′ and P′
i in F.

We show that Ri ⊃ R. Because every vertex v ∈ R is connected in GP

to a vertex in Pi and a vertex in P ′′, we have Ri ⊇ R. Moreover because
pieces with roots removed are g-components, R does not g-separate P′′

and P′
i and thus Ri ⊃ R.

Since Ri ⊃ R, Ri g-separates P
′
i and F′ in F.

We have constructed a family of subpieces P1,P2, . . . ,Pl such that P′
i is

contained in Pi \
−→
R . It is possible that Pi is a subpiece of Pj for some i 6= j.

Without loss of generality assume that P1,P2, . . .Pl′ is the maximal subset of
pieces P1,P2, . . . ,Pl such that no piece is a subpiece of any other. Obviously
P \ f−1(A) = ∪i=1,2,...lP

′
i is a subset of ∪i=1,2,...l′(Pi \Ri).

Let ei be the index of the equivalence class of ∼ such that Pi ∈ Eei. Now
we use assumption (a). All the pieces Pi, i = 1, . . . , l′ are subpieces of P.

Thus we have that f(
−→
R i) ∈ Xei

L(D) =⇒ f(
−→
R i) ∈ Xei

L(A). Thus there exists

a piece PA
i = (PA

i ,
−→
RA

i ), P
A
i ∼ Pi, and a homomorphism fA

i from PA
i to A

such that fA
i (
−→
RA

i ) = f(
−→
Ri), for every i = 1, 2, . . . , l′.

In this situation we want to create PA = (PA,
−→
RA) as a copy of P with Pi

replaced by PA
i for every i = 1, . . . l′. By (repeated) application of Lemma 3.2

we will then have PA ∼ P. To make this possible, we must show that no
root vertex v of Pi is contained in some Pj \ Rj for 1 ≤ i ≤ l′, 1 ≤ j ≤ l′.
(Otherwise replacing Pj by P

A
j may make it impossible to replace Pi by P

A
i .)

Assume, to the contrary that there is such a choice of Pi, Pj and v. Because
Pi is not subpiece of Pj , nor vice versa, there is a root v′ of Pi that is not
contained in Pj. Because v is in Pj \ Rj that is a g-component of F with
g-cut Rj and v′ is not, we conclude that v and v′ are g-separated by Rj in
F. This leads to the fact that Rj ∩ Pi is g-cut in Pi g-separating v and v′.
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This is not possible because, by our construction, v, v′ ∈ NP(P
′
i ) and P′

i is
a g-component of P with g-cut f−1(C). Thus v and v′ are connected by a
walk in GPi

containing only vertices of P′
i. It is not possible for vertex of P′

i

to be in Rj, because vertices of Rj are in f−1(C), while vertices of P′
i are in

f−1(B \ C).
Finally define fA : PA → A as follows:

1. fA(x) = fA
i (x) when x ∈ PA

i for some i = 1, 2, . . . , l′;

2. fA(x) = f(x) otherwise.

It is easy to see that fA is a homomorphism from PA to A such that

fA(
−→
RA) = (v1, v2, . . . vt). This is a contradiction with (v1, v2, . . . vt) /∈ Xk

L(A).

It remains to verify thatD ∈ Forbh(F). We proceed analogously. Assume
that f is a homomorphism from some F ∈ F to D and further assume that
the counter-example is chosen in a way so F \ f−1(A) has minimal number
of vertices.

Because A,B ∈ Forbh(F), f must use vertices of D \ A and vertices of
D \ B and, because F is connected, also vertices of C. Analogously to the
previous part, f−1(C) forms a g-cut in F. Denote by FA a g-component of
F with g-cut f−1(C) contained in F \ f−1(B) and by FB a g-component of
F with g-cut f−1(C) contained in F \ f−1(A). Denote by R a minimal g-
separating g-cut in F contained in f−1(C) that g-separate FA and FB (given

by Proposition 2). Denote by P = (P,
−→
R ) a piece of F containing FB. We

have shown that f(
−→
R ) ∈ X i

L(A), for i such that P ∈ Ei. Consequently

there is P ′ = (P′,
−→
R ′), P ∼ P ′, and a homomorphism fA : P′ → A such

that fA(
−→
R ′) = f(

−→
R ). Now denote by F′ a structure created from F by

replacing piece P by piece P ′ and identifying
−→
R with

−→
R ′. Because P ∼ P ′,

F′ is isomorphic to some structure in F . Now consider the homomorphism
f ′ : F′ → D defined as follows:

1. f ′(x) = fA(x) for x ∈ P ′,

2. f ′(x) = f(x) otherwise.

The size of F′ \ f ′−1(A) is strictly smaller than the size of F \ f−1(A), a
contradiction with the minimality of the counter-example.

