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Abstract 

Background. Standard liver function parameter levels and tumor indices were analyzed using Network 

Phenotyping Strategy (NPS), a graph-theory based approach, which compares personal patterns of 

complete relationships between clinical data to reference patterns with significant association to disease 

outcome.  We previously applied NPS to Taiwan hepatocellular cancer (HCC) patients and recognized 

two clinical phenotypes, S and L, differing in the size and tumor nodule numbers. 

Aims. To validate the applicability of the NPS-based HCC S/L classification on an independent 

European HCC cohort, for which survival information was additionally available. 

Results. Patients with S and L phenotypes, recognized by the same data processing as previously,  had 

1.5x larger mean tumor masses in L relative to S, p=6x10
-16

.   S-phenotype patients had typically 1.7x 

longer survival compared to L-phenotype.  NPS integrated liver- and tumor factors. Cirrhosis 

associated thrombocytopenia was typical for smaller S-tumors. Hepatic inflammation and tumor factors 

contributed to more aggressive L tumors, with parenchymal destruction and shorter survival. 

Summary. NPS provides integrative interpretation for HCC behavior, identifying by clinical parameter 

patterns two tumor and survival phenotypes. The NPS classifier was implemented as an application for 

web browsers and is available upon request   
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Introduction 

Previous work has shown that 2 general processes contribute to HCC prognosis. They are liver damage 

indices, such as bilirubin, prothrombin time and AST , as well as tumor biology indices, such as tumor 

size, tumor number, presence of PVT and blood AFP levels (1-5). These 2 general processes may affect 

one another (6-8).  Non disease factors such as gender and age can also influence HCC outcomes (9-

10), suggesting that any individual disease parameter needs to be considered within a total clinical 

context. Prognostically significant factors may actually function in part through interaction with 

multiple other tumor and host parameters, as the basis for this context.  This context might even 

provide patient personalization to individually measured parameters. Thus, a given level of bilirubin or 

tumor diameter might have a different significance in different total clinical contexts.  

We thus considered standard liver function parameter levels and commonly assessed tumor indices, 

within the total context of the relationships between all of the parameters together of individual 

patients. The net result, obtained using a large cohort of Chinese HCC patients in Taiwan (n=4139) in a 

training set was that unmanageably complex individual patient parameter relationships were  captured 

in just 9 relationship patterns, and were  significantly related to  disease outcome (11). Within these 9 

relationship patterns, there were 2 distinct general sub-sets of parameter level and relationship patterns, 

closeness or large distance from them being associated with significantly different tumor masses. We 

called these two phenotype subgroups of HCC patients with different clinical characteristics ‘S’ and 

‘L’, for ’small’ and ‘large’ tumor mass. However, survival data was not available for that analysis. In 

the current paper, we have used an Italian database of 1619 HCC patients with known survival 

outcomes, to validate that these 2 characteristic pattern sets and the personalized characterization of the 

closeness and differences from these clinical patterns, can also provide significantly different tumor 

mass outcomes and that patients with these two different phenotype and clinical relationship patterns 

have significantly different survival outcomes.  

 

Methods  

Data collection. We retrospectively analyzed prospectively-collected data in the Italian Liver Cancer 

(ITA.LI.CA) study group database of HCC patients accrued at 11 centers (12). 2773 newly diagnosed 

HCC patients had full baseline parameter data, including radiology of maximum tumor diameter 
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(MTD), number of tumor nodules and presence of PVT; demographics (gender, age, alcohol history, 

presence of hepatitis B or C); blood counts (hemoglobin, white cells, platelets, prothrombin time); 

blood AFP and routine liver function tests, (total bilirubin, AST, ALKP, GGTP, albumin). ITA.LI.CA 

database management conforms to Italian legislation on privacy and this study conforms to the ethical 

guidelines of the Declaration of Helsinki. Approval for the study on de-identified patients was 

obtained by the Institutional Review Board of participating centers. 

Data processing. The clinical parameter data were processed exactly as previously (11,13). The data 

processing summary and parameter-relationship pattern based classification model is shown in Fig 1. 

In the training set data from Taiwan (Fig. 1a), the screening “raw” clinical data was converted into 

4139 individual patient profiles (Fig. 1b). In designing these profiles we first used graph-theory 

algorithm to identify pairs of collectively most correlated liver function and tumor growth-related 

parameters (platelets/AFP, AST/ALT and bilirubin/INR), each pair being used as one component of 

the individual clinical profiles. This step incorporