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Abstract. Two cornerstones of the Kasteleyn method are: 1. rewriting the Ising parti-
tion function as the dimer partition function, that is, the generating function of the perfect
matchings, and 2. expressing the dimer partition function of planar graphs as the determi-
nant. This paper initiates the 3-dimensional Kasteleyn method.

We show that the weight enumerator of any binary linear code is polynomial reducible
to the permanent of a 3-dimensional matrix (3-matrix). In analogy to the standard (2-
dimensional) matrices we say that a 3-matrix A is Kasteleyn if signs of its entries may be
changed so that, denoting by A′ the resulting 3-matrix, we have per(A) = det(A′). We show
that in contrast with the 2-dimensional case the class of Kasteleyn 3-matrices is rich; namely,
for each matrix M there is a Kasteleyn 3-matrix A so that per(M) = per(A) = det(A′).

In particular, the dimer partition function of a finite 3-dimensional cubic lattice may be
written as the determinant of the vertex-adjacency 3-matrix of a 2-dimensional simplicial
complex which preserves the natural embedding of the cubic lattice.

1. Introduction

The Kasteleyn method is a way how to calculate the Ising partition function on a finite
graph G. It goes as follows. We first realize that the Ising partition function is equivalent to
a multivariable weight enumerator of the cut space of G. We modify G to graph G′ so that
this weight enumerator is equal to the generating function of the perfect matchings of G′,
perhaps better known as the dimer partition function on G′. Such generating functions are
hard to calculate. In particular, if G′ is bipartite then the generating function of the perfect
matchings of G′ is equal to the permanent of the biadjacency matrix of G′. If however this
permanent may be turned into the determinant of a modified matrix then the calculation
can be successfully carried over since the determinants may be calculated efficiently. Already
in 1913 Polya [6] asked for which non-negative matrix M we can change signs of its entries
so that, denoting by M ′ the resulting matrix, we have per(M) = det(M ′). We call these
matrices Kasteleyn after the physicist Kasteleyn who invented the Kasteleyn method [2, 3,
4, 10]. Kasteleyn [4] proved in 1960’s that all biadjacency matrices of the planar bipartite
graphs are Kasteleyn. We say that a bipartite graph is Pfaffian if its biadjacency matrix
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is Kasteleyn. The problem to characterize the Kasteleyn matrices (or equivalently Pfaffian
bipartite graphs) was open until 1993, when Robertson, Seymour and Thomas [7] found
a polynomial recognition method and a structural description of the Kasteleyn matrices.
They showed that the class of the Kasteleyn matrices is rather restricted and extends only
moderately beyond the biadjacency matrices of the planar bipartite graphs.
In this paper we carry out the Kasteleyn method for general binary linear codes. We

show that the weight enumerator of any binary linear code is polynomial reducible to the
permanent of the triadjacency 3-matrix of a 2-dimensional simplicial complex. In analogy
to the standard (2-dimensional) matrices we say that a 3-dimensional non-negative matrix
A is Kasteleyn if signs of its entries may be changed so that, denoting by A′ the resulting
3-dimensional matrix, we have per(A) = det(A′). We show that in contrast with the 2-
dimensional case the class of Kasteleyn 3-dimensional matrices is rich; namely, for each 2-
dimensional non-negative matrix M there is a 3-dimensional non-negative Kasteleyn matrix
A so that per(M) = per(A). Finally we conclude with some remarks directed towards
possible application for the 3-dimensional Ising and dimer problems.

1.1. Basic definitions. We start with basic definitions. A linear code C of length n and
dimension d over a field F is a linear subspace with dimension d of the vector space Fn. Each
vector in C is called a codeword. The weight w(c) of a codeword c is the number of non-zero
entries of c. The weight enumerator of a finite code C is defined according to the formula

WC(x) :=
∑

c∈C

xw(c).

A simplex X is the convex hull of an affine independent set V in Rd. The dimension of X
is |V | − 1, denoted by dimX. The convex hull of any non-empty subset of V that defines a
simplex is called a face of the simplex. A simplicial complex ∆ is a set of simplices fulfilling
the following conditions: Every face of a simplex from ∆ belongs to ∆ and the intersection of
every two simplices of ∆ is a face of both. The dimension of ∆ is max {dimX|X ∈ ∆}. Let ∆
be a d-dimensional simplicial complex. We define the incidence matrix A = (Aij) as follows:
The rows are indexed by (d− 1)-dimensional simplices and the columns by d-dimensional
simplices. We set

Aij :=

{

1 if (d− 1)-simplex i belongs to d-simplex j,

0 otherwise.