This finishes the proof of the amalgamation property of Age(L): while
V may be infinite (because witness may be infinite), the lift V′ induced on
vertices X ∪ Y by V is the finite amalgamation of X,Y over Z and thus
V′ ∈ Age(L). �
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4 Non-existence of universal structures for

classes Forbh(F).

In this section we show that there exists infinite families F such that there is
no universal structure for Forbh(F). This is in contrast with the finite case,
where the universal structures always exists.

Theorem 4.1 Let F be a family of finite connected relational structures (of
finite type). Assume that:

(i) The size of all minimal g-separating g-cuts of structures in F is bounded
by n.

(ii) Let P = (P,
−→
R ) and P ′ = (P′,

−→
R ′) be two pieces (of some structures

in F). Denote by A the rooted structure such that P ⊕ A = F ∈ F .
If P ′ ⊕ A is defined and P ′ ⊕ A /∈ Forbh(F), then there is F′ ∈ F
isomorphic to P ′ ⊕A.

Then the following conditions are equivalent:

(a) F is a regular family of connected structures.

(b) There is a ultrahomogeneous lift U′ with only finitely many new rela-
tions such that its shadow Sh(U′) is a universal structure for the class
Forbh(F).

(c) There exists an ω-categorical universal structure for Forbh(F).

Proof. (a) =⇒ (b) follows from Theorem 3.1 for the class F .
(b) =⇒ (c) is immediate. The shadow of every ultrahomogeneous

structure with finitely many relations is ω-categorical.
To see that (c) =⇒ (a), assume to the contrary the existence of F

satisfying (i) and (ii) which is not regular such that there is a universal
structure U ∈ Forbh(F) which is ω-categorical.

Because the sizes of minimal g-separating g-cuts are bounded by n, we
know that there is n′ ≤ n with infinitely many pieces P1,P2, . . . of arity n′

such that the corresponding sets IP1
, IP2

, . . . are all different.
From Theorem 1.2 it follows that there are only finitely many orbits of

n′-tuples. Denote by k the number of orbits of n′ tuples. Now assign every
piece Pi a set Oi of all orbits such that there exists a rooted homomorphism
from Pi to U sending the root of Pi to the orbit. All the sets Oi are finite of
size at most k. By the pigeonhole principle there is i 6= j such that Oi = Oj.
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By our assumption (ii) we know that for two pieces P = (P,
−→
R ) and

P ′ = (P′,
−→
R ′) such that P,P′ /∈ Forbh(F) we have IP = IP ′ if and only if

the rooted structure induced by P on
−→
R is identical to the rooted structure

induced by P′ on
−→
R ′. Consequently all those pieces belong to the same class

of ∼ and there are only finitely many classes ∼ containing piece P = (P,
−→
R )

such that P /∈ Forbh(F). We can thus assume that Pi,Pj ∈ Forbh(F) and
thus there is an isomorphic copy of both Pi and Pj in U (we where choosing
i and j from infinitely many equivalence classes of ∼).

Now, because IPi
6= IPj

there is a rooted structure A that distinguishes
IPi

from IPj
. Without loss of generality assume that A ∈ IPi

. By our
assumption (ii), A⊕Pj /∈ F implies A⊕Pj ∈ Forbh(F). Consequently there
is an embedding from A⊕ Pj to U. This embedding must map the root of
A⊕Pj to a tuple within an orbit o ∈ Oj. Since A⊕Pi /∈ Forbh(F), we also
have o /∈ Oi. This is in contradiction to Oi = Oj. �

Example. The family Fbalanced of all balanced orientations of graph cycles
(i.e., orientations having the same number of forward and backward edges) is
not a regular family. Here all pieces are all oriented paths. The equivalence
class of a piece depends on the algebraic length of the path (i.e., the number
of the forward edges minus the number of backward edges) and there are
infinitely many different algebraic lengths. Moreover Fbalanced satisfy the
assumptions of Theorem 4.1 (the free amalgams of paths are cycles) and
thus there is no ω-categorical universal structure for Forbh(Fbalanced).

Further applications are given in the following section.

5 Homomorphism dualities and constraint sat-

isfaction problems

A constraint satisfaction problem (CSP) is the following decision problem:

Instance: A finite structure A.
Question: Does there exist a homomorphism A→ H?

We denote by CSP(H) the class of all finite structures A with A → H for
some H ∈ H.

Recall that a homomorphism duality (for structures of given type) is any
equation

Forbh(F) = CSP(H).

When both F andH are finite sets of finite structures, we call the pair (F ,H)
a finite duality pair [16, 17, 11]. When F is an infinite set of finite structures,
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and H is a finite set of finite structures, we call it an infinite-finite duality
[7].

