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Preface

Charles University in Prague and particularly Department of Applied
Mathematics (KAM), Computer Science Institute of Charles University
(IUUK) and its international centre DIMATIA, are very proud that they
are hosting one of the very few International REU programmes which are
funded jointly by NSF and the Ministry of Education of Czech Republic
(under the framework of Kontakt programmes ME 521, ME 886 and ME
09074). This programme is a star programme at both ends and it exists
for more than a decade since 2001. Repeatedly, it has been awarded for its
accomplishments and educational excellence.

This booklet reports just the programme in 2012. I thank to Josef
Cibulka, the Czech mentor of this year, for a very good work both during
the programme itself and after.

Prague, November 11, 2012

Jaroslav Nešetřil
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DIMACS/DIMATIA Research Experiences for Undergraduates (REU)
is a joint program of the DIMATIA center, Charles University in Prague
and DIMACS center, Rutgers University, New Jersey. This year’s partic-
ipants from Charles University were students Martin Balko, Ondřej B́ılka,
Martin Böhm and Pavel Veselý. Their coordinator was Josef Cibulka, who
participated in the scientific work, but mainly took care of organizing the
DIMATIA part of the program. Together with more than thirty students
from universities from all over the United States, they participated in the
first part of the program, at Rutgers University of New Jersey in Piscataway,
USA, from June 3rd to July 20th. Five American students were selected to
join, together with their coordinator, the Czech students in the second part
which took place at Charles University in Prague from July 24th to August
8th. The students were Marissa Loving, Theresa Lye, Michael Poplavski,
Ixtli-Nitzin Sanchez and Ethan Schwartz. The coordinator was Kellen My-
ers.

The first part of the program mainly consists of students solving open
mathematical problems brought by their mentors. Students attended sev-
eral lectures including a lecture by Professor Nešetřil called “What Makes
a Math Problem Beautiful?”. DIMACS organized trips to the IBM Watson
Research center and the Cancer Institute of New Jersey. Here the students
heard about applications of mathematics and computer science and were
given excursions around the facilities.

In Prague, the students attended a series of lectures given by professors
mainly from the Department of Applied Mathematics and the Computer
Science Institute of Charles University. They also had the opportunity to
attend the Midsummer Combinatorial Workshop.

In addition to the scientific program, an important part of the REU is an
intercultural experience. During the first part, an afternoon was dedicated
to presentations of Czech Republic and cultures from which the American
students come from. The students participated together in informal sport
activities and sightseeing trips.

The students got important experiences with research and life abroad.
For some of them, the program will certainly be an important milestone in
their future scientific career.

This booklet presents the results of the Czech students stemming from
the REU programme and reports of the American students about their visit
to Prague.

Josef Cibulka
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The participants of the Prague part of the programme.
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Midsummer Combinatorial Workshop excursion to the baroque library of
the Strahov Monastery.
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Pavel Veselý 24
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Almost Monochromatic Partitions of
Two-Colored Planar Points Sets

Martin Balko and Martin Böhm

Suppose that S = (W,B) ⊂ R2 is a set of points in general position (thus
no three points from S are collinear) colored with two colors – white and
black. Let σ (S, k) denote the minimum number of subsets in a partition
of S = (W,B) such that their convex hulls are pairwise disjoint and all the
points in each subset have the same color except at most k of them (the
stains). Let

σ (n, k) = max
{
σ (S, k) | S ⊂ R2, |S| = n

}
.

For k = 0, the σ (S, 0) denotes the cardinality of the smallest parti-
tion of S into monochromatic subsets with pairwise disjoint convex hulls.
Dumitrescu and Pach [2] already showed that

σ (n, 0) =

⌈
n+ 1

2

⌉
.

Grima et al. [4] also consider the function σ (n, k) and they show the fol-
lowing bounds:⌈

n+ 1

4

⌉
≤ σ (n, 1) ≤

{
3
⌊
n
11

⌋
if n′ = 0

3
⌊
n
11

⌋
+
⌈
n′+1
4

⌉
if n′ 6= 0

where n′ is a residue of dividing n by 11. We would like to derive some more
bounds for the function σ (n, k) for general k ∈ N0. More results related to
the various forms of balanced subdivisions of two-colored planar point sets
can be found, for example, in the survey by Kaneko and Kano [7].

The upper bound

σ (n, k) ≤
⌈

n

2k + 1

⌉
holds trivially, as every set of 2k+ 1 bichromatic points contains at most k
points of a single color. Modifying the proof of Grima et al. [4] we can show
that this bound is actually quite accurate.

Theorem 1.1. For every k ∈ N0, σ (n, k) ≥
⌈
n+1
2k+2

⌉
.
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Proof. Let n be even and let S = (W,B) be a convex set of n points such
that for every vertex v the colors of the neighbors of v on the boundary of
the convex hull differ from the color of v. Suppose that Π is a partition of
S with minimum number of sets. We define a rooted tree T with vertex set
Π. A subset Bi is a descendant of Bs if conv (Bi ∪Bs) does not intersects
any other sets of Π. A subset Bj is a descendant of Bi 6= Bs if Bi is a
descendant of Bh, Bj is not descendant of Bh and conv (Bi ∪Bj) does not
intersects any other sets of Π. As a root of T , we choose a set Bs which
contains at least 2k+2 points (such set exists, as otherwise the bound holds
trivially).

Let ni denote the number of interior nodes of T which contain i points
and let h denote the number of leaves of T . Every interior node of T
corresponds to a sets of Π which contains at least two points (otherwise it
does not have a descendant). Every leaf of T corresponds to a set which
has at most 2k + 1 points, as the set can contain part of the boundary of
the convex hull of S which contains 2k+ 1 vertices. We assign every leaf to
a unique interior node of T recursively. First, we assign at least |Bs| − 2k
leaves to Bs, as no set contains more than 2k edges of the convex hull of S
(consider an alternating path).

If l ≥ 2k + 3, then for every Bp, Bp 6= Bs and |Bp| = l, we assign at
least l − 2k − 2 leaves. Since there are at least l − 2k − 1 outgoing edges
from Bp (consider the edges inside the convex hull of S) and one of them is
assigned to the predecessor of Bp. We thus have

h ≥ n2k+3 + 2n2k+4 + · · ·+ (t− 2k − 2)nt + 2

where t is the number of points in the largest set of Π (two additional leaves
are added, as the root Bs has no predecessor).

On the other hand we have

h ≥ n− 2n2 − 3n3 − · · · − tnt
2k + 1

,

since each leaf contains at most 2k + 1 points and points in the interior
nodes are not in the leaves. Combining these inequalities we get

(2k + 2)h ≥ n− 2n2 − 3n3 − · · · − (2k + 2)n2k+2 − · · · − (2k + 2)nt + 2.

Therefore we have

(2k + 2)h ≥ n− (2k + 2) (n2 + · · ·+ nt) + 2.
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This implies

σ (S, k) ≥ h+ n2 + n3 + · · ·+ nt + 2 ≥
⌈
n+ 2

2k + 2

⌉
.

The case when n is odd can be treated the same way (just remove one
point from S).

To derive stronger upper bounds we use the famous Ham Sandwich
theorem which says that every two-colored set of points in general position
in the plane can be partitioned by a line such that every open halfplane
spanned by this line contains approximately half of the points of each color.

Theorem 1.2 (the Ham Sandwich theorem, [8]). Let A1, A2, . . . , Ad be sets
of points in Rd such that A1 ∪ A2 ∪ . . . ∪ Ad is in general position. Then
there exists a hyperplane h such that each open halfspace contains exactly
b 12 |Ai|c points of Ai.

Lemma 1.3. For every k ∈ N0, σ (4k + 3, k) ≤ 2.

Proof. Let S = (W,B) be two colored point set with 4k + 3 points and
suppose that |W | > |B|. Hence |B| ≤ 2k + 1. If |B| ≤ 2k, then we use the
Ham Sandwich theorem which partitions W and B into two open halfplanes
such that each contains at most k black vertices.

So we may assume that |B| = 2k + 1. If we remove an arbitrary point
w ∈W , then we get the set S′ with 2k+ 1 black and 2k+ 1 white vertices.
The Ham Sandwich theorem partitions those sets by a line l such that there
are k black and k white vertices in each open halfplane (h+ and h−) and one
black vertex y and white vertex z lying on l. Since S is in general position,
the point w does not lie on l. Without loss of assumption suppose that
w ∈ h+. Then we have the desired partition (S ∩ h+)∪{z}, (S ∩ h−)∪{y}
of S. See the following figure (we use the notation (w, b) for a set with w
white and b black points).

Corollary 1.4. Every two colored set of n points can be partitioned into
at most 2d n

4k+3e sets such that their convex hulls are pairwise disjoint and
each subset has at most k stains.

Proof. Consider partitioning of the set S by lines into parts with 4k + 3
points (except for the last part which can contain smaller number of points).
Then use the previous lemma for each part.
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(k, k)

(k + 1, k)

h−

h+
z

yl

Figure 1: Using the Ham Sandwich theorem

Corollary 1.5. For every k ∈ N0,
⌈
n+1
2k+2

⌉
≤ σ (n, k) ≤ 2d n

4k+3e.

To prove some other results we use auxiliary results concerning the dis-
section graphs of planar point sets proved by Erdős et al. [3] Let S be set of
n points in general position in plane. For every two points p and q from S,
let N (−→pq) denote the number of points from S in the open halfplane on the
right side of the directed line −→pq. A dissection l-graph Gl of planar point
set S is a directed graph whose edges are the segments −→pq with N (−→pq) = l.
Since Gn−l−2 = −Gl (we use −G to denote the graph G with reversed
orientation of edges), it suffices to consider the cases 0 ≤ l ≤ n−2

2 .

Theorem 1.6 ([3]). Each component of Gl has an oriented Eulerian cycle.

Theorem 1.7 ([3]). Every point of S is a vertex of Gbn−2
2 c. If l <

⌊
n−2
2

⌋
,

then the graph Gl has at least 2l + 3 vertices.

Proposition 1.8. For every k ∈ N0 and every set S = (W,B) of 6k + 5
points in general position colored with two colors such that |W | − |B| = 3
the inequality σ (S, k) ≤ 3 holds.

Proof. Let S be such planar point set. Then |W | = 3k+4 and |B| = 3k+1.
Consider the dissection graph Gl for S where l = 2k+ 1. Since the number
of vertices of Gl is at least

2l + 3 = 2 (2k + 1) + 3 = 4k + 5,

we know that there are both white and black vertices in Gl. As each com-
ponent of Gl contains an oriented Eulerian cycle, there is an oriented edge
in Gl with either both vertices white or with one vertex black and the other
one white.
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b)a)

c) d)

(2k + 3, 2k − 1)

(k, k + 1)

(2k + 2, 2k)

(k, k + 1)

(2k + 1, 2k + 1)

(k + 1, k)

(2k + 2, 2k)

(k + 1, k)

Figure 2: Creating the partition

Consider a line l which corresponds to such edge. Then l separates 2k+1
points from S. If there are at most k − 1 points of a single color between
the separated points, then we can always add one point lying on l to the
separated set. Thus there are at most 4k + 3 points in the rest of S and
we know that it can be partitioned into two sets, according to our previous
proposition. This gives us three sets in the final partition.

Thus it remains to solve the case when each color contains at least k
separated points. See the figure how to handle this situation. In three of
these cases (a), c) and d)) we use the first proposition again, since there are
at most 4k + 3 unseparated points, and in the remaining one (case b)) we
can use the halving line to partition the unseparated points of S into two
sets.

Thus to prove the following conjecture, it suffices to derive the bound for
the two colored sets S where the number of white and black points differ by
one, as the case |B| ≤ 3k is not difficult (consider two lines, each separating
a part of S with three black points). If such statement is true, then it
implies the result of Grima et al. [4] for k = 1.
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Conjecture 1.9. For every k ∈ N0, σ (n, k) ≤ 3
⌈

n
6k+5

⌉
?

For integers w ≥ 0 and b ≥ 0, we call a line which intersects two points
of S a (w, b)-cut, if it separates w white and b black points of S. Similarly
we say that such line is l-cut, l ≥ 0, if it separates l points of S (no colors
specified). The cut is white (black) if both points lying on such line are white
(black, respectively). The cut is called bichromatic if the line contains both
black and white point. We also say that two-colored set is of type (w, b), if
it contains w white and b black points.

Suppose that we have a two-colored point set S = (W,B) with |W | =
3k + 3 and |B| = 3k + 2 which cannot be partitioned into three monochro-
matic subset with at most k ≥ 0 stains and pairwise disjoint convex hulls.
We show some properties that S must satisfy. However we have not been
able to prove the nonexistence of such sets in the general case yet.

Proposition 1.10. The dissection graph G2k+1 of S contains only mono-
chromatic components. If S′ is a set of points which remain in S after
deletion of points separated by an arbitrary white 2k + 1-cut, then the dis-
section graph G′2k+1 of S′ does not contain any white edge.

Proof. In fact we prove a slightly stronger statement. Consider an arbitrary
(2k + 1)-cut l. If the set of points separated by l contains less than k points
of a single color, then S can be separated, as we can always add at least
one point lying on l between the separated ones and use Lemma 1.3 on the
rest. Thus l separates either the set of type (k + 1, k) or (k, k + 1).

There are six different cases (see the figure bellow) and only two of
them do not cause separation of S – white (k, k + 1)-cut (case a)) and black
(k + 1, k)-cut (case f)). Thus the components of the dissection graph G2k+1

are monochromatic. We can also examine the set of unseparated points in
the same way.

After performing the white cut, we obtain set of type (2k + 3, 2k + 1).
The only cuts which do not separate such set into two parts are black
(k + 1, k)-cut and bichromatic (k + 1, k)-cut. Thus the corresponding dis-
section graph does not contain a white edge. On the other hand, if we
perform black (k + 1, k)-cut on S, then the unseparated points form set
of type (2k + 2, 2k + 2). Then the only two interesting cases are, again,
white (k, k + 1)-cut and black (k + 1, k)-cut, hence there is no bichromatic
(2k + 1)-cut.
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b)a)

c) d)

(2k + 1, 2k + 1)

(k, k + 1)

(2k, 2k + 2)

(k + 1, k)

(2k + 1, 2k + 1)

(k + 1, k)

(2k + 2, 2k)

(k, k + 1)

e) f)

(2k + 2, 2k)

(k + 1, k)

(2k + 3, 2k − 1)

(k, k + 1)

Figure 3: Possible (2k + 1)-cuts
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Proposition 1.11. The set S has only black points on the boundary of its
convex hull.

Proof. If we have a white point w on the boundary of the convex hull of S,
then we consider two (2k + 1)-cuts containing w. According to the previous
proposition, these cuts are both white (otherwise S can be partitioned).
But then the dissection graph of unseparated points contains a white edge,
which is a contradiction.
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Geometŕıa Computacional. “XIII Encuentros de Geometŕıa Computa-
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On the complexity of minimizing the number
of edge contractions to make a graph planar

Ondřej B́ılka

We study a problem to determine the minimal number of edge contrac-
tions to make a graph planar. We show that this problem is NP complete.
We do a reduction to planar Steiner tree problem.

Let G be a connected planar graph and S a set of vertices that need
to be connected by Steiner tree. We define graph G′ such that minimal
number of contractions to make G planar is the size of minimal Steiner tree
of G.

G′ consist of three parts. First part is copy of G. Second part consist
of for vertices x1, x2, x3, y1. For third part first consider complete bipartite
graph B between {x1, x2, x3} and S ∪ y1. Subdividing each edge of B into
path of lenght |G|+ 1 yield graph G’.

G
s1

s2

x1

x2

x3

y1

Figure 1

If T is a Steiner tree for a given pair G,S then contracting edges of T
in G′ gives us copy of G\T which is planar with subdivided K2,3 attached
to a contracted vertex. Thus G′\T is planar.

Now assume that we have minimal set of edges C whose contraction
makes G′ planar. Observe that C must be a forest. Distance of points
x1, x2, x3, y1 from each other and from S is at least |G|+ 1. As contracting
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entire G makes G′ planar we know that minimal C must consist only of
edges from G. If C contains connected component containing S we found
a Steiner tree. Otherwise let C1, C2 be components of C that contain a
point from S. Then graph G′\C contains vertices c1, c2 obtained by con-
tracting C1, C2. Vertices x1, x2, x3 and c1, c2, y1 form subdivided K3,3 which
contradicts planarity of G′\C.
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Holes in bicolored random point sets

Josef Cibulka and Jan Kynčl

All point sets considered in this paper are in the plane and in general
position, that is, no three of them lie on a line. We are given a set P of
points in the plane. A polygon on a set P ′ of points is a simple polygon
with its vertices embedded on the points of P ′. A polygon P on P ′ ⊂ P is
a general hole in P if the interior of P does not contain any point of P . A
convex hole is a convex polygon that is a general hole. The size of a hole is
the number of its vertices.

Erdős and Szekeres showed in 1935 [4] that for every k every large enough
set of points in the plane contains a k-tuple of points in convex position.
Erdős proposed a question whether this remains true if we require the k-
tuple to form a convex hole. This question was answered in the negative by
Horton [5]. See for example the book by Harris, Hirst and Mossinghoff [6]
for more results.