This paper studies 2-dimensional simplicial complexes where each maximal simplex is a
triangle or an edge. We call them triangular configurations. We denote the set of vertices of
∆ by V (∆), the set of edges by E(∆) and the set of triangles by T (∆). The cycle space of
∆ over a field F, denoted ker∆, is the kernel of the incidence matrix A of ∆ over F, that is
{x|Ax = 0}.
Let ∆ be a triangular configuration. A matching of ∆ is a subconfiguration M of ∆ such

that t1 ∩ t2 does not contain an edge for every distinct t1, t2 ∈ T (M). Let ∆ be a triangular
configuration. Let M be a matching of ∆. Then the defect of M is the set E(T ) \ E(M).
The perfect matching of ∆ is a matching with empty defect. We denote the set of all
perfect matchings of ∆ by P(∆). Let w : T (∆) 7→ R be weights of the triangles of ∆. The
generating function of perfect matchings in ∆ is defined to be P∆(x) =

∑

P∈P(∆) x
w(P ), where

w(P ) :=
∑

t∈P w(t).
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A triangular configuration ∆ is tripartite if the edges of ∆ can be divided into three
disjoint sets E1, E2, E3 such that every triangle of ∆ contains edges from all sets E1, E2, E3.
We call the sets E1, E2, E3 tripartition of ∆.
The triadjacency 3-matrix A(x) = (aijk) of a tripartite triangular configuration ∆ with

tripartition E1, E2, E3 is the |E1| × |E2| × |E3| three dimensional array of numbers, defined
as follows: We set

aijk :=

{

xw(t) if ei ∈ E1, ej ∈ E2, ek ∈ E3 form a triangle t with weight w(t),

0 otherwise.

The permanent of a n× n× n 3-matrix A is defined to be

per(A) =
∑

σ1,σ2∈Sn

n
∏

i=1

aiσ1(i)σ2(i).

The determinant of a n× n× n 3-matrix A is defined to be

det(A) =
∑

σ1,σ2∈Sn

sign(σ1)sign(σ2)
n
∏

i=1

aiσ1(i)σ2(i).

We recall that biadjacency matrix A(x) = (aij) of a bipartite graph G = (V,W,E) is the
|V | × |W | matrix, defined as follows: We set

aij :=

{

xw(e) if vi ∈ V, vj ∈ W form an edge e with weight w(e),

0 otherwise.

1.2. Main results.

Theorem 1. Let C be a linear binary code. Then there exists a tripartite triangular config-

uration ∆ such that: If per(A∆(x)) =
∑m

i=0 aix
i, where A∆(x) is triadjacency matrix of ∆,

then

WC(x) =
m
∑

i=0

aix
(i mod e)/2,

where e is an integer linear in length of C.

Proof. Follows from Theorems 2, 3 and 4 below. �

Theorem 2 (Ryt́ı̌r [9]). Let C be a linear code over GF (p), where p is a prime. Then there

exists a triangular configuration ∆ such that: if
∑m

i=0 aix
i is the weight enumerator of ker∆

then

WC(x) =
m
∑

i=0

aix
(i mod e)/2,

where e is an integer linear in length of C.

Theorem 3 (Ryt́ı̌r [8]). Let ∆ be a triangular configuration. Then there exists a triangular

configuration ∆′ and weights w′ : T (∆′) 7→ R such that Wker∆(x) = P∆′(x).

Theorem 4. Let ∆ be a triangular configuration with weights w : T (∆) 7→ R. Then there

exists a tripartite triangular configuration ∆′ and weights w′ : T (∆′) 7→ R such that P∆(x) =
per(A∆′(x)) where A∆′(x) is the triadjacency matrix of ∆′.
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Proof. Follows directly from Proposition 2.10 and Proposition 2.11 of Section 2. �

Definition 1.1. We say that an n × n × n 3-matrix A is Kasteleyn if there is 3-matrix A′

obtained from A by changing signs of some entries so that per(A) = det(A′).

Theorem 5. Let M be n × n matrix. Then one can construct m × m × m Kasteleyn 3-

matrix A with m ≤ n2 + 2n and per(M) = per(A). Moreover, Kasteleyn signing is trivial,

i.e., per(A) = det(A), and if M is non-negative then A is non-negative.

