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INTRODUCTION  

Adjuvant therapy of patients with stage IIB/III melanoma (high-risk) with interferon was approved by 

FDA (United States Food and Drug administration) and subsequently by regulatory authorities 

worldwide (1).  Despite the ability of this regimen to reduce relapse and mortality by up to 33% (2) 

acceptance has been limited due to toxicity of this regimen.  Attempts to identify the subset of patients 

destined to benefit from adjuvant treatment with IFNα-2b have failed to discover clinical or 

demographic features of the patient population that are capable of predicting the benefit from high 

dose interferon (HDI) therapy. Correlative studies have been undertaken over the years, demonstrating 

a variety of immunological responses subsequent to therapy (3,4).   

We recently published a paper in which six CTLA-4 polymorphisms were evaluated in a cohort of 

patients treated with adjuvant interferon (5). The human CTLA-4 gene is located on chromosome 2q33, 

in a region that is associated with susceptibility for autoimmune disease (6) and multiple polymorphisms 

of the CTLA-4 gene have been found to be associated with susceptibility to autoimmune diseases (e.g. 

the GG allele of the +49 AG polymorphism is associated with decreased expression of CTLA-4 upon T-cell 

activation and thus a higher proliferation of T-cells) (7-10).  

We genotyped DNA isolated from the peripheral blood of a total of 286 patients with high-risk 

melanoma who participated in a prospective multicenter randomized phase III trial of adjuvant 

interferon and a panel of 288 randomly selected healthy unrelated Greek individuals from the Donor 

Marrow Registry of the National Tissue Typing Center, Athens, Greece that served as a control 

population for 6 CTLA4-SNPs of potential interest – namely CT 60, AG 49, CT 318, JO 27, JO 30 and JO 31. 

CT 318 is located within the promoter region of the CTLA-4 gene A/G49 is located at exon 1, while the 

rest of the SNPs tested are located at the 3’ untranslated region of CTLA-4.  

High levels of association among the different polymorphisms were found (Fisher’s exact p value< 0.001 

for all associations). Genotypes corresponding to the six CTLA-4 polymorphisms did not significantly 
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deviate from the Hardy-Weinberg equilibrium. This indicates significant linkage disequilibrium among 

the six polymorphisms. We analyzed the segregation pattern of CT 318, AG 49, CT 60, JO 27, JO 30, JO 31 

SNPs on 572 chromosomes and identified 5 major haplotypes.   No statistically significant differences for 

RFS or OS were found for the presence of each of the 3 most common haplotypes. When the respective 

polymorphisms were considered separately for outcome analysis by the allele status, or when the three 

most significant haplotypes were considered, two results emerged: 

1. No significant differences were found between the distributions of CTLA-4 polymorphisms in the 

melanoma population compared with healthy controls.  

2. Relapse free survival (RFS) and overall survival (OS) did not differ significantly among patients with the 

alleles represented by these polymorphisms. No correlation between autoimmunity and specific alleles 

was evident. 

These results on CTLA4 genotype profile as risk factor are the basis for the analysis designed and 

undertaken in this study.  A novel method of pattern analysis, referred below as network phenotyping 

strategy (NPS), was introduced for integrative, relationship-based analysis of general clinical data (11-

13). In this particular application, NPS replaces analysis of individual alleles and allele frequencies by the 

analysis of relationships between CTLA-4 alleles for every individual in the study.  NPS solves the 

“power” problem of methods that approach such complete-relationship based analysis by using large 

number of interaction terms, which requires large number of subjects for informative statistical 

analyses.  NPS captures instead the actual polymorphism relationship patterns cumulatively into special 

mathematical graphs. In our CTLA-4 genotyping data, we thus do not analyze independent 

interrelationships among the 153 possible combinations of AA, AB and BB alleles of the six studied CTLA-

4 polymorphism. Instead, we take advantage of the fact that all those 153 relationships can be captured 

in a single relationship pattern graph. A path in this graph then encodes the actual complete 

experimental CTLA-4 genotyping results for every studied subject. In this way, the complete information 
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about all allele relationships for an individual is captured by a single mathematical object. An important 

property of the NPS analysis is that, from the collection of all individual SNP relationship patterns, we 

can additionally compute (in a deterministic, non-statistical way) a framework of directly clinically and 

functionally interpretable reference relationship profiles (RRP). These RRP’s represent ”landmarks” in 

the (multidimensional) clinical/genotypic relationship data space. The clinical significance of the RRP 

landmarks is then measurable in terms of how many patients have close (but not necessarily identical) 

personal relationship patterns to those “landmarks”. For the concrete example of CTLA-4 

polymorphisms studied in this paper, RRP’s represent limiting characterization of the CTLA-4 SNP co-

occurrence patterns. The main advantage of the NPS approach is its identification of any significant 

heterogeneity that might be captured in the data from the clinical, or in this case the CTLA-4 based 

immune regulation mechanism that we focused upon in this study of subjects with and without 

melanoma. These results can be then used in designing follow-up clinical studies. 
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MATERIALS AND METHODS 

