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Abstract. Testing whether there is an induced path in a graph spanning k given
vertices is NP-complete in general graphs, for £ > 3. We show how to solve
this problem in polynomial-time, for any fixed integer k, when the input graph is
claw-free.

topic: algorithms and computational complexity

1 Introduction

Many interesting graph classes are closed under vertex deletion. Every such
class can be characterized by a set of forbidden induced subgraphs. One of the
best-known examples is the class of perfect graphs. A little over 40 years after
Berge’s conjecture, Chudnovsky et al. [19] proved that a graph is perfect if and
only if it contains neither an odd hole (induced cycle of odd length) nor an odd
antihole (complement of an odd hole). This motivates the research of detecting
induced subgraphs such as paths and cycles, which is the topic of this paper.
To be more precise, we specify some vertices of a graph called the terminals
and study the computational complexity of deciding if a graph has an induced
subgraph of a certain type containing all the terminals. In particular, we focus
on the following problem.

k-IN-A-PATH
Instance: a graph GG with k terminals.
Question: does there exist an induced path of GG containing the k terminals?
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Note that in the problem above, £ is a fixed integer. Clearly, the problem is
polynomially solvable for £ = 2. Haas and Hoffmann [12] consider the case k =
3. After pointing out that this case is NP-complete as a consequence of a result
by Fellows [9], they prove W|1]-completeness (where they take as parameter
the length of an induced path that is a solution for 3-IN-A-PATH). Derhy and
Picouleau [6] proved that the case k = 3 is NP-complete even for graphs with
maximum degree at most three.

A natural question is what will happen if we relax the condition of “being
contained in an induced path” to “being contained in an induced tree”. This
leads to the following problem.

k-IN-A-TREE
Instance: a graph GG with k terminals.
Question: does there exist an induced tree of GG containing the & terminals?

As we will see, also this problem has received a lot of attention in the last two
years. It is NP-complete if k is part of the input [6]. However, Chudnovsky
and Seymour [4] have recently given a deep and complicated polynomial-time
algorithm for the case k = 3.

Theorem 1 ([4]). The 3-IN-A-TREE problem is solvable in polynomial time.

The computational complexity of k-IN-A-TREE for k£ = 4 is still open. So
far, only partial results are known, such as a polynomial-time algorithm for k =
4 when the input is triangle-free by Derhy, Picouleau and Trotignon [7]. This
result and Theorem 1 were extended by Trotignon and Wei [20] who showed
that k-IN-A-TREE is polynomially solvable for graphs of girth at least k. The
authors of [7] also show that it is NP-complete to decide if a graph GG contains
an induced tree T’ covering four specified vertices such that 7" has at most one
vertex of degree at least three.

In general, k-IN-A-PATH and k-IN-A-TREE are only equivalent for £ < 2.
However, in this paper, we study claw-free graphs (graphs with no induced 4-
vertex star). Claw-free graphs are a rich and well-studied class containing, e.g.,
the class of (quasi)-line graphs and the class of complements of triangle-free
graphs; see [8] for a survey. Notice that any induced tree in a claw-free graph is
in fact an induced path.

Observation 1 The k-IN-A-PATH and k-IN-A-TREE problem are equivalent
for the class of claw-free graphs.

Motivation. The polynomial-time algorithm for 3-IN-A-TREE [4] has already
proven to be a powerful tool for several problems. For instance, it is used as
a subroutine in polynomial time algorithms for detecting induced thetas and



pyramids [4] and several other induced subgraphs [17]. The authors of [13] use
it to solve the PARITY PATH problem in polynomial time for claw-free graphs.
(This problem is to test if a graph contains both an odd and even length induced
paths between two specified vertices. It is NP-complete in general as shown by
Bienstock [1].)

Lévéque et al. [17] use the algorithm of [4] to solve the 2-INDUCED CY-
CLE problem in polynomial time for graphs not containing an induced path or
subdivided claw on some fixed number of vertices. The k-INDUCED CYCLE
problem is to test if a graph contains an induced cycle spanning & terminals.
In general it is NP-complete already for & = 2 [1]. For fixed k, an instance
of this problem can be reduced to a polynomial number of instances of the k-
INDUCED DISJOINT PATHS problem, which we define below. Paths Py, ..., P
in a graph G are said to be mutually induced if for any 1 < 1 < 5 < k, P
and P; have neither common vertices nor adjacent vertices (i.e. uv ¢ E for any
ueV(P),veV(P)).

k-INDUCED DISJOINT PATHS

Instance: a graph G with k pairs of terminals (s;,¢;) fori =1,... k.
Question: does GG contain k mutually induced paths P; such that P; connects s;
and t; fori =1,...,k?

