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complete complexity characterization.

We further study the parametrized complexity of the problems when
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problems. The problem 3-Partition is used for all NP-completeness reductions.
The extension of interval graphs when the space in T ′ is limited is “equivalent” to
the BinPacking problem.
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1 Introduction

Geometric representations of graphs and graph drawing are important topics of
graph theory. We study intersection representations of graphs where the goal is to
assign geometrical objects to the vertices of the graph and encode edges by in-
tersections of these objects. An intersection-defined class restricts the geometrical
objects and contains all graphs representable by these restricted objects; for ex-
ample, interval graphs are intersection graphs of closed intervals of the real line.
Intersection-defined classes have many interesting properties and appear naturally
in numerous applications; for details see for example [12,25,22].

For a fixed class, its recognition problem asks whether an input graph be-
longs to this class; in other words, whether it has an intersection representation of
this class. The complexity of recognition is well-understood for many classes; for
example interval graphs can be recognized in linear-time [2,5].

We study a recently introduced generalization of the recognition problem called
the partial representation extension [20]. Given a graph and a partial representation
(a representation of an induced subgraph), it asks whether it is possible to extend
this partial representation to a representation of the entire graph. This problems
falls into the paradigm of extending partial solutions, an approach that has been
studied frequently in other circumstances. Often it proves to be much harder than
building a solution from scratch, for example for graph coloring [13,7]. Surpris-
ingly, a very natural problem of extending partially represented graphs was only
considered recently.

The paper [20] gives an O(n2)-algorithm for interval graphs and an O(nm)-
algorithm for proper interval graphs. Also, several other papers consider this prob-
lem. Interval representations can be extended in time O(n + m) [1,19]. Proper
interval representations can be extended in time O(n+m) and unit interval rep-
resentations in time O(n2) [17]. Polynomial time algorithms are also described for
function and permutation graphs [16], and for circle graphs [3].

In this paper, we follow this recent trend and investigate the complexity
of partial representation extension of chordal graphs. Our mostly negative NP-
completeness results are very interesting since chordal graphs are the first class for
which the partial representation problem is proved to be strictly harder than the
original recognition problem. Also, we investigate three well-known subclasses –
proper interval graphs, interval graphs and path graphs, for which the complexity
results are richer. We believe that better understanding of these simpler cases will
provide tools to attack chordal graphs and beyond (for example, from the point of
the parameterized complexity). For the conference version of this paper see [18].

1.1 Chordal Graphs and Their Subclasses

A graph is chordal if it does not contain an induced cycle of length four or more, i.e.,
each “long” cycle is triangulated. The class of chordal graphs, denoted by CHOR,
is well-studied and has many wonderful properties. Chordal graphs are closed
under induced subgraphs and possess the so called perfect elimination schemes

which describe perfect reorderings of sparse matrices for the Gaussian elimina-
tion. Chordal graphs are perfect and many hard combinatorial problems are easy to
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Fig. 1 An example of a chordal graph with one of its representations.

solve on chordal graphs: maximum clique, maximum independent set, k-coloring,
etc. Chordal graphs can be recognized in time O(n+m) [23].

Chordal graphs have the following intersection representations [10]. For every
chordal graph G there exists a tree T and a collection {Rv | v ∈ V (G)} of subtrees
of T such that Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G). For an example of a chordal
graph and one of its intersection representations, see Fig. 1.

When chordal graphs are viewed as subtrees-in-tree graphs, it is natural to
consider two other possibilities: subpaths-in-path which gives interval graphs (INT),
and subpaths-in-tree which gives path graphs (PATH). For example the graph in
Fig. 1 is a path graph but not an interval one. Subpaths-in-path representations
of interval graphs can be viewed as discretizations of the real line representations.
Interval graphs can be recognized in O(n + m) [2,5] and path graphs in time
O(nm) [11,24].

In addition, we consider proper interval graphs (PINT). An interval graph is a
proper interval graph if it has a representation R for which Ru ⊆ Rv implies Ru =
Rv ; so no interval is a proper subset of another one.1 Proper interval graphs can
be recognized in time O(n+m) [21,4]. From the point of our results, PINT behaves
very similar to INT but there are subtle differences which we consider interesting.
Also, partial representation extension of PINT is surprisingly very closely related
to partial representation extension of unit interval graphs considered in [17]; see
Section 1.4 for details.

1.2 Partial Representation Extension

For a class C, we denote the recognition problem by Recog(C). For an input graph
G, it asks whether it belongs to C, and moreover we may certify it by a repre-
sentation. The partial representation extension problem denoted by RepExt(C)
asks whether a part of the representation given by the input can be extended to a
representation of the whole graph.

A partial representation R′ of G is a representation of an induced subgraph G′.
The vertices of G′ are called pre-drawn. A representation R extends R′ if Rv = R′v
for every v ∈ V (G′). The meta-problem we deal with is the following.

Problem: RepExt(C) (Partial Representation Extension of C)
Input: A graph G with a partial representation R′.

Output: Does G have a representation R that extends R′?

1It is possible to define proper interval graphs differently: If Ru ⊆ Rv, then Rv \ Ru is
empty or a connected subpath of T . In other words, no interval can be placed in the middle
of another interval. Our results can be easily modified for this alternative definition.
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Fig. 2 The four possible modifications of T ′ with a single pre-drawn vertex u. The added
branches in T are denoted by dots and new vertices of T are denoted by small circles.

In this paper, we study complexity of the partial representation extension prob-
lems for the classes CHOR, PATH, INT, and PINT in the setting of subtrees-in-tree
representations. Here a partial representationR′ fixes subtrees belonging to G′ and
also specifies some tree T ′ in which these subtrees are placed. A representation R

is placed in a tree T which is created by some modification of T ′. We consider four
possible modifications and get different extension problems:

– Fixed – the tree cannot be modified at all, i.e, T = T ′.

– Sub – the tree can only be subdivided, i.e., T is a subdivision of T ′.2

– Add – we can add branches to the tree, i.e., T ′ is a subgraph of T .

– Both – we can both add branches and subdivide, i.e, a subgraph of T is a
subdivision of T ′. In other words T ′ is a topological minor of T .

We denote the problems by RepExt(C,T) where T denotes the type. See Fig. 2.
Constructing a representation in a specified tree T ′ is interesting even if no

subtree is pre-drawn, i.e., G′ is empty; this problem is denoted by Recog
∗(C,T).

Clearly, the hardness of the Recog
∗ problem implies the hardness of the corre-

sponding RepExt problem.
For PINT and INT classes, the types Add and Sub behave as follows. The type

Add allows to extend the ends of the paths. The type Sub allows to expand the
middle of the path. The difference is that if an endpoint of the path is contained
in some pre-drawn subpath, it remains contained in it after the subdivision. The
type Both makes the problems equivalent to the Recog and RepExt problems
for the real line.

1.3 Our Results

We study the complexity of the Recog
∗ and RepExt problems for all four classes

and all four types. Our results are displayed in Fig. 3.

– All NP-complete results are reduced from the 3-Partition problem. The reduc-
tions are very similar and the basic case is Theorem 3 for RepExt(INT,Fixed)
and RepExt(PINT,Fixed).

– The polynomial cases for INT and PINT are based on the known algorithm for
recognition and extension. But since the space in T is limited, we adapt the
algorithm for the specific problems.

2Let an edge xy ∈ E(T ′) be subdivided (with a vertex z added in the middle). Then also
pre-drawn subtrees containing both x and y are modified and contain z as well. So technically
in the case of subdivision, it is not true that R′

u = Ru for every pre-drawn interval, but from
the topological point of view the partial representation is extended.
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Fig. 3 The table of the complexity of different problems for the four considered classes. The
results without references are new results of this paper.

Every interval graph has a real-line representation in which all endpoints are
at integer positions. But the result that RepExt(INT,Add) is NP-complete can be
interpreted in the way that extending such representations is NP-complete. (Here,
we require that also the non-pre-drawn intervals have endpoints placed at integer
positions.) On the other hand, our linear-time algorithm for RepExt(PINT,Add)
shows that integer-position proper interval representations can be extended in
linear time.

For a subpaths-in-path partial representation, we assume that an input gives
the endpoints of the pre-drawn subpaths sorted by the input from left to right.
This allows us to construct algorithms in time O(n+m) which do not depend on
the size of the path T ′.

Parameterized Complexity. We study the parameterized complexity of these
problems with respect to three parameters: The number k of pre-drawn subtrees,
the number c of components and the size t of the tree T ′. In some cases, the
parametrization does not help and the problem is NP-complete even if the value
of the parameter is zero or one. In other cases, the problems are fixed-parameter
tractable (FPT), W[1]-hard or in XP.

The main result concerning parametrization is the following. The BinPacking

problem is a well-known problem concerning integer partitions; more details in
Section 3.4. For two problems A and B, we denote by A ≤ B polynomial reducibil-
ity and by A ≤wtt B weak truth-table reducibility. (Roughly speaking, to solve A

we may use a number of B-oraculum questions which is bounded by a computable
function.)

Theorem 1 For the number k of bins and pre-drawn subtrees, we get

BinPacking ≤ RepExt(PINT,Fixed) ≤wtt BinPacking.

The weak truth-table reduction needs to solve 2k instances of BinPacking.

1.4 Two Related Problems

We describe two problems which are closely related to our results.
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The problem of simultaneous representations [14] asks whether there exist rep-
resentations R1, . . . ,Rk of graphs G1, . . . , Gk which are the same on the common
part of the vertex set I = V (Gi) ∩ V (Gj) for all i 6= j. It is noted in [20] that the
partial representation extension is closely related to the simultaneous representa-
tions. For instance, using simultaneous representations of interval graphs, we can
solve their partial representation extension [1]. As we show in this paper, this is
not the case for chordal graphs since RepExt of chordal graphs is NP-complete
but their simultaneous representations are solvable in polynomial-time [14].

The partial representation extension problem of proper interval graphs de-
scribed here is closely related to partial representations and the bounded represen-

tation problem of unit interval graphs [17]. In all these problems, one deals with
interval representations in a limited space. So the techniques initially developed
for unit interval graphs are easily used here for proper interval graphs. We note
that the problems concerning unit interval graphs are more difficult since they
involve computations with rational number positions.

2 Preliminaries

In this section, we describe the notation used in this paper. Also, we deal with two
common concepts of the partial representation extension problems: Located and
unlocated components, and groups of indistinguishable vertices.

Notation. We consider finite undirected simple graphs, i.e., graphs without loops
and multiedges. As usual, we reserve n for the number of the vertices and m for
the number of the edges of the main considered graph G. The set of its vertices is
denoted by V (G) and the set of its edges by E(G). For a vertex v ∈ V (G), we let
N(v) = {x | vx ∈ E(G)} denote the open neighborhood of v, and N [v] = N(v) ∪ {v}
the closed neighborhood of v.

By Pn, we denote the path of the length n with n+ 1 vertices. For a tree, we
call the vertices of degree larger than two branch vertices and the vertices of degree
at most two non-branch vertices, and of course the vertices of degree one are called
leaves.

The Type Lattice. The four types Fixed, Sub, Add, and Both form the lattice
depicted in Fig. 4. For a type T, we denote by Gen(T, T ′) the set of all trees T

which we can generate from T ′ using the modifications of the type T. In addition,
if T ′ contains pre-drawn subtrees, the trees in Gen(T, T ′) contain these (possibly
subdivided) pre-drawn subtrees as well. The ordering of the types given by the
lattice has this property: If T ≤ T

′, then Gen(T, T ′) ⊆ Gen(T′, T ′).
Whether a given instance is solvable depends on the set Gen(T, T ′); so if this

set contains more trees, it only helps in solving the problem. Let T ≤ T
′. If an

Add

Both

Sub

Fixed

Fig. 4 The lattice formed by four types Fixed, Sub, Add, and Both.
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instance of Recog
∗ or RepExt is solvable for the type T, then it is solvable for

the type T
′ as well. Equivalently, if it is not solvable for T′, it is also not solvable

for T.

For the types Add and Both (and Sub for PINT and INT), the set Gen(T, T ′)
contains a tree having an arbitrary tree T as a subtree. Therefore, the Recog

∗

problem for these types is equivalent to the standard Recog problem, and we can
use the known polynomial-time algorithms.

Topology of Components. The following property works quite generally for many
intersection-defined classes of graphs, and works for all classes studied in this
paper. The only required condition is that the sets Rv are connected subsets of
some topological space, for example Rk. (As a negative example, this property does
not hold for 2-interval graphs. A graph is a 2-interval graph if each Rv is a union
of two closed intervals.) Let C be a connected component of G. Then the property
is that for each representation R, the set

⋃
v∈C Rv is a connected subset of the

space, and we call this subset the area of C. Clearly, the areas of the components
are pairwise disjoint.

For the classes PINT and INT, the areas of the components have to be ordered
from left to right. Let us denote this ordering by ◭, so we have C1 ◭ · · · ◭ Cc. For
different representationsR, we can have different orderings ◭. When no restriction
is posed on R, it is possible to create a representation in every of the c! possible
orderings.

Types of Components. For the partial representation extension problem, the
graph G contains two types of components. A component C is called a located

component if it has at least one vertex pre-drawn, i.e., C ∩ G′ is non-empty. A
component C is called an unlocated component if no interval is pre-drawn, i.e.,
C ∩ G′ = ∅. For located components, we have a partial information about their
position. For unlocated components, we are much freer in their placement.