MATERIALS 

Genotyping of DNA isolated from the peripheral blood of a total of 286 patients with melanoma and a 

panel of 288 randomly selected healthy unrelated Greek individuals that served as a control population 

was described in detail previously. Six CTLA-4 SNPs were studied, namely CT 60 (rs3087243), AG 49 

(rs231775), CT 318 (rs5742909), JO 27 (rs11571297), JO 30 (rs7565213) and JO 31 (rs11571302). CT 318 

is located within the promoter region of the CTLA-4 gene, A/G49 is located at exon 1, while the rest of 

the SNPs tested are located at the 3’ untranslated region of CTLA-4.  

METHODS: 

Characterization of personal CTLA-4 genotype relationship pattern by 6-partite graphs: Identifying the 

part of the study data in which we have maximal information to extract additional components of 

information. We present two levels of CTLA-4 genotype analysis. In the first one, we do not distinguish 

between homozygous or heterozygous status of the six alleles. In the second one, we will expand the 

genotype characterization using the known zygosity of the six SNP’s. Fig. 1a shows how an observed 

CTLA-4 genotype for one patient may be represented by a 6-partite graph that will be called a personal 

relationship profile prp, which we use for the purpose of the first analysis type, considering the 

major/minor allele relationships only (Fig.1a). In Fig. 1b we define the type of personal relationship 

profile, for which symbol PRP is used to emphasize that allele relationships include observed allele 

zygosity. In both these representations, each assayed SNP is represented by one of six partitions in the 

prp or PRP.  Each partition contains two or three vertices, representing the allele for a given 

polymorphism (a = major allele, b = minor allele in prp, a = major homozygous, ab=heterozygous, b = 

minor homozygous allele in PRP). Edges in both graphs connect only those vertices in different partitions 

that represent observed (genotyped) alleles in the two different polymorphic sites. The complete CTLA-4 

genotype profile for an individual is then a collection of edge-connected vertices in prp/PRP, forming a 
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cycle in prp/PRP. Because the edges in prp/PRP represent relationships between the allelic states of the 

studied SNP’s, there is clear meaning for each segment of the CTLA-4 genotype illustrated in the 

hexagonal cycle.  We can understand these 

lines in as conditional relationships of type “if 

AG49 contains minor allele then CT60 contains 

also minor allele and J031 contains minor allele 

and then …. “. Note that the experimentally 

defined cycle in e.g. prp represents not only 

the pair wise conditional relationships shown 

by lines such as (AG49 = b when CT60 = b), but 

also all other co-occurrences such as (AG49 = b 

when JO30 = b) etc. The prp/PRP cycle 

representation of the CTLA-4 SNP allele status 

co-occurrences is the simplest one capturing all 

co-occurrence relationships while maintaining 

convenient mathematical simplicity.  

Collective characterization of CTLA-4 genotype 

profile distribution in a cohort by cumulative 

weighted 6-partite graph G.  While PRP’s are 

exact “qualitative” representation of the 

studied polymorphism relationship patterns in 

CTLA-4, we need to convert this qualitative 

information into quantitative characterization of these individual relationship patterns. It has been 

shown by exact mathematical theorem (14) that the maximal quantitative information captured by 

Figure 1. example how experimentally determined CTLA-4 
genotype (top panel) for a patient (id=55)  is transformed 
into  a) prp graph and b) PRP graph. a-major allele, b-
minor allele, ab-heterozygous allele status vertices. Each 
SNP is represented by a graph partition (rectangles), 
identified by the SNP code. Lines - graph edges, 
representing the co-occurrences of all alleles in the 
patient’s CTLA-4 genotype . 
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graphs is obtained when PRP’s are compared to one another in graphs of the same type, which we call 

reference relationship patterns (RRP). Therefore, the next step of NPS transformation of the CTLA-4 

polymorphism relationship patterns into quantitative descriptors is to use the actual data to derive the 

6-partite graphs, representing the RRP’s we need. 

For this purpose, the individual prp or PRP graphs, describing the SNP co-occurrences for all subjects 

were assembled into cumulative 6-partite “study graphs” g and G. By adding every individual patient 

CTLA-4 genotype profile representation prp to the cumulative g graph, the weightings of every edge in g  

is increased by one, and similarly but independently for PRP’s and G.  As a consequence of this 

construction, these g and G graphs will have weighted edges defined by the co-occurrence frequencies 

of all SNP pairs. The distribution of all individual CTLA-4 genotype profiles in case cohort is now 

represented by graph g. 

 

 In Fig. 2, the relative edge weights, resulting from adding all individual case graphs prp and PRP to g and 

G, respectively, are graphically represented by the variable relative thickness of the edge lines.  By 

converting these edge counts to frequencies, statistical interpretation of the basic vertex-weighted 

edge-vertex (a-b), (a-a), (b-a) and (b-b) motifs in study graphs is obtained. The weights of study graph 

Figure 2.  Study graphs g (a) and G (b) constructed as union of all prp’s (g) or PRP’s (G). Symbols as in Fig.1, 
thickness of edges in g and G are proportional to co-occurrence frequencies of respective SNP pairs, connected 
by the edge.           
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edges connecting, for example, the major and minor allele vertices in the AG49 and CT60 partitions 

define the estimates of the following conditional probabilities: 

       (                           ) 

       (                           ) 

        (                           ) 

       (                           ) 

In the next step, the complete sets of reference relationship patterns for CTLA-4 genotypes in both 

study graphs g and G are identified and in case of g identified as haplotypes. Haplotype is defined as a 

series of polymorphisms in CTLA-4 genotype profile that are co-occurring with identical probabilities, 

P(1)~P(2)~ … ~ P(6). Using the conditional probability interpretation of edges in the study graphs shown 

in above example, we can derive from the Bayes’ theorem, that if sub-graphs of the study graph with 

equal weights (co-occurrence frequency components) are found, the condition of P(1)~P(2)~ … ~ P(6) is 

automatically fulfilled. Thus, in our representation, a complete set of haplotypes is represented by all 

RRP cycle subgraphs with equal weights of all edges, which can be found in g or G by “greedy” algorithm 

(see Supplement). 

For validation of this study graph-based approach to haplotype identification, established procedures 

were additionally used where the maximum likelihood estimates of haplotype frequencies given a multi-

locus sample of genetic marker genotypes [3 different genotypes of the 6 polymorphisms] were 

generated using the expectation-maximization (EM) algorithm under the assumption of Hardy-Weinberg 

equilibrium (HWE). Linkage disequilibrium was explored for each pair of the 6 polymorphisms (PROC 

HAPLOTYPE). SAS 9.1 (SAS Institute Inc., Cary, NC, USA), was used for the statistical analysis (reported in 

(5)).  

 



9 
 

Quantitative characterization of differences 

of personal CTLA-4 genotype profiles prp 

and PRP from haplotypes, represented by 

rrp’s and RRP’s.  

 

For the quantification of the graph-graph 

distances between individual patient 

relationship patterns and haplotype-

reference relationship patterns, we use the 

mathematical results of (14,15), showing that 

one of the possible definitions of graph-graph 

distances with all necessary mathematical 

properties  is obtained simply by counting 

the number of edge mismatches between 

the two graphs, as is shown by example in 

Fig.3. As the result, with haplotype 

decomposition of study graph g resulting in 8 

haplotype components, each subject (j) is 

characterized by an 8-element vector 

 ⃗   [  ( )   ( )     ( )] of eight 

distances of the personal CTLA-4 genotype 

profile from compositions of all 8 respective 

haplotypes identified. Difference vectors  ⃗⃗  

Figure 3. Three examples showing how elements of distance 

vectors 𝛿𝑗 are computed for the same patient #55. In all figures, 

prp (RRP in c)) for this patient = dashed lines, rrp’s (or RRP in c)) 
= solid lines. Double arrows indicate mismatch in SNP co-

occurrences. Elements of  𝛿𝑗 are sums of these mismatches (in 

computations, we add negative sign to make identity (zero 
mismatches) mathematically largest). a,b) comparison of 
patient’s genotype to the second and third reference SNP 
relationship patterns rrp c) Comparison of patient’s genotype to 
the 4th reference SNP relationship pattern RRP4. 
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were computed for all patients and controls using a) the control cohort-defined haplotypes and b) the 

case cohort-defined haplotypes.  