A bicolored point set is a set of points some of which are white and
others black. A hole is monochromatic if all its vertices have the same color.
Devillers et al. [3] studied the maximum size of a convex hole guaranteed to
exist in every bicolored set of n points. They showed that a monochromatic
triangle exists for sufficietly large n, and that for every n, there is a bicolored
set of n points with no monochromatic convex 5-hole. The question of the
existence of a monochromatic convex 4-hole remains open. Aichholzer et
al. [1] showed that a general monochromatic 4-hole exists in every sufficiently
large bicolored point set.

For brevity, writing that P is a random set of n points from a region
R ⊂ R2 means that P is created by the process of selecting n points inde-
pendently and uniformly at random from R. Notice, that if R is a bounded
convex region of positive measure, then such a point set is in general po-
sition with probability 1. A balanced 2-colored random set P of n points
is P = W ∪ B, where B is a random set of bn/2c black points and W is a
random set of dn/2e white points. Let R be an arbitrary bounded convex
region of positive measure. Balogh et al. [2] proved that the expected max-
imum size of a convex hole in a random set of n (uncolored) points from
R is Θ(log n/ log log n). This implies that the expected maximum size of a
monochromatic convex hole in a 2-colored random set of n points from R
is Θ(log n/ log log n).
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We study general holes in random bicolored point sets. In Theorem 1.2,
we show that a random set of bicolored points from a convex region con-
tains a monochromatic hole of size Ω(log(n)) with high probability. In
Theorem 1.3, we show that a random set of cm white and m/c black points
from a unit square contains a white hole of size Ω(m) with high probability.

Observation 1.1. Let Q ⊂ R2 be a set of at least three points in general
position and let e be a fixed edge of conv(Q). Then there is a polygon P
with the vertex set Q and having e as an edge. Notice that P is contained
in conv(Q).

Proof. Let n = |Q|. Label the two vertices of e q1 and q2 so that q1 imme-
diately precedes q2 when going along the convex hull in the clockwise order.
We label the points of Q q1, . . . , qn in such a way that q2, . . . , qn are listed
in the clockwise order of visibility from q1. The polygon P is the polygon
with vertex set Q that visits the vertices in the order q1, . . . , qn.

LetXn be a nonegative random variable depending on a parameter n and
let f : R → R be a function. If there are constants c1, c2 > 0 such that for
every n ∈ R, |Xn−f(n)| ≤ |f(n)|/2 with probability at least 1−c1n−c2 , then
we say that Xn is in Θ(f(n)) with high probability. Similarly, Xn ∈ Ω(f(n))
with high probability if Xn ≥ f(n)/2 with probability at least 1− c1n−c2 .

Theorem 1.2. Let R ⊂ R2 be a bounded convex region of positive measure.
With high probability, the maximum size of a general monochromatic hole
in a balanced 2-colored random set of n points from R is Ω(log(n)).

Proof. Let Rn be a balanced 2-colored random set of n points from R. We
assume that the x-coordinates of the points in Rn are pairwise different,
which occurs with probability 1. We now count the probability that the
sequence of colors of the points of Rn sorted by the x-coordinate has no
white subsequence of length log(n)/2. We consider bn/(2−1 log n)c disjoint
sequences of log(n)/2 consecutive points each. Each of these sequences
contains only white points with probability 2− logn/2. Thus the probability
that there is no white subsequence of length log(n)/2 is at most

(1− 2− logn/2)bn/(log(n)2
−1)c ≤ e−n−1/2n/ log(n) = n−n

1/2 log(e)/ log2(n)

for n large enough. Therefore, with high probability, there are log(n)/2
white points whose convex hull contains no black point. By Observation 1.1,
we can find an empty white polygon with all these white points as vertices.
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In the following, we do not aim on optimizing the ratio between the
number of white and black points. However, it seems unlikely that the
proof could be easily extended to balanced 2-colored point sets.

Theorem 1.3. There are constants c and m0 such that the following holds.
Let m ≥ m0, where m is of the form m = k2 for some integer k. Let
P = W ∪B, where W is a random set of cm white points and B a random
set of m/c black points from the unit square. Then P contains a white hole
of size at least Ω(m) with high probability.

Proof. We cut the unit square by horizontal and vertical lines into a grid
of k × k square cells of side length 1/k. The (i, j)-cell is the cell in the
i-th row from top and j-th column from the left. Each cell is subdivided
into 4 quadrants of side length 1/(2k). With probability 1, every point of
B ∪W lies in the interior of some quadrant of some cell. A cell is useful if
it contains a white point in every quadrant and no black point.

We view the grid as a graph, where each cell is connected to the at most
four cells with which it shares an edge.

Let pc be the node percolation constant for the square grid. Experimen-
tal results suggest that pc is around 0.6. A classical result in the percolation
theory states that for every p > pc there exists a constant k0 such that
whenever k ≥ k0, the induced subgraph of the k × k square grid obtained
by taking each node with probability p has a connected component of size
Ω(k2) with high probability. See for example the book of Penrose [7].

Let c be a constant satisfying 4e−c/4 + 1/c < 1−pc. Assuming pc ≤ 0.6,
we can use c = 10.4. The probability that a given cell is not useful is at
most

4

(
1− 1

4m

)cm
+

1

c
≤ 4e−c/4 +

1

c
< 1− pc.

The first summand evaluates the probability that the cell has no white point
in one of its quadrants. The second summand is an upper bound on the
probability that the cell contains a black point.

We take such a constant m0 that the subgraph of the grid graph induced
by the useful cells contains a connected component with Ω(m) vertices with
high probability.

Assuming the induced graph contains the component with Ω(m) vertices,
we let G be the graph induced by the vertices of this component. Let V be
the set of nodes of G. We fix a spanning tree T of G. Let QT be the set
of 4|V | white points with one white point from each quadrant of each cell
corresponding to a vertex in V .
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Figure 1: Top: All the possible sets of neighbors of a node in T (up to sym-
metries). Below: Connections between the white points in the quadrants of
the node.

T
P ′

Figure 2: Example of a polygon P ′ created from a tree T .

We create a polygon P ′ by connecting the white points in each node
depending on the set of its neighbors in the tree T . See Figs. 1 and 2.

The polygon P ′ is contained within the union of useful cells and so it
does not contain any black point. We need to consider the possible white
points in its interior. For this purpose, for each vertex v of P ′, we draw a
segment between v and the center of the cell in which v is contained. We
also draw segments between the pairs of centers of cells that correspond to
nodes connected by an edge in T . These segments split P ′ into a collection
C of triangles and quadrangles. See Fig. 3. In addition, one edge of each of
these triangles and quadrangles is an edge of P ′.

If some polygon in C is not convex, then it is a quadrangle with an
angle of degree larger than 180◦ at a vertex of P ′. Let F be the nonconvex
quadrangle with an angle larger than 180◦ at vertex v. Let F ′ be the other
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Figure 3: a) Splitting P ′ into convex regions. b) Fixing a non-convex poly-
gon; dotted segment replaces the segment sv.

polygon in C that has v as a vertex. Let u and w be the white points that
are vertices of F and F ′ different from v. Let s and s′ be the centers of the
cells containing v and u, respectively. We replace the segment sv by the
segment xv, where x is a point on the segment ss′ such that the angles in
which v sees the pairs w, s and s, u are smaller than 180◦. See Fig. 3.

The polygon P ′ is now split into a set C′ of convex polygons. Each
polygon F in C′ has an edge e of P ′ as its edge. For every polygon F
containing at least one white point in its interior, we make the following.
We apply Observation 1.1 on the set of white points in F , including the
two white points on the boundary of F . We consider the curve obtained by
removing the edge e from the polygon guaranteed by the observation. We
replace the edge e in P ′ by this curve.

The resulting polygon P has no point of B ∪W in its interior and has
at least 4|V | vertices.
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Peel numbers

Pavel Veselý

Let G = (V,E) be a simple graph. We define peel number of a vertex by
a computation process in which we delete (peel) vertices one by one. The
computation consists of phases. In the phase zero we delete vertices with
degree zero and assign them peel number zero. In the phase one we delete
vertices with degree one or less recursively, i.e. a vertex that has originally
degree more than one can be peeled in the phase one if his neighbors except
at most one are peeled before him. Afterwards we perform the phase two
by deleting vertices of degree at most two and assigning them peel numbers
two. In the phase i we delete vertices with degree i or less and assign them
peel numbers i. We finish the process when there is no vertex left in the
graph.

Similarly to degree sequence, a peel sequence of the graph G is a sequence
of peel numbers of its vertices.
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Figure 1: A graph with its peel numbers

It is easy to observe that the peel number of a vertex is at most its
degree.