This problem is NP-complete for £ = 2 [1]. Kawarabayashi and Kobayashi [15]
showed that, for any fixed &, the k-INDUCED DISJOINT PATHS problem is solv-
able in linear time on planar graphs and that consequently k-INDUCED Dis-
JOINT CYCLE is solvable in polynomial time on this graph class for any fixed k.
In [16], Kawarabayashi and Kobayashi improve the latter result by presenting
a linear time algorithm for this problem, and even extend the results for both
these problems to graphs of bounded genus. As we shall see, we can also solve
k-INDUCED DISJOINT PATHS and k-INDUCED CYCLE in polynomial time in
claw-free graphs. The version of the problem in which any two paths are vertex-
disjoint but may have adjacent vertices is called the k-DISJOINT PATHS prob-
lem. For this problem Robertson and Seymour [18] proved the following result.

Theorem 2 ([18]). For fixed k, the k-DISJOINT PATHS problem is solvable in
polynomial time.

Our Results and Paper Organization. In Section 2 we define some basic ter-
minology. Section 3 contains our main result: k-IN-A-PATH is solvable in poly-
nomial time in claw-free graphs for any fixed integer k. This, in fact, follows
from a stronger theorem proved in Section 4; the problem is solvable in polyno-
mial time even if the terminals are to appear on the path in a fixed order. A conse-
quence of our result is that the £-INDUCED DISJOINT PATHS and k-INDUCED



CYCLE problems are polynomially solvable in claw-free graphs for any fixed
integer k. In Section 4 we present our polynomial-time algorithm that solves the
ordered version of k-IN-A-PATH. The algorithm first performs “cleaning of the
graph”. This is an operation introduced in [13]. After cleaning the graph is free
of an odd antiholes of length at least seven. Next we treat odd holes of length five
that are contained in the neighborhood of a vertex. The resulting graph is quasi-
line. Finally, we solve the problem using a recent characterization of quasi-line
graphs by Chudnovsky and Seymour [3] and related algorithmic results of King
and Reed [14]. In Section 6 we mention relevant open problems.

2 Preliminaries

All graphs in this paper are undirected, finite, and neither have loops nor mul-
tiple edges. Let GG be a graph. We refer to the vertex set and edge set of GG by
V = V(G) and E = E(G), respectively. The neighborhood of a vertex u in
G is denoted by Ng(u) = {v € V | uv € E}. The subgraph of G induced
by U C V is denoted G[U]. Analogously, the neighborhood of a set U C V
is N(U) := Uyepy N(u) \ U. We say that two vertex-disjoint subsets of V' are
adjacent if some of their vertices are adjacent. The distance d(u,v) between
two vertices v and v in G is the number of edges on a shortest path between
them. The edge contraction of an edge e = uv removes its two end vertices u, v
and replaces it by a new vertex adjacent to all vertices in NV (u) U N (v) (without
introducing loops or multiple edges).

We denote the path and cycle on n vertices by P,, and C),, respectively. Let
P = vjvy...v, be a path with a fixed orientation. The successor v;41 of v;
is denoted by v;r and 1ts predecessor v;_1 by v, . The segment v;v; 11 ...v; 18
denoted by viﬁvj. The converse segment vjv;_1 ... v; is denoted by v; P ;.

A hole 1s an induced cycle of length at least 4 and an antihole is the comple-
ment of a hole. We say that a hole is odd if it has an odd number of edges. An
antihole is called odd if it is the complement is an odd hole.

A claw is the graph ({z,a,b, c}, {za, b, xc}), where vertex x is called the
center of the claw. A graph is claw-free if it does not contain a claw as an
induced subgraph. A clique i1s a subgraph isomorphic to a complete graph. A
diamond 1s a graph obtain from a clique on four vertices after removing one
edge. A vertex v in a graph G is simplicial if G[N (u)] is a clique.

Let s and ¢ be two specified vertices in a graph G = (V, E). A vertexv € V
is called irrelevant for vertices s and ¢ if v does not lie on any induced path from
s to t. A graph GG is clean if none of its vertices is irrelevant. We say that we
clean G for t| and tj, by repeatedly deleting irrelevant vertices for s and ¢ as long
as possible. In general, determining if a vertex is irrelevant is NP-complete [1].
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However, for claw-free graphs, the authors of [13] could show the following
(where they used Observation 1 and Theorem 4 for obtaining the polynomial
time bound).

Lemma 1 ([13]). Let s,t be two vertices of a claw-free graph G. Then G can
be cleaned for s and t in polynomial time. Moreover, the resulting graph G does
not contain an odd antihole of length at least seven.

The line graph of a graph G with edges ey, ..., e, is the graph L = L(G)
with vertices u1, .. ., u, such that there is an edge between any two vertices u;
and u; if and only if e; and e; share an end vertex in H. We note that mutu-
ally induced paths in a line graph L(G) are in one-to-one correspondence with
vertex-disjoint paths in G. Combining this observation with Theorem 2 leads to
the following result.

Corollary 1. For fixed k, the k-INDUCED DISJOINT PATHS problem can be
solved in polynomial time in line graphs.

A graph G = (V, F) is called a quasi-line graph if for every vertex u € V
there exist two vertex-disjoint cliques A and B in G such that N (u) = V(A) U
V(B) (where V(A) and V (B) might be adjacent). Clearly, every line graph is
quasi-line and every quasi-line graph is claw-free. The following observation
1s useful and easy to see by looking at the complements of neighborhood in a
graph.

Observation 2 A claw-free graph G is a quasi-line graph if and only if G does
not contain a vertex with an odd antihole in its neighborhood.

A clique in a graph G is called nontrivial if it contains at least two vertices.
A nontrivial clique A is called homogeneous if every vertex in V (G)\V (A) is
either adjacent to all vertices of A or to none of them. Notice that it is possible
to check in polynomial time if an edge of the graph is a homogeneous clique.
This justifies the following observation.

Observation 3 The problem of detecting a homogeneous clique in a graph is
solvable in polynomial time.

Two disjoint cliques A and B form a homogeneous pair in G if the following
two conditions hold. First, at least one of A, B contains more than one vertex.
Second, every vertex v € V(G)\ (V (A)UV (B)) is either adjacent to all vertices
of A or to none vertex of A as well as either adjacent to all of B or to none of
B. The following result by King and Reed [14, Section 3] will be useful.



Lemma 2 ([14]). The problem of detecting a homogeneous pair of cliques in a
graph is solvable in polynomial time.

Let V' be a finite set of points of a real line, and Z be a collection of inter-
vals. Two points are adjacent if and only if they belong to a common interval
I € 7. The resulting graph is a linear interval graph. Analogously, if we con-
sider a set of points of a circle and set of intervals (angles) on the circle we get
a circular interval graph. Graphs in both classes are claw-free, in fact linear in-
terval graphs coincide with proper interval graphs (intersection graph of a set of
intervals on a line, where no interval contains another from the set) and circular
interval graphs coincide with proper circular arc graphs (defined analogously).
We need the following result of Deng, Hell, and Huang [5].

\ e
! /.
' S S TR

N -~ \\\ /
s

Fig. 1. Composition of three linear interval strips (only part of the graph is displayed).

Theorem 3 ([S]). Circular interval graphs and linear interval graphs can be
recognized in linear time. Furthermore, a corresponding representation of such
graphs can be constructed in linear time as well.

A linear interval strip (S, a, b) is a linear interval graph S where a and b are
the leftmost and the rightmost points (vertices) of its representation. Observe
that in such a graph the vertices a and b are simplicial. Let Sy be a graph on the
vertex set {ay, b1, ...,an, by} that is isomorphic to an arbitrary disjoint union
of complete graphs. Let further (S7,a}, b)), ..., (S),,a;,, b)) be a collection of
linear interval strips. The composition S, is defined inductively where S; is
formed from the disjoint union of .S;_; and S;, where:

e all neighbors of a; are connected to all neighbors of a};
e all neighbors of b; are connected to all neighbors of b;;

e vertices a;, a, b;, b} are removed.



See Figure 1 for an example. We are now ready to state the structure of quasi-
line graphs as characterized by Chudnovsky and Seymour [3].

Theorem 4 ([3]). A quasi-line graph G with no homogeneous pair of cliques is
either a circular interval graph or a composition of linear interval strips.

Finally, we need another algorithmic result of King and Reed [14]. They
observe that the composition of the final strip in a composition of linear interval
graphs is a so-called nontrivial interval 2-join and that every nontrivial interval
2-join contains a so-called canonical interval 2-join. In Lemma 13 of this paper
they show how to find in polynomial time a canonical interval 2-join in a quasi-
line graph with no homogenous pair of cliques and no simplicial vertex or else to
conclude that none exists. Recursively applying this result leads to the following
lemma.

Lemma 3 ([14]). Let G be a quasi-line graph with no homegeneous pairs of
cliques and no simplicial vertex that is a composition of linear interval strips.
Then the collection of linear interval strips that define G can be found in poly-
nomial time.

3 Our Main Result

Here is our main result.

Theorem S. For any fixed k, the k-IN-A-PATH problem is solvable in polyno-
mial time in claw-free graphs.

In order to prove Theorem 5 we define the following problem.

ORDERED-k-IN-A-PATH

Instance: a graph G with k terminals ordered as t1, . . ., tk.

Question: does there exist an induced path of G starting in ¢; then passing
through #o, ..., %51 and ending in #3?

We can resolve the original k-IN-A-PATH problem by k! rounds of the more
specific version defined above, where in each round we order the terminals by
a different permutation. Hence, since we assume that £ is fixed, it suffices to
prove Theorem 6 in order to obtain Theorem 5.

Theorem 6. For any fixed k, the ORDERED-k-IN-A-PATHS problem is solvable
in polynomial time in claw-free graphs.

We prove Theorem 6 in Section 4 and finish this section with the following
consequence of it (see Appendix A for its proof).

Corollary 2. Forany fixed k, the k-DI1SJOINT INDUCED PATHS and k-INDUCED
CYCLE problem are solvable in polynomial time in claw-free graphs.



4 The Proof of Theorem 6

We present a polynomial-time algorithm that solves the ORDERED-k-IN-A-
PATH problem on a claw-free graph GG with terminals in order ¢4, ...,%; for
any fixed integer k. We call an induced path P from ¢; to ¢; that contains the
other terminals in order ts,...,t;_1 a solution of this problem. Furthermore,
an operation in this algorithm on input graph G with terminals ¢, ..., {; pre-
serves the solution if the following holds: the resulting graph G’ with resulting
terminals ¢, ..., t, for some k' < k is a YES-instance of the ORDERED-£’-
IN-A-PATH problem if and only if G is a YES-instance of the ORDERED-k-IN-
A-PATH problem.
We call G simple if the following three conditions hold:

(i) t1,tx are of degree one in G and all other terminals ¢; (1 < ¢ < k) are of
degree two in (7, and the two neighbors of such ¢; are not adjacent;
(i1) the distance between any pair ¢;, ¢; is at least four;
(ii1) G is connected.

THE ALGORITHM AND PROOF OF THEOREM 6
Let GG be an input graph with terminals ¢1, . . ., {f.

If £ = 2, we compute a shortest path from ¢; to t2. If £ = 3, we use Theorem 4.
Suppose k > 4.

Step 1. Reduce to a set of simple graphs.

We apply Lemma 4 and obtain in polynomial time a set G that consists of a
polynomial number of simple graphs of size at most |V (G)| such that there is a
solution for G if and only if there is a solution for one of the graphs in G. We
consider each graph in G. For convenience we denote such a graph by G as well.

Step 2. Reduce to a quasi-line graph.

We first clean G for ¢; and ¢;. If during cleaning we remove a terminal, then
we output NO. Otherwise, clearly, we preserve the solution. By Lemma 1, this
can be done in polynomial time and ensures that there are no odd antiholes of
length at least seven left. Also, G stays simple. Then we apply Lemma 5, which
removes vertices v whose neighborhood contain an odd hole of length five, as
long as we can. Clearly, we can do this in polynomial time. Note that GG stays
connected since we do not remove cut-vertices due to the claw-freeness. By
condition (i), we do not remove a terminal either. Afterwards, we clean GG again
for ¢1 and t;. If we remove a terminal, we output NO. Otherwise, as a result of
our operations, G becomes a simple quasi-line graph due to Observation 2.



Step 3. Reduce to a simple quasi-line graph with no homogenous clique
We first exhaustively search for homogeneous cliques by running the polyno-
mial algorithm mentioned in Observation 3 and apply Lemma 6 each time we
find such a clique. Clearly, we can perform the latter in polynomial time as
well. After every reduction of such a clique to a single vertex, GG stays simple
and quasi-line, and at some moment does not contain any homogeneous clique
anymore, while we preserve the solution.

Step 4. Reduce to a circular interval graph or to a composition of interval
strips.

Let t,t;. be the (unique) neighbor of ¢; and ¢}, respectively. As long as G
contains homogeneous pairs of cliques (A, B) so that A neither B is equal to
{t1,t]} or {tx,t; }, we do as follows. We first detect such a pair in polynomial
time using Lemma 2 and reduce them to a pair of single vertices by applying
Lemma 7. Also performing Lemma 7 clearly takes only polynomial time. After
every reduction, GG stays simple and quasi-line, and we preserve the solution. At
some moment, the only homogeneous pairs of cliques that are possibly left in G
are of the form ({¢1,t}}, B) and ({tx,t,.}, B). As G does not contain a homo-
geneous clique (see Step 3), the cliques in such pairs must have adjacent vertex
sets. Hence, there can be at most two of such pairs. We perform Lemma 7 and
afterwards make the graph simple again. Although this might result in a number
of new instances, their total number is still polynomial because we perform this
operation at most twice. Hence, we may without loss of generality assume that
G stays simple. By Theorem 4, (G is either a circular interval graph or a com-
position of linear interval strips; we deal with theses two cases separately after
recognizing in polynomial time in which case we are by using Theorem 3.

Step Sa. Solve the problem for a circular interval graph.

Let GG be a circular interval graph. Observe that the order of vertices in an in-
duced path must respect the natural order of points on a circle. Hence, deleting
all points that lie on the circle between ¢, and ¢ preserves the solution. So, we
may even assume that G is a linear interval graph. We solve the problem in these
graphs in Theorem 7.