Developing the hierarchical model for differentiating between healthy controls and melanoma cases 

using the CTLA-4 based personal genotype profiles from haplotypes. Weka package (v. 3-6-6) 

implementation of J48 pruned tree algorithm was used to construct optimal model recognizing the 

controls from cases using personal difference vectors  ⃗⃗ . Tenfold cross-validation was used and 

characterized the model quality by confusion matrices and ROC parameters. 

RESULTS: 

Fig. 4 shows decomposition of the g graphs for healthy controls (Fig. 2a) and melanoma cases (Fig. 2b) 

into component cycles rrpi, representing the haplotypes derived from individual genotyped profiles, 

containing CT60 (rs3087243), AG49 (rs231775), CT318 (rs5742909), JO27 (rs11571297), JO30 

(rs7565213) and JO31 (rs11571302) SNPs.  

Figure 4: Decomposition of study graphs g (picture represents both cases and control subcohorts) 
into rrp’s 1-8. Case rrp’s are shown by solid, control by dashed edges. Coefficients show the 
multiplicities of respective rrp’s in the g-decompositions (top=case graph, bottom=control graph). 
Symbols as in Fig.1.   
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Decomposing the 6-partite graph G constructed with explicit 3 allele states resulted in 20 RRP. We then 

computed a 20-component vector of distances  ⃗⃗⃗  for every personal CTLA-4 genotype relationship 

pattern from all 20 RRPs. 

Results for study graph g 

In both cohorts, the respective g graphs were decomposed into 8 cycles rrpi (i=1…8). Interestingly (and 

importantly) the three haplotype graphs with the largest frequency were identical for control and case 

cohorts. Table 1 shows that our g-based graph algorithm also identified the same dominant haplotypes 

and comparable frequencies of occurrence as the statistical algorithm in (PROC HAPLOTYPE). SAS 9.1 

(SAS Institute Inc., Cary, NC, USA).  

A unique feature of this approach in comparison to the analysis of differences in haplotype frequencies 

that were tested in our previous paper is that we can quantitatively characterize the difference of the 

individual genotype profile from “averaged” CTLA-4 haplotype profiles. Fig. 3 demonstrates the meaning 

of the differences. In this example, patient’s P55 CTLA-4 genotype profile captured into ppr(55) matches 

the composition of the graph representation of haplotype rrp3 in just three edges, thus the   (  ) is 3. 

In the second example, CTLA-4 genotype profile of the same patient is compared to C2 haplotype. Here 

no edges in ppr(55)  coincide with those of rrp2, thus the    (  ) is 6. This is the example of maximal 

 
Table 1 CTLA-4 most frequent haplotypes   

AG49  CT60  CT318  JO27  JO30  JO31  Chromosomes (ref JOTM)   

      
Frequency                 Standard Error   

Frequency this work 

A  A  C  C  A  T  

46.99 2.089  45.7 % 

G  G  C  T  G  G  29.34  1.91  
23.0 

A  G  T  T  G  G  9.77  1.24  
10.2 

A  G  C  T  G  G  6.49  1.031  6.0 

A  G  C  C  A  T  2.81  0.69  
2.5 
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difference between any haplotype subgraph rrpi and individual CTLA-4 genotype profile prp(j) that can 

be found in g. 

Fig. 5 explains the main finding of this paper. Top level of CTLA-4 genotype profile-based differentiation 

between cases and controls is related to SNP pattern rrp8 = (bbabab) for (CT318-AG49-CT60-JO30-JO27) 

cycle (see Fig. 4 and 5).  77% of melanoma cases (219 patients) are recognized from healthy controls by 

the ABSENCE of the rrp8 = (bbabab) allele pattern for (CT318-AG49-CT60-JO30-JO27) SNP cycle. By 

surveying all 219 CTLA-4 individual genotype profiles for patients with   ( )     it was found that all 

have one of the five co-occurring patterns, shown by solid line cycles in Fig. 5a-e. By overlaying the rrp8 = 

(bbabab) case-control differentiating pattern (dashed line cycles) over these actual case-specific 

genotype profiles it is shown that the rrp8 pattern does not share any relationship with these 5 

melanoma-characteristic CTLA-4 SNP co-occurrence patterns, indicating the possibility of disease risk 

identification not by presence, but actually absence of specific genotype profile. 