The peel numbers were already studied as an important property of
large networks such as the Internet. They are often called coreness in the
literature, e.g. [1, 2, 3]. A k-core is defined as an induced subgraph on
vertices with peel number (coreness) at least k. Similarly a k-shell is an
induced subgraph on vertices with peel number exactly k.
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The algorithm computing peel sequence of a graph can be straightfor-
wardly obtained from the definition. Efficient implementation is described
in [1].

1.1 Peel Sequence Properties

Lemma 1.1. Let p1, p2, . . . pn be a sequence of non-negative integers such
that p1 ≤ p2 ≤ · · · ≤ pn and let l be a number of integers with maximum
value in the sequence (pn = pn−1 = · · · = pn−l+1 > pn−l). Then (pn)n is a
peel sequence of a graph if and only if l ≥ pn + 1.

Proof. Let p1, p2, . . . pn be a sequence with l ≤ pn and consider a graph
G with such peel sequence. If we want to count its peel sequence we first
have to peel (delete) vertices with peel numbers less than pn first. After we
delete them, there are l ≤ pn vertices with peel number pn. So every vertex
has degree at least pn. Since there is not a sufficient number of vertices we
get a contradiction.

For the reverse implication we construct a graph Gp for an arbitrary
given sequence with l ≥ pn+1. First we take pn+1 vertices with maximum
peel number and make the clique Kpn+1. Then for each integer pi in the
sequence except the pn + 1 integers already used we create a vertex and
connect it to pi vertices in Kpn+1. Note that this can be done in arbitrary
order. See Figure 2 for an example of such graph.

To finish the proof we observe that Gp has the peel sequence (pn)n.
Every vertex outside of Kpn+1 corresponds to pi in the original peel sequence
and it has the same degree, thus its peel number is at most pi. Moreover it
is adjacent only to vertices in Kpn+1, thus it can removed from the graph
before any vertex from Kpn+1 during the computation of the peel sequence.
Hence its peel number is pi. The vertices in Kpn+1 have degree at least pn
and they can be removed after every other vertex, thus they all have the
peel number pn.

The constructed graph Gp for a sequence (pn)n is used later in this
article.

1.2 Preserving Peel Sequence

Now we consider the following problem. Given the graphs G1 and G2 with
the same peel sequence p1, p2, . . . pn, we want to find operations that re-
construct a given graph G1 into another given graph G2 without changing
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Figure 2: The graph Gp with the same peel sequence as the graph on
Figure 1. The vertices in the clique Kpn+1 are highlighted.

the peel sequence during the process. This problem is similar to finding
operations that preserve the degree sequence and that make from a graph
any other graph with the same degree sequence. For the solution see [6, 5].

Moreover the operations should be local, i.e. they affect only a neigh-
borhood of a constant number of vertices to a certain constant distance.
We show that such operations exist for peel numbers and that they affect
neighborhood of one vertex to distance two.

We want to make G2 from G1 by a set of operations and we do it
through an intermediate graph Gp with the same peel sequence, i.e. from
G1 we construct Gp and from Gp we construct G2 while always preserving
peel sequence. We deal only with constructing Gp from a given G1, since
if we are able to make Gp from G2, then we create G2 from Gp with the
reverse operations in the reverse order.

Theorem 1.2. Given a graph G1 we can construct the graph Gp with the
same peel sequence as G1 by creating graphs G0, G1, G2, . . . Gn = Gp such
that Gi and Gi+1 differs only by adding and deleting edges in the neighbor-
hood of one vertex to distance two. The number of edges added or deleted
by a single operation depends only on the peel number of a vertex. The peel
sequence of all graphs Gi is the same as the peel sequence of G1.

Proof. Let p1, p2, . . . pn be the peel sequence of the graph G1 and let k be
the maximum number of this sequence. By Lemma 1 the number of vertices
with peel number k is at least k + 1.

Consider a computation of a peel sequence of G1 by deleting vertices in
the order v1, v2, . . . vn. We show that the computation can be done in the
same order (during the process) for all graphs Gi (but it can change if we
want to create G2 from Gp).

We fix the vertices vn−k, vn−k+1 . . . vn and call them fixed vertices. First
we make a clique from these fixed vertices, i.e. only add some edges, and
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create the graph G0. This is necessary because otherwise the peel number
of a fixed vertex can decrease later. We can split the creation of the clique
into many operations, e.g. one operation would be adding an edge.

Since the vertices in the clique are the last ones to be deleted in the
computation of the peel sequence, all other vertices are deleted before them.
If there are only fixed vertices, then their degree is exactly k in G0 and thus
their peel number is k. Since the peel numbers of other vertices also do not
change, by creating the clique the peel sequence remains the same.

The operation that makes Gi from Gi−1 is rewiring one vertex vi (which
is not fixed) to the fixed vertices and adding an edge from the original
neighbors of v in Gi−1 to a fixed vertex if needed. We do this for the
vertices v1, v2, . . . vn−k−1 creating the graphs G1, G2, . . . .

More precisely when we want to rewire a vertex vi with the peel num-
ber pi we first delete all its edges and add pi edges to the fixed vertices
vn−pi+1, . . . vn. It may happen that some neighbor vj of vi with the peel
number pj has degree less than pj (note that if so, pj must be equal to pi).
In such case we add an edge from vj to a fixed vertex that is not adjacent
to vj (there is at least one such fixed vertex).

Observe, that we delete exactly pi edges, since we rewire in order of the
peel sequence computation and in every step the peel number of any vertex
is at most its degree (otherwise the peel number of vi would decrease during
the process). We add at most 2 · pi edges, thus the number of edges added
or deleted during a single operation depends only on the peel number of the
vertex vi. Note that if the vertex vi is already adjacent to the fixed vertices
we do not need to delete and add again those edges.

It remains to show that the peel sequence is preserved during the process.
We already observed this for creating the clique from fixed vertices and we
want to prove the same for rewiring operation on vertex vi (i = 1, 2, . . . n−
k − 1).

Since the degree of vi is pi and its neighbors in Gi are fixed vertices,
the peel number of vi does not change. If the neighbor vj of vi in Gi−1 has
the same peel number (pj = pi), we might add an edge to a fixed vertex,
but it does not decrease or increase peel number of vj – adding an edge
is done only when the peel number would decrease. If we did not add an
edge, the peel number remains the same, because in the computation of
the peel sequence we delete vi before vj and vj has degree at least its peel
number. In the case pj > pi, the peel number of vj stays the same, since
the peel number of vj cannot be decreased by deleting an edge to a vertex
with strictly lesser peel number.
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The peel numbers of the fixed vertices also do not change, since in the
computation they are deleted after vi. For other vertices, that are not vi,
adjacent to vi or fixed, their peel number cannot be changed, because the
edges incident to them were not deleted or added and peel numbers of their
neighbors also did not change.

1.3 Example of creating Gp

We give an example of the process described above in which we make graph
Gp on Figure 2 from a graph on Figure 1. We show the graphs G0, G1, G2,
G6, G7 and G15 = Gp which are made during the process.
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Figure 3: Graph G0 made from the graph on Figure 1 by creating the
clique from the fixed vertices (highlighted). The numbers mark the order
of computation of the peel sequence.
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mining (generalized) core groups in social networks. Advances in Data
Analysis and Classification, 5:129–145, 2011. 10.1007/s11634-010-0079-
y.

[2] Michael Baur, Marco Gaertler, Robert Görke, and Marcus Krug. Gen-
erating graphs with predefined k-core structure. Technical report,

28



14

15 16

13

1211

1

109

8 7

2

6

3

4

5

Figure 4: Graph G1. Deleted edge is dashed and the new added one is bold.
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Figure 5: Graph G2.
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Figure 6: Graph G6 with all vertices with peel number 1 rewired.
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Figure 7: Graph G7. Note that we have to add an edge between the vertices
8 and 16.
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Figure 8: Graph G15 = Gp is the result of the process.

Figure 9: The graph Gp for a 3-regular graph on 8 vertices.

31



A Trip to Prague: What I Have Learned

Marissa Loving
University of Hawaii - Hilo

These past days in the Czech Republic have been some of the busiest
and most exciting in my life. From morning seminars to afternoon romps
through castles and gardens to evenings spent absorbing the local food and
culture, not a minute has gone to waste. As an aspiring mathematician
it has been a great honor to meet and speak to mathematicians of such
excellence and importance as Jaroslav Nešetřil, Pavel Valtr, Jǐŕı Fiala, and
many others.

I really enjoyed our first week of lectures and problem solving. Although
I found each of the lectures stimulating, I was particularly excited by the
lecture given by Yared Nigussie on W.Q.O. (Well-Quasi Ordering) Theory.
I had never found myself intrigued by the topics I had encountered in order
theory, but this talk gave me a new perspective.

