
ADJOINT FUNCTORS IN GRAPH THEORY

JAN FONIOK AND CLAUDE TARDIF

Abstract. We survey some uses of adjoint functors in graph the-
ory pertaining to colourings, complexity reductions, multiplicativ-

ity, circular colourings and tree duality. The exposition of these

applications through adjoint functors unifies the presentation to
some extent, and also raises interesting questions.

1. Introduction

We will motivate our subject with known examples from the literature,
which the reader may recognize. Relevant definitions are postponed to
the following section.

Theorem 1.1 (Geller, Stahl). Let G be a graph. Then the lexicographic
product G[K2] is n-colourable if and only if G admits a homomorphism
to the Kneser graph K(n, 2).

Theorem 1.2 (El-Zahar, Sauer). For two graphs G and H, the categorial
product G×H is n-colourable if and only if G admits a homomorphism
to the exponential graph KH

n .

Theorem 1.3 (Hell, Nešetřil). For a graph G, let G1/3 be the graph
obtained by replacing each edge of G by a path with three edges. Then
there exists a homomorphism of G1/3 to the 5-cycle C5 if and only if G
is 5-colourable.

Date: July 20, 2013.
2010 Mathematics Subject Classification. 05C15, 18B35.

Key words and phrases. graph products, adjoint functors, finite duality.

The second author’s research is supported by grants from NSERC and ARP.

1



2 J. FONIOK AND C. TARDIF

An n-colouring of a graph G is a homomorphism of G to the complete
graph Kn, so the above results all state that the existence of some homo-
morphism is equivalent to the existence of some other homomorphism.
More precisely, there exists a homomorphism of some Λ(G) to a target K
if and only if there exists a homomorphism of G to some Γ(K). In The-
orem 1.1, we have Λ(G) = G[K2] and Γ(Kn) = K(n, 2). In Theorem 1.2,
Λ(G) = G × H and Γ(Kn) = KH

n for some fixed H. In Theorem 1.3,
Λ(G) = G1/3 and Γ(C5) = K5. It may not yet be clear that these various
Γ all generalize to well-defined functors. We present one more example
where the presentation of Γ(Kn) is cryptic, and even the existence of an
appropriate Λ is not obvious.

Theorem 1.4 (Gyárfás, Jensen, Stiebitz). A graph G admits an n-
colouring in which the neighbourhood of each colour class is an inde-
pendent set if and only if G admits a homomorphism to the graph U(n).

It is time to introduce some relevant terminology.

2. Pultr templates and functors

We refer the reader to [12] for an introduction to graph homomor-
phisms.

Definition 2.1.
(i) A Pultr template is a quadruple T = (P,Q, ε1, ε2) where P , Q are

graphs and ε1, ε2 homomorphisms of P to Q such that Q admits
an automorphism q with q ◦ ε1 = ε2 and q ◦ ε2 = ε1.

(ii) Given a Pultr template T = (P,Q, ε1, ε2), the left Pultr func-
tor ΛT is the following construction: For a graph G, ΛT (G)
contains one copy Pu of P for every vertex u of G, and for every
edge [u, v] of G, ΛT (G) contains a copy Qu,v of Q with ε1(P )
identified with Pu and ε2(P ) identified with Pv.

(iii) Given a Pultr template T = (P,Q, ε1, ε2) the central Pultr func-
tor ΓT is the following construction: For a graph K, the vertices
of ΓT (K) are the homomorphisms g : P → K, and the edges of
ΓT (K) are the pairs [g1, g2] such that there exists a homomor-
phism h : Q→ K with g1 = h ◦ ε1, g2 = h ◦ ε2.
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Note that the automorphism q of Q interchanging ε1 and ε2 in (i)
makes the conditions in (ii) and (iii) symmetric, so that ΛT (G) is well
defined, and ΓT (K) is a graph rather than a digraph. The following two
examples model Theorems 1.1 and 1.2.