Figure 5. Case-control discrimination by “missing” CTLA-4 genotype reference profilerrp8 (dashed lines in all 
figures). In schemes  a) – e) are  shown by solid lines five prp CTLA-4 genotype profiles, found exclusively for 
219 (77%) patients identified from the complete case cohort by condition that their prp have maximal 
possible distance from the rrp8.  Symbols as in Fig.1. 
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Graph mathematics opens the previously overlooked half of the marker identification "Universe" - 

allowing us to study invariants (such as our personalized differences of CTLA-4 genotype profiles from 

the haplotype reference) and identifying multiple SNP relationship patterns that share certain properties 

(simultaneous presence or absence of a specific combination of parameters). 

 

Results for study graph G 

Because it was known that there are no characteristic simple CTLA-4 genotype patterns that would 

differentiate healthy controls from melanoma cases, we instead looked for differences in distances from 

the all possible RRP1-RRP20 pairs that would maximize the separation of the two sub-cohorts. The 

motivation for this approach is as 

follows: 1. The pattern-based 

genotype data transformation 

captures more details of inter-

subject differences in genetic 

status of CTLA-4 than can be 

captured by any conventional 

analytical approach.  This 

information enhancement can be 

further increased by explicitly 

considering the actual allele 

statuses. as discussed above, the 

identification of the clinically 

relevant context relationship 

CTLA-4 genotype pattern is 

Figure 6. Selection of maximally discriminating combination of distances 

from all RRP’s. Points are defined by the [Δ(𝑖𝑗𝑐) Δ(𝑖𝑗𝑝) ] coordinates (see 

text) computed by averaging the distance differences separately in case 
and control sub-cohorts for all 190 possible RRP pairs. In the 
neighborhood of diagonal line Δ(𝑖𝑗𝑐)  Δ(𝑖𝑗𝑝)  are non-discriminatory 

combinations. The two lines are used to identify the combinations, with 
maximal case – control and control-case bias in PRP-RRP distances. The 
optimal selection is shown by boxes.   
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obtained by looking for a higher frequency of patients or controls with smaller distances from selected 

RRP’s, relative to others.  

An element of the  ⃗⃗⃗  vector characterizes the distance of the personal CTLA-4 genotype pattern from 

reference, but does not include directionality and distances of the personal CTLA-4 genotype pattern 

from other reference patterns. To include that information into processed data, we therefore computed 

a complete set of 190 pairwise distance differences  ⃗⃗⃗   ⃗⃗⃗ ,  with i and j going through all 20 elements 

of the CTLA-4 differences from the four maximally case-control biased reference patterns RRPi-RRPj 

identified in Fig.6. These differences include directionality of the closeness of the personal genotype to 

one of the reference genotype patterns:  (  )       ( )       ( ) can be positive or negative. 

Assume that      ( )          ( )    . Then  (  )      (  )           . Thus, 

 (  )    indicates that a personal CTLA-4 genotype profile is closer to      , while  (  )    indicates 

that personal CTLA-4 genotype profile is closer to      and  (  )    means that the personal CTLA-4 

genotype profile has the same number of differences when compared either to reference profile      

or     . We computed the  (  ) using distances from all 190 possible RRP’s pairs, separately for cases 

and controls and averaged them for each sub-cohort, obtaining case mean ( (   ) ) and control mean 

 (   ) for each RRP’s pair. Plotting these case and cohort averages against each other in the two-

dimensional scheme allows direct identification of the reference CTLA-4 genotype pattern combinations 

that separate maximally the two sub-cohorts. For uniformly or randomly distributed CTLA-4 genotype 

pattern positions we obtain  (   )   (   ) seen in the 2D plot as the diagonal y=x line. The 

combinations with maximal  (   )   (   ) or  (   )   (   ), which are the desired clinically 

characteristic contexts will be in the 2D plot maximally distant from the diagonal. Fig. 6 shows the 

resulting 2D plot with the extreme combinations of the references indicated. The region of  (  )smaller 
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than 0.5 is not considered, as there the subject’s CTLA-4 genotype patterns are on average equally 

distant from both reference pairs. 

Fig. 7 shows histogram of patients with observed valued of  (  ). The patient or control distribution in 

the CTLA-4 genotype pattern space is 

not uniform or normal. We see clear 

heterogeneity: In both groups, there 

are three main patient subgroups. 