Yared began by introducing us to the concept of a quasi-order. The idea
of a quasi-order is similar to that of a partial order, which I was familiar with
from some of my computer science classes. Much like a partial order can be
thought of as a more relaxed form of a total order, that is, it allows us to
have some notion of greater than or less than in a set where not necessarily
all elements are related to each other, a quasi-order can be thought of,
intuitively, as some more relaxed or general form of a partial order.

Definition: A quasi order (Q,≤) consists of a set Q and a relation ≤ such
that ≤ is both reflexive and transitive.

Thus, even the definition is very similar to that of a partial order except
it omits the need for ≤ to be antisymmetric. Note that, given this definition.
It is possible for two distinct elements, q, q′ ∈ Q to have the property that
q ≤ q′ and q′ ≤ q.

With this mathematical machinery in place, Yared returned to the fa-
miliar concept of the Well-Ordering Principle with this question in mind,
”Does a similar concept hold for quasi-ordered sets?” It turns out that there
are some pretty neat results proved about Well-Quasi Ordered sets. How-
ever, before we were able to discuss some of these results we needed to
develop a notion of what it means to be not just quasi-ordered, but well
quasi-ordered.
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Definition: A quasi-order (Q,≤) is said to be well quasi-ordered if for every
infinite sequence q1, q2, q3, . . . you will always find i < j such that qi ≤ qj .

So what is this similar concept that was mentioned? We consider Hig-
man’s Lemma as well as a theorem by Kruskal. The versions introduced to
us by Yared are given below.

Higman: If Q is well quasi-ordered, then Q<ω is also well quasi-ordered
under ”embedding”.

Kruskal: Trees under embedding are well quasi-ordered.

Although the original proof of Higman’s Lemma was very long and com-
plicated, Nash Williams gave a very simple and elegant proof of this using
an argument known as the minimal-bad-sequence argument. The proof uses
three infinite ”tapes”, a constructive approach, and a series of contradic-
tions to arrive at the desired conclusion. Yared went over Nash Williams’
proof with us and I was excited to be able to follow along quite well.

This was not always the case during the Midsummer Combinatorics
Workshop the following week because of the select audience the talks were
often given at such a high level that I found myself quite lost after the first
few definitions. Nonetheless, it was wonderful to be immersed in such an
intense mathematical environment and I found myself eagerly listening to
talks even when I had very little of the mathematical mechanics to under-
stand the more intricate details of the concepts and proofs being presented.

Several of the talks which stood out to me were Dhruv Mubayi’s talk,
Quasi-random Hypergraphs, Tomáš Gavenčiak’s presentation, Hyper-tree-
depth and Hypergraph Pairs, and Kolja Knauer’s discussion, Simple Tree-
width. However, I think I most enjoyed Jan Hubička’s talk entitled Order
of Locally Constrained Homomorphisms. This may be attributable, in part,
to the fact that I actually knew much of the vocabulary that was being
employed. I also thought it was really neat to see the work of Nešetřil being
cited in his own workshop.

Jan’s presentation began with an introduction to the set, G, of graph
homomorphisms on a graph with the identity homomorphism as a relation
≤ form a quasi-order (G,≤). If we consider to such sets G and H we can say
that G and H are hom-equivalent if and only if G ≤ H ≤ G. Now, what if
we consider the set of functions that are only locally surjective, injective, or
bijective, respectively? It turns out that these locally injective, surjective,
and bijective homomorphism induce a partial ordering and we can, in fact,
prove the following lemma.
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Lemma: Every locally surjective or bijective homomorphism F : G → H is
surjective when H is connected.

We can use the following result by Nešetřil

Theorem: Every locally injective homomorphism F : G→ G is an automor-
phism of G for connected graphs G.

to prove that if drm(G) = drm(H), then every locally injective or surjective
homomorphism is locally bijective for connected graphs G where drm is the
degree refinement matrix.

So, in some sense, it seems that the degree refinement matrix describes
or at least distinguishes the equivalence classes of the equi-parititions of our
graph.

Jan finished by noting that the homomorphism order is universal on
partial orders and lattices and asking the audience to consider the case of
duality pairs. This was how many of the speakers ended their talks, not with
this specific question, but simply with a series of questions, conjectures, or
open problems, which lent itself to the overall flexible, hands-on feeling of
the workshop. An environment that I found very exciting because it helped
me envision myself in a similar setting as an actual mathematician and
researcher.

Although I was not able to work on any of the questions that were posed
during the Midsummer Combinatorics Workshop, the speakers during the
first week of our stay in Prague did provide all of us students with some
problems to tackle, which were quite interesting as they involved topics,
such as graph theory, that I had never worked out proofs for.

34



Problem Set

1. For every natural number n ≥ 2 there is a cograph of order n that is not
an equivalence graph.

Proof: Consider the complete graph of order n for any n ∈ N, that
is Kn. First note that Kn is a cograph for every n. Now, suppose
we delete a single edge of Kn, to form a graph we will call K ′n. K ′n
is still a cograph. However, K ′n is no longer an equivalence graph
because their exist two vertices of K ′n that are connected by a path,
yet no edge exists between them. Hence, for every n ∈ N there exists
a cograph of order n that is not an equivalence graph.

2. A graph is perfect if the chromatic number of each induced subgraph
equals the clique number of the induced subgraph.

(a) Give an example of a graph that is not perfect.

Any odd numbered cycle.

(b) Show that all equivalence graphs are perfect.

Proof: Let G be an equivalence graph of n vertices. Note that every
induced subgraph of an equivalence graph is also an equivalence graph.
Thus, the chromatic number of every induced subgraph will be equal
to the clique number of that subgraph. Namely, a subgraph of order m
will also have chromatic and clique number m since it is an equivalence
graph. Hence, G is perfect and we can conclude that every equivalence
graph is perfect.

(c) Show that the union of two vertex-disjoint perfect graphs is perfect.

Proof: Let G and H be two vertex-disjoint perfect graphs. Consider
an induced subgraph I of G∪H. We have three cases: all the vertices
of I are contained in G, all the vertices of I are contained in H, or
the vertices of I are contained in both G and H.

If all the vertices of I are contained in G, then I is an induced sub-
graph of the perfect graph G and so its clique number is equal to its
chromatic number, trivially. Without loss of generality, this argument
can be applied to I when all of its vertices are contained in H.
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If the vertices of I are contained in both G and H and these are vertex-
disjoint graphs then the vertices of I contained in G and those con-
tained in H are completely disjoint sets. Thus, I is the vertex-disjoint
union of two induced subgraphs, one of G and one of H. Because G
and H are vertex disjoint it is clear that the clique number of I will
be equal to the maximum of the clique numbers of the two subgraphs
induced in G and H, respectively, by I. Similarly, the chromatic num-
ber of I will be equal to the maximum of the chromatic numbers of
the two subgraphs induced in G and H, respectively, by I. Since both
G and H are perfect graphs, their induced subgraphs will each have
clique number equal to chromatic number and we can conclude that
the clique number of I will be equal to the chromatic number of I.
Hence, the vertex-disjoint union of two equivalence graphs and thus,
an equivalence graph.

Hence, in any case, every subgraph I of G∪H is an equivalence graph
and we can conclude that the vertex-disjoint union of perfect graphs
is perfect.

3. Determine the tree width of all outer planar graphs.

Proposition: The tree width of any outer planar graph is at most 2.

Proof: Let G be an outer planar graph. Consider the graph G′ created
by adding edges to G until we have attained a maximal outer planar
graph. Consider the reduced dual, T , of G′, that is the dual of G′

minus the vertex for the outer plane. We claim that T is a tree
decomposition of G′.

First, we will show that T is a tree by showing that it does not contain
a cycle. Suppose to the contrary that T contains a cycle. If T contains
a cycle of length n then there exists at least one vertex in G′ that is
completely bounded by faces of G′. However, G′ is an outer planar
graph and therefore cannot contain an internal vertex, a contradiction.
Thus, we conclude that T is indeed a tree.

Second, we will show that T is indeed a tree decomposition of G′

because:

– every node of T is a subset of V ′G, since every node of T consists
of the edges and vertices bounding a plane region of G′;
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– by definition every edge of G′ is contained in a node of T ;

– and we know that every v ∈ VG is contained in at least a single
node of T and, additionally, that if v appears in multiple nodes
of T these nodes will be adjacent, by construction, and we can
conclude for every v ∈ V ′G the nodes containing v will induce
nonempty and connected subtrees in T .

So T has width 2 because f(t) = 3 for ever t ∈ VT . Thus, we have
found a tree decomposition of G′ with width 2 and can conclude that
the tree width of G′ is at most 2. Because we can obtain our graph
G by simply deleting edges from G′ we know that G is a minor of G′.
Thus, the tree width of G′ forms an upper bound on the tree width
of G. Hence, the tree width of any outer planar graph is at most 2.