Examples.
• Let T = (K2,K4, ε1, ε2), where ε1, ε2 are homomorphism map-

ping K2 to two non-incident edges of K4. Then ΛT (G) is the lex-
icographic product G[K2]. The vertices of ΓT (Kn) are essentially
the arcs of Kn, that is, the couples (i, j) with 1 ≤ i, j ≤ n, i 6= j.
Its edges are the pairs [(i, j), (i′, j′)] such that {i, j}∩{i′, j′} = ∅.
Thus ΓT (Kn) is the Kneser graph K(n, 2) with all its vertices
doubled; it is homomorphically equivalent to K(n, 2). Thus The-
orem 1.1 states that ΛT (G) admits a homomorphism to Kn if
and only if G admits a homomorphism to ΓT (Kn).

• Let H be a fixed graph and TH = (H × K1, H × K2, ε1, ε2),
where ε1, ε2, are the two natural injections of the independent set
H×K1 into the categorial product H×K2. Then ΛTH (G) is the
categorial product G×H, and ΓTH (K) is the exponential graph
KH . Theorem 1.1 states that ΛTH (G) admits a homomorphism
to Kn if and only if G admits a homomorphism to ΓTH (Kn).

For any standard graph product ? (see [13]) and any graph H, we
can similarly form a template T = (H ? K1, H ? K2, ε1, ε2), such that
ΛT (G) = G ? H, and ΓT (K) is an “exponential structure” in the sense
that G ? H admits a homomorphism to K if and only if G admits a
homomorphism to ΓT (K). Geller and Stahl [6] proved that χ(G[H])
equals χ(G[Kχ(H)]), and used an extension of Theorem 1.1 to prove that
the latter is measured by homomorphisms into Kneser graphs. El-Zahar
and Sauer [1] used the correspondence of Theorem 1.2 to prove that the
chromatic number of a categorial product of 4-chromatic graphs is 4.

The next examples involve Pultr functors outside the mould of graph
products.

• Let P3 denote the path with three edges and ε1, ε2 be the ho-
momorphisms mapping K1 to the endpoints of P3. Let T3 =
(K1, P3, ε1, ε2). Then ΛT3(G) is obtained from G by replacing
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each edge by a path with three edges, that is, G1/3. ΓT3(K) is ob-
tained from K by adding edges between vertices joined by a walk
of length 3 in K. In particular, ΓT3(K) contains loops if and only
if K contains triangles or loops, and ΓT3(C5) = K5.Theorem 1.3
states that ΛT3(G) admits a homomorphism to C5 if and only if
G admits a homomorphism to ΓT3(C5)).

Theorem 1.3 is an adaptation by Hell and Nešetřil of a result by Mau-
rer, Sudborough and Welzl [15]. It is an example of a reduction among ho-
momorphisms problems. With similar reductions, Hell and Nešetřil [11]
eventually proved that for any fixed non-bipartite graph H, the problem
of determining whether an input graph G admits a homomorphism into
H is NP-complete.

Theorems 1.1, 1.2, 1.3 are particular manifestations of the following
general property:

Theorem 2.2 (Pultr [21]). For any Pultr template T and any graphs
G,K, there exists a homomorphism of ΛT (G) to K if and only if there
exists a homomorphism of G to ΓT (K).

3. Adjoint functors and categories

Two functors Λ and Γ are said to be respectively left and right adjoints
of each other if there is a natural correspondence between the morphisms
of Λ(X) to Y and the morphisms of X to Γ(Y ). Note that this corre-
spondence between morphisms is apparently a stronger statement than
the existential statement of Theorem 2.2, but this depends on the precise
categorial context.

(i) In the usual category of graphs, it can be shown that for the
templates T modelling Theorems 1.1 and 1.2, ΛT and ΓT are
left and right adjoints in the sense above. However, the template
T modelling Theorem 1.3 does not give rise to left and right
adjoints: The number of homomorphisms of ΛT (G) to K is not
always equal to the number of homomorphisms of G to ΓT (K)

(ii) In the “thin” category (or preorder) of graphs, the morphisms
between given graphs is not distinguished: there is at most one
generic morphism from one graph to another. In this context,
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Theorem 2.2 states that for any Pultr template T , ΛT and ΓT
are left and right adjoints of each other.

(iii) In the category of multigraphs, where morphisms must specify
images of vertices and also of edges, ΛT and ΓT are always left
and right adjoints. Furthermore Pultr [21] has shown that all
pairs of adjoint functors in this category are of the form ΛT and
ΓT .

Though the first context is the most commonly understood, our applica-
tions so far and those to come are existential. Consequently we work in
the thin category of graphs, and call a pair of functors Λ,Γ left and right
adjoints of each other if the existence of a homomorphism of Λ(G) to K
is equivalent to the existence of a homomorphism of G to Γ(K).

Any Pultr template T gives rise to the adjoints ΛT and ΓT . But unlike
the case of the category of multigraphs, other pairs of adjoint functors
exist. In particular, ΓT is called a “central” rather than a “right” functor
because in some significant cases ΓT itself admits a right adjoint ΩT . For
instance, in the next section we interpret Theorem 1.4 in terms of the
right adjoint of a central Pultr functor.

We do not know which central Pultr functors admit right adjoints. It
would be interesting to characterize all pairs of adjoint functors in the
thin category of graphs, though this objective may be out of reach. We
will instead use the known examples to show the type of applications that
the search for new adjoint functors may yield.

4. The right adjoint of ΓT3

Recall that the Pultr template T3 is (K1, P3, ε1, ε2), where ε1 and ε2
map K1 to the endpoints of P3. Any graph G is a spanning subgraph of
ΓT3(G). Therefore any proper n-colouring of ΓT3(G) is a fortiori a proper
n-colouring of G. Let c : G→ Kn be a proper n-colouring. Then c is not
a proper n-colouring of ΓT3(G) if and only if G contains a path of length
three whose end vertices are identically coloured. The middle points of
this path are then adjacent neighbours of a colour class. Therefore, the
proper n-colourings of ΓT3(G) are precisely the proper n-colourings of G
such that the neighbourhood of each colour class is an independent set.



6 J. FONIOK AND C. TARDIF

Thus Theorem 1.4 states that there exists a homomorphism of ΓT3(G) to
Kn if and only if there exists a homomorphism of G to some U(n).

Definition 4.1. For a graph H, let ΩT3(H) be the graph constructed as
follows. The vertices of ΩT3(H) are the couples (u, U) such that u ∈ V (H)
and U ⊆ NH(u), the neighbourhood of u in H. Two couples (u, U), (v, V )
are joined by an edge of ΩT3(H) if u ∈ V , v ∈ U , and every vertex in U
is adjacent to every vertex in V .

Theorem 4.2 ([23]). For any graphs G and H, there exists a homomor-
phism of ΓT3(G) to H if and only if there exists a homomorphism of G
to ΩT3(H).

With H = Kn and U(n) = ΩT3(Kn), this is the statement of The-
orem 1.4. The purpose of Gyárfás, Jensen and Stiebitz [7] was to an-
swer affirmatively a question of Harvey and Murty by showing that
there exists, for every n, a n-chromatic graph with “strongly inde-
pendent colour classes”, that is, a n-chromatic graph Gn such that
ΓT3(Gn) is n-chromatic. By Theorem 1.4, such a graph exists if and
only if Gn = ΩT3(Kn) has this property. They prove that indeed
χ(ΩT3(Kn)) = n.

The purpose in [23] was to find multiplicative graphs.

Definition 4.3. A graph K is multiplicative if whenever a product G×
H admits a homomorphism to K, one of the factors G or H admits a
homomorphism to K.

For a long time, only K2 and the odd cycles were known to be
multiplicative. Adjoint functors help to find new multiplicative graphs
from known ones: For any Pultr template T , we have ΓT (G × H) '
ΓT (G) × ΓT (H). Using this property, it is not hard to show that if ΓT
admits a right adjoint ΩT , then for any multiplicative graph K, ΩT (K) is
multiplicative. In the case of T3, we have ΓT3(ΩT3(G)) homomorphically
equivalent to G for any graph G, and this allows to prove the following.

Theorem 4.4 ([23]). For any graph K, K is multiplicative if and only
if ΩT3(K) is multiplicative.
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For relatively prime positive integers m, n such that 2m ≤ n, the
circular complete graph Kn/m is the graph whose vertices are the elements

of the cyclic group Zn, where u and v are joined by an edge if u −
v ∈ {m, . . . , n − m}. Note that K(2m+1)/m is the odd cycle C2m+1,
and for n/m < 3, ΓT3(Kn/m) ' Kn/(3m−n). It can be shown that for
n/m < 12/5, ΩT3(Kn/(3m−n)) is homomorphically equivalent to Kn/m.
Using these results, it was possible to show that the circular complete
graphs Kn/m with n/m < 4 are all multiplicative. For a while, it looked
like the same method would yield many new discoveries of multiplicative
graphs. None have yet been found, but the results of Hajiabolhassan and
Taherkhani, which we present next, have exhibited more links between
similar functors and circular complete graphs.

5. Odd powers and roots

In this section we present generalizations of the functors ΛT3 ,ΓT3 and
ΩT3 studied by Hajiabolhassan and Taherkhani [8]. For an integer m, let
Pm denote the path with m edges. For odd m, let Tm = (K1, Pm, ε1, ε2),
where ε1, ε2 are the homomorphisms mapping K1 to the endpoints of Pm.
Then ΛTm(G) is the graph obtained from G by replacing each edge by a
copy of Pm, that is, the m-subdivision G1/m of G. ΓTm(H) is the “m-th
power of H”, obtained from H by adding edges between pairs of vertices
connected by a walk of length m. (In particular, ΛT1(G) = ΓT1(G) = G.)
We now describe a right adjoint of ΓTm :

Definition 5.1. For an odd integer m = 2k + 1 and a graph H, let
ΩTm(H) be the graph constructed as follows. The vertices of ΩTm(H)
are the (k + 1)-tuples (u, U1, . . . , Uk) such that u ∈ V (H), U1 ⊆ NH(u),
Ui ⊆ V (H) and Ui is completely joined to Ui−1 for i = 2, . . . , k. Two
k-tuples (u, U1, . . . , Uk), (v, V1, . . . , Vk) are joined by an edge of ΩTm(G)
if u ∈ V1, v ∈ U1, Ui−1 ⊆ Vi and Vi−1 ⊆ Ui for i = 2, . . . , k, and Uk
is completely joined to Vk. (Here, NH(u) is the set of all vertices of H
adjacent to u, and two sets of vertices are called completely joined if every
vertex in one is adjacent to every vertex in the other.)

Theorem 4.2 generalizes as follows.
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Theorem 5.2 ([8]). For two graphs G and H, there exists a homomor-
phism of ΓTm(G) to H if and only there exists a homomorphism of G to
ΩTm(H).

For odd s and r, define P sr (G) = ΓTs(ΛTr (G)) and Rrs(H) =
ΓTr (ΩTs(H)). There exists a homomorphism of P sr (G) = ΓTs(ΛTr (G))
to H if and only if there exists a homomorphism of ΛTr (G) to ΩTs(H),
that is, if and only if there exists a homomorphism of G to ΓTr (ΩTs(H)) =
Rrs(H). Thus P sr and Rrs are right and left adjoint of each other, though
they are not necessarily left, central or right functors associated to Pultr
templates. These are “ordered” as follows.

Theorem 5.3 ([8]). Let s, r, s′, r′ be odd integers such that s
r ≤

s′

r′ . Then

for any graph G, P sr (G) admits a homomorphism to P s
′

r′ (G) and Rr
′

s′ (G)
admits a homomorphism to Rrs(G).

The circular chromatic number χc(G) of a graph G is the minimum
value n/m such that G admits a homomorphism to the circular complete
graph Kn/m. Note that for odd s = 2i+ 1, ΩTs(K3) is homomorphically
equivalent to the 3s-cycle K(6i+3)/(3i+1), and for r = 2j + 1, Rrs(K3) =
ΓTr (ΩTs(K3)) is homomorphically equivalent to K(6i+3)/(3i+1−j). Using
the fact that P sr and Rrs are right and left adjoint of each other, we get
the following.

Theorem 5.4 ([8]). For a graph G, χc(G) is the supremum of the values
(6i+ 3)/(3i+ 1− j) such that P 2i+1

2j+1(G) is 3-colourable.

6. Oriented paths as templates

In this and the following sections we change the setting and consider
digraphs rather than undirected (symmetric) graphs. To this end, we
need to modify slightly the definition of a Pultr template.

Definition 6.1. In the setting of digraphs, a Pultr template is a quadru-
ple T = (P,Q, ε1, ε2), where P,Q are digraphs and ε1, ε2 are homomor-
phisms of P to Q.
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Thus we no longer require the existence of a special automorphism q
of Q, whose purpose was to ensure that ΓT (G) would be an undirected
graph for any undirected graph G.