Step Sb. Solve the problem for a composition of linear interval strips.

Let G be a composition of linear interval strips. Because G is assumed to be
clean for tq,...,%t;, G contains no simplicial vertex. Then we can find these
strips in polynomial time using Lemma 3 and use this information in Lemma 8.
There we create a line graph G’ with |V (G’)| < |V (G)|, while preserving the
solution. Moreover, this can be done in polynomial time by the same theorem.
Then we use Corollary 1 to prove that the problem is polynomially solvable in
line graphs in Theorem 8. O



Now it remains to state and prove Lemmas 4-8 and Theorems 7— 8; we do
it below but refer to Appendix B—D for the missing proofs.

Lemma 4. Let G be a graph with terminals ordered t, . . . , ti.. Then there exists
a set G of n°%) simple graphs, each of size at most |V (G)|, such that G has a
solution if and only if there exists a graph in G that has a solution. Moreover, G
can be constructed in polynomial time.

Proof. First, we guess all possible ways of deleting all neighbors of ¢; except
one, all neighbors of ¢; except two for ¢ = 1,...,k — 1 and all neighbors of
tr except one. Since k is fixed, creating these graphs will just yield an extra
polynomial factor to the running time of our algorithm. If we create a graph that
contains a terminal ¢; ¢ {t1, )} that has two adjacent neighbors, we output NO
for this graph.

Second, if d(t;,t;) < 3 for some terminals ¢;, ¢; then there exists a path )
from ¢; to ¢; of at most two inner vertices. We either use this path in a solution
or we do not use it. In the first case we may remove all other neighbors of the
inner vertices of () not equal to ?; or ¢;, as these vertices are not in any solution.
We can then remove one of ¢;, ¢; from the set of terminals, while preserving the
solution. In the second case we might just as well remove one or more inner
vertices of () from (. Due to the degrees of the terminals, the number of such
paths is at most two. Hence, considering all possible paths for each pair (¢;,¢;)
again yields only an extra polynomial factor, as k is fixed.

Third, if a graph is disconnected then we reduce it to a smaller simple graph
if all its terminals are in the same component. If this is not the case we output
NoO for this particular graph. All remaining graphs form the desired set G. O

Lemma 5. Let G be a simple claw-free graph. Removing a vertex u € V(G),
the neighborhood of which contains an induced odd hole of length five, pre-
serves the solution.

Lemma 6. Let G be a simple quasi-line graph with a homogeneous clique A.
Then contracting A to a single vertex preserves the solution and the resulting
graph is a simple quasi-line graph containing the same terminals as G.

Proof. Each vertex in A lies on a triangle, unless G is isomorphic to P, which is
not possible. Hence, by condition (i), A does not contain a terminal. We remove
all vertices of A except one. The resulting graph will be a simple quasi-line
graph containing the same terminals, and we will preserve the solution. O
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Lemma 7. Let G be a simple quasi-line graph with terminals ordered t,, . . ., t,
that has no homogeneous cliques. Contracting the cliques A and B in a homoge-
nous pair to single vertices preserves the solution. The resulting graph is quasi-
line; it is simple unless A or B consists of two vertices u,u’ with v € {t1,t;}
and d(u',t;) < 3 for some t; # .

Theorem 7. The ORDERED-k-IN-A-PATH problem can be solved in polyno-
mial time in linear interval graphs.

Proof. Let GG be a linear interval graph. We may assume without loss of gener-
ality that the terminals form an independent set. We use its linear representation
that we obtain in polynomial time by Lemma 3. In what follows the notions of
predecessors (left) and successors (right) are considered for the linear ordering
of the points on the line. Without loss of generality we may assume that ¢; is the
first point and that ¢, is the last and that no two points coincide. By our assump-
tion, ¢; and ¢, are nonadjacent. From the set of points belonging to the closed
interval [t;, t; 1] we remove all neighbors of t; except the rightmost one and all
neighbors of ¢, except the leftmost. Then the shortest path between ¢; and ¢,
1s induced. In addition, these partial paths combined together provide a solution
unless for some terminal ¢; its leftmost predecessor is adjacent to its rightmost
successor. Hence, no induced path may have ¢; among its inner vertices. O

Lemma 8. Let G be a composition of linear interval strips. It is possible to cre-
ate in polynomial time a line graph G’ with |V (G")| < |V (G)|, while preserving
the solution.

Theorem 8. For fixed k, the ORDERED-k-IN-A-PATH problem can be solved
in polynomial time in line graphs.