4. Given graph G, the girth of G, denoted g(G), is the number of edges
in the smallest induced cycle in G. If G is a cograph, what is the largest
possible value of g(G)? What is the smallest?

Proof: Consider a cograph G. Note that, for every n Pn is a subgraph
of Cn. In fact, it is clear that for every n P1, P2, . . . , Pn−1 are induced
subgraphs of Cn. Thus, since G is a cograph and P4 free we can
conclude that it does not contain an induced subgraph of Cn for n ≥ 5.
Hence, g(G) is at most 4. Trivially, consider the smallest cycle, C3.
Note that C3 is indeed a cograph with girth 3. Hence, it is clear that
g(G) is no less than 3 for any cograph G.

5. Consider the set of bipartite graphs. Is it true that every bipartite graph
is a cograph? What if we restrict ourselves to the set of complete bipartite
graphs?

Proof: Note that every cycle of even length is a bipartite graph. How-
ever, C6 contains an induced P4.

Suppose we look instead at only complete bipartite graphs. Consider
a complete bipartite graph G that is formed by joining the vertex
disjoint, empty graphs U and W and a collection ω of 4 vertices in
VG. We have three cases, either ω ⊂ VU , ω ⊂ VW , or ω ⊂ VU ∪ VW .

If ω ⊂ VU , then the subgraph induced by ω is an empty graph of 4
vertices. Without loss of generality the same holds for ω ⊂ VW .
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If ω ⊂ VU ∪VW , then we have four cases, but these can be reduced to
two without loss of generality. Note that either one vertex in ω lies in
U and three in V or two vertices lie in both U and V .

In the first case, since G is a complete bipartite graph, then we have
the induced subgraph K1,3 which does not contain P4 as an induced
subgraph.

Similarly, in the second case, since G is a complete bipartite graph,
then we have the induced subgraph K2,2, which once again does not
contain P4 as an induced subgraph.

Therefore, there is no collection of 4 vertices that induce P4 and we
conclude that every complete bipartite graph is indeed a cograph.
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DIMACS REU 2012 - Prague Report

Theresa Lye
Rutgers University

The following report contains a discussion on two talks, one from the
REU seminar series and one from the MCW, and solutions to several prob-
lems.

Orthogonal One-Bend Drawings, Pavel Valtr

Orthogonal one-bend drawings are a way of depicting graphs in which
all edges must be straight lines running in one of the cardinal directions
(completely horizontal or vertical running parallel to the x or y axis, no
diagonal edges are allowed) and are only allowed to bend once in a 90 degree
angle per edge. The edges may cross over one another, but may not overlap
in such a way that two edges would be indistinguishable from one another.
Not all graphs can be drawn as an orthogonal one-bend drawing, and we
analyze the conditions necessary for a graph to be able to be depicted as an
orthogonal one-bend drawing. We first consider two dimensional space.

The first observation is that all vertices must have a degree less than or
equal to four. This is a necessary condition condition because if a vertex
has a degree greater than four, there is no way to draw the edges emerging
from the vertex using only the four cardinal directions.

Note that if all vertices had degree four, then the number of edges |E|
in the graph would be equal to 2|V |. There would be four edges per vertex,
but since each edge is shared by two vertices, |E| = 4

2 |V | = 2|V |.
With only the first observation, this implies that the maximum number

of edges for a graph with an orthogonal one-bend drawing is 2|V |. However,
this is not true. The maximum number of edges is actually 2|V |−2. This is
because the vertices at the leftmost, rightmost, topmost, and bottom-most
portions of the graph cannot have an edge going further in the respective
directions (leftmost vertex cannot have an edge traveling left, and so on).
Therefore, we lose 4 degrees, which means two less edges. Thus, if a graph
has an orthogonal one-bend drawing, then |E| ≤ 2 |V | − 2. We have been
able to draw an orthogonal one-bend drawing that has |E| = 2 |V | − 2.

We would then like to extend this to three dimensional space. There
are now six directions in which edges can move, but all previous rules still
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apply. Extending the above arguments in a simple manner, each vertex can
have a maximum degree of six, while the number of edges is bounded as
|E| ≤ 3 |V | − 3. We have made a few attempts at drawing an orthogonal
one-bend drawing in three dimensions with |E| = 3 |V | − 3 for low |V |, but
so far have been unsuccessful. Whether we are simply having difficulty in
visualizing an orthogonal one-bend graph in three dimensions or if there is
a tighter bound on the number of edges in an orthogonal one-bend graph in
three dimensions remains to be proven. It may be possible there are more
conditions to consider: for instance, it seems impossible to connect vertices
not within the same plane because it requires more than one bend in an
edge.

Twins in Sequences, Maria Axenovich, Yury Person, and Svetlana
Puzynina

A twin consists of two large disjoint substructures that have the same
parameters. In the case of sequences, a twin could be two identical subse-
quences. The subsequences need not be continuous. The characters that
comprise the subsequence may be scattered throughout the sequence.

A primary question discussed at the conference was how large the twins
could be in any given binary sequence. It was argued that any binary
sequence of length n could be split into two identical subwords (twins) about
half the length of the sequence with a short remaining subword.

This could be done by partitioning the sequence into ε-regular partitions,
except for perhaps a few. Let S be the sequence, |S|q be the count of the
character q in the sequence, and dq be the density of the character q in the

sequence, defined as dq =
|S|q
|S| . An ε-regular sequence applies a restriction

on the density of the characters within the sequence.

Once a sequence has been partitioned into mostly ε-regular partitions,
one can select repeated characters from each partition to construct the two
identical subsequences such that the subsequences are twins consisting of
about half the sequence each, with only a few characters left over that are
not included in the twins.

Problems

Show that G contains an induced 4-path if and only if the complement
of G contains an induced 4-path.
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The complement of a 4-path (P4) is also a 4-path, that is P4 = P4.
Therefore, if graph G contains an induced P4, then its complement G will
contain P4, which equals P4. If G contains P4, then its complement G will
contain P4 = P4.

A graph is perfect if the chromatic number of each induced subgraph
equals the clique number of the induced subgraph. Show that all equivalence
graphs are perfect.

Equivalence graphs consist of all complete graphs and disjoint unions of
complete graphs. First, consider that all complete graphs must be perfect
graphs. Because all pair of vertices are connected, each induced subgraph
will consist of one clique that contains all of the vertices in the induced
subgraph. Thus, the clique number of the induced subgraph will equal the
number of vertices in the induced subgraph. Also, because all vertices are
connected, each vertex in an induced subgraph must be assigned a different
color. Thus, the chromatic number of each induced subgraph must also
equal the number of vertices in the induced subgraph. Thus, all complete
graphs are perfect.

If the equivalence graph consists of a union of complete graphs (let us
call the individual complete graphs in the union as components of the equiv-
alence graph), then it must still be perfect. If an induced subgraph of the
equivalence graph consists of vertices/edges from only one component, then
naturally the induced subgraph must have equal clique and chromatic num-
ber because the induced subgraph was induced from one complete graph,
which must be perfect. If an induced subgraph of the equivalence graph
consists of vertices/edges from multiple components (let us call the set of
vertices/edges induced from one of the components as an induced compo-
nent), then the clique and chromatic number of the induced subgraph will
be maximum clique and chromatic number among the induced components.
Because the components have no edges between them, the induced subgraph
will essentially consist of a union of cliques, with the largest clique deter-
mining the clique and chromatic number for the entire subgraph. Because
each induced component was induced from a perfect graph, the maximum
clique and chromatic number will be equal. Thus all induced subgraphs will
have equal clique and chromatic number, all equivalence graphs are perfect.

Show that the union of two vertex-disjoint perfect graphs is perfect.
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Let G be a perfect graph, and H be another perfect graph. Because the
two graphs are vertex-disjoint, there are no edges going between G and H
in their union, G ∪ H. We must show that all induced subgraphs of their
union have their chromatic number equaling their clique number.

If an induced subgraph from the union includes only vertices and edges
from either G or H, then the induced subgraph has equal clique and chro-
matic number because G and H individually are already perfect graphs.

But consider if the induced subgraph from the union includes vertices
and edges from both G and H. In this case, there will be two disjoint
sets of vertices, one that is induced from G and one that is induced from
H, which we will call G′ and H ′ respectively. Because there are no edges
going between G′ and H ′, the clique number of the entire induced subgraph
must be the maximum between the clique numbers of G′ and H ′. Also
because G′ and H ′ are disjoint, the maximum chromatic number between
the chromatic numbers of G′ and H ′ must also be the chromatic number of
the entire induced subgraph. Because G′ and H ′ are induced from perfect
graphs, their chromatic numbers must equal their clique numbers. Thus,
the induced subgraph will have equal chromatic and clique numbers, which
will be the maximum chromatic and clique numbers between G′ and H ′.

