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Abstract

We prove a “supersaturation-type” extension of both Sperner’s Theorem (1928)
and its generalization by Erdős (1945) to k-chains. Our result implies that a largest
family whose size is x more than the size of a largest k-chain free family and that
contains the minimum number of k-chains is the family formed by taking the
middle (k −1) rows of the Boolean lattice and x elements from the kth middle
row. We prove our result using the symmetric chain decomposition method of de
Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk (1951).

1 Introduction

A core topic of extremal graph theory is the study of “Turán-type questions”: fix a
(finite) graph H and a positive integer n. What is the largest number ex(n, H) of edges
in an n-vertex graph that contains no copy of H? More than a hundred years ago,
Mantel [14] answered this question in the case where H is K3, the triangle. About
forty years later, Turán [19] generalized this to all complete graphs. More precisely,
the Turán graph T (n,r ) is the complete r -partite graph of order n with parts of size
bn/r c or dn/r e. Not only did Turán prove that T (n,r ) has the largest number of edges
among all n-vertex graphs with no copies of Kr+1, that is, ex(n,r ) = |E(T (n,r ))|, but
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also he proved that all other n-vertex graphs containing no copies of Kk+1 have strictly
fewer edges than T (n,r ).

The theory of graph supersaturation deals with the situation beyond the threshold
given by ex(n, H). Specifically, define `(n, H , q) as the least number of copies of H in
an n-vertex graph with at least ex(n, H)+ q edges. By the definition, we know that
`(n, H , q) Ê 1 as soon as q > 0, but it turns out that an extra edge is likely to create many
more copies of H . Arguably, the first result in this direction was proved in an unpub-
lished work of Rademacher from 1941 (orally communicated to Erdős [3]): while Man-
tel’s theorem states that every n-vertex graph with more than |E(T (n,2))| = bn/2cdn/2e
edges contains a triangle, Rademacher established that such graphs contain, actually,
at least bn/2c triangle copies.

This result was generalized by Erdős, who proved that `(n,K3, q) Ê bn/2c first if
q ∈ {1,2,3} in 1955 [3] and a few years later in the case q < c ·n/2 for a fixed constant
c ∈ (0 ,1) [4]. More than twenty years later, Lovász and Simonovits [13] established the
following theorem, thereby confirming a conjecture of Erdős.

Theorem 1.1 (Lovász and Simonovits (1983)). Let n and q be positive integers. If
q < n/2, then `(n,K3, q) Ê q · bn/2c.

In addition, Lovász and Simonovits [13] determined `(n,Kr , q) when q = o
(
n2

)
. Their

techniques do not apply, though, for the case where q =Ω(
n2

)
. Solutions to this diffi-

cult problem were provided recently with the aid of flag algebras: first, by Razborov [16]
for H = K3, then, by Nikiforov [15] for H = K4 and, finally, by Reiher [17] for the general
case H = Kr .

Supersaturation results have not to our knowledge been studied as extensively
in other important areas of extremal combinatorics. In this paper, we pursue this
direction for extremal set theory.

Let the Boolean lattice Bn be the poset (2[n],⊆) of all subsets of the set [n] =
{1, . . . ,n}, ordered by inclusion. For a set S, the collection of all k-subsets of S is
denoted by

(S
k

)
. Following notation of previous work [10], by B(n,k) and Σ(n,k) we

mean the families of subsets of [n] of the k middle sizes and the size of the families.
More precisely,

B(n,k) =
(

[n]⌊
n−k+1

2

⌋)
∪·· ·∪

(
[n]⌊

n+k−1
2

⌋)
or B(n,k) =

(
[n]⌈

n−k+1
2

⌉)
∪·· ·∪

(
[n]⌈

n+k−1
2

⌉)

(so, depending on the parity of n and k, this can be either one or two different families).
Given two finite posets P = (P,É) and P ′ = (P ′,É′), we say that P ′ contains P (or P

is a (weak) subposet of P ′), if there is an injection f : P → P ′ that preserves the partial
ordering, i.e. if u É v in P , then f (u) É′ f (v) in P ′. We let Pk be the k-element totally
ordered poset (chain).
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What is the largest size La(n,P ) of a family of subsets of [n] that does not contain P?
The foundational result of this kind, Sperner’s Theorem [18] from 1928, answers this
question for a two-element chain: La(n,P2) =Σ(n,1). Moreover, the value La(n,P2)
is attained only by B(n,1), which consists of subsets all of (a) middle size. Erdős [2]
almost two decades later generalized this to P =Pk , showing that La(n,Pk ) =Σ(n,k−
1), which is attained only by B(n,k−1). Katona has championed the La(n,P ) problem
for posets P other than k-chains, and this is a challenging area of extremal set theory.
It is often very difficult to obtain the extremal size La(n,P ) of such a family, even
asymptotically (see [10] for a survey).

However, for those P for which we know the exact threshold, we can ask how many
copies of P must be present in families larger than the threshold La(n,P ). Here we
investigate the simplest instance of this problem, when P is a chain. Analogous to
the way that Rademacher and Erdős (and subsequent researchers) have extended the
theorems of Mantel and Turán, we present a supersaturation extension of Sperner’s
Theorem and its k-chain generalization by Erdős.

Our initial result was a lower bound on the number of P2’s in a family F ⊆ 2[n]

of a given size that is optimal for |F | É Σ(n,2), extending Sperner’s Theorem. By
investigating more examples, we came to believe that for any size |F |, with Σ(n,`) É
|F | ÉΣ(n,`+1), the number of P2’s in F is minimized by taking F to consist of B(n,`)
together with subsets of B(n,`+1). In further exploration of problems related to poset-
free families of subsets, we came across the work of Kleitman [11] from 1968, which
corroborates our findings and intuition. Indeed, Kleitman, albeit with matching theory
techniques, obtained the (same) supersaturation extension of Sperner’s Theorem and
more. This settled a conjecture of Erdős and Katona. In particular, he determined the
minimum number of pairs (A,B) with A ⊂ B in a family F ⊆ 2[n] of any given size. As
we had intuited, taking the subsets of some middle sizes attains the optimum.

One particularly nice way to quickly derive Sperner’s Theorem and its generaliza-
tion by Erdős is to employ the remarkable symmetric chain decomposition (SCD, for
short) of all 2n subsets of [n], discovered by de Bruijn, van Ebbenhorst Tengbergen,
and Kruyswijk [1] in 1951. It is a partition of the Boolean lattice into just

( n
bn/2c

)
disjoint

chains of subsets, where for each chain there is some k É n/2 such that the chain
consists of a subset of each size from k to n −k. For all k the decomposition induces
the best possible upper bound on |F | for a Pk -free family F of subsets of [n]. (It re-
quires some additional arguments to obtain the extremal families.) The construction,
which is obtained by a clever inductive argument, was done originally in the more
general setting of a product of chains. In this way, the authors obtained the extension
of Sperner’s Theorem to the lattice of divisors of an integer N .

There is a large literature on the existence of SCDs in posets and other ordered/ranked
set systems [6, 7, 12]. Greene and Kleitman [5] discovered an explicit SCD of the
Boolean lattice for all n, based on a simple “bracketing procedure", as opposed to the
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original inductive construction. Bracketing has proven to be valuable in its own right,
such as for the Littlewood-Offord problem [6] and for the construction of symmetric
Venn diagrams on n sets for all prime n [9].

It is not surprising then that a SCD of Bn yields a lower bound on the number of
paths in a family F of given size. In particular, if we arbitrarily consider one particular
SCD, the number of chains in F that are also chains in the SCD is minimized by taking
the sets of F to be of the middle sizes. However, this argument does not account for the
many containment relations for pairs of subsets A ⊂ B where A and B are on different
chains in the SCD. To adjust for this, and to exploit symmetry by avoiding bias towards
a particular SCD, our new idea here is to take all n! SCDs obtained by permutation of
the ground set [n]. In this way, we obtain lower bounds on the number of paths in a
family F of given size, bounds that are best possible for small F .

Our main aim in this paper is then to prove the following supersaturation extension
of the theorems of Sperner and Erdős, using the above-outlined SCD approach.

Theorem 1.2. If a family F of subsets of [n] satisfies |F | = x +Σ(n,k −1), then there
must be at least

x ·
k−1∏
i=1

(⌊
n +k

2

⌋
− i +1

)
copies of Pk in F .

Note that
k−1∏
i=1

(⌊
n +k

2

⌋
− i +1

)
is the number of copies of Pk contained in B(n,k), with one endpoint of the chain
being a particular set in the kth middle row. Thus the family that consists of B(n,k−1)
and x sets from the kth middle row witnesses that the above bound is tight for

x É
(

n⌊n
2

⌋+ (−1)k
⌊

k
2

⌋)
.

More generally, Kleitman [11] has conjectured that for any k the natural construc-
tion (that selects subsets around the middle) minimizes the number of chains Pk

in F . Our result gives new information in support of this conjecture, verifying it for
|F | ÉΣ(n,k). We suspect that a stronger version of our SCD method, in which weights
are assigned, may lead to a proof of Kleitman’s conjecture in full for general k. So far
our efforts in this direction that looked very promising have not yet succeeded. We
cannot imagine that his conjecture is not correct.
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2 Proof of Theorem 1.2

As mentioned earlier, we shall use the symmetric chain decomposition of Bn .

Proof of Theorem 1.2. Given a poset (P,¹) on 2[n], let us say that a k-chain A1 ⊂ ·· · ⊂ Ak

of F (in Bn) is included in P if A1 ≺ ·· · ≺ Ak , and furthermore define cF (P ) to be the
number of k-chains of F included in P . For any SCD C of Bn , let PC be the poset on
2[n] defined by taking the disjoint union of the chains in C . Let us fix the SCD C . By
the pigeonhole principle, PC includes at least x k-chains of F , i.e. cF (PC ) Ê x. Each
(non-trivial) permutation π of [n] applied to C results in a new unique SCD π(C ) for
Bn . Note that π(C ) 6= π′(C ) for distinct permutations π and π′ of [n]. By summing
over the permutations π of [n], we obtain

n! · x É∑
π

cF (Pπ(C )).

Let us change the summation to sum over all k-chains of F . For this, we define
N (n, A1, . . . , Ak ) to be the number of permutations π such that Pπ(C ) includes a given
chain A1 ⊂ ·· · ⊂ Ak of F . We obtain∑

π

cF (Pπ(C )) =
∑

A1⊂···⊂Ak ;Ai∈F
N (n, A1, . . . , Ak ).

Setting ai := |Ai | for each i ∈ {1, . . . ,k}, it holds that

N (n, A1, . . . , Ak ) = a1! · (a2 −a1)! · · · (ak −ak−1)! · (n −ak )! ·min

{(
n

a1

)
,

(
n

ak

)}
,

where the last factor comes from the number of chains in a SCD that the given chain
could fit. After some manipulation, we deduce that

N (n, A1, . . . , Ak ) = n!

max
{( ak

ak−1

) · · ·(a2
a1

)
,
(n−a1

n−a2

) · · ·(n−ak−1
n−ak

)} .

We shall find a general upper bound for N (n, A1, . . . , Ak ) by minimizing the maximum
of y defined as

( ak
ak−1

) · · ·(a2
a1

)
and z defined as

(n−a1
n−a2

) · · ·(n−ak−1
n−ak

)
. Note the following

binomial identity: (
a + i + j

a + i

)(
a + i

a

)
=

(
a + i + j

a + j

)(
a + j

a

)
.

As a consequence of this, the values of y and z are invariant as long as the multiset
of all differences between consecutive values of ai is invariant. By this fact, if there
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is some difference in this multiset that is at least 2, we may assume without loss of
generality that this “large” difference is between ak−1 and ak . It follows that

y ′ := y ·
(ak−1+1

ak−1

)( ak
ak−1

) = y · ak−1 +1( ak
ak−1

) < y,

provided that ak−1 > 0. Similarly,

z ′ := z ·
(n−a2+1

n−a2

)(n−a1
n−a2

) = z · n −a2 +1(n−a1
n−a2

) < z,

provided that a2 < n. It follows that y and z are minimized when the multiset of
differences is the multiset of all ones, i.e. with

y = ak !

(ak −k +1)!
and z = (n −ak +k −1)!

(n −ak )!
.

The maximum of y and z is then minimized by choosing ak to be
⌊

n+k
2

⌋
, so

n! · x É ∑
A1⊂···⊂Ak

Ai∈F

N (n, A1, . . . , Ak ) É ∑
A1⊂···⊂Ak

Ai∈F

n!∏k−1
i=1

(⌊
n+k

2

⌋
− i +1

)
= cF (F ) · n!∏k−1

i=1

(⌊
n+k

2

⌋
− i +1

) ,

as required.

Remarks

Our result was presented by the second author in Prague in June 2012 [8]. In the
preparation of this manuscript, we learned that recently Das, Gan and Sudakov have
independently pursued a similar line of research and possibly obtained results similar
to ours.
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