Proof. A version of ORDERED-k-IN-A-PATH in which the path is not necessar-
ily induced can be easily translated into an instance of the k-DISJOINT PATHS
problem and solved in polynomial time due to Theorem 2. Noting that mutu-
ally induced paths in a line graph L(G) are in one-to-one correspondence with
vertex-disjoint paths in GG enables us to solve the ORDERED-£-IN-A-PATH prob-
lem in polynomial time for line graphs. O

5 A hardness proof

We accompany our constructive algorithm with a hardness proof for the case
when the number of terminals becomes unbounded.

Theorem 9. The k-IN-A-PATH problem is NP-complete for the class of line
graphs.

11



Proof. 1t is straightforward to verify whether a given path is induced and con-
tains all prescribed terminals. Hence membership of this problem in the class
NP is settled.

For the hardness part we show a reduction from the classical HAMILTONIAN
PATH problem, which remains NP-complete even for cubic graphs[11, problem
7.

Let G be an instance for the HAMILTONIAN PATH problem. We replace
every vertex of degree three by a triangle. Formally if « is incident with edges
e(u, 1), e(u,2) and e(u, 3), then we replace u with three vertices u;, uo and us,
where each u; becomes incident with e(u, 7) instead of u. Moreover, these three
new vertices induce a triangle K3. Let G’ be the graph resulting from G when
all original vertices are replaced.

Observe that a hamiltonian path in G exists if and only if G’ has a path that
passes through all edges {ujus | u € Vg }:

— having the hamiltonian path, one can easily extend it inside triengle through
the prescribed edge

— as the path may visit each triangle at most once, after contraction of all
triangles into the original vertices we get the hamiltonian path.

We now take H = L(G’) to be the line graph of G’ and the terminals be
the images of the chosen edges ujusg for all u € Vi, see Fig. 2. The proof is
concluded by the already mentioned argument that induced paths in A are in
one-to-one correspondence with ordinary paths in G,

6 Further research

Perhaps the two most fascinating open problems related to the topic of this paper
are to determine the computational complexity of deciding if a graph contains
an odd hole (whereas it is known that the case of even hole can be solved in
polynomial time [2]) and to determine the computational complexity of deciding
if a graph contains two mutually induced holes (whereas it is known that the case
of two mutually induced odd holes is NP-complete [10]).
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A Proof of Corollary 2

Corollary 2. For any fixed k, the k-DISJOINT INDUCED PATHS and k-INDUCED
CYCLE problem are solvable in polynomial time in claw-free graphs.

Proof. Let G be a claw-free graph that together with terminals ¢1, ..., % is
an instance of £-INDUCED CYCLE. We fix an order of the terminals, say, the
order is 1, ...,t;. We fix neighbors a; and b;_; of each terminal ¢;. This way
we obtain an instance of £-INDUCED DISJOINT PATHS with pairs of terminals
(a;, b;) where by = by.. Clearly, the total number of instances we have created is
polynomial. Hence, we can solve k-INDUCED CYCLE in polynomial time if we
can solve k-INDUCED DISJOINT PATHS in polynomial time.

Let G be a claw-free graph that together with k pairs of terminals (a;, b;) for
¢t =1,...,k 1is an instance of the k-INDUCED DISJOINT PATHS problem. First
we add an edge between each pair of non-adjacent neighbors of every terminal
inT ={ay,...,a,b1,...,br}. We denote the resulting graphs obtained after
performing this operation on a terminal by G, ..., Ga, and define Gy := G.
We claim that G’ = Gy is claw-free and prove this by induction.

The claim is true for G. Suppose the claim is true for G; for some 0 <
Jj < 2k — 1. Consider G 41 and suppose, for contradiction, that G'j+1 contains
an induced subgraph isomorphic to a claw. Let K := {z,a,b,c} be a set of
vertices of G ;11 inducing a claw with center z. Let s € T be the vertex of
G that becomes simplicial in Gj41. Then x # s. Since G is claw-free, we
may without loss of generality assume that at least two vertices of K must be
in Ng,,,(s) U {s}. Since Ng,,,(s) U {s} is a clique of G;1 and {a,b, c}
is an independent set of G'j41, we may without loss of generality assume that
K (1 (Ng,,, () U {s}) = {a,a} and {b,c} € V(Gy11) \ (Na,,, (s) U {s}).
Then {z, b, ¢, s} induces a claw in G; with center z, a contradiction. Hence, G’
1s indeed claw-free.

We note that G’ with terminals (a1,b1), ..., (ax, bg) forms a YES-instance
of k-INDUCED DISJOINT PATHS if and only if G’ with the same terminal pairs
is a YES-instance of this problem.