Theorem 5 is proved in Section 3.

2. Triangular configurations and permanents

In this section we prove Theorem 4. We use basic building blocks as in Ryt́ı̌r [8]. However,
the use is novel and we need to stress the tripartitness of basic blocks. Hence we briefly
describe them again.

2.1. Triangular tunnel. Triangular tunnel is depicted in Figure 1. An empty triangle is a
set of three edges forming a boundary of a triangle. We call the empty triangles {a, b, c} and
{a′, b′, c′} ending.

a

b

c

a'

b'

c'
b

a'

b' c'

Figure 1. Triangular tunnel

Proposition 2.1. The triangular tunnel has exactly one matching ML with defect {a, b, c}
and exactly one matching MR with defect {a′, b′, c′}. �

Proposition 2.2. The triangular tunnel is tripartite.

Proof. Follows from Figure 2.
�

1

3 22
1

3 22
1

3 22
1

Figure 2. Tunnel tripartition
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Figure 3. Triangular configuration S5

2.2. Triangular configuration S5. Triangular configuration S5 is depicted in Figure 3.
Letter ”X” denotes empty triangles. We call these empty triangles ending.

Proposition 2.3. Triangular configuration S5 has one exactly perfect matching and exactly

one matching with defect on edges of all empty triangles.

Proof. The unique perfect matching is {t1, t2, t4, t5}. We denote it by M1(S5). The unique
matching with defect on edges of all empty triangles is {t3}. We denote it by M0(S5). �

Proposition 2.4. Triangular configuration S5 is tripartite.

Proof. Follows from Figure 4.

top bottom

XX

X

3

3

3

33
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1
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3

Figure 4. Triangular configuration S5 with partitioning

�

2.3. Matching triangular triangle. The matching triangular triangle is obtained from
the triangular configuration S5 and three triangular tunnels in the following way: Let T1, T2

and T3 be triangular tunnels. Let tT1

1 , pT1 ; tT2

1 , qT2 and tT3

1 , rT3 be the ending empty triangles
of T1, T2 and T3, respectively. Let t

S5

1 , tS
5

2 , tS
5

3 be ending empty triangles of S5. We identify
tT1

1 with tS
5

1 ; tT2

1 with tS
5

2 and tT3

1 with tS
5

3 . The matching triangular triangle is defined to be
T1 ∪ S5 ∪ T2 ∪ T3. The matching triangular triangle is depicted in Figure 5.

Proposition 2.5. The matching triangular triangle has exactly one perfect matching M1

and exactly one matching M0 with defect {1, 2, 3, a, b, c, α, β, γ}. It has no matching with

defect E, where ∅ 6= E ( {1, 2, 3, a, b, c, α, β, γ}.
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a
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1

2
3

α
β

γ

Figure 5. Matching triangular triangle

Proof. The perfect matching is M1 := M1(S5)∪ML(T1)∪ML(T2)∪ML(T3). The matching
M0 is M0(S5) ∪MR(T1) ∪MR(T2) ∪MR(T3).
Any matching of the matching triangular triangle with defect E ⊂ {1, 2, 3, a, b, c, α, β, γ}

contains M1(S5) or M0(S5). This determines remaining triangles in a matching with defect
E ⊆ {1, 2, 3, a, b, c, α, β, γ}. Hence, there are just two matchings M1 and M0 with defect
E ⊆ {1, 2, 3, a, b, c, α, β, γ}. �

Proposition 2.6. Matching triangular triangle T is tripartite and there is a tripartition of

T such that a, b, c ∈ E1; 1, 2, 3 ∈ E2; α, β, γ ∈ E3.

Proof. Follows from Figure 4 and Figure 2. �

2.4. Linking three triangles by matching triangular triangle. Let ∆ be a triangular
configuration. Let t1, t2 and t3 be three edge disjoint triangles of ∆.
The link by matching triangular triangle between t1, t2 and t3 in ∆ is the triangular con-

figuration ∆′ defined as follows. Let T be a matching triangular triangle defined in Sec-
tion 2.3. Let {a, b, c}, {1, 2, 3}, {α, β, γ} be ending empty triangles of T . Let t11, t

2
1, t

3
1 and

t12, t
2
2, t

3
2 and t13, t

2
3, t

3
3 be edges of t1 and t2 and t3, respectively. We relabel edges of T such

that {a, b, c} = {t11, t
2
1, t

3
1} and {1, 2, 3} = {t12, t

2
2, t

3
2} and {α, β, γ} = {t13, t

2
3, t

3
3}. We let

∆′ := ∆ ∪ T .

2.5. Construction. Let ∆ be a triangular configuration and let w : T (∆) 7→ R be weights of
triangles. We construct a tripartite triangular configuration ∆′ and weights w′ : T (∆′) 7→ R

in two steps. First step: We start with triangular configuration

∆′
1 := ∆1 ∪∆2 ∪∆3

where ∆1,∆2,∆3 are disjoint copies of ∆. Let t be a triangle of ∆. We denote the corre-
sponding copies of t in ∆1,∆2,∆3 by t1, t2, t3, respectively.
Second step: For every triangle t of ∆, we link t1, t2, t3 in ∆′

1 by triangular matching
triangle T . We denote this triangular matching triangle by Tt. Then we remove triangles
t1, t2, t3 from ∆′

1. We choose a triangle t′ from M1(Tt) and set w′(t′) := w(t). We set
w′(t′) := 0 for t′ ∈ T (Tt) \ {t}. The resulting configuration is desired configuration ∆′.

Proposition 2.7. Triangular configuration ∆′ is tripartite.
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Proof. The triangular configuration ∆′ is constructed from three disjoint triangular config-
urations ∆1,∆2,∆3. From these configurations all triangles are removed. Hence, we can
put edges E(∆i) to set Ei for i = 1, 2, 3. The remainder of ∆′ is formed by matching
triangular triangles. Every matching triangular triangle connects edges of ∆1,∆2,∆3. By
Proposition 2.6 the matching triangular triangle is tripartite and its ends belong to different
partities.

�

We recall 2X denotes the set of all subsets X. We define a mapping f : 2T (∆) 7→ 2T (∆′) as:
Let S be a subset of T (∆) then

f(S) := {M1(Tt)|t ∈ S} ∪ {M0(Tt)|t ∈ T (∆) \ S}.

Proposition 2.8. The mapping f is a bijection between the set of perfect matchings of ∆
and the set of perfect matchings of ∆′ and w(M) = w′(f(M)) for every M ⊆ T (∆).

Proof. By definition, the mapping f is an injection. By Proposition 2.5, every inner edge of
Tt, t ∈ T (∆), is covered by f(S) for any subset S of T (∆). Let M be a perfect matching of
∆. We show that f(M) is perfect matching of ∆′.

f(M) = {M1(Tt)|t ∈ M} ∪ {M0(Tt)|t ∈ T (∆) \M}.

Let e be an edge of ∆ and let e1, e2, e3 be corresponding copies in ∆1,∆2,∆3. Let t1, t2, . . . , tl
be triangles incident with edge e in ∆. Let tk be the triangle from perfect matching M
incident with e. By definition of ∆′, the edges e1, e2, e3 are incident only with triangles of
Tti , i = 1, . . . , l. The edges e1, e2, e3 are covered by M1(tk). The edges of Tti , i = 1, . . . , l,
i 6= k are covered by M0(Tti). Hence f(M) is a perfect matching of ∆′.
Let M ′ be a perfect matching of ∆′. By Proposition 2.5, M ′ = {M1(Tt)|t ∈ S} ∪

{M0(Tt)|t ∈ T (∆) \ S} for some set S. The set S is a perfect matching of ∆. Thus,
the mapping f is a bijection.

�

Corollary 2.9. P∆(x) = P∆′(x). �

Proposition 2.10. Let ∆ be a triangular configuration with weights w : T (∆) 7→ R. Then

there exist a tripartite triangular configuration ∆′ and weights w′ : T (∆′) 7→ R such that there

is a bijection f between the set of perfect matchings P(∆) and the set of perfect matchings

of P(∆′). Moreover, w(M) = w′(f(M)) for every M ∈ P(∆), and P∆(x) = P∆′(x).

Proof. Follows directly from Propositions 2.7 and 2.8 and Corollary 2.9. �

Proposition 2.11. Let ∆ be a tripartite triangular configuration with tripartition E1, E2, E3

such that |E1| = |E2| = |E3| and let A∆(x) be its triadjacency matrix. Then P∆(x) =
per(A∆(x)).

Proof. We have

per(A∆(x)) =
∑

σ1,σ2∈Sn

n
∏

i=1

aiσ1(i)σ2(i).