To define the left Pultr functor and the central Pultr functor corre-
sponding to a Pultr template T , simply replace the word “edge(s)” with
“arc(s)” in Definition 2.1 (ii), (iii).

In the rest of this section, we present an oriented analogue of the
construction of ΩT and of Theorem 5.2.

Let Q be an orientation of a path and consider the Pultr template
T = (K1, Q, ε1, ε2), where ε1, ε2 are the homomorphisms mapping K1 to
the end-points of Q. Similarly to the situation in Section 5, ΛT (G) is the
digraph obtained from G by replacing each arc with a copy of the path Q.
ΓT (H) is the digraph on the same vertex set as H in which there is an
arc from u to v if and only if there exists an oriented walk from u to v
in H whose steps are oriented according to the orientations of the arcs
of Q. The right adjoint of ΓT is as follows:

Definition 6.2. Suppose Q has vertices 0, 1, . . . ,m. For a digraph H,
let ΩT (H) be the following digraph: The vertices of ΩT (H) are all the
(m+ 1)-tuples (u, U1, . . . , Um) such that u ∈ V (H) and Ui ⊆ V (H)
for i = 1, 2, . . . ,m, with u V Um. There is an arc in ΩT (H) from
(u, U1, . . . , Um) to (v, V1, . . . , Vm) if and only if

(1a) u ∈ V1 if 0→ 1 in Q,
(1b) v ∈ U1 if 1→ 0 in Q; and
(2) for each i = 1, . . . ,m− 1:

(a) Ui ⊆ Vi+1 if i→ i+ 1 in Q,
(b) Vi ⊆ Ui+1 if i+ 1→ i in Q.

(The notation a → b means that there is an arc from a to b and u V V
means that there is an arc from u to every element of V .)

Theorem 6.3 ([4]). For any two digraphs G and H, there exists a ho-
momorphism of ΓT (G) to H if and only if there exists a homomorphism
of G to ΩT (H).



10 J. FONIOK AND C. TARDIF

With oriented paths, the structure and ordering of functors analogous
to P sr and Rrs (see Section 5) gets much more complex. Possible applica-
tions are currently unknown (see also Section 10).

In the next section, we consider Pultr functors for which, on the other
hand, an abundance of applications can be found in the literature.

7. Shift graphs

Definition 7.1. Let H be a digraph. The arc graph of H is the di-
graph δ(H) whose vertices are the arcs of H and (u, v)→ (x, y) in δ(H)
if and only if v = x.

Observe that δ is the central Pultr functor given by the template

(~P1, ~P2, ε1, ε2), where

~P1 = 0→ 1,

~P2 = 0→ 1→ 2,

ε1 : i 7→ i, ε2 : i 7→ i+ 1.

A convenient fact about arc graphs is that we know good bounds
on the chromatic number of δ(H) in terms of the chromatic number
of H (see [9, 20]). Given a proper k-colouring of δ(H), we can construct
a proper 2k-colouring of H: let the colour of a vertex u of H be the
set of all colours used on the outgoing arcs from u in the proper k-
colouring of δ(H). This shows that χ(δ(H)) ≥ logχ(H). (In fact, we
have χ(δ(H)) = Θ(logχ(H)).)

This fact was used by Poljak and Rödl [20] to discuss the possible
boundedness of the “Poljak-Rödl function”: Define f : N→ N by letting
f(n) be the minimum possible chromatic number χ(G×H) of a product
of n-chromatic digraphs G and H. (Here, the chromatic number of a
digraph is defined to be the chromatic number of its symmetrization.) It
is not known whether f is bounded or unbounded, but Poljak and Rödl
were able to limit the possible upper bounds on f . One element of the
proof is the bound χ(δ(G)) ≥ logχ(G) and the other is the fact that δ,
like all central Pultr functor, commutes with the categorial product, that
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is, the identity δ(G×H) ' δ(G)×δ(H). The best result in this direction
is the following:

Theorem 7.2 ([19]). Either f(n) ≤ 3 for all n, or limn→∞ f(n) =∞.

Let g be the undirected analogue of f . Hedetniemi’s conjecture states
that g(n) = n for all n. Using the results on directed graphs, it is possible
to prove that g is either bounded above by 9 or unbounded (see [19]). In
fact, g is unbounded if and only if f is unbounded (see [25]).

Properties of the arc graph construction are also used in the analysis
of the “shift graphs” that are the folklore examples of graphs with large
odd girth and large chromatic number.

Definition 7.3. Let n, k be positive integers, k ≥ 2. The directed shift
graph R(n, k) is the digraph with vertex set

V (R(n, k)) = {(u1, . . . , uk) : 1 ≤ u1 < u2 < · · · < uk ≤ n}
where (u1, . . . , uk) → (v1, . . . , vk) if and only if u2 = v1, u3 = v2, . . . ,
uk = vk−1.

The undirected shift graph R′(n, k) is the symmetrization of R(n, k).

Theorem 7.4 ([17]). Let c, k ≥ 2 and put n = 22
···2c

, where the tower
of powers has height k. Then the undirected shift graph R′(n, k) has
chromatic number at least c and odd girth at least 2k + 1.

We will show that both properties of high chromatic number and high
odd girth are related to properties of adjoint functors. First note that

R(n, k) = ΓTk(~Tn) for the Pultr template Tk = (~Pk, ~Pk+1, ε1, ε2) with

~Pk = 0→ 1→ · · · → k − 1,

~Pk+1 = 0→ 1→ · · · → k,

ε1 : i 7→ i, ε2 : i 7→ i+ 1.

At the same time, R(n, 2) = δ(~Tn) and for k ≥ 3 we have R(n, k) '
δ(R(n, k−1)). Hence we can get all shift graphs by iterating the arc graph
functor, starting with a transitive tournament. The bound χ(δ(G)) ≥
logχ(G) directly implies that χ(R(n, k)) ≥ logk−1 n, where logk−1 means
the binary logarithm iterated k − 1 times.
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Next we are going to show that the odd girth of the undirected shift
graphs is large, namely the odd girth of R′(n, k) is at least 2k + 1.
Suppose that some odd cycle C admits a homomorphism to R′(n, k).

Then there exists an orientation ~C of C which admits a homomorphism
to R(n, k) ' δ(R(n, k − 1)). Therefore there exists a homomorphism

of δL(~C) to R(n, k − 1), where δL is the left adjoint of δ. By construc-

tion, δL(~C) contains an arc u0 → u1 for every vertex u of ~C, with u1
identified to v0 for every arc u → v of ~C. Thus the number of vertices

of δL(~C) is the same as that of ~C. Also, δL(~C) is not bipartite since a

homomorphism of δL(~C) to K2 would correspond to a homomorphism of
~C to δ(K2) ' K2, which is impossible since C is an odd cycle. Therefore,

δL(~C) contains an odd cycle. However, R(n, k) has no directed cycles
(since the projection on the first coordinate is a homomorphism to a

transitive tournament) hence ~C has at least one source u and one sink v.
The two vertices u0 and v1 are then respectively a source and a sink in

δL(~C). Hence the odd girth of (the symmetrization of) δL(~C) is smaller
than that of C. Since the odd girth of Kn = R(n, 1) is 3, this implies
that the odd girth of R(n, k) is at least 2k + 1. (In fact, the odd girth
R(n, k) of is exactly 2k + 1, unless n < 2k + 1.)

8. Pultr functors and tree duality

Definition 8.1. A set F of digraphs is a complete set of obstructions for
a digraph H if for any digraph G there exists no homomorphism of G
to H if and only if there exists a homomorphism of some F ∈ F to G.
We also say that (F , H) is a homomorphism duality.

If H admits a finite complete set of obstructions, then we say that
H has finite duality ; in this case, by [14, 18], H admits a finite complete
set of obstructions all of whose elements are oriented trees. Conversely,
every finite set F of oriented trees is a complete set of obstructions for
some digraph H. If H admits a (not necessarily finite) complete set of
obstructions all of whose elements are oriented trees, we say that H has
tree duality.
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In [3] we proved that if H has tree duality, then so does its arc
graph δ(H). Furthermore we gave an explicit description of a complete
set of tree obstructions for δ(H), provided we are given a complete set of
tree obstructions for H.

Definition 8.2. Let T be a tree. For every vertex u of T , let F (u) be

a tree that admits a homomorphism to ~P1; fix such a homomorphism
φu : F (u) → P1, so that for any arc (x, y) of F (u) we have φu(x) = 0,
φu(y) = 1. For each arc e of T , incident with u, fix a vertex v(u, e)
of F (u) in such a way that if e is outgoing from u, then φu(v(u, e)) = 1,
and if e is incoming to u, then φu(v(u, e)) = 0. Construct a tree S by
taking all the trees F (u) for all the vertices u of T , and by identifying
the vertex v(u, e) with v(u′, e) for every arc e = (u, u′) of T . Any tree S
constructed from T by the above procedure is called a sproink of T .

Theorem 8.3 ([3]). If F is a complete set of tree obstructions for some
digraph H, then the set of all sproinks of all the trees in F is a complete
set of tree obstructions for its arc graph δ(H).

Example. Let ~Pk be the directed path with k arcs (that is, the path

0 → 1 → 2 → · · · → k) and let ~Tk be the transitive tournament on

k vertices. By [16], {~Pk} is a complete set of tree obstructions for ~Tk. To

get a complete set of obstructions for δ(~Tk), we can take just the minimal

sproinks of ~Pk (minimal with respect to the ordering by existence of
homomorphisms). In the minimal sproinks, F (0) and F (k) will each be
the one-vertex graph K1. All the other F (u)’s will be alternating paths
(“zigzags”) that will connect at their end-points. So all the minimal

sproinks of ~Pk for k ≥ 3 can be described by the regular expression

↑(↑(↓↑)∗)k−3↑.

Note that if (F , H) and (F ′, H ′) are dualities, then so is (F ∪F ′, H ×
H ′). Hence starting with graphs with finite duality, whose structure
is rather well understood, and taking iterated arc graphs and products
yields a fairly large class of graphs with tree duality as well as a complete
set of obstructions for each of them. In particular, the knowledge of a
complete set of obstructions of the directed shift graphs was used in [24]
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to prove the density of the lattices KDn of directed graph powers of Kn

(under homomorphic equivalence).
There is nothing special about the arc graph, however. In fact, all

central Pultr functors and all their right adjoints preserve tree duality:

Theorem 8.4 ([3, 4]). Let T be a Pultr template and let H be a digraph
with tree duality. Then ΓT has tree duality. Furthermore, if there exists
a digraph ΩT (H) such that, for any digraph G, G→ ΩT (H) iff ΓT (G)→
H, then ΩT (H) has tree duality.

The tree obstructions for ΩT (H) have a neat description using the
left adjoint ΛT . On the other hand, an explicit description of the tree
obstructions for ΓT (H) for a general Pultr template T is currently un-
known. The knowledge of the obstructions in some special cases can have
interesting applications, as we show next.

9. Circular Gallai–Roy theorem

The following well-known theorem is usually credited to Gallai [5] and
Roy [22], even though it had independently been proved earlier by Vi-
taver [26] and Hasse [10].

Theorem 9.1 (Vitaver, Hasse, Roy, Gallai). A graph G is k-colourable

if and only if it admits an orientation ~G such that there is no homomor-

phism of ~Pk to ~G.

As we have already mentioned, {~Pk} is a complete set of obstructions

for ~Tk, the transitive tournament on k vertices. That is, for any digraph ~G

we have ~Pk 9 ~G if and only if ~G → ~Tk. Observe that G is k-colourable

if and only if it admits an orientation ~G such that ~G → ~Tk and you get
Theorem 9.1.

We are now interested in finding an analogous condition for circular
colourability. Recall that for relatively prime integers m,n such that
2m ≤ n, the circular complete graph Kn/m is the graph whose vertices

are the elements of the cyclic group Zn, where u and v are joined by an
edge if u−v ∈ {m, . . . , n−m}; the circular chromatic number χc(G) of a
graph G is the minimum value n/m such that G admits a homomorphism
to the circular complete graph Kn/m.
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Definition 9.2. Let m ≥ 1 be an integer. The m-th interleaved adjoint
of a digraph H is the digraph ιm(H) whose vertices are all the m-tuples
of vertices of H, and (u1, . . . , um) → (v1, . . . , vm) in ιm(H) if ui → vi
in H for all i = 1, . . . ,m and vi → ui+1 in H for all i = 1, . . . ,m− 1.

It turns out that ιm is a central Pultr functor with the template
(Pm, Qm, εm,1, εm,2), where Pm has vertices 1, 2, . . . ,m and no arcs;
Qm has vertices 11, 12, 21, 22, . . . ,m1,m2 and arcs u1 → u2 for u =
1, 2, . . . ,m and u2 → (u + 1)1 for u = 1, 2, . . . ,m− 1, and εm,1(u) = u1,
εm,2(u) = u2 for all u = 1, 2, . . . ,m.

Let λm be the left adjoint of ιm. Hence in particular λm(G) → ~Tn if

and only if G→ ιm(~Tn). By homomorphism duality, λm(G)→ ~Tn if and

only if ~Pn 9 λm(G). Combining these two equivalences and using the
explicit description of λm(G) (given by Definition 2.1(ii)) we can get the
following.

Proposition 9.3 ([2]). Let Pn,m−1 be the family of oriented paths ob-

tained from the directed path ~Pn by reversing at most m − 1 arcs. For

a digraph G, there exists a homomorphism of G to ιm(~Tn) if and only if
there exists no homomorphism to G from any path in Pn,m−1.

A surprising connection between circular colourings and interleaved
adjoints has been discovered by Yeh and Zhu [27].

Theorem 9.4 ([27]). For integers m,n such that n ≥ 2m, there exist ho-
momorphisms both ways between Kn/m and B(n,m), the symmetrization

of ιm(~Tn).

Thus, for an undirected graph G there exists a homomorphism of G

to Kn/m if and only if there exists an orientation ~G of G that admits a

homomorphism to ιm(~Tn). Hence we get the sought analogue of Theo-
rem 9.1.

Theorem 9.5. Let Pn,m−1 be the family of oriented paths obtained from

the directed path ~Pn by reversing at most m − 1 arcs. A graph G has
circular chromatic number at most n/m if and only if it admits an ori-

entation ~G such that there exists no homomorphism to ~G from any path
in Pn,m−1.
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10. Open problems

Finally, we present several open problems hoping to stimulate interest
in the topic. The problem we currently find quite intriguing and at the
same time within reach is this:

Problem 10.1. For which Pultr templates T does the central Pultr
functor ΓT admit a right adjoint? This problem is open in both the
directed and the undirected case, and has a different flavour in each.

The proof of Theorem 5.3 makes use of the fact that ΓTm(ΛTm(G))
is homomorphically equivalent to G for any graph G, for the path tem-
plates Tm of Section 5 with odd m. In fact, any G admits a homomor-
phism to Λ(Γ(G)) for any pair of adjoint functors Λ,Γ. So the impor-
tant property of the path templates is that ΓTm(ΛTm(G)) → G for any
graph G. This leads to the following question:

Problem 10.2. For what Pultr templates T does ΓT (ΛT (G)) admit a
homomorphism to G for any G?

By Theorem 6.3, the central Pultr functor ΓT admits a right ad-
joint ΩT for path templates T also in the setting of digraphs. Thus
we may consider directed analogues of the functors P sr and Rrs of Sec-
tion 6. However, the ordering of the path templates is no longer linear,
nor is the ordering of the corresponding P sr ’s and Rrs’s.

Problem 10.3. Let T1, T2, T3, T4 be Pultr templates for digraphs such
that each P is K1, each Q is an oriented path and each ε1, ε2 map K1 to
the end points of Q. Then by Theorem 6.3 there exists a right adjoint ΩTi
for each i. Define P ji (G) = ΓTj (ΛTi(G)); put Rij(H) = ΓTi(ΩTj (H)) for
i, j ∈ {1, 2, 3, 4}. Under what conditions on the templates do we get an
analogue of Theorem 5.3?

The following problem is motivated by the chromatic properties of arc
graphs, see Section 7.

Problem 10.4. Characterize Pultr templates T for which there exists
an unbounded function c : N → N such that χ(ΓT (H)) ≥ c(χ(H)) for
any digraph H.
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Finally, we would like to see a construction similar to the sproinks of
Theorem 8.3, for arbitrary Pultr templates.

Problem 10.5. Describe a complete set of tree obstructions for ΓT (H)
in terms of the tree obstructions for H, for a general Pultr template T .
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