In the next step we identify terminal b; with a;41,1.e.,fori =1,..., k—1 we
remove b;, a;+1 and replace them by a new vertex ¢; 1 adjacent to all neighbors
of a; 11 and to all neighbors of b;. We call the resulting graph G and observe
that G is claw-free. We define t; := a; and t;1 := by and claim that G’ with
terminal pairs (a1, b1),..., (ag, by) forms a YES-instance of the k-INDUCED
PATHS problem if and only if G” with terminals ¢1,...,t;1 forms a YES-
instance of the ORDERED-(k + 1)-IN-A-PATH problem.
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In order to see this, suppose G’ contains k£ mutually induced paths P; such
that P; connects a; to b; for 1 < ¢ < k. Then

— — —
P = t1 Pib] taag Poby ... tgai Pyty,

is an induced path passing through the terminals ¢; in prescribed order. Now
suppose G” contains an induced path P passing through terminals in order
t1,...,tx+1. Fori = 1,...,k 4+ 1 we define paths P; = ait;“?t;rlbi, which
are mutually induced. We now apply Theorem 6. This completes the proof. O

B Proof of Lemma 5

Lemma 5. Let G be a simple claw-free graph. Removing a vertex u € V(G), the
neighborhood of which contains an induced odd hole of length five, preserves
the solution.

Proof. Because G is simple, u is not a terminal. We first show the following
claim.

Claim 1. Let G[{v,w, z,y}] be a diamond in which vw is a non-edge. If there
is a solution P that contains v, x, w, then there is another solution that contains
v, y,w (and that does not contain x).

In order to see this take the original solution P and notice that by claw-freeness
any neighbor of y on P must be in the (closed) neighborhood of v or w. This
way the solution can be rerouted via y, without using x. This proves Claim 1.

Now suppose that u is a vertex which has an odd hole C' of length five in its
neighborhood. Obviously, GG is a YES-instance if G — w is a YES-instance. To
prove the reverse implication, suppose G is a YES-instance. Let P be a solution.
If u does not belong to P then we are done. Hence, we suppose that u belongs
to P and consider three cases depending on |V (C') NV (P)|.

Case 1. |V(C)NV(P)| > 2. Then |V(C) NV (P)| = 2, as any vertex on P
will have at most two neighbors. We are done by Claim 1.

Case 2. |[V(C)NV(P)| = 1. Let w € V(C) belong to P and let the other
neighbor of v that belongs to P be . We note that x must be adjacent to at least
one of the neighbors of w in C'. Then we can apply Claim 1 again.

Case 3. |V (C) N V(P)| = 0. Let the two neighbors of v on P be x and y. To
avoid a claw at v, every vertex of C' must be adjacent to x or y. If there is a
vertex in C' adjacent to both, we apply Claim 1. Suppose there is no such vertex
and that the vertices of the C' are partitioned in two sets X (vertices of C only
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adjacent to x) and Y (vertices of C' only adjacent to y). We assume without loss
of generality that | X| = 3, and hence contains a pair of independent vertices
which together with v and y form a claw. This is a contradiction. O

C Proof of Lemma 7

Lemma 7. Let G be a simple quasi-line graph with terminals ordered t,, . . .t
that has fno homogeneous cliques. Contracting the cliques A and B in a ho-
mogenous pair to single vertices preserves the solution. The resulting graph
is quasi-line; it is simple unless A or B consists of two vertices w,u’ with
u € {t1,tx} and d(v', t;) < 3 for some t; # .

Proof. Because GG does not contain a homogeneous clique, V' (A) and V(B)
must be adjacent. Then, due to condition (ii), there can be at most one terminal
in V(A) U V(B). In all the cases discussed below we will actually not contract
edges but only remove vertices from A and B. Hence, the resulting graph will
always be a quasi-line graph.

Suppose A contains t; or t, say t1. Suppose |V (A)| = 1, so A only contains
t1. Then the neighbor of ¢; is in B and |V (B)| > 2. We delete all vertices
from B except this neighbor, because they will not be used in any solution.
Clearly, the resulting graph is simple and the solution is preserved. Suppose
|[V(A)| > 2. Because t; is of degree one, A consists of two vertices, namely t;
and its neighbor ¢}. Note that ¢| does not have a neighbor outside A and B, as ¢;
is of degree one. As V(A) and V' (B) are adjacent, ¢} has a neighbor u in B. We
delete ¢; and replace it by ¢} in the set of terminals. We delete all vertices of B
except u, because of the following reasons. If these vertices are not adjacent to

|, they will never appear in any solution. If they are adjacent to ¢/, they will not
appear in any solution together with u, and as such they can be replaced by wu.
Note that ¢} has degree one in the new graph and that this graph is only simple
if d(t},t;) > 4 forall 2 < j < k. Clearly, the solution is preserved.

Suppose A contains a terminal ¢; for some 2 < ¢ < k£ — 1. Suppose A only
contains ¢;. Because V(A) and V' (B) are adjacent, ¢; is adjacent to a vertex u
in B. By condition (i), » is the only vertex in B adjacent to ¢;. We delete all
vertices of B except u. Clearly, the resulting graph is simple and the solution is
preserved. Suppose |V (A)| > 2. By condition (ii), A contains only one other
vertex ¢, and ¢;,¢; do not have a common neighbor. Then A must be separated
of the rest of the graph by B. Furthermore, the other neighbor of ¢; must be
in B. We delete ¢, and all vertices of B except the neighbor of ¢;. Clearly, the
resulting graph is simple and the solution is preserved.