7



Every perfect triangular matching between partities E1, E2, E3 can be encoded by two per-
mutations σ1, σ2 and vice versa. If matching M is a subset of T (∆), then

n
∏

i=1

aiσ1(i)σ2(i) =
n
∏

i=1

xw([iσ1(i)σ2(i)]) = xw(M),

where [ijk] denotes a triangle of ∆ with edges i, j, k. If M is not a subset of T (∆), then
there is i such that aiσ1(i)σ2(i) = 0. Hence

∏n
i=1 x

w([iσ1(i)σ2(i)]) = 0. Therefore

∑

σ1,σ2∈Sn

n
∏

i=1

aiσ1(i)σ2(i) = P∆(x).

�

3. Kasteleyn 3-matrices

We first introduce a sufficient condition for a 3-matrix to be Kasteleyn. Let A be a
|V0| × |V1| × |V2| non-negative 3-matrix, where |Vi| = m, i = 1, 2, 3. We first define two
bipartite graphs G1, G2 as follows. We let, for i = 1, 2, GA

i = Gi = (V0, Vi, Ei) where

E1 = {{a, b}|a ∈ V0, b ∈ V1 and Aabc 6= 0 for some c} ,

and

E2 = {{a, c}|a ∈ V0, c ∈ V2 and Aabc 6= 0 for some b} .

Theorem 6. If A is such that both GA
1 , G

A
2 are Pfaffian bipartite graphs then A is Kasteleyn.

Proof. Let Mi be the biadjacency matrix of Gi and let signi : E(GA
i ) 7→ {−1, 1} be the

signing of the entries of Mi which defines matrix M ′
i such that per(Mi) = det(M ′

i). We
define 3-matrix A′ by

A′
abc = sign1({a, b})sign2({a, c})Aabc.

We have

det(A′) =
∑

σ1

sign(σ1)×
∑

σ2

sign(σ2)
∏

j

sign2({j, σ2(j)})[sign1({j, σ1(j)})Ajσ1(j)σ2(j)].

By the construction of sign2 we have that for each σ2 and each σ1, if
∏

j Ajσ1(j)σ2(j) 6= 0 then

sign(σ2)
∏

j

sign2({j, σ2(j)}) = 1.

Hence

det(A′) =
∑

σ1

sign(σ1)×
∑

σ2

∏

j

[sign1({j, σ1(j)})Ajσ1(j)σ2(j)]

=
∑

σ2

×
∑

σ1

sign(σ1)
∏

j

sign1({j, σ1(j)})Ajσ1(j)σ2(j).

Analogously by the construction of sign1 we have that for each σ1 and each σ2, if
∏

j Ajσ1(j)σ2(j) 6= 0 then

sign(σ1)
∏

j

sign1({j, σ1(j)}) = 1.
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Hence
det(A′) =

∑

σ1,σ2

∏

j

Ajσ1(j)σ2(j) = per(A).

�

In the introduction we defined the triadjacency 3-matrix of a triangular configuration as
the adjacency matrix of the edges of the triangles. We also defined a matching of a triangular
configuration as a set of edge-disjoint triangles. In this section it is advantageous to consider
any 3-matrix with 0, 1 entries as the adjacency matrix of vertices of a triangular configuration.
Hence we need the following notions.
A triangular configuration ∆ is vertex-tripartite if vertices of ∆ can be divided into

three disjoint sets V1, V2, V3 such that every triangle of ∆ contains one vertex from each
set V1, V2, V3. We call the sets V1, V2, V3 vertex-tripartition of ∆.
The vertex-adjacency 3-matrix A(x) = (aijk) of a tripartite triangular configuration ∆

with vertex-tripartition V1, V2, V3 is the |V1|× |V2|× |V3| three dimensional array of numbers,
defined as follows: We set

aijk :=

{

xw(t) if i ∈ V1, j ∈ V2, k ∈ V3 forms a triangle t with weight w(t),

0 otherwise.

We will need the following modification of the notion of a matching. A set of triangles of a
triangular configuration is called strong matching if its triangles are mutually vertex-disjoint.

Proof of Theorem 5. Let M be a n × n matrix and let G = (V1, V2, E) be the adjacency
bipartite graph of its non-zero entries. We have |V1| = |V2| = n. We order vertices of each
Vi, i = 1, 2 arbitrarily and let Vi = {v(i, 1), . . . , v(i, n)}. Let V ′

i = {v′(i, 1), . . . , v′(i, n)} be
disjoint copy of Vi, i = 1, 2.
We next define three sets of vertices W1,W2,W0 and system of triangles ∆(G) = ∆ so

that each triangle intersects each Wi in exactly one vertex.

