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1 Charles University, Faculty of Mathematics and Physics,
DIMATIA and Institute for Theoretical Computer Science (ITI)
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Abstract. A graph containment problem is that of deciding whether one graph
called the host graph can be modified into some other graph called the target
graph by using a number of specified graph operations. We consider edge dele-
tions, edge contractions, vertex deletions and vertex dissolutions as possible graph
operations permitted. By allowing any combination of these four operations we
capture the following problems: testing on (induced) minors, (induced) topologi-
cal minors, (induced) subgraphs, (induced) spanning subgraphs, dissolutions and
contractions. We show that these problems stay NP-complete even when the host
and target belong to the class of line graphs, which form a subclass of the class
of claw-free graphs, i.e., graphs with no induced 4-vertex star. A natural question
is to study the computational complexity of these problems if the target graph is
assumed to be fixed. We show that these problems may become computationally
easier when the host graphs are restricted to be claw-free. In particular we show
that the H-CONTRACTIBILITY problem, which asks whether a given host graph
contains a fixed target graph H as a contraction, is polynomial-time solvable on
claw-free graphs when H is the 4-vertex path P4, whereas on general graphs
P4-CONTRACTIBILITY is known to be NP-complete.

1 Introduction

Whether or not a graph G contains a graph H depends on the notion of containment we
use; in the literature several natural definitions have been studied. Before we give a sur-
vey of existing work and present our own results, we first state some basic terminology.

Terminology. We consider undirected graphs with no loops and no multiple edges. We
denote the vertex set and edge set of a graph G by VG and EG, respectively. If no
confusion is possible, we may omit subscripts. We refer the reader to Diestel [5] for any
undefined graph terminology.
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Let e = uv be an edge in a graph G. The edge contraction of e removes u and
v from G, and replaces them by a new vertex adjacent to precisely those vertices to
which u or v were adjacent. In the case that one of the two vertices, say u, has exactly
two neighbors that in addition are nonadjacent, then we call this operation the vertex
dissolution of u.

Table 1 surveys the known graph containment relations that can be obtained by com-
bining vertex deletions (VD), edge deletions (EC), edge contractions (EC) and vertex
dissolutions (VDi). For example, a graph H is an induced minor of a graph G if H can
be obtained from G by a sequence of graph operations that include vertex deletions,
vertex dissolutions and edge contractions, but no edge deletions. The corresponding
decision problem, in which G and H form the ordered input pair (G,H), is called
INDUCED MINOR. The other rows in Table 1 are to be interpreted similarly.
Remark 1. If edge contractions are allowed then vertex dissolutions are allowed as well,
because a vertex dissolution is a special case of an edge contraction. This means that
the total number of different graph operation combinations is 12.
Remark 2. As can be seen from Table 1, all but two combinations correspond to known
relations. The remaining two combinations “no yes yes yes”, and “no yes no yes” are
equivalent to minors and topological minors, respectively, if we allow an extra operation
that removes isolated vertices.

Containment Relation VD ED EC VDi Decision Problem
minor yes yes yes yes MINOR

induced minor yes no yes yes INDUCED MINOR

topological minor yes yes no yes TOPOLOGICAL MINOR

induced topological minor yes no no yes INDUCED TOPOLOGICAL MINOR

contraction no no yes yes CONTRACTIBILITY

dissolution no no no yes DISSOLUTION

subgraph yes yes no no SUBGRAPH ISOMORPHISM

induced subgraph yes no no no INDUCED SUBGRAPH ISOMORPHISM

spanning subgraph no yes no no SPANNING SUBGRAPH ISOMORPHISM

isomorphism no no no no GRAPH ISOMORPHISM

Table 1. Known containment relations in terms of the graph operations [11].