Dualities play a role not only in complexity problems but also in logic,
model theory, the theory of partial orders and category theory. In particu-
lar, it follows from [1] and [19] that dualities coincide with those first-order
definable classes which are homomorphism-closed.

For the sake of simplicity, in the following discussion we shall restrict
ourselves to the case where D consists of a single element D. D is called
the dual of F (it is easy to see that D is up to homomorphism-equivalence
uniquely determined).

The notion of universal structures and duals is related. Given a class K
of countable structures, an object U ∈ K is called hom-universal for K if for
every object A ∈ K there exists a homomorphism A→ U. The following is
immediate from the definitions:

Proposition 5.1 Let F be a family of relational structures. Structure D is
the dual of F if and only if D is hom-universal for Forbh(F).

In this section we shall show how to turn the universal structure constructed
in Section 3 into a finite dual. This is possible only in the special cases where
a finite dual exists. First we overview some results characterizing dualities.

A (relational) tree can be defined as follows (see [17]): The incidence
graph IG(A) of relational structure A is the bipartite graph with parts A
and Block(A), where

Block(A) = {(i, (a1, . . . , aδi)) : i ∈ I, (a1, . . . , aδi) ∈ Ri
A
},

and edges [a, (i, (a1, . . . , aδi))] such that a ∈ (a1, . . . , aδi). (Here we write
x ∈ (x1, . . . , xn) when there exists an index k such that x = xk; Block(A)
is a multigraph.) Relational structure A is called a (relational) tree when
IG(A) is a graph tree (see e.g. [15]). The definition of relational trees by
the incidence graph IG(A) allows us to use graph terminology for relational
trees.

Theorem 5.1 ([17]) For every finite family F of finite relational trees there
exists a dual D. Up to homomorphism-equivalence there are no other finite
dualities with only one dual.

Various constructions of duals of a given F are known [18]. More recently,
infinite-finite dualities have been characterized:

Theorem 5.2 ([7]) All regular families F of relational trees have a finite
dual D.
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Theorem 5.3 ([7]) The family F of relational trees has a finite dual if and
only if its upward closure UP(F) is regular.

Here the upward closure, UP(F), is the class of all relational trees T1

such that there is T2 ∈ F and T2 → T1.
We remark that all these characterizations extend naturally to duality

pairs (F ,D) where structures in the class F are not necessarily connected
(i.e., they are relational forests). In this case however D generally consists
of one or more structures. See [9, 7] for details.

The construction of Section 3 may be used to obtain an alternative way
of constructing a dual in the proof of Theorems 5.1 and 5.2:

Corollary 5.1 (of Theorem 3.1) Let F be a regular set of finite relational
trees. Then there exists a class L of monadic lifts such that:

(i) Age(L) is an amalgamation class with free amalgamation;

(ii) The Fräıssé limit of Age(L) is an ultrahomogeneous structure U′ such
that Sh(U′) = U is universal for Forbh(F);

(iii) U′ has a finite retract D′ and consequently Sh(D′) = D is a dual of F .

Proof. Observe that the minimal g-separating g-cuts of a relational tree all
have size 1. Thus for a fixed family F of finite relational trees Theorem 3.1
establishes the existence of a class L and lift U′ satisfying (ii). Class Age(L)
is closed under strong amalgams that are free in the shadow. With only
unary relations added to the lift, we immediately get that Age(L) is closed
under free amalgamation, too, thereby obtaining (ii).

We show (iii). We find finite D′ which is a retract of U′, Sh(D′) ∈
Forbh(F), and for which there is a homomorphism A → Sh(D′) if and only
if there is a homomorphism A→ Sh(U′) for every relational structure A.

Construct D′ from U′ by identifying all vertices of the same color (re-
call that the color of vertex v is the set {i; (v) ∈ X i

U
}). Denote by r the

homomorphism (retraction) U′ → D′. Obviously, if f : Y → U′ is a homo-
morphism then f ◦ r : Y → D′ is also a homomorphism. Thus A→ Sh(U′)
implies A→ Sh(D′).

It remains to show that Sh(D′) ∈ Forbh(F). Suppose, to the contrary,
that there is a tree F ∈ F and a homomorphism f : F→ Sh(D′). Let X be
a lift created from F by adding an extended relation (v) ∈ X i

X
if and only if

(f(v)) ∈ X i
D′ , for every i = 1, 2, . . .N . Obviously f is also a homomorphism

X → D′. Consider lift Y induced by X on elements of some tuple ~v ∈ Rj
X
.