Suppose A does not contain a terminal. By symmetry, we may assume that
B does not contain a terminal either. Let a’b’ € E(G) with @’ € V(A) and
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b’ € V(B). Let G’ be the graph obtained from G by removing all vertices of A
except a’ and B except a, b’. Note that we have kept all terminals and that the
resulting graph is simple. Any solution P’ for G’ is a solution for G.

Now assume we have a solution P for G. We claim that |[P N A| < 1 and
|P N B| < 1. Suppose otherwise, say |P N A| > 2. Then |[PNA|=2,as Pisa
path. Since 1 and tj, are not in A, we find that P contains a subpath xuvy with
u,v € A. Since x is adjacent to u € A, but also non-adjacent to v € A, we find
that z € B. Analogously we get that y € B. However, then xy € E(G). This is
a contradiction.

Suppose |P N Al = 0 and |[P N B| = 0. Then P is a solution for G’ as
well. Suppose |P N Al = 0 and |P N B| = 1. Then we may without loss
of generality assume that & € V(P) and find that P is a solution for G’ as
well. The case |P N A| = 1 and |P N B| = 0 follows by symmetry. Suppose
|PNA| = |PNB| = 1,say Pintersects Aina and B in b. If ab € E(G) then we
replace ab by a’b’ and obtain a solution for G’. Suppose ab ¢ E(G). Because a
is not a terminal, a has neighbors z and y on P.If x,y ¢ N (b) then {a’, x,y, b}
induces a claw in G with center a’. This is not possible. Hence, we may assume
without loss of generality that y is adjacent to b. Since A or B contains at least
two vertices, y has degree at least three. Then y is not a terminal. Thus we can
skip i and exchange ayb in P with a'b’ to get the desired induced path P/. O

D Proof of Lemma 8§

Lemma 8. Let G be a composition of linear interval strips. It is possible to cre-
ate in polynomial time a line graph G’ with |V (G")| < |V (G)|, while preserving
the solution.

Proof. Let GG be a composition of linear interval strips. Assume for now, that
G = S, is decomposed in a way, that some strip (S, a}, b;) contains some ter-
minals other than ¢; and ¢j. If an induced path in G exists, then it must enter S,
through one of the neighbors of a; and leave through one neighbor of b/ (or vice
versa — in such a case we exchange labels of a; and b}). Let P; be the intersec-
tion of P with S;. Therefore, terminals on P; form a subsequence ¢,¢;41, ...,
and the existence of P; can be determined by solving ORDERED-(l — j + 3)-
IN-A-PATH on (S}, al, t;,tjq1,...,1;,b;). We can do this in polynomial time by
using Theorem 7.

We treat analogously the case when S/ contains a ¢; or ¢ together with at
least one other terminal, since the position of the terminals on the line deter-

mines whether the path P} should leave S through a neighbor of a;, or of b,.
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If some SZ{ contains both ¢ and ¢, then either all other terminal lie between
t1 and t; and we can reduce the graph to the only strip. Otherwise, vertices of
S! between t, and 1 can be removed and the graph is simplified.

If only ¢; is present in S}, then it is possible to leave S} either through neigh-
bor of a as well as of b} — a shortest path between ¢; and a) or b} provides a
solution in both cases.

Note, that a possible path P in S, can pass through S, without meeting any
terminal there. Then such P; can be taken from the shortest path between a; and
b,

It remains to show, how these partial solutions on strips can be combined
together. Without loss of generality we assume that labels of a; and b; in Sy
conform the order of terminals in strips as it has been discussed above.

We create a graph G’ as follows. We connect any pair a;, b; by a path of
length two, involving an extra new vertex ¢;. If a strip .S, contains a single ter-
minal ¢;, we let t; := ¢;. If such strip contains more terminals ¢;, ..., ?;, we let
ti =1, = :=1t_, = a; and t; ;= b;. See Figure 3 for an example.

. oy S
Yy s
S | ey

dze

Fig.3. A graph G'.

Clearly, any induced path P’ in G’ provide an induced path P in G by ex-
changing subpaths a;, ¢;, b; by the corresponding path P; whose existence we
have shown above.

Observe that G’ is a line graph of the following graph H:

e For every clique on Sy we take a star with leaves corresponding to the ver-
tices of the clique.

e The leaves corresponding to a; and b; became adjacent by an extra new
edge, forevery i € {1,...,n}.

Terminal vertices in G’ correspond to terminal edges in H. Hence, creating
G’ preserves the solution. O
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