Is every bipartite graph a cograph? Is every complete bipartite graph a
cograph?

No, not every bipartite graph is a cograph. A path on four vertices itself
is a bipartite graph, and is clearly not a cograph.

Yes, every complete bipartite graph is a cograph. Assume the complete
bipartite graph G has a path of four vertices, P4. Then it must have edges
(v1, v2), (v2, v3), and (v3, v4). By definition of a bipartite graph, the ver-
tices can be split into two sets U and V . We can say that v1 and v3 are
contained in U , while v2 and v4 are contained in V . By definition of a
complete bipartite graph, the graph must also contain the edge (v1, v4).
This will cause G to no longer have a P4. Thus, a complete bipartite graph
cannot have a P4 and must be a cograph.
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DIMATIA/MCW Program Report

Michael Poplavski
University of Central Florida

1 Introduction

Our trip included talks in the morning and afternoon the first week by
faculty at Charles University on Wednesday through Friday. The second
week included an exciting set of lectures in the Mid-Summer Combinatorial
Workshop. Our last week consisted of talks on Monday and Tuesday, then
our departure back the U.S. on Wednesday. During our trip we were accom-
panied by a set of local Czech students who were kind enough to prepare
exciting tours and adventures for us.

2 Workshop Talks

Our first talk and the one I found most interesting was by Zdeněk Dvořák.
The talk was mainly on tree width where he discussed specific properties
and presented some interesting problems to us. First in order to understand
what treewidth is we were introduced to what is known as tree decomposi-
tion. Tree decomposition is where you have an optimal mapping where each
vertex corresponds to a set of vertices of the graph. Another area where
tree decomposition is proven to be an important area to study is string
processing and spell checking. In this area the string is broken up into ver-
tices and the prefix of a single word may have multiple connections to other
words. The treewidth of a graph is the minimum width of a graph G of all
possible tree decompositions of that graph G. Let us note that the width
of the graph is simply the size of the largest set of vertices of that graph
minus one. I will now discuss some of the interesting properties of treewidth
that we discussed during the lecture: One property to note is that if G is
already a tree tw(G) is less than or equal to one. This is a fairly intuitive
property to prove. A possible idea for this proof would be induction on
the tree where you remove a leaf of the tree, until you are left with a set
of vertices of size less than three. Next the treewidth of a complete graph
with n vertices is equal to n minus 1. This property as well seems rela-
tively intuitive. One would partition the graph into sets of vertices where
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each set contains n vertices making the treewidth simply n minus 1. Let
us also note that if you contract the edges of a graph it does not increase
the treewidth. I will now go on to discuss two interesting problems that he
gave us to solve. Our first problem was on the treewidth of an outer-planar
graph. Firstly, an outer-planar graph is graph that can be drawn with no
edge crossings and where no vertex is completely surrounded by edges. This
can be done by making the graph a maximal outerplanar graph. At this
point the graph contains triangles as faces which is a minor graph of the
other, and by definition this will then make the treewidth at most 2. The
second problem was to show that the treewidth of a graph G is less than
the smallest degree of the graph. This problem is best thought of as a tree
where your proof is based off induction on the set of vertices of that tree.
There are the base cases when your graph has one and two vertices. One
vertex has a tree width of zero and a smallest degree of zero. Two vertices
connected has a tree width of one and a smallest degree of one. Now you
can say there exists a set of vertices that are connected to another set in
the tree beginning from one of the leaf vertices because there must exist at
least one edge. So the treewidth would always be less than or equal to the
smallest degree because of the vertex sets overlapping.

3 Midsummer Combinatorial Workshop Talks:
Binary Paint Shop Problem

We are given a word with n characters of length 2n where every character
occurs exactly twice. The objective of the problem is to color the letters of
the words using two colors, such that each letter receives both colors and
the number of color changes of consecutive letters is minimized. A step by
step example of the greedy algorithm I came up with below:

Word = ABBCDCDA

Step 1: Color AB blue

Step 2: Color BCD red

Step 3: Color CD blue

Step 4: Color A red
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Coloring in 4 changes = ABBCDCDA, where blue is underlined and red is
not. In this example the number of color changes was three with n equaling
4. In the talk they proved a new bound on the expected number of changes
of the number of color changes averaged across the permutations of the 2n
letters of the greedy algorithm from at most 2n/3 to 2n/5.
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DIMATIA/MCW Program Report

Ixtli-Nitzin Sanchez
San Jose State University

1 Introduction

My time in Prague while exposing me to a unique culture has also opened
and extended my original view of the mathematical world. After attending
the REU and MCW talks I feel privileged to have been invited and allowed
to attend the conference sessions that DIMATIA has pre-arranged for myself
and other my fellow REU student colleagues.

2 REU Talks

During the first week in Prague there were several graph theory workshops
created for the five REU students. Professors both from Charles University
and universities from the United States gave lectures on a variety of topics
some of which included graph theory, tree width, and WQO (Well Quasi
Ordering) theory. While all of them where all interesting and insightful the
two talks given by Jǐŕı Fiala and Pavel Valtr intrigued me the most.

Jǐŕı Fiala, a professor from Charles University, spoke about an abstract
strategy board game called Ypsilon that was created in the 1950s. When
playing Ypsilon there are two ways to win. The first method is that the
person who connects all three sides of the board (assuming that the two
players are playing on triangular board) before the other player wins. The
second way to win is to connect a line from a corner of the triangle to the
opposite side.

After Fiala described the game and its rules he then posed two questions.
The first question was, “Can this game end up in a draw?” Which the
answer was discovered to be that the game can never end up in a draw
and there is always a winner. The second question was, “Do any of the
two players have a winning strategy?” I only figured out the answer to this
question after playing several games against my other REU colleagues. It
turns that for the game Ypsilon the first player always has the advantage
and unless the first player makes a mistake he will usually win against his
opponent.
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Pavel Valtr, also a professor from Charles University, spoke about graphs
that have orthogonal one-bend drawings. Valtr gave several examples while
in class and because he explained clearly they were easy to comprehend. He
also asked the REU students to solve several problems during his lecture
and he always provided enough time to solve each question.

3 Problems solved

3.1 Pavel Valtr Exercise 1

Find “many” graphs with |E| ≤ 3|V | − 3 admitting a nice drawing in R3

for K7.
The final solution and design that provided the most amount of edges

can be seen below in Figure 1. The maximum amount of edges for this
graph is 14. I tried several different schemes, but every attempt was always
less then 14 edges. I also noticed that if one wanted to connect two vertices
that were on parallel planes then the rule of one-sided bend only would be
broken because the person constructing the graph would have to make two
bends in order to connect the pair.

Also for the equation |E| ≤ 3|V | − 3, it was never possible for a given
number of vertices to reach the theoretical maximum number edges, denoted
by the letter E, assuming that edges can only be made in the (x, y, z)
direction.

3.2 John Gimbel Exercise 1

Show that G contains an induced 4-path if and only if the complement of
G contains an induced 4-path.

See Figure 2.

4 MCW Talks

I was amazed that I was able to attend a conference while in Prague with
mathematicians from all over the world who have specialized in their par-
ticular field. A group photo taken while visiting the Strahov Library and a
copy of the photograph was given to each individual the following day while
at the MCW conference. The picture reminded me of group photo taken of
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Figure 1: 3D construction for K7, maximum number of edges is 14.

Figure 2

the physicists and chemists present during the 1927 Fifth Solvay Interna-
tional Conference on Electrons and Protons. I enjoyed looking at the group
photo taken at the Strahov Library because I, an undergraduate with no
publications and no specialization in mathematics, was in the picture with
these well-known mathematicians. I was fortunate to be chosen and I am
thankful the opportunity.

The talk I found most interesting was by Jakub Mareček and it was titled
“Data Structures for Stochastic Scheduling with Applications in GPGPUs”.
The research that Mareček spoke about related to the summer REU research
that I conducted while at DIMACS. The research I conducted this summer
was called “Using New York Cities 2009 historical traffic data to develop
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an iPhone routing application”. While my research involved a number of
aspects the subclass within my research on ride sharing was applicable to
Mareček’s research on stochastic scheduling. The purpose of stochastic
scheduling is to find a preemptive or non-preemptive scheduling policy, for
choosing which job to serve at each decision epoch and concerned with
various optimization criteria.

Mareček’s talk first discussed the motivation and the background for
his work in which was broken down between ARM, GPGPUs, stochastic
scheduling with presidencies. His research work has been a joint effort
between ARM and the University of Nottingham. ARM is a processor
architecture and the company designs many low-cost and power-efficient
RISC(reduced instruction set computing) processors used on cell phones
today. The background for the research that he is conducting is that he
uses an ARM processor with a GPGPUs (general-purpose computing on
a graphics processing unit) called OpenCL, which is language for writing
“kernels” and controlling application programming interfaces.