For the classes of interval graphs, the located components are ordered from left
to right. An obvious necessary condition for an extendible partial representation
is that the pre-drawn intervals of each component appear consecutively in R′.
Indeed, if C and C′ are two distinct components, u, v ∈ C, w ∈ C′ and Rw is
between Ru and Rv , then the partial representation is clearly not extendible. For
every representation R extending R′, the ordering ◭ has to extend the ordering
◭
′ of the located components in R′.

For many of the considered problems the unlocated components are irrelevant.
For instance for RepExt(INT,Both), we can extend the path T far enough to
the right and place the unlocated components there, without interfering with the
partial representation at all. On the other hand, for problems involving the types
Fixed and Sub, the space in T is limited and the unlocated components have to
be placed somewhere. In many cases, the existence of unlocated components is not
only used for NP-completeness proofs but also necessary for the problems to be
NP-complete.

Indistinguishable Vertices. Let u and v be two vertices of G such that N [u] =
N [v]. These two vertices are called indistinguishable since they can be represented
exactly the same, i.e., Ru = Rv. (This is a common property of indistinguishable
vertices for all intersection representations). From the structural point of view,
groups of indistinguishable vertices are not very interesting. The goal is to construct
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a pruned graph where each group is represented by a single vertex. For that, we
need to be little careful since we cannot prune pre-drawn vertices.

For an arbitrary graph, its groups of indistinguishable vertices can be located
in time O(n + m) [23]. We prune the graph in the following way. If u and v are
indistinguishable and u is not pre-drawn, we eliminate u from the graph (and for
the representation, we can put Ru = Rv). In addition, if two pre-drawn intervals are
the same, we eliminate one of them. The resulting pruned graph has the following
property: If two vertices u and v indistinguishable, they are both pre-drawn and
represented by distinct intervals. For the rest of the paper, we expect that all input
graphs are pruned.

Maximal Cliques. It is well known that subtrees of a tree possess the Helly
property, i.e., every pairwise intersecting collection of subtrees has a non-empty
intersection (which is again a subtree). Hence the following holds true for all classes
of graphs considered. If K is a maximal clique of G, the common intersection
RK = ∩u∈KRu is a subtree of T . This subtree RK is not intersected by any other
Rv for v /∈ K (otherwise K would not be a maximal clique). Thus the subtrees RK

corresponding to different maximal cliques are pairwise disjoint. For example, if
|T | is smaller than the number of maximal cliques of G, the graph is clearly not
representable in T .

3 Interval Graphs

In this section, we deal with the classes PINT and INT. The results obtained here
are used as tools for PATH and CHOR in Section 4.

Let p1, . . . , pt be the vertices of the path T ′. For a located component C, we say
that a vertex pi is taken by C if there exists a pre-drawn subpath of C containing
pi.

3.1 Structural Results

We describe two types orderings: Endpoint orderings for proper interval graphs
and clique orderings for interval graphs. Also, we introduce an important concept
called the minimum span of a component.

Endpoint Orderings of PINT. Each proper interval representation gives some
ordering ⊳ of the intervals from left to right. This is the ordering of the left
endpoints from left to right, and at the same time the ordering of the the right
endpoints. The following lemma of [6] states that ⊳ is well determined:

Lemma 1 (Deng et al.) For a component of a proper interval graph, the ordering

⊳ is uniquely determined up to a local reordering of the groups of indistinguishable

vertices and the complete reversal.

So for a connected graph, we have a partial ordering < in which exactly the in-
distinguishable vertices are incomparable, and each ⊳ is a linear extension of either
<, or its reversal. Corneil et al. [4] describes how this ordering can be constructed
in time O(n+m). Since the graphs we consider are pruned, all incomparable ver-
tices in < are ordered by their positions in the partial representation. Thus we
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have at most two possibilities for ⊳ for each component C. (And two possibilities
only if all pre-drawn vertices are indistinguishable.)

Minimum Spans of PINT. For the types Fixed and Add, the space on the path
T ′ is limited. So it is important to minimize the space taken by each component
C. We call the minimum space required by C the minimum span of C, denoted by
minspan(C). Let R be a proper interval representation of C extending R′, and let
pi be the left-most vertex of T ′ taken by C and pj the right-most one. Then

minspan(C) =

{
min∀R{j − i+ 1} if some representation of C exists,

+∞ otherwise.

A representation of C is called smallest if it realizes the minimum span of C.

Lemma 2 For every component C, the value minspan(C) can be computed in time

O(n+m), together with a smallest representation of C.

Proof First, we deal with unlocated components, and later modify the approach
for the located ones.

Case 1: An Unlocated Component. Since there are no indistinguishable vertices,
we compute in time O(n+m) using the algorithm of [4] any ordering ⊳ for which
we want to produce a representation as small as possible.

Let ℓi denote the left endpoint and ri the right endpoint of the interval vi.
From the ordering v1 ⊳ · · · ⊳ vn, we want to compute the common ordering ⋖ of
both the left and the right endpoints from left to right. The starting point is the
ordering of just the left endpoints ℓ1 ⋖ · · · ⋖ ℓn. Into this ordering, we insert the
right endpoints r1, . . . , rn one-by-one. A right endpoint ri is inserted right before
ℓj where vj is the left-most non-neighbor of vi on the right in ⊳; if such vj does
not exist, we append ri to the end. For an example of ⋖, see Fig. 5.

We build a smallest representation using ⋖ as follows. Let p1, . . . , pk be the
vertices of the tree T . We construct an assignment f which maps the endpoints of
the intervals of C into T . Then for a vertex vi we put

Rvi = {pj | f(ℓi) ≤ pj ≤ f(ri)}.

The mapping f is constructed for the endpoints one-by-one, according to ⋖. Sup-
pose that the previous endpoint in ⋖ has assigned a vertex pi. If the current
endpoint is a right endpoint and the previous endpoint is a left endpoint, we as-
sign pi to the current endpoint. Otherwise we assign pi+1 to it. For an example,
see Fig. 5.

In total, the component needs 2n− ℓ vertices of T where ℓ denotes the number
of changes from a left endpoint to a right endpoint in the ordering ⋖; in other
words, 2n− ℓ is the value of minspan(C). The total complexity of the algorithm is
clearly O(n+m).

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Fig. 5 The ordering ⋖ is ℓ1 ⋖ ℓ2 ⋖ r1 ⋖ ℓ3 ⋖ ℓ4 ⋖ r2 ⋖ r3 ⋖ ℓ5 ⋖ r4 ⋖ ℓ6 ⋖ r5 ⋖ r6 for the
component C on the left. The constructed smallest possible representation of the component
C on the right, with minspan(C) = 8.
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To conclude the proof, we need to show that we construct a correct smallest
representation of C. A property of ⊳ is that the closed neighborhood N [v] of every
vertex v ∈ V (G) is consecutive in ⊳. If vivj ∈ E(G) and vi ⊳ vj , then ℓi ⋖ ℓj ⋖ ri,
and so Rvi intersects Rvj (between f(ℓj) and f(ri)). If vivj /∈ E(G), then ri ⋖ ℓj.
Thus ri is placed on the left of ℓj in ⋖, and Rvi ∩ Rvj = ∅ as required.

Concerning the minimality notice that in a pruned graph, ℓi 6= ℓj and ri 6= rj
hold for every i 6= j. We argue that we use gaps as small as possible. Only a right
endpoint ri following a left endpoint ℓj can be placed at the same position. The
other case of a right endpoint ri followed by a left endpoint ℓj requires a gap of size
one; otherwise Rvi would intersect Rvj but vivj /∈ E(G). So the gaps are minimal,
we construct a smallest representation, and give the value minspan(C) correctly.

Case 2: A Located Component. We modify the above approach slightly to deal
with located components. We already argued that there are at most two possible
orderings ⊳ (since the indistinguishable vertices are ordered by the partial repre-
sentation), and we just test both of them. Both orderings can be used if and only if
all pre-drawn vertices belong to one group of indistinguishable vertices. Then these
two orderings give the same minspan(C) but the minimum representations might
be differently shifted, and we are able to construct both of them. If the pre-drawn
intervals do not belong to one group, the ordering ⊳ is uniquely determined. (If it
is compatible with the ordering of the pre-drawn intervals at all.)

We compute the common ordering ⋖ exactly as before and place the endpoints
in this ordering. The only difference is that the endpoints of the pre-drawn intervals
are prescribed. So we start at the position of the left-most pre-drawn endpoint ℓi.
We place the endpoints smaller in ⋖ than ℓi on the left of ℓi as far to the right
as possible. (We approach them in the reverse order exactly as above.) Then we
proceed with the remaining endpoints in the order given by ⋖. If the current
endpoint is pre-drawn, we keep it as it is. Otherwise, we place it in the same way
as above. The constructed representation is smallest and gives minspan(C). ⊓⊔

Clique Orderings of INT. Recall the properties of maximal cliques from Section 2.
For a component C, we denote by cl(C) the number of maximal cliques of C. Let
R be a representation of C. Since the subtrees RK corresponding to the maximal
cliques are pairwise disjoint, they have to be ordered from left to right. This
ordering has the following well-known property [8]:

Lemma 3 (Fulkerson and Gross) A graph is an interval graph if and only if there

exists an ordering of the maximal cliques K1 < · · · < Kcl(C) such that for each vertex

v the cliques containing v appear consecutively in this ordering.

We quickly argue about the correctness of the lemma. Clearly, in an interval
representation, all maximal cliques containing one vertex v appear consecutively.
(Otherwise the clique in between would be intersected by Rv in addition.) On the
other hand, having an ordering < of the maximal cliques from the statement, we
can construct a representation as follows. Assign a vertex pi of T to each clique Ki,
respecting the ordering <. For each vertex v, we assign Rv = {pi | v ∈ Ki}. Since
the maximal cliques containing v appear consecutively, each Rv is a subpath.

Minimum Spans of INT. We again consider the minimum span defined exactly
as for proper interval graphs above. Clearly, minspan(C) ≥ cl(C). We show:
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Lemma 4 For an unlocated component C of an interval graph, minspan(C) = cl(C).
We can find a smallest representation in time O(n+m).

Proof We start by identifying maximal cliques in time O(n + m), using the al-
gorithm of Rose et al. [23]. To construct a smallest representation, we find an
ordering from Lemma 3, using the PQ-tree algorithm [2] in time O(n+m). If such
an ordering does not exist, the graph G is not an interval graph and no representa-
tion exists. If the ordering exists, we can construct a representation using exactly
cl(C) vertices of the path as described above, by putting Rv = {pi | v ∈ Ki}. ⊓⊔

We note that this approach does not translate to located components, as in
Lemma 2 for proper interval graphs. We prove in Corollary 1 that finding the
minimum span for a located component is an NP-complete problem. (We prove
this in the setting that the problem RepExt(INT,Add) is NP-complete. In the
reduction, we ask whether a connected interval graph has the minimum span at
most (M + 1)k+ 1 for some integers k and M .)

3.2 The Polynomial Cases

First we deal with all polynomial cases.

Fixed Type Recognition. We just need to use the values of minimum spans we
already know how to compute.

Proposition 1 Both Recog
∗(PINT,Fixed) and Recog

∗(INT,Fixed) can be solved

in time O(n+m).

Proof We process the components C1, . . . , Cc one-by-one and place them on T ′

from left to right. If
∑c

i=1 minspan(Ci) ≤ |T ′|, we can place the components using
smallest representations from Lemma 2 for PINT, resp. Lemma 4 for INT. Other-
wise, the path is too small and a representation cannot be constructed. ⊓⊔

Add Type Extension, PINT. Again, we approach this problem using minimum
spans and Lemma 2.

Proposition 2 The problem RepExt(PINT,Add) can be solved in time O(n+m).

Proof Since the path can be expanded to the left and to the right as much as
necessary, we can place unlocated components far to the left. So we only need
to deal with located components, ordered C1 ◭ · · · ◭ Cc from left to right. We
process the components from left to right. When we place Ci, it has to be placed
on the right of Ci−1. We have (at most) two possible smallest representations
corresponding to two different orderings of Ci. We test whether at least one of them
can be placed on the right of Ci−1, and pick the one minimizing the right-most
vertex of T taken by Ci (leaving the maximum possible space for Ci+1, . . . , Cc).
If neither of the smallest representations can be placed, the extension algorithm
outputs “no”.

If the algorithm finishes, it constructs a correct representation. On the other
hand, we place each component as far to the left as possible (while restricted by
the previous components on the left). So if Ci cannot be placed, there exists no
representation extending the partial representation. ⊓⊔
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Non-fixed Type Recognition. The only limitation for recognition of interval
graphs inside a given path is the length of the path. In the three types Sub, Add

and Both, we can produce a path as long as necessary. (With the trivial exception
T ′ = P0 for Sub for which the instance is solvable if and only if G = Kn.) For a
subpaths-in-path representation, the order of the endpoints of the subpaths from
left to right is the only thing that matters, not the exact positions. In a tree T

with at least 2n vertices, every possible ordering is realizable.

Thus the problems are equivalent to the standard recognition of interval graphs
on the real line. The recognition can be solved in time O(n + m); see [21,4] for
PINT, and [2,5] for INT.

Both Type Extension. This extension type is equivalent with the partial repre-
sentation extension problems of interval graphs on the real line. Again only the
ordering of the endpoints is important. The only change here is that some of the
endpoints are already placed. By subdividing, we can place any amount of the
endpoints between any two endpoints (not sharing the same position). Also, the
path can be extended to the left and to the right which allows to place any amount
of endpoints to the left of the left-most pre-drawn endpoint and to the right of the
right-most pre-drawn endpoint. So any extending ordering can be realized in the
Both type.

The partial representation extension problem for interval graphs on the real
line was first considered in [20]. The paper gives algorithms for both classes INT

and PINT, and does not explicitly deal with representations sharing endpoints but
the algorithms are easy to modify. The results [1,19,17] show that both extension
problems are solvable in time O(n+m).

Sub Type Extension. It is possible to modify the above algorithms for partial
representation extension of INT and PINT. Instead of describing details of these
algorithms, we simply reduce the problems to the type Both which we can solve
in time O(n+m) (as discussed above):

Theorem 2 The problems RepExt(PINT,Sub) and RepExt(INT,Sub) can be solved

in time O(n+m).

The general idea is as follows. The difference between between Sub and Both

is that for the Sub type, we cannot extend the path T ′ at the ends. Suppose that
some pre-drawn subpath R′v contains say the left endpoint of T ′. Then R′v contains
this endpoint also in T . So we are going to modify the graph G in such a way, that
every representation of the Both type has to place everything on the right of R′v.

Suppose first that the graph contains some unlocated components, and we
show how to deal with them. We want to find one edge pipi+1 of T ′ which we can
subdivide many times and place all unlocated components in between of pi and
pi+1 in T . We call an edge pipi+1 expandable if no located component C takes pj
and pk such that j ≤ i < i+ 1 ≤ k.

Lemma 5 Let G have at least one unlocated component, and let G̃ be the graph con-

structed from G by removing all unlocated components. Then R′ is extendible to R if

and only if T ′ contains at least one expandable edge pipi+1 and R′ is extendible to R̃
of G̃.

12



· · ·
p1 p2 p3 p4 p5 p6

Rv1
Rv2

Rv3

· · ·

Rv←

p0 p1 p2 p3 p4 p5 p6

Fig. 6 The three pre-drawn subpaths containing p1 are Rv1
= {p1}, Rv2

= {p1, p2} and
Rv3

= {p1, p2, p3}. We add p0 to T ′ and to Rv1
, . . . , Rv3

, and we introduce additional pre-
drawn subpaths Rv← = {p0}.

Proof Let R′ be extendible to R and let C be one unlocated component placed in T

such that it takes a vertex in between of pi and pi+1 of T ′. Clearly R′ is extendible
to R̃. And pipi+1 is expandable since if there would be a located component C̃

taking pj and pk, then C would split C̃, contradicting existence of ◭ in R; recall
the definition of ◭ in Section 2.

For the other implication, we subdivide the expandable edge pipi+1 many times
such that we can place all unlocated components in this area. For located compo-
nents, some of them have to be placed on the left of the unlocated components, and
some on the right. We can subdivide all edges of T ′ enough to place the endpoints
in the same order as in R̃. Thus we get R extending R′. ⊓⊔

Proof (Theorem 2) We describe the reduction for INT, and then we slightly mod-
ify it in the last paragraph for PINT. We deal with unlocated components using
Lemma 5. We just need to check existence of an expandable edge for which we
first compute the ordering ◭ of the located components (if it doesn’t exist, the
partial representation is clearly not extendible). If there is exactly one located
component C, then at least one of p1 and pt is not taken by C, and say for p1 we
obtain an expandable edge p1p2. And if there are at least two located components
C1 ◭ · · · ◭ Cc, let pi be the right-most vertex taken by C1. Then pipi+1 is clearly
expandable. It remains to deal with located components.

Let us consider the endpoint p1 of T ′. In Both, we can attach in T a path P

of any length on the left of p1. If p1 is not taken by C1, we can create in T the
same path P by subdividing p1p2. But if p1 is taken by C1, we have to forbid P to
be used in the construction of R. We modify both the path T ′ and the graphs G,
and we show that any representation R extending R′ is realized in T in between
of p1 and pt.

The modification is as follows. Let v1, . . . , vk ∈ C1 be all pre-drawn subpaths
such that p1 ∈ R′v1

, . . . , R′vk . First, we extend the path by one by adding p0 at-
tached to p1. We introduce an additional pre-drawn vertex v← adjacent exactly to
v1, . . . , vk in G. We put R′v← = {p0} and we modify R′vi = R′vi ∪ {p0}. See Fig. 6.
Indeed, we proceed exactly the same on the other side of T ′; if pt is taken by Cc,
we introduce pt+1 and v→.

We use the described algorithm for RepExt(INT,Both) for the modified graph
and the modified path, which runs in time O(n+m). We obtain a representation
R extending R′ if it exists. If R does not exist, then the original problem is clearly
not solvable. It remains to argue that if R exists, then we can either construct a
solution for the original Sub type problem, or we can prove that it is not solvable.

We deal only with the left side of T ; for the right side the argument is sym-
metrical. If T ′ is not modified on the left side, then the edge p1p2 can be subdi-
vided as necessary and we are equivalent with the Both type. Suppose that p0 is
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added. There are no unlocated components, and so everything with the exception
of v1, . . . , vk has to be represented on the right of v← which is placed on p0.

We need to argue the issue that the newly added edge p0p1 can be subdivided
in T . There are the following two cases:

– Case 1. If |R′vi | ≥ 3 for each i, i.e, p1 and p2 belong to each R′vi , the subdivision
of p0p1 is equivalent to the subdivision of p1p2 which is correct in the original
Sub type problem. So nothing needs to be done.

– Case 2. Let |R′vi | = 2 for some i, so R′vi = {p0, p1}. Then N(vi) \ v← has to
form a complete subgraph of G, otherwise the starting partial representation
having R′vi = {p1} would not be extendible. We revert the subdivision of p0p1
by modifyingR as follows. Let p′1, . . . , p

′
s be the new vertices of T created by the

subdivision of p0p1. For each v ∈ N(vi)\v←, we set Rv = Rv\{p
′
1, . . . , p

′
s}∪{p1},

and we remove p′1, . . . , p
′
s by contractions. Clearly, the resulting representation

is correct and still extends R′.

By removing p0 and the vertices attached to it on the left, pt+1 and the vertices
attached to it on the right, v← and v→ (of course, only if they are added), we
obtain a correct representation of G inside a subdivision of T ′ extending the partial
representation R′.

Concerning PINT, we use almost the same approach. The only difference is
that we append two vertices p0 and p̄0 (resp. pt+1 and p̄t+1) to the end of T ′,
and we put R′v← = {p̄0, p0} (resp. R′v→ = {pt+1, p̄t+1}), so the modified partial
representation is proper. ⊓⊔

3.3 The NP-complete Cases

The basic gadgets of the reductions are paths. They have the following minimum
spans.

Lemma 6 For INT, minspan(Pn) = n. For PINT and n ≥ 2, minspan(Pn) = n+2.

Proof For INT, the number of the maximal cliques of Pn is n. For PINT, the ordering
⋖ is

ℓ0 ⋖ ℓ1 ⋖ r0 ⋖ ℓ2 ⋖ r1 ⋖ · · ·⋖ ℓi ⋖ ri−1 ⋖ · · ·⋖ ℓn ⋖ rn−1 ⋖ rn.

There are n changes from ℓi to ri−1 and Pn has n+ 1 vertices. So the minimum
span equals 2(n+ 1)− n = n+ 2. ⊓⊔

We reduce the problems from 3-Partition. An input of 3-Partition consists
of positive integers k, M and A1, . . . , A3k such that M

4 < Ai <
M
2 for each Ai and∑

Ai = kM . It asks whether it is possible to partition Ai’s into k triples such
that the sets Ai of each triple sum to exactly M .3 This problem is strongly NP-
complete [9] which means that it is NP-complete even when the input is coded in
unary, i.e., all integers are of polynomial sizes.

Theorem 3 The problems RepExt(PINT,Fixed) and RepExt(INT,Fixed) are NP-

complete.

3Notice that if a subset of Ai’s sums to exactly M it has to be a triple due to the size
constraints.
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v0 v1 v2T1 T6 T3 T4 T2 T5

v0

v1

v2

T1

T2

T3

T4

T5

T6

Fig. 7 An example of the reduction for the following input of 3-Partition: k = 2, M = 7,
A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. On top, the constructed interval graph is depicted.
On bottom, the partial representation (depicted in bold) is extended.

Proof We use almost the same reductions for both PINT and INT. For a given input
of 3-Partition (withM ≥ 4), we construct a graph G and its partial representation
as follows.

As the fixed tree we choose T ′ = P(M+1)k, with the vertices p0, . . . , p(M+1)k.
The graph G contains two types of gadgets as separate components. First, it con-
tains k + 1 split gadgets S0, . . . , Sk which split the path into k gaps of the size
M . Then it contains 3k take gadgets T1, . . . , T3k. A take gadget Ti takes in each
representation at least Ai vertices of one of the k gaps.

For these reductions, the gadgets are particularly simple. The split gadget
Si is just a single pre-drawn vertex vi with Rvi = {p(M+1)i}. The split gadgets
clearly split the path into the k gaps of the size M . The take gadget Ti is PAi

for INT, resp. PAi−2 for PINT. According to Lemma 6, minspan(Ti) = Ai. The
representation is extendible if and only if it is possible to place the take gadgets
into the k gaps. For an example, see Fig. 7. The reduction is clearly polynomial.

To conclude the proof, we show that the partial representation is extendible
if and only if the corresponding 3-Partition input has a solution. If the partial
representation is extendible, the take gadgets Ti are divided into the k gaps on
the path which gives a partition. Based on the constraints for the sizes of Ai’s,
each gap contains exactly three take gadgets of the total minimum span M ; thus
the partition solves the 3-Partition problem. On the other hand, a solution of
3-Partition describes how to place the take gadgets into the k gaps and construct
an extending representation. ⊓⊔

Corollary 1 The problem RepExt(INT,Add) is NP-complete.

Proof We use the above reduction for INT with one additional pre-drawn interval
v attached to everything in G. We put Rv = {p0, . . . , p(M+1)k}, so it contains the
whole tree T ′. Since a representation of each take gadget Ti has to intersect Rv, it
has to be placed inside of the k gaps as before. ⊓⊔

We note that the above modification does not work for proper interval graphs.
Indeed, this is not very surprising since Proposition 2 states that the problem
RepExt(PINT,Add) can be solved in time O(n+m).
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3.4 The Parameterized Complexity

In this subsection, we study the parameterized complexity. The parameters are
the number c of components, the number k of pre-drawn intervals and the size t

of the path T ′.

By the Number of Components. In the reduction of Theorem 3, one might ask
whether it is possible to make the reduction graph G connected. For INT, it is
indeed possible to add a universal vertex adjacent to everything in G, and thus
make G connected as in the proof of Corollary 1. The following result answers this
question for PINT negatively (unless P = NP):

Proposition 3 The problem RepExt(PINT,Fixed) is fixed-parameter tractable in the

number c of components, solvable in time O((n+m)c!).

Proof There are c! possible orderings ◭ of the components from left to right, and
we test each of them. (The located components force some partial ordering ◭ so
we need to test less then c! orderings; see below the proof for details.) We show
that for a prescribed ordering ◭ of the components, we can solve the problem in
time O(n +m); thus gaining the total time O((n+ m)c!). We solve the problem
almost the same as in the proof of Proposition 2. The only difference is that we
deal with all components instead of only the located ones.

We process the components from left to right. When we process Ci, we place
it on the right of Ci−1 as far to the left as possible. For the unlocated Ci, we
can take any smallest representation. For the located Ci, we test both smallest
representations and take the one placing the right-most endpoint of Ci further to
the left. We construct the representation in time O(n+m). For the correctness of
the algorithm see the proof of Proposition 2 for more details. ⊓⊔

We note that for NP-hardness of the problem RepExt(PINT,Fixed) it is nec-
essary to have some pre-drawn subpaths. On the other hand, also some unlocated
components are necessary. If all the components were located, there would be a
unique ordering ◭ and we could test it in time O(n+m) as described above. In
general, for c components and c′ located components, we need to test only c!

c′!

different orderings.

By the Number of Pre-drawn Intervals. In the reduction in Theorem 3, we
need to have k pre-drawn intervals. One could ask, whether the problems become
simpler with a small number of pre-drawn intervals. We answer this negatively.
For PINT, the problem is in XP and W[1]-hard with respect to k. For INT, we only
show that it is W[1]-hard.

There are two closely related problems BinPacking and GenBinPacking. In
both problems, we have k bins and n items of positive integer sizes. The question
is whether we can pack (partition) these items into the k bins when the volumes
of the bins are limited. For BinPacking, all the bins have the same volume. For
GenBinPacking, the bins have different volumes. Formally:

Problem: BinPacking

Input: Positive integers k, ℓ, V , and A1, . . . , Aℓ.
Output: Does there exist a k-partition P1, . . . ,Pk of A1, . . . , Aℓ such that∑

Ai∈Pj
Ai ≤ V for every Pj .
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Problem: GenBinPacking

Input: Positive integers k, ℓ, V1, . . . , Vk, and A1, . . . , Aℓ.
Output: Does there exist a k-partition P1, . . . ,Pk of A1, . . . , Aℓ such that∑

Ai∈Pj
Ai ≤ Vj for every Pj .

Lemma 7 The problems BinPacking and GenBinPacking are polynomially equiv-

alent.

Proof Obviously BinPacking is a special case of GenBinPacking. On the other
hand, let k, ℓ, V1, . . . , Vk, and A1, . . . , Aℓ be an instance of GenBinPacking. We
construct an instance k′, ℓ′, V ′, and A′1, . . . , A

′
ℓ′ of BinPacking as follows. We put

k′ = k, ℓ′ = ℓ + k and V ′ = 2 · maxVi + 1. The sizes of the first ℓ items are the
same, i.e, A′i = Ai for i = 1, . . . , ℓ. The additional items A′ℓ+1, . . . , A

′
ℓ+k are called

large and we put A′ℓ+i = V ′ − Vi for i = 1, . . . , k.
Each bin has to contain exactly one large item since two large items take more

space than V ′. After placing large items into the bins, we obtain the bins of the
remaining volumes V1, . . . , Vk in which we have to place the remaining items. This
corresponds exactly to the original GenBinPacking instance. ⊓⊔

If the sizes of items are encoded in binary, the problem is NP-complete even for
k = 2. The more interesting version which we use here is that the sizes are encoded
in unary so all sizes are polynomial. In such a case, the BinPacking problem is
known to be solvable in time tO(k) using dynamic programming where t is the
total size of all items. And it is W[1]-hard with respect to the parameter k [15].
The similar holds for RepExt(PINT,Fixed):

Proof (Theorem 1) For a given instance of the BinPacking problem, we can solve it
by RepExt(PINT,Fixed) in a similar manner as in the reduction in Theorem 3. As
T ′, take a path P(V+1)k. As G, take PAi−2 for each Ai and the pre-drawn vertices
v0, . . . , vk such that Rvi = {p(V+1)i}. The rest of the argument is exactly as in the
proof of Theorem 3.

Now, we want to solve RepExt(PINT,Fixed) using 2k instances of GenBin-

Packing (which is polynomially equivalent to BinPacking), where k is the number
of pre-drawn intervals.

First we deal with located components C1 ◭ · · · ◭ Cc. For each component,
we have two possible orderings ⊳ and using Lemma 2 we get (at most) two possi-
ble smallest representations which might be differently shifted. In total, we have
at most 2c ≤ 2k possible representations keeping C1, . . . , Cc as small as possible
leaving maximal gaps for unlocated components. We test each of these 2c repre-
sentations.

Let C′1, . . . , C
′
c′ be the unlocated components. For each C′i, we compute

minspan(C′i) using Lemma 2. The goal is to place the unlocated components into
the c+ 1 gaps between representations of the located components C1, . . . , Cc. We
can solve this problem using GenBinPacking as follows. We have k+1 bins of the
volumes equal to the sizes of the gaps between the representations of C1, . . . , Cc.
We have c′ items of the sizes Ai = minspan(C′i).

A solution of GenBinPacking tells how to place the unlocated components into
the k gaps. If there exists no solution, this specific representation of the located
components cannot be used. We can test all 2c possible representations of the
located components. Thus we get the required weak truth-table reduction. ⊓⊔
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Corollary 2 The problem RepExt(PINT,Fixed) is W[1]-hard and belongs to XP,

solvable in time nO(k) where k is the number of pre-drawn intervals.

Proof Both claims follow from Theorem 1. ⊓⊔

Proposition 4 The problems RepExt(INT,Fixed) and RepExt(INT,Add) are

W[1]-hard when parameterized by the number k of pre-drawn intervals.

Proof We modify the reductions of Theorem 3 and Corollary 1 exactly as in the
proof of Theorem 1. ⊓⊔

By the Size of the Path. We show that the Fixed type problems are fixed-
parameter tractable with respect to the size of the path t. It is easy to find a
solution by a brute-force algorithm:

Proposition 5 For the size t of a path T ′, the problems RepExt(PINT,Fixed) and

RepExt(INT,Fixed) are fixed-parameter tractable with the respect to the parameter t.

They can be solved in time O(n+m+ f(t)) where

f(t) = t2t
2

.

Proof In a pruned graph, the vertices have to be represented by pairwise different
intervals. There are at most t2 possible different subpaths of a path with t vertices
so the pruned graph can contain at most t2 vertices; otherwise the extension is
clearly not possible. We can test every possible assignment of the non-pre-drawn
vertices to the t2 subpaths, and for each assignment we test whether we get a
correct representation extending R′. ⊓⊔

4 Path and Chordal Graphs

We present and prove the results concerning the classes PATH and CHOR.

4.1 The Polynomial Cases

The recognition problems for the types Add and Both are equivalent to standard
recognition without any specified tree T ′. Indeed, we can modify T ′ by adding an
arbitrary tree to it. If the input graph is PATH or CHOR, there exists a tree T ′′ in
which the graph can be represented. We produce T by attaching T ′′ to T ′ in any
way. Then the input graph can be represented in T as well, completely ignoring
the part T ′.

For path graphs, the original recognition algorithm is due to Gavril [11] in
time O(n4). The current fastest algorithm is by Schäffer [24] in time O(nm). For
chordal graphs, there is a beautiful simple algorithm by Rose et al. [23] in time
O(n+m).
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Fig. 8 An example for the same input of 3-Partition as in Fig. 7. On top the graph G is
depicted. On bottom, a representation of G is constructed, giving the solution {A1, A3, A6}
and {A2, A4, A5}.

4.2 The NP-complete Cases

All the remaining cases from the table of Fig. 3 are NP-complete. We modify the
reduction for INT of Theorem 3. We start with the simplest reduction for the Fixed
type and then modify it for the other types.

Fixed Type Recognition. For the Fixed type, we can avoid pre-drawn subtrees,
using an additional structure of the tree.

Proposition 6 The problems Recog
∗(PATH,Fixed) and Recog

∗(CHOR,Fixed)
are NP-complete.

Proof We again reduce from 3-Partition with an input k and M . For technical
purposes, let M ≥ 8 and so |Ai| > 2 for each Ai. We construct a graph G and a
tree T ′ as follows.

The tree T ′ is a path P(M+1)k (its vertices being denoted by p0, . . . , p(M+1)k)
with three paths of length two attached to every vertex p(M+1)i, for each i =
0, . . . , k; see Fig. 8. Each split gadget Si is a star, depicted on the left of Fig. 8.
When the split gadgets are placed as in T ′, they split the tree into k gaps exactly
as the pre-drawn vertices in the proof of Theorem 3. Each take gadget Ti is the
path PAi

exactly as before. The reduction is obviously polynomial.
What remains to argue is the correctness of the reduction. Observe that given

a solution of 3-Partition, we can construct a subpaths-in-tree representation of G
as in Fig. 8. For the other direction, let v0, . . . , vk be the central vertices of the split
gadgets S0, . . . , Sk. We claim that each Rvi contains at least one branch vertex.
(Actually, exactly one since there are only n + 1 branch vertices in T ′.) If some
Rvi contained only non-branch vertices, then it would not be possible to represent
three disjoint neighbors u1, u2 and u3 of this vi having each Ruj \Rvi non-empty.