One, common for cases and controls 

has CTLA-4 genotypes equally 

different from all reference CTLA-4 

allele relationships (central peak). 

Then there are two groups with their 

individual CTLA-4 genotype patterns 

significantly closer to one than to the 

other reference genotype 

relationship network.  

Fig. 8 shows the actual composition 

of these reference CTLA-4 genotype 

patterns for cases and controls. For controls, the dominant reference CTLA-4 genotype pattern is all 

major allele combination (RRP2) while for cases, RRP1 dominates, where majority of studied CTLA-4 

polymorphisms are in the heterozygous state. This heterogeneity might be utilized in focused 

prospective study of patients within the three subgroups identified: One being characterized by the 

minimally genetically affected CTLA-4, another having majority of CTLA-4 polymorphisms with 

Figure 7. Histograms showing heterogeneity of distributions of 
individuals shown in the CTLA-4 genotype landscape, defined by the 
inter-personal differences in prp’s for the five most discriminating 
RRP combinations. Two selected combination of 𝜹𝒋(𝒊)  𝜹𝒌(𝒊) 

distance differences are plotted on x and y axes, on the z axis are 
numbers of subjects having a given combination of the distance 
differences. Blue-controls, red-cases. 
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heterozygous state and the third with mixed CTLA-4 genotype relationship patterns, equally different 

from the two extremes. It is clear that, contrary to melanoma patients, the healthy biosystem of 

controls can accommodate the CTLA-4 genetic variation where a majority of studied polymorphisms 

relate to the minor allele states that are 

identified as reference contexts for two 

groups with CTLA-4 genotype patterns 

different from “normal” RRP2. 

Differentiation of the CTLA-4 genotype 

contexts between the long and short 

surviving sub cohorts of melanoma 

patients. 

Out of the 386 melanoma cases, we had 

282 with survival data. Characterization of 

the possible differences between the long- 

and short-surviving patients now requires a 

different analysis strategy. First, we tested 

the choice of CTLA-4 genotype reference 

relationship patterns. After separate 

testing of results from NPS analysis of 

melanoma case CTLA-4 genotype 

relationship profiles, we found the simplest 

and statistically most significant results 

were obtained when the RRP1-RRP20 resulting from the analysis of combined case/control cohort were 

used. That makes sense in light of previous standard statistical analysis indicating no significant 

differences in the actual CTLA-4 genotype patterns. A larger cohort combined from cases and controls 

Figure 8. Comparison of CTLA-4 genotype relationship 
profiles of five most case-control discriminating RRP’s. 
RRP2 (dashed edges) is shown in both panels for 
reference. Symbols as in Fig.1 
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provided better coverage of the possible reference CTLA-4 genotype relationship patterns. Moreover, 

the results were significant when the case sub-cohort was analyzed separately, and overlapped with the 

patterns identified using differences of distances from the combined analysis. 

For the analysis of CTLA-4 genotype relationship pattern differences between the survival categories, we 

used a different strategy to make sure that what was found was indeed significant. We defined an 

overall survival threshold and separated the cohort into patients who lived longer or shorter than the 

selected threshold. We then ran the complete analysis described below and compared the statistical 

significance and performed logistic regression 

models to recognize the survival categories from 

the  (  ). We systematically iterated through a 

threshold of 800 days to a threshold 1900 days, 

and found the optimal threshold at 1820 days (5 

years). This threshold separated the cohort into 

balanced sub cohorts of 145 shorter and 137 

longer surviving patients.  

We then computed the  (  ) separately for both 

these survival-defined sub cohorts and tested 

the distributions of the results for all 190 CTLA-4 

reference relationship pattern pairs. Out of the 

190, only 4 combinations resulted in the 

statistically significantly different means of these 

distributions (see p-value Table II). Here, RRP10 

reference pattern is the common context in all 

Figure 9. Comparison of RRP’s, differentiating two 

survival groups (⋚ 5 𝑦𝑒𝑎𝑟𝑠) – see text. RRP10 is 

shown (solid edges) in both panels for reference. 
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these CTLA-4 genotype relationship patterns, which are significantly biased between the longer and 

shorter surviving melanoma patients. Similar interpretation is now possible for the localization of the 

typical CTLA-4 genotype relationship patterns for these outcome different patients: For example, 

shorter surviving patients have typically positive  (  ) for RRP8-RRP10, so they are closer to RRP8, 

meaning that their CTLA-4 genotype tend to converge to 4 minor, one heterozygous and one major 

allele (see Figure 9). Similar interpretation is possible for remaining significantly different genotype 

pattern pairs: RRP10-RRP13 pairing have typically zero  (  ) for shorter surviving patients, and positive for 

longer survivals, indicating that RRP10 pattern with 4 major and 2 heterozygous alleles provides better 

functioning CTLA-4. 

 

Table II. p-values for difference in mean difference distributions  for distances of prp’s from RRP’s pairs, 

differentiating two survival groups (⋚ 5      ). 

 

DISCUSSION 

Using a novel approach to the analysis of SNP results for the CTLA4 gene, we have hypothesized that 

recognition of melanoma risk genotype profile requires an added dimension of analysis.  This second 

step in the analysis progression moves from analyzing the means and variance of independent SNPs to 

RRP combination p-values  

RRP8-RRP10 0.022 

RRP10-RRP13 0.024 

RRP10-RRP16 0.025 

RRP10-RRP15 0.043 



19 
 

analyzing the distributions of differences of individual CTLA-4 genotype profiles in the studied cohorts, in 

reference to normative reference profiles. 

We argue that the observed haplotypes are the proper reference for this purpose, and that we need to 

use them to account for interpersonal variability in CTLA-4 genotype profiles. The approach generates 6-

partite graphical depictions which are based upon algorithms that identified the same haplotypes and 

their frequencies in established statistical procedures. Importantly, this algorithm has shown that the 

haplotypes are not markers by themselves, but rather that their averaged constructs, identifying 

common co-occurrences of CTLA-4 SNPs in case and control cohorts are useful. Having both personal 

CTLA-4 genotype profiles and the normative reference co-occurring CTLA-4 SNP haplotype patterns 

represented by the K-partite graphs has two main advantages: 

A. It determines from the data used to construct the g and through the decomposition algorithm we 

developed from the statistical conditions used in general characterization of haplotype  the actual 

TOTAL number of haplotypes in the cohort (8 in both our cohorts). Considering that the theoretical 

number of haplotypes for g is 64, this is an important data reduction outcome of this approach. We 

know from other applications that in cases where deconstructed 6-partite graphs are close to random 

distributions of the conditional probabilities, the number of components needed to fully deconstruct the 

model increases significantly. Thus, small number of components in the g deconstruction implies the 

commonality/regularity in the CTLA-4 genotype profile composition and frequency in our study 

population. This is in agreement with the previous study results. 

B. The component graphs rrpi are data-driven, information-rich references for exact quantitative 

computation of the   (   ) descriptors, which are tools enabling to change the focus of the analysis from 

means and averages to where we need it (i.e. towards differentiating features). Importantly, the rrpi’s 

are NOT just mathematical constructs, but have well-defined genomic meaning, being haplotypes. This 
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facilitates clinically relevant interpretation of the results in general and the individual (personalized) 

disease related markers in particular. Results validate the hypothesis. 

Another important aspect of this work is its “translation” of the main molecular result of this paper to 

design of tools and algorithms that use the relationship-patterns between genotyped CTLA-4 variants to 

enable differential outcome analysis. Our approach allows to show, that in the relationship patterns 

picture of the individual CTLA-4 genotype, differential outcome can be caused by a “majority rule”, 

understood as a larger than critical deviation from an ideal, reference haplotype relationship pattern. 

Thus, same impact can be observed for different combinations of the personal CTLA-4 variants, which is 

clearly quantitatively captured in our NPS (relationship) based analysis, but causes problems in 

conventional approaches. This sharing of a certain level of differences from a reference normative 

pattern is very specific in relation to the kinds of patterns that share a particular property. This linkage of 

several heterogeneous patterns to one "functional" patient's individual difference is that other side of 

clinical data understanding, which can be brought to the plate using this approach. 

Without the pattern-based approach, we would never recognize the relationship between those 

patterns and could not ask what is unique about them. More importantly, this common distance of 

personal CTLA-4 genotype profiles from reference genotype patterns may group patients that would 

conventionally not have been thought to be potentially grouped for interpretation. By definition, they 

have different patterns of CTLA-4 parameters, the conventional approach will tell you that THESE ARE 

DIFFERENT, so that you would never ask whether they have something in common.  

Our approach – by contrast – has brought together patients with five different CTLA-4 genotypes so that 

we are forced to ask what these patterns have in common. We can now clearly identify that the 

ABSENCE of ONE common pattern from these five different, is what distinguishes cases and controls. 