Since F is a relational tree, the shadow Sh(Y) has only one tuple. Because D′
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is retract of U′ we know that the homomorphic image of Y is a substructure
of U′ and thus it is in L.

Because F is a relational tree, it is possible to construct a homomorphic
copy of X by starting with the homomorphic image of Y in L and using free
amalgamation (over a one-element set) to add lifts of homomorphic images
of all other tuples of F. It follows that the homomorphic image of X is in L,
a contradiction. �

Remark. We stress the fact that families of trees are not the only regular
families F of relational structures where the universal structure for Forbh(F)
can be described as a shadow of an ultrahomogeneous monadic lift U′. For
example, consider relational structures created from a relational tree by re-
placing tuples by an arbitrary irreducible structure (recall that a structure
is irreducible if it has no vertex cuts). Such structures have all minimal g-
separating g-cuts of size 1. One can easily construct continuum many such
examples. There is however no finite retract of U′ satisfying the statement of
Corollary 5.1. (Such structures cannot be constructed from individual tuples
by the aid of free amalgamation.) Of course such structures may have infinite
chromatic numbers.

Note that it is also possible to construct the dual D of F without using
the Fräıssé limit. Also this follows by our construction in Theorem 3.1. For
every possible combination of new relations on a single vertex, create a single
vertex of D and then keep adding tuples as long as possible so that D is still
in L (in a similar way to the proof of Proposition 5.2).

We have shown that special cases of universal structures can be used to
construct duals. Now we show the opposite: every dual can be turned into
a universal structure by an especially simple monadic lift.

Proposition 5.2 For a family F of relational structures the following two
statements are equivalent:

(i) There is a finite dual D of F .

(ii) There exists a finite family F ′ of monadic lifts X whose shadow Sh(X)
has one tuple with the following property:

Denote by L the class of all lifts Y such that

(a) Y ∈ Forbh(F
′), and

(b) every vertex of Y is in precisely one extended relation X i
Y
.

There is a generic liftU′ for L and its shadow Sh(U′) is an ω-categorical
universal structure for Forbh(F).
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Loosely speaking, the class L is described by forbidden colors of vertices and
forbidden colorings of edges.

Proof. (i) =⇒ (ii): Fix a dual D with vertices {1, 2, . . .N} and consider
lifts with N extended unary relations. Let F ′ be the family of all structures
X such that:

1. the vertex set of X is X ⊆ {1, 2, . . .N};

2. there is a tuple ~v ∈ Rj
X
for some j ∈ I such that ~v /∈ Rj

D
;

3. for every i ∈ X there is a tuple (i) ∈ X i
X
;

4. there are no other tuples in X and there are no vertices in X except
ones in ~v.

By definition, Age(L) is obviously an (free) amalgamation class (all forbidden
substructures are irreducible).

We show that the shadow of L is Forbh(F). For every A ∈ Forbh(F) and
homomorphism f : A → D construct a lift X by putting (v) ∈ X i

X
if and

only if f(v) = i. It is easy to see that X ∈ L. On the other hand, for every
structure A and lift X ∈ L, a homomorphism A→ Sh(X) can be interpreted
as an D-coloring of A and thus A ∈ Forbh(F).

The rest of statement follows by Fräıssé theorem analogously as Theo-
rem 3.1.

In the opposite direction assume the existence of F ′, L and U′ satisfying
the statement of the proposition. Construct the retract D′ of U′ by unifying
all vertices of the same color. This gives a homomorphism (retraction) r :
Sh(U′)→ D′. Put D = Sh(D′). We show that D is the dual of F .

For every A ∈ Forbh(F) there is an embedding e : A → Sh(U′). It
follows that A ∈ CSP({D}) because e ◦ r is a homomorphism A → D. To
see that D /∈ Forbh(F), assume for a contradiction that there is F ∈ F and
a homomorphism f : F→ D. Create lift X from F by adding a tuple (v) to
X i

X
if and only if (f(v)) ∈ X i

D′ . Lift X satisfy condition (a) of the definition
of L. For every F′ ∈ F a homomorphism F′ → X implies a homomorphism
F′ → U giving (b) and thus X ∈ L. A contradiction with U′ being generic
for L and Sh(U′) ∈ Forbh(F). �

Theorem 4.1 and Proposition 5.2 imply Theorem 5.3. It is easy to see
that UP(F) have the size of g-separating g-cuts o bounded by 1 and moreover
it is closed for free amalgams of trees.

To show both implications of Theorem 5.1 it is necessary to show the
non-existence of monadic lifts as described in Proposition 5.2 for families F

22



not consisting of relational trees. This is possible with a more systematic
study of the minimal arities needed in the lift for a given family F , and by
giving a more explicit description of the lifts via forbidden substructures, as
shown in [13].
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