Mareček then uses stochastic scheduling to create a weighted system for
policy π:

J(π) = lim sup
t→∞

1

t

∑
q∈Q

w(q)E[aπq (t)]

Where aq is the number of jobs from queue completed by time t.
For the ride share program there would be a certain amount of hosts,

the people driving, and riders, the people seeking to carpool. Implementing
stochastic scheduling into my ride share program would allow me to spec-
ify certain variables and then initiate a preemptive scheduling policy, for
choosing which rider to serve at each decision. Some of the variables may
include the proximity of where the rider is in relation to the host, time of
travel from origin to destination, and other distance related variables that
can be included.

5 Additional Commentary

There were several presentations that were too specialized to follow with-
out the specific mathematical background. If a schedule was provided to
the REU students or at least of the mathematicians, that were attending
the conference, before the beginning of the conference then it would have
given the REU students ample amount of time to look up and research the
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mathematicians. The talks nonetheless were interesting to listen to and
provided insight into fields I had no previous knowledge of.
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DIMATIA/MCW Program Report

Ethan Schwartz
Emory University

When I was informed of my selection to the Rutgers DIMACS REU, and
subsequently of my selection to participate in the international component
of the REU, I was excited at the possibility of being introduced to high-level
mathematics and research that would help me in my mathematical studies
and my own personal research. As a pre-medical student studying applied
mathematics at the undergraduate level, I saw the opportunity to study
at the Charles University in Prague for two weeks, and attend the annual
Midsummer Combinatorial Workshop as a great learning experience. It is
not everyday that one may hear lectures from the leading mathematicians
in their respective fields.

After arriving to Prague on Tuesday, the following three days were
filled with lectures designed solely for the REU participants. These lec-
tures ranged in topics: Zdeněk Dvořák spoke on the tree width of graphs;
Pavel Valtr introduced us to orthogonal one-bend graphs; John Gimbel
offered an overview of many terms in graph theory, but most specifically
cographs; Yared Nigussie delivered an emphatic lecture on WQO (Well-
Quasi-Ordering) Theory; and Jǐŕı Fiala concluded the week by introducing
the game Ypsilon, as well as its derivative Reverse-Ypsilon.

While all of these lectures were very interesting and contained new math-
ematics, and although Jǐŕı Fiala’s lax Friday talk revolving around the game
of Ypsilon was quite engaging and different, I will focus on Pavel Valtr’s lec-
ture on orthogonal one-bend drawings. Throughout the summer at Rutgers,
and in my time in Prague, I was introduced to a lot of new mathematics,
including graph theory, combinatorics, and discrete mathematics. This talk,
by Pavel Valtr, was most interesting to me because it built on the ideas of
graph theory, and presented some ideas that I had not yet seen during the
summer. It offered a completely new way of viewing the graphs that I had
been seeing throughout my summer at Rutgers. To summarize the main
ideas of this talk:

• IfG = (V,E) has an orthogonal one-bend drawing, then |E| ≤ 2|V |−2.
Given a graph G = (V,E), then the orthogonal one-bend drawing of
G consists of vertices (points), and edges (one distinct horizontal +
one distinct vertical component). Thus, from this definition, it can
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clearly be seen that if G has an orthogonal one-bend drawing, then
every vertex of G has degree ≤ 4.

• IfG = (V,E) has an orthogonal one-bend drawing, then |E| ≤ 2|V |−2.

• At this point in the lecture, Pavel Valtr issued a challenge to the REU
group. He drew the following graph on the board, and asked us to
find its orthogonal one-bend drawing, assuming that it exists.

• After Valtr gave the group time to solve the issued challenge, I thought
I had a solution to his challenge. He had me come up to the board to
present my solution:
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• Valtr continued to give a few more observations and theorems con-
cerning the orthogonal one-bend drawings. It was also very interesting
when he proposed completing the same type of drawings but in R3.
Thus, in such drawings, edges would consist of one distinct component
in the x-direction, one distinct component in the y-direction, and one
distinct component in the z-direction.

• While much of mathematics is beautiful on its own, and does not
need a clear-cut application, I was impressed with Valtr’s impromptu
reasoning when asked for an application of such orthogonal one-bend
drawings. He said, for example, that it could be used to model parts
of large modern cities, many of which are situated in a block format.

Following the first half-week of lectures, the subsequent week consisted
of the Midsummer Combinatorial Workshop (MCW). Unfortunately, for
most of the MCW, I was very ill, and thus could only attend a few talks at
the beginning and at the end of the week. One talk in particular was very
interesting to me, because the speaker was a graduate student at Emory
University, at which I am an undergraduate student. Vindya Bhat spoke
on research involving an improved upper-bound on the density of quasi-
random hypergraphs. Bhats research extended the ErdősStone theorem to
quasi-random hypergraphs, and attempted to improve the upper-bound on
the density of such graphs. This talk was interesting to me because, as
aforementioned, the speaker is a graduate student at my home institution.
It opened my eyes to the possible mathematical research that I could par-
ticipate in as an undergraduate student. Throughout our lectures before

53



the MCW, the lecturers gave us numerous problems to attempt to solve.
The problems mainly dealt with graph theory and combinatorics, and were
of varying degrees of difficulty. Some of these solutions were attained while
working with other students in the REU. The solutions follow:

1. Gimbel offered the following problem:

A graph is perfect if the chromatic number of each induced subgraph
equals the clique number of the induced subgraph.

(a) Give an example of a graph that is not perfect.

Solution:

(b) Show that all equivalence graphs are perfect.

Solution: Let G = (V,E) be an equivalence graph of n vertices,
denoted as Kn. It is important to note that every induced sub-
graph of Kn is a complete graph, due to the definition and nature
of equivalence graphs. Thus, χ(G) for all induced subgraphs will
equal ω(G) of that induced subgraph. In other words, an induced
subgraph of order m will exhibit the property ω(G) = χ(G) = m,
since it is Km. Hence, this induced subgraph is perfect and we
can conclude that every equivalence graph is perfect.

2. Gimbel also offered the following problem:

Given graph G, the girth of G, denoted g(G), is the number of edges
in the smallest induced cycle in G. If G is a cograph, what is the
largest possible value of g(G)? What is the smallest?

Solution: Consider an arbitrary cograph G = (V,E). By definition,
G does not contain P4 as an induced subgraph. Thus, C4 can exist
within this graph; however, any cycle larger than length 4 cannot exist
within this graph. Also, consider any Kn, n ≥ 3. In such cographs,
the smallest induced cycle is C3. Thus, the g(G) ≤ 4 for a cograph.
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Also, since C2 or C1 cannot exist within the simple graphs under
consideration, g(G) ≥ 3. Thus, by these properties 3 ≤ g(G) ≤ 4 for
a cograph.

3. Gimbel also offered the following problem:

Is every bipartite graph a cograph? Is every complete bipartite graph
a cograph?

Solution: No. Every bipartite graph is not a cograph. Consider,
for example, C6. C6 is a bipartite graph, as shown below. However,
C6 contains P4 as an induced subgraph. In fact, all Cn, where n is
an even number ≥ 4, are examples of bipartite graphs that are not
cographs.

It can be shown that every complete bipartite graph is a cograph. By
definition, a complete bipartite graph is a graph in which every vertex
of the first set, U , is connected to every vertex of the second set, V .
Thus, consider vertices v1 and v2 in set U , and vertices v∗1 and v∗2 in
set V of a complete bipartite graph G = (V,E). Since G is a complete
bipartite graph, v1 is connected to v∗1 and v∗2 , and v2 is connected
to v∗1 and v∗2 , but v1 is not connected to v2. Thus, the four vertices
are connected as shown below. In other words, in such a graph, any
induced subgraph will be K2,2.
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This graph shown above is a cograph, as there is no way to induce
P4. All complete bipartite graphs in which U contains two or more
vertices, and V contains two or more vertices, has the subgraph shown
above. Thus, any bipartite graph with two or more vertices in each
disjoint set is a cograph. Now consider a complete bipartite graph in
which U contains one vertex, while V contains three or more vertices.
This graph will have the subgraph K1,3, as shown below. This sub-
graph is also a cograph. Thus, any complete bipartite graph in which
U contains one vertex and V contains three or more vertices is also a
cograph.

Considering a complete bipartite graph in which U contains one ver-
tex, and V contains two vertices or less, it is easy to show how such a
complete bipartite graph is a cograph. If U contains one vertex and V
contains two vertices, the longest induced path is P3, which is clearly
a cograph. Likewise, if both U and V contain one vertex, the longest
induced path is P2, which is also clearly a cograph. The last case is
that of the empty set, which is clearly a cograph as well. Thus, all
complete bipartite graphs are cographs.
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