The combination of SNP’s, shared by all individual patients’ profiles that satisfy the condition of having 

the largest distance from one specific haplotype allows then discussing the mechanistic details (why it is 
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just this combination of major and minor allele in the 6 genotyped loci, which separates cases from 

healthy controls). 

Key issue is that detailed characterization of the genotype by explicit consideration of the actual state of 

each SNP provides the significant clustering (for one survival group) or  difference/distance (for the 

other survival group) of the prp’s relatively to perhaps interesting and interpretable CTLA-4 genotype 

relationship patterns. 

We therefore argue that for disease outcome differentiation, the analysis tools need to evaluate 

networks of relations among the CTLA-4 polymorphisms and hetero- and homozygosity of each SNP. 

  

This prepares the stage for the categorization of disease outcome via analysis of thermodynamic 

changes in the in CTLA-4 SNPs discovered by entromics, and quantified by the differences in matrices 

that quantify the energy weights associated with the various genotype profiles in individual patient 

entromic coherence networks. 

Pattern based polymorphism relationship analysis revealed that in healthy controls, the context in which 

the CTLA-4 and its genetic variants operates is compatible with the genotype with relationship pattern 

with “consensus” alleles in all six sites. While we see some relationship pattern differences between 

long and short overall survival groups, these are not independently recognized, we need to know who is 

long and who is short surviving. To obtain really independent, statistically significant, prediction of the 

long or short survival we thus need to go one additional step: consider that there is coherence pattern 

between assayed regions of CTLA-4 gene and that this coherence pattern is affected by the 

polymorphisms in the personal genotype in exactly computable way. This is provided by the entromic 

characterization of the individual polymorphism patterns. 
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We can characterize from entromics physical principles, describing the origin and functional significance 

of these coherence changes, that there will be two extreme cases of CTLA-4 genotypes – one (A) with 

actual individual polymorphisms, that would in sum of their contributions to the CTLA-4 coherence 

patter change STRENGHTEN these function-related CTAL-4 relationships and the other case (B), where 

these coherence changes would sum to weakening the function-related CTLA-4 relationships. We 

therefore can plausibly hypothesize, that for patients with personal CTLA-4 genotype (A) we can expect 

longer overall survival, as their modifications are actually somehow improving the CTLA-4 performance, 

while in the case (B) we have deterioration of the CTLA-4 function because of negative alteration of the 

communication of the different gene parts with each other or with the rest of the genome, so we expect 

the shorter survival. These hypotheses are formulated solely a priori; known survival is not used to state 

them in any way. Also the finding patients, who are (A) or (B) is derived solely from their experimental 

genotype, just processed in a way that computes from the known alleles those summary changes of the 

coherence in incorporation entropies for CTLA-4. The main contributions of entromic characterization of 

the individual CTLA-4 polymorphic relationship patterns to understanding of their clinical relevance are: 

We see that there is clustering of patients in three areas of the changes – one group is close to (A), the 

other is close to (B) and the third group is in between those two. Thus, differences in CTLA-4 genotype 

related changes in the incorporation entropy coherence = communication between different parts of 

the CTLA-4 gene revealed the heterogeneity of the CTLA-4 genotypes. Importantly, some of the allele 

combinations are “compensatory”. Final finding is, that when we do independent Kaplan-Meier analysis 

of survivals in the three groups, we get what was hypothesized: (A) has significantly longer overall 

survival compared to group with entromic characteristics of their CTLA-4 SNP-pattern (B) and patients 

with the intermediate entromic CTLA-4 variation profiles (C) have survival probability curve in between 

(A) and (B). 
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Supplement:  

The algorithm for identifying the presence and relative frequency of all haplotypes in a genotyped 
cohort (see Fig. S1):  

1. In the complete g, identify the 6 SNP alleles represented by the cycle  Cmax with the highest sum 
of all 6 edge weights. 

2. In Cmax, find the edge with the minimal weight Wmin out of all 6. 
3. From g, remove the cycle rrpi, which has all edges with weight Wmin. Vertices, connected by 

edge in rrpi define the molecular composition of this haplotype, Wmin is the frequency of this 
haplotype. 

          ∑           

 

   

 

 
4. The reminder  is again subjected to steps 1-3 above, until all edges from g are removed. This 

generates the series of all haplotypes rrpi (i=1..k) in the cohort, together with their frequencies 
(Wmin(i), i=1..k). 
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