W1 = V1 ∪ V ′
1 ∪ {w(1, e)|e ∈ E},

W2 = V2 ∪ V ′
2 ∪ {w(2, e)|e ∈ E},

W0 = {w(0, e)|e ∈ E} ∪ {w(0, i, j)|i = 1, 2; j = 1, . . . , n},

∆ = ∪e=ab∈E {(a, b, w(0, e)), (w(0, e), w(1, e), w(2, e))}∪

∪n
j=1 {(w(0, 1, j), v

′(2, j), w(1, e))|v(1, j) ∈ e}∪

∪n
j=1 {(w(0, 2, j), v

′(1, j), w(2, e))|v(2, j) ∈ e}.

We let A be the vertex-adjacency 3-matrix of the triangular configuration T (G) = T =
(W0,W1,W2,∆). We first observe that both bipartite graphs G1, G2 of this triangular config-
uration are planar; let us consider only G1, the reasoning for G2 is the same. First, vertices
v′(1, j) and w(0, 2, j) are connected only among themselves in G1. Further, the component
of G1 containing vertex v(1, j) contains also vertex w(0, 1, j) and consists of degG(v(1, j))
disjoint paths of length 3 between these two vertices. Here degG(v(1, j)) denotes the degree
of v(1, j) in graph G, i.e., the number of edges of G incident with v(1, j). Thus, by Theorem
6, A is Kasteleyn.
We next observe that Kasteleyn signing is trivial. Let D1 be the orientation of G1 in which

each edge is directed from W0 to W1. In each planar drawing of G1, each inner face has an
9



odd number of edges directed in D1 clockwise. This means that D1 is a Pfaffian orientation

of G1, and per(A) = det(A) (see e.g. Loebl [5] for basic facts on Pfaffian orientations and
Pfaffian signings).
Finally there is a bijection between the perfect matchings of G and the perfect strong

matchings of T : if P ⊂ E is a perfect matching of G then let

P (T ) = {(a, b, w(0, e))|e = ab ∈ P}.

We observe that P (T ) can be uniquely extended to a perfect strong matching of T , namely
by the set of triples S1 ∪ S2 ∪ S3 where

S1 = ∪e∈E\P{(w(0, e), w(1, e), w(2, e))},

S2 = ∪n
j=1{(w(0, 1, j), v

′(2, j), w(1, e))|v(1, j) ∈ e ∈ P},

S3 = ∪n
j=1{(w(0, 2, j), v

′(1, j), w(2, e))|v(2, j) ∈ e ∈ P}.

Set S1 is inevitable in any perfect strong matching containing P (T ) since the vertices
w(0, e); e /∈ P must be covered. This immediately implies that sets S2, S3 are inevitable as
well.
On the other hand, if Q is a perfect strong matching of T then Q contains P (T ) for some

perfect matching P of G.
�

4. Application to 3D dimer problem

Let Q be cubic n × n × n lattice. The dimer partition function of Q, which is equal to
the generating function of the perfect matchings of Q, can be by Theorem 5 identified with
the permanent of the Kasteleyn vertex-adjacency matrix of triangular configuration T (Q).
Natural question arises whether this observation can be used to study the 3D dimer problem.
We first observe that the natural embedding of Q in 3-space can be simply modified to

yield an embedding of T (Q) in 3-space. This can perhaps best be understood by figures,
see Figure 6; this figure depicts configuration T (Q) around vertex v of Q with neighbors
u1, . . . , u6.
Triangular configuration T (Q) is obtained by identification of vertices vi, i = 1, . . . , 6 in

the left and right parts of Figure 6. Now assume that the embedding of left part of Figure 6
is such that for each vertex v of Q, the vertices v1, . . . , v6 belong to the same plane and the
convex closure of v1, . . . , v6 intersects the rest of the configuration only in v1, . . . , v6. Then
we add the embedding of the right part, for each vertex v of Q, so that x1 belongs to the
plane of the vi’s and x2 is very near to x1 but outside of this plane.
Summarizing, the dimer partition function of a finite 3-dimensional cubic lattice Q may be

written as the determinant of the vertex-adjacency 3-matrix of triangular configuration T (Q)
which preserves the natural embedding of the cubic lattice. Calculating the determinant of a
3-matrix is hard, but perhaps formulas for the determinant of the particular vertex-adjacency
3-matrix of T (Q), illuminating the 3-dimensional dimer problem, may be found. An example
of a formula valid for the determinant of a 3-matrix is shown in the next subsection. It is
new as far as we know but its proof is basically identical to the proof of Lemma 3.3 of
Barvinok [1].
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v3

v

v2

x1

x2

u3

v6

u2

u1

u6

u5

u4

v4

v1

Figure 6. Configuration T (Q) around vertex v of Q with neighbors u1, . . . , u6 so that

u1, u3, u4, u6 belong to the same plane in the 3-space, u2 is ’behind’ this plane and u5 is

’in front of’ this plane. Empty vertices belong to W0, square vertices belong to W1 and full

vertices belong to W2.

4.1. Binet-Cauchy formula for the determinant of 3-matrices. We recall from the
introduction that the permanent of a n× n× n 3-matrix A is defined to be

per(A) =
∑

σ1,σ2∈Sn

n
∏

i=1

aiσ1(i)σ2(i).

The determinant of a n× n× n 3-matrix A is defined to be

det(A) =
∑

σ1,σ2∈Sn

sign(σ1)sign(σ2)
n
∏

i=1

aiσ1(i)σ2(i).

The next formula is a generalization of Binet-Cauchy formula (see the proof of Lemma 3.3
in Barvinok [1]).

Lemma 4.1. Let A1, A2, A3 be real r × n matrices, r ≤ n. For a subset I ⊂ {1, . . . , n} of

cardinality r we denote by As
I the r× r submatrix of the matrix As consisting of the columns

of As indexed by the elements of the set I. Let C be the 3-matrix defined, for all i1, i2, i3 by

Ci1,i2,i3 =
n

∑

j=1

A1
i1,j

A2
i2,j

A3
i3,j

.

Then

det(C) =
∑

I

per(A1
I) det(A

2
I) det(A

3
I),

where the sum is over all subsets I ⊂ {1, . . . , n} of cardinality r
11



Proof.

det(C) =
∑

σ1,σ2∈Sr

sign(σ1)sign(σ2)
r
∏

i=1

n
∑

j=1

A1
i,jA

2
σ1(i),j

A3
σ2(i),j

=
∑

σ1,σ2∈Sr

sign(σ1)sign(σ2)×
∑

1≤j1,...,jr≤n

r
∏

i=1

A1
i,ji

A2
σ1(i),ji

A3
σ2(i),ji

=
∑

1≤j1,...,jr≤n

∑

σ1,σ2∈Sr

sign(σ1)sign(σ2)×
r
∏

i=1

A1
i,ji

A2
σ1(i),ji

A3
σ2(i),ji

.

Now, for all J = (j1, . . . , jr) we have

∑

σ1,σ2∈Sr

sign(σ1)sign(σ2)×
r
∏

i=1

A1
i,ji

A2
σ1(i),ji

A3
σ2(i),ji

=(
r
∏

i=1

A1
i,ji

)(
∑

σ1

sign(σ1)
r
∏

i=1

A2
σ1(i),ji

)(
∑

σ2

sign(σ2)
r
∏

i=1

A3
σ2(i),ji

)

=(
r
∏

i=1

A1
i,ji

) det(Ã2
J) det(Ã

3
J),

where Ãs
J denotes the r × r matrix whose ith column is the jith column of matrix As.

If sequence J contains a pair of equal numbers then the corresponding summand is zero,
since det(Ã2

J) is zero. Moreover, if J is a permutation, and J ′ is obtained from J by a
transposition, then

det(Ã2
J) det(Ã

3
J) = det(Ã2

J ′) det(Ã3
J ′).

Therefore Lemma 4.1 follows.
�
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[6] G. Pólya. Aufgabe 424. Arch. Math. Phys. Ser., 20:271, 1913.
[7] N. Robertson, P. D. Seymour, and R. Thomas. Permanents, Pfaffian orientations, and even directed

circuits. Math. Ann., 150:929–975, 1999.
[8] P. Ryt́ı̌r. Geometric representations of binary codes and computation of weight enumerators. Adv. in

Appl. Math., 45:290–301, 2010.
[9] P. Ryt́ı̌r. Geometric representations of linear codes. submitted, 2011.
[10] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics–an exact result. Phil.

Mag., 6:1061–1063, 1961.

12