Existing results. The problems in Table 1 except for GRAPH ISOMORPHISM are all
known to be NP-complete (cf. [11, 21]). It is therefore natural to fix the graph H (the
target graph) in an ordered input pair (G,H) and consider only the graph G (the host
graph) to be part of the input. We indicate this by adding “H-” to the names of the
decision problems. For any fixed H , the problems H-DISSOLUTION, H-SUBGRAPH
ISOMORPHISM, H-INDUCED SUBGRAPH ISOMORPHISM, H-SPANNING SUBGRAPH
ISOMORPHISM, and H-GRAPH ISOMORPHISM can be solved in polynomial time by
brute force. A celebrated result by Robertson and Seymour [22] states that the problems
H-MINOR and H-TOPOLOGICAL MINOR can be solved in cubic time and polynomial
time, respectively, for every fixed graph H . The latter result has recently been improved
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to cubic time by Grohe et al. [12]. The computational complexity classifications (with
respect to the fixed target graph H) of the remaining three problems H-INDUCED MI-
NOR, H-INDUCED TOPOLOGICAL MINOR and H-CONTRACTIBILITY are still open.
Many partial results are known, in particular for special graph classes. Below we briefly
survey these.

Fellows et al. [6] showed that the H-INDUCED MINOR problem is NP-complete for
a specific graph H on 68 vertices. This is still the smallest known NP-complete case for
H-INDUCED MINOR. They also showed that for every fixed graph H , the H-INDUCED
MINOR problem can be solved in polynomial time on planar graphs. Later this result
was extended by van ’t Hof et al. [15] who showed that for every fixed planar graph
H , the H-INDUCED MINOR problem is polynomial-time solvable on any minor-closed
graph class not containing all graphs. Belmonte et al. [1] showed that for every fixed
graph H , the H-INDUCED MINOR problem is polynomial-time solvable for chordal
graphs.

Lévêque et al. [18] gave polynomial-time solvable and NP-complete cases for the
H-INDUCED TOPOLOGICAL MINOR problem; small cases such as H = K4 (the com-
plete graph on 4 vertices) are still open. On the other hand, Fiala et al. [7] showed that
for every fixed H , the H-INDUCED TOPOLOGICAL MINOR problem can be solved in
polynomial time on claw-free graphs, i.e., graphs with no induced 4-vertex stars.

Brouwer and Veldman [4] gave polynomial-time solvable and NP-complete cases
for the H-CONTRACTIBILITY problem. One of their results is that this problem is al-
ready NP-complete for a graph H on 4 vertices, namely when H is fixed to be the 4-
vertex path or the 4-vertex cycle. This research was later extended by Levin, Paulusma
and Woeginger [19, 20] and van ’t Hof et al. [15]. Kamiński, Paulusma and Thilikos [17]
showed that for every fixed H , the H-CONTRACTIBILITY problem can be solved in
polynomial time on planar graphs. By extending previous results [2, 10], Belmonte et
al. [1] showed that for every fixed graph H , the H-CONTRACTIBILITY problem is
polynomial-time solvable for chordal graphs.

Our results. We focus on claw-free graphs and its proper subclass of line graphs, which
are well studied, both within structural and algorithmic graph theory; we refer to Fau-
dree, Flandrin, and Ryjáček [8] for a survey.

In Section 3 we show that all considered decision problems are NP-complete even
under the further restriction that G and H are line graphs and both part of the input
except for GRAPH ISOMORPHISM, which stays GRAPH ISOMORPHISM-complete for
such input pairs. As such we can concentrate on the case when H is fixed. Then the only
two remaining problems are the H-INDUCED MINOR and H-CONTRACTIBILITY prob-
lem; as mentioned earlier on, the other eight H-containment problems are polynomial-
time solvable on claw-free graphs for any fixed H .

In Section 4, we consider the question whether forbidding induced claws in the
input graph makes the problem H-CONTRACTIBILITY computationally easier. Our
motivation stems from the result on H-INDUCED TOPOLOGICAL MINOR, which is
polynomial-time solvable on claw-free graphs for every fixed graph H [7] while be-
ing NP-complete on general graphs already when H is the complete graph on 5 ver-
tices [18]. We provide a partially affirmative answer to this question as follows. In
Section 4.1, we show that P4-CONTRACTIBILITY, where P4 denotes the 4-vertex path,
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is polynomial-time solvable for claw-free graphs. Recall that for general graphs, P4-
CONTRACTIBILITY is NP-complete [4]. In fact, we show that H-CONTRACTIBILITY
is polynomial-time solvable on claw-free graphs for any fixed graph H that is a so-
called pileous clique, which is a special type of split graph. However, claw-freeness does
not make the H-CONTRACTIBILITY problem tractable for all target graphs H: in Sec-
tion 4.2 we show that P7-CONTRACTIBILITY is NP-complete even for line graphs. As a
direct consequence, the LONGEST PATH CONTRACTIBILITY problem, which is that of
determining the longest path to which a given graph can be contracted, is NP-hard for
line graphs. This problem was introduced by van ’t Hof, Paulusma and Woeginger [16]
who showed that it is polynomial-time solvable for P5-free graphs and NP-hard for P6-
free graphs, whereas Heggernes et al. [14] observe that this problem is polynomial-time
solvable for chordal graphs.

In Section 5 we state some open problems and also shortly discuss the H-INDUCED
MINOR problem for claw-free graphs.

2 Preliminaries

Let G = (V,E) be a graph. We write G[U ] to denote the subgraph of G induced by
U ⊆ V , i.e., the graph on vertex set U and an edge between any two vertices if and
only if there is an edge between them in G. We say that U is a clique if there is an edge
in G between any two vertices of U , and U is an independent set if there is no edge in
G between any two vertices of U . Two disjoint sets U,U ′ ⊆ V are called adjacent if
there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ E. A vertex v is a neighbor of
u if uv ∈ E. We let N(u) denote the set of neighbors of u. The degree of a vertex u is
its number of neighbors. The length |P | of a path P is the number of edges of P . The
distance from a vertex u to a vertex v in G is the length of a shortest path from u to v
in G. We let Cn, Kn, and Pn denote the cycle, complete graph, and path on n vertices,
respectively.

A graph G = (V,E) is called k-connected if G[V \U ] is connected for every set
U ⊆ V of at most k−1 vertices. A graph G that is not connected is called disconnected.
A k-vertex cut is a subset S ⊆ V of size k such that G[V \S] is disconnected. The vertex
in a 1-vertex cut of a graph G is called a cut vertex.

A star is a graph formed by joining each vertex of an independent set to an extra
vertex called the centre vertex. A double star is formed by joining each vertex of an
independent set to one of the two end-vertices of an extra edge called the centre edge.
A pileous clique is a graph with the property that its vertex set can be decomposed into
a clique and an independent set of degree-1 vertices. Note that pileous cliques form
a subclass of split graphs. In particular, stars and double stars (including the P4) are
special cases of pileous cliques. A graph is claw-free if it has no induced subgraph
isomorphic to the claw, i.e., the 4-vertex star K1,3 = ({a1, a2, a3, b}, {a1b, a2b, a3b})

The line graph of a graph G with edges e1, . . . , ep is the graph L(G) with vertices
u1, . . . , up such that there is an edge between any two vertices ui and uj if and only if
ei and ej share one end vertex in H . We call G the preimage of L(G). Note that every
line graph is claw-free. We also observe that L(K3) = L(K1,3) = K3. However, K3 is
well-known to be unique in this perspective (see e.g. Harary [13]).
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Let G and H be two graphs. An H-witness structure W is a vertex partition of G
into |VH | (nonempty) sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ VH with x 6= y, bags W (x) and W (y) are adjacent in G if and only

if x and y are adjacent in H;

By contracting all bags to single vertices we find that H is a contraction of G if and only
if G has an H-witness structure. We note that G may have more than one H-witness
structure. We call a bag that corresponds to a vertex of degree 1 in H a leaf bag.

3 When both host and target graph are part of the input

We show the following result, which justifies why we fix the target graph H in the
remainder of our paper.

Proposition 1. All problems in Table 1 are NP-complete for ordered input pairs (G,H)
where G and H are line graphs, except for the GRAPH ISOMORPHISM problem, which
is GRAPH ISOMORPHISM-complete for such input pairs.

Proof. Let G be an n-vertex line graph, and H be the n-vertex cycle; note that H is a
line graph and that L(H) is an n-vertex cycle as well.

We observe that the statements that G contains H as a minor, topological minor,
subgraph, or spanning subgraph, respectively are equivalent. The last statement (span-
ning subgraph) is equivalent to asking whether G is Hamiltonian, which is an NP-
complete problem even for line graphs as shown by Bertossi [3]. This means that we
get the desired result for MINOR, TOPOLOGICAL MINOR, SUBGRAPH ISOMORPHISM
and SPANNING SUBGRAPH ISOMORPHISM. We note that G contains H as a spanning
subgraph if and only if L(G) contains L(H) as an induced subgraph. Hence, from the
same reduction, we obtain the desired result for INDUCED SUBGRAPH ISOMORPHISM.

We now show that L(G) contains L(H) as an induced subgraph if and only if L(G)
contains L(H) as an induced minor. The forward implication holds by definition. To
prove the backward implication, suppose that L(G) contains L(H) as an induced mi-
nor. By definition, L(G) contains an induced subgraph F that contains L(H) as a con-
traction. We consider an L(H)-witness structure of F . Recall that L(H) is a cycle on
n edges. We fix one edge between each pair of adjacent witness bags. Then these n
edges can be connected to each other via paths inside the witness bags. Hence F , and
consequently, L(G) contains an induced cycle C on at least n vertices. Note that C
corresponds to a (not necessarily induced) cycle in G with the same number of vertices.
Because G has exactly n vertices, we find that C has exactly n vertices. Consequently,
L(G) contains an induced n-vertex cycle, namely C, that is isomorphic to L(H). Hence
INDUCED MINOR is NP-complete when both the host and target graph are line graphs.

By a similar argument we can show that L(G) contains L(H) as an induced sub-
graph if and only if L(G) contains L(H) as an induced topological minor. In this way
we get the desired result for INDUCED TOPOLOGICAL MINOR as well.
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For the CONTRACTIBILITY problem we refer to Corollary 1 which states that the
P7-CONTRACTIBILITY problem is NP-complete for line graphs; note that H = P7 is a
line graph, because P7 = L(P8).

The two remaining problems are DISSOLUTION and GRAPH ISOMORPHISM. We
first consider the DISSOLUTION problem. Let G and H be two graphs. For each vertex
u in G that has degree at least 3 we do as follows. Suppose that u has p neighbors. We
replace u by p new vertices, each adjacent to each other and to exactly one neighbor of
u. Afterwards we do the same for each vertex x in H that is of degree at least 3. We
call the new graphs G′ and H ′, respectively. We claim that G′ and H ′ are line graphs.
This can be seen as follows. For every maximal clique in G′ we take a star with edges
corresponding to the vertices of the maximal clique; note that some edges may belong
to two stars. The resulting graph has G′ as its line graph. By the same argument, H ′ is
also a line graph. Moreover, G contains H as a dissolution if and only if G′ contains H ′

as a dissolution. Because DISSOLUTION is NP-complete, we then find that this problem
stays NP-complete even when both the host and target graph are line graphs.

We now consider the GRAPH ISOMORPHISM problem. Let G and H be two ar-
bitrary graphs on at least four vertices. Then G and H are isomorphic if and only if
L(G) and L(H) are isomorphic, where the backward implication is due to the afore-
mentioned observation that every connected line graph except for the graph K3 has a
unique preimage (see e.g. Harary [13]). This shows that GRAPH ISOMORPHISM stays
GRAPH ISOMORPHISM-complete when G and H are restricted to line graphs. Hence
we have proven Proposition 1. ut

4 Contractions

4.1 Polynomial-time solvability

We start with two useful lemmas, the second of which can be found in Levin et al. [19]
but follows directly from the polynomial-time result on graph minors by Robertson and
Seymour [22].

Lemma 1. Let H be a connected graph on at least three vertices. If a graph G contains
H as a contraction, then G has an H-witness structure, in which every leaf bag consists
of exactly one vertex.

Proof. Let G be a graph that contains a connected graph H on at least three vertices
as a contraction. Then G has an H-witness structure W . Let x be a vertex of H with
exactly one neighbor y. Suppose that |W (x)| ≥ 2. By definition, there exists a vertex
u ∈ W (x) that is adjacent to W (y). Let D1, . . . , Dp be the connected components of
G[W (x) \ {u}]. Because |W (x)| ≥ 2, we find that p ≥ 1. Let v be a vertex of D1

that is not a cut vertex of G[D1]. We move all vertices of W (x) \ {v} to W (y). This
results in a new H-witness structure of G. Because H is a connected graph on at least
three vertices, we did not increase the size of any other leaf bag. Hence, by repeating
this procedure we obtain our desired witness structure. ut

Lemma 2 ([22]). Let G be a graph and let Z1, . . . , Zp ⊆ VG be p specified pairwise
disjoint sets such that

∑p
i=1 |Zi| ≤ k for some fixed integer k. The problem of deciding
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whether G contains Kp as a contraction with Kp-witness bags W1, . . .Wp such that
Zi ⊆Wi for i = 1, . . . , p can be solved in polynomial time.

We are ready to state the first result in this section; recall that a pileous clique is a
graph whose vertices of degree at least 2 form a clique, such as the P4, and that already
P4-CONTRACTIBILITY is NP-complete for general graphs [4].

Theorem 1. If H is a fixed pileous clique, then H-CONTRACTIBILITY is solvable in
polynomial time on claw-free graphs.

Proof. Let H be a pileous clique. If H has one or two vertices, the problem is trivial
even for general graphs. Suppose that H has at least three vertices. We split the vertices
of H into two classes: V1 containing all vertices of degree 1 and V2 containing the
remaining vertices, which induce a clique in H .

Let G be a graph. By Lemma 1 we deduce that G has an H-witness structure in
which every leaf bag is of cardinality 1, should G contain H as a contraction. Hence
we can do as follows. For each vertex x ∈ V1, we guess a vertex ux ∈ VG to form the
corresponding leaf bag. We first check if the set of guessed ux-vertices is independent.
If not, then we discard the set of ux-vertices. Otherwise, we proceed as follows. We
observe that all neighbors of a vertex ux must go to the same bag which corresponds to
the unique neighbor y of x. Hence, we may contract any edge between two neighbors of
ux. Because G is claw-free, G[N(ux)] consists of at most two connected components.
This means that after performing the aforementioned edge contractions ux has at most
two neighbors left in the resulting graph G′, and these neighbors must be placed in the
bag W (y) corresponding to y. We now put all vertices that must go to W (y) in the set
Z(y). Note that such a set can contain more than two vertices in case y has more than
one neighbor in V1. If y has no neighbor in V1, then we set Z(y) := ∅. It can happen
that a vertex is in more than one set Z(y). In that case we discard this set of ux-vertices
(and we must guess some other set of ux-vertices). Suppose that this is not the case,
i.e., no vertex is in more than one set Z(y). We have that

∑
y∈V2

|Z(y)| ≤ 2|V1|.
We remove all vertices ux and are left to check whether the resulting graph G′′

obtained from G′ contains K|V2| as a contraction with witness bags W (y) such that
Z(y) ⊆ W (y) for each y ∈ V2. Because

∑
y∈V2

|Z(y)| ≤ 2|V1| is fixed as H is fixed,
this can be done in polynomial time due to Lemma 2. Because the number of different
guesses for the sets of ux-vertices is at most n|V1|, which is polynomial as H is fixed,
the theorem follows. ut

4.2 NP-completeness

We now show that Pk-CONTRACTIBILITY is NP-complete for all k ≥ 7 even on line
graphs. In order to do this we first reformulate the problem. Let F = L(G) be the line
graph of a graph G. Because no disconnected graph contains Pk as a contraction, we
may assume without loss of generality that G is connected. For the same reason we
assume that G has at least seven vertices. This means that F is not isomorphic to K3.
Consequently, there exists no graph G′ different from G with L(G′) = F .
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Observe that F contains Pk as a contraction if and only if the edges of G can be
partitioned into k nonempty classes E1, . . . , Ek, such that each class Ei induces a con-
nected subgraph in G and moreover, every edge in Ei (which we also call an Ei-edge)
may only be adjacent to edges in E1 or in E2 if i = 1, edges in Ei−1, Ei, or Ei+1 if
2 ≤ i ≤ k − 1 and edges in Ek−1 or Ek if i = k. We call this problem the k-EDGE
PARTITION problem. Clearly, Pk-CONTRACTIBILITY on line graphs and k-EDGE PAR-
TITION are polynomially equivalent.