Since each branch vertex is taken by one Rvi , the path P(M+1)k is split into k

gaps as before. Since |Ai| > 2, each Ti can be represented only inside of these gaps.
Notice that the total number of the vertices in the gaps has to be equal kM , and
therefore the split gadgets have to be represented entirely in the attached stars as
in Fig. 8. The rest of the reduction works exactly as in Theorem 3. ⊓⊔
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Fig. 9 On top, the split gadget Si is on the left and the take gadget Ti is on the right. On
bottom, a part of the tree T is depicted with the small vertices added by subdivisions. The
gap between two split gadgets contains three take gadgets Ta, Tb and Tc giving one triple
{Aa, Ab, Ac} with Aa +Ab + Ac = M .

Sub Type Recognition. By modifying the above reduction, we get:

Theorem 4 The problems Recog
∗(PATH,Sub) and Recog

∗(CHOR,Sub) are NP-

complete.

Proof We need to modify the two gadgets from the reduction of Theorem 6 in such
a way that a subdivision of the tree T ′ does not help in placing them. Subdivision
only increases the number of non-branch vertices. Thus a take gadget Ti requires
Ai branch vertices. Similarly, the split gadget Si is more complicated. See Fig. 9
on top.

The tree T is constructed as follows.We start with a path P(M+1)k with vertices
p0, . . . , p(M+1)k. To each vertex p(M+1)i we attach a subtree isomorphic to the trees
in Fig. 9 on bottom. To the remaining vertices of the path, we attach one leaf per
vertex. The reduction is again polynomial.

Straightforwardly, for a given solution of 3-Partition, we can construct a cor-
rect subpaths-in-tree representation in a subdivided tree. On the other hand, we
are going to show how to construct a solution of 3-Partition from a given tree
representation.

Recall the properties of maximal cliques from Section 2. Note that each triangle
u1u2u3 in each split or take gadget is a maximal clique K. Since N [ui] 6= N [uj ]
for each i 6= j, there has to be a branch vertex in Rui ∩ Ruj for some i and j.
The gadget Si contains three triangles, each taking one branch vertex of T . In
addition, Rvi connecting them has to contain another branch vertex. So in total,
Si contains at least four branch vertices. Each gadget Ti contains Ai triangles, and
so it requires at least Ai branch vertices. Since the number of branch vertices of
T is limited, each Si takes exactly four branch vertices and each Ti takes exactly
Ai branch vertices.

Now, if some Ti contained a branch vertex of the subtrees attached to p(M+1)j,
at least one of its branch vertices would not be used. (Either not taken by Ti, or
Ti would require at least Ai+1 branch vertices.) So each Si has to take the branch
vertices of the subtrees attached to p(M+1)j for some j, and the take gadgets have
to be placed inside the gaps exactly as before. ⊓⊔
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Proposition 7 Even with a single pre-drawn subtree, i.e, |G′| = 1, the problems

RepExt(CHOR,Add) and RepExt(CHOR,Both) are NP-complete.

Proof We easily modify the above reductions; for the Add type, the reduction of
Proposition 6, for the Both type, the reduction of Theorem 4. The modification
adds into G one pre-drawn vertex v adjacent to everything such that Rv = T ′.
Since Rv spans the whole tree, it forces the entire representation R into T ′.

We just deal with the Add type, for Both the argument is exactly the same.
Let T ′ be the partial tree and let T be the tree in which the representation is
constructed, so T ′ is a subtree of T . We claim that we can restrict a representation
of each vertex of G into T ′ and thus obtain a correct representation inside the
subtree T ′.

Let x ∈ V . Since xv ∈ E(G), the intersection of Rx and T ′ is a non-empty
subtree. We put R̃x = Rx ∩T ′, and we claim that R̃ is a representation of G in T ′.
To argue the correctness, let x and y be two different vertices from v (otherwise
trivial). If xy /∈ E(G), then Rx∩Ry = ∅, and so R̃x∩ R̃y = ∅ as well. Otherwise xyv

is a triangle in G, and thus by the Helly property the subtrees Rx, Ry and Rv = T ′

have a non-empty common intersection, giving that R̃x ∩ R̃y is non-empty. ⊓⊔

For path graphs, one can use a similar technique of a pre-drawn universal
vertex attached to everything. But there is the following difficulty: To do so, the
input partial tree T ′ has to be a path. For the type Both, the complexity of
RepExt(PATH,Both) remains open. For the typeAdd, we get the following weaker
result:

Proposition 8 The problem RepExt(PATH,Add) is NP-complete.

Proof Similarly as in Proposition 7, add a pre-drawn universal vertex v on the
path T ′ constructed in the reduction of Theorem 3 such that Rv = T ′. The rest is
exactly as above. ⊓⊔

4.3 The Parameterized Complexity

We deal with parameterized complexity of the problems and we give only minor
and partial results in this direction. Unlike in Section 3, parameterization by the
number k of pre-drawn subtrees is mostly not helpful. We show that every problem
with exception of RepExt(PATH,Add) is already NP-complete for k = 0 or k = 1.
For RepExt(PATH,Add), we have only a weaker result that it is W[1]-hard with
respect to the parameter k since Proposition 4 straightforwardly generalizes.

Similarly, a low number c of components does not make the problem any easier.
We can easily insert a universal vertex attached to everything. So the above re-
ductions can be modified and the problems remain NP-complete even if the graph
G is connected.

Concerning the size t of the tree, Proposition 5 straightforwardly generalizes:

Proposition 9 Let t be the size of T ′. The problems RepExt(PATH,Fixed) and

RepExt(CHOR,Fixed) are fixed-parameter tractable with respect to t. They can be

solved in time O(n+m+ g(t)) where

g(t) = 2t2
t

.
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Proof Proceed exactly as in the proof of Proposition 5, test all possible assignments
of all vertices of a pruned graph. The only difference is that T ′ has at most 2t

different subtrees. ⊓⊔

We note that a more precise bound for the number of subtrees could be use
but we did not try to better estimate the function g.

5 Conclusions

In this paper, we have considered different problems concerning extending partial
representations of chordal graphs and their three subclasses. One of the main goals
of this paper is to stimulate a future research in this area. Therefore, we conclude
with three open problems.

The first problem concerns the only open case in the table in Fig. 3.

Problem 1 What is the complexity of RepExt(PATH,Both)?

Concerning the parameterized complexity, we believe it is useful to first attack
problems related to interval graphs. This allows to develop tools for more com-
plicated chordal graphs. A generalization of Theorem 1 and Corollary 2 for INT

seems to be particularly interesting. The PQ-tree approach seems to be a good
starting point.

Problem 2 Does RepExt(INT,Fixed) belong to XP with respect to k where k is
the number of pre-drawn intervals?

We present only basic results concerning the parameterized complexity with
respect to the parameter t where t is the size of the tree T ′. We deal with the
type Fixed for which the solution is straightforward. The complexity for the other
types Sub, Add, and Both remains open.

Problem 3 What is the parameterized complexity of the remaining problems with
respect to the parameter t where t is the size of the tree T ′?
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