Theorem 2. The k-EDGE PARTITION problem is NP-complete for k = 7.

Proof. We will reduce from the HYPERGRAPH 2-COLORABILITY (H2C) problem,
which is known to be NP-compete (cf. [9]). An instance of this problem consists of
a set system S = {S1, . . . , Sm} over a ground set Q = {q1, . . . , qn}. We may assume
that Si 6= ∅ for all 1 ≤ i ≤ m, and that S1 ∪ · · · ∪ Sm = Q. The question is whether Q
can be 2-colored , i.e., can be partitioned into two subsets Qb and Qr, such that no set
in S is monochromatic, i.e., only contains elements of Qb or of Qr.

For a given set system S we construct a graph G as follows. First we form a clique
on vertices q1, . . . , qn, representing the set Q. In the next step we insert 2m new isolated
edges vjwj and v′jw

′
j for j = 1, . . . ,m. We add edges between vertices qi and vj ,

v′j respectively, to build two copies of the incidence graph for S. Namely we insert
new edges qivj and qiv

′
j if and only if qi ∈ Sj . The construction of G is finished by

adding two new isolated edges xy and x′y′ and by making x connected to all wj and
analogously x′ to all w′j , see Figure 1.

q1

q2

qi

qn

v1w1

xy wj vj

wm vm

v′1

v′j

v′m

w′
1

w′
j

w′
m

x′ y′

qi ∈ Sj

...

...

...

...

...

...

Fig. 1. The constructed graph G.

We claim that G is a yes-instance of 7-EDGE PARTITION if and only if S can be
2-colored.

First suppose that S can be 2-colored. Let Qb and Qr denote the subsets of Q
colored by blue and red, respectively. We partition the edges of G as follows:

• E1 = {xy}
• E7 = {x′y′}
• E2 = {xw1, . . . , xwm}
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• E6 = {x′w′j , . . . , x′w′m}
• E3 = {w1v1, . . . , wmvm} ∪ {vjqi | qi ∈ Sj ∩Qr} ∪ {qiqi′ | qi, qi′ ∈ Qr}
• E5 = {w′1v′1, . . . , w′mv′m} ∪ {v′jqi | qi ∈ Sj ∩Qb} ∪ {qiqi′ | qi, qi′ ∈ Qb}
• E4 = EG \ (E1 ∪ E2 ∪ E3 ∪ E5 ∪ E6 ∪ E7)

Obviously, E1, E2, E6 and E7 induce a connected subgraph. The E3-edges also
induce a connected subgraph, since every E3-edge is incident with some (red) vertex
qi and all such red vertices are connected in E3. Analogously we get that E5 induces a
connected subgraph. Finally, the subgraph induced by E4 contains a complete bipartite
subgraph between red and blue q-vertices. Moreover, every vj is connected with an
E4-edge to some blue q-vertex, and every v′j is connected with an E4-edge to some
red q-vertex. Hence E4 induces a connected subgraph of G. Finally, the edge in E1 is
only adjacent to E2-edges, and the edge in E7 is only adjacent to E6-edges, while the
edges in all other partition classes are only adjacent to edges in their own partition class
or to edges in the preceding and succeeding partition class. We conclude that G is a
yes-instance of 7-EDGE PARTITION.

Now suppose that G is a yes-instance of 7-EDGE PARTITION. By construction of G,
every E1-edge must be incident with one of {x, x′} and every E7-edge with the other
vertex of {x, x′}. Without loss of generality assume that x belongs to every E1-edge
and that x′ belongs to every E7-edge. As E3-edges cannot be incident to any E1-edge,
we get that x is not incident with any E3-edge. Analogously, x′ is not incident with any
E5-edge. We also observe that an E3-edge must be present in every path from x to x′

at distance at least 3 from x′. Therefore, E3-edges may only be incident with vertices
vj and possibly qi, but every vj is incident with at least one E3-edge. As the E3-edges
induce a connected subgraph, we find in fact that every vj is connected to some qi by
an E3-edge. By symmetry of our construction, every v′j is connected to some qi by an
E5-edge.

As E3-edges and E5-edges cannot be incident with the same vertex qi, we may
partition Q into two parts, one part Qr containing those qi that are incident with an E3-
edge, and the other part Qb containing the remaining elements of Q. Because every vj
is connected to some qi by an E3-edge, every Sj intersects Qr. Analogously, as every
v′j is connected to some qi via an E5-edge, every Sj intersects Qb as well. For the sake
of completeness note that there may be vertices qi incident only with E4-edges, but
we have chosen to put the corresponding elements qi to Qb, although we could have
distributed them arbitrarily. This completes the proof of Theorem 2. ut

Corollary 1. The P7-CONTRACTIBILITY problem is NP-complete for line graphs.

Another example of a small graph H , for which H-CONTRACTIBILITY is NP-
complete on claw-free graphs is H = C6. This result can be shown by an analogous
construction as the one used in the proof of Theorem 2 for the case H = P7. The only
difference is that the constructed graph will have the edge xx′ instead of the edges xy
and x′y′. We omit a proof of this statement, since it would mimic the arguments of the
proof of Theorem 2.
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5 Future work

A computational complexity classification of the H-CONTRACTIBILITY problem for
claw-free graphs is still open. For example, the cases H = P5 or H = P6 must still
be resolved, as we cannot use the hardness reduction in Theorem 2 for them. We stress
though that the aim of this note was to investigate whether claw-freeness of the input
graph is useful for solving the H-CONTRACTIBILITY problem. We showed that H-
CONTRACTIBILITY is NP-complete on claw-free graphs already for small graphs H ,
but also that there exist graphs H for which H-CONTRACTIBILITY is polynomial-time
solvable on claw-free graphs and NP-complete on general graphs. Hence, we conclude
that claw-freeness helps but to a limited extent.

For the H-INDUCED MINOR problem we can derive a similar result as Theorem 1.
This result is not known for general graphs.

Proposition 2. The H-INDUCED MINOR problem is polynomial-time solvable on claw-
free graphs whenever H is a pileous clique.

Proof. Proposition 2 can be shown in a similar way as the corresponding result for H-
CONTRACTIBILITY. We use the same algorithm as in the proof of Theorem 1 with
the following modifications. First, we remove any common neighbors between two
ux-vertices if the corresponding x-vertices in H have no common neighbor. Second,
after removing the ux-vertices, we apply Lemma 2 on the connected components of
the remaining graph G′′ instead of the whole G′′. If we are successful with one such a
component, then we are done. Otherwise we must guess a different set of ux-vertices,
as before. ut

Recall that the smallest known NP-complete case for H-INDUCED MINOR is a
target graph H on 68 vertices, as shown by Fellows et al. [6]. The gadget in their NP-
completeness reduction is not claw-free, and the following problem is open. Does there
exist a graph H for which H-INDUCED MINOR is NP-complete for claw-free graphs?

We also recall that for any fixed H , the H-INDUCED TOPOLOGICAL MINOR prob-
lem can be solved in polynomial time for claw-free graphs [7]. This means that H-
INDUCED MINOR is polynomial-time solvable on claw-free graphs for any fixed H
that has maximum degree 2, because for such target graphs H the two problems H-
INDUCED MINOR and H-INDUCED TOPOLOGICAL MINOR are polynomially equiva-
lent. In particular this holds for H = 2C3, where 2C3 denotes the disjoint union of two
3-vertex cycles; determining the computational complexity of 2C3-INDUCED MINOR
for general graphs is a notoriously open problem.

Acknowledgments. We thank both anonymous reviewers for their useful comments that
helped us to improve the readability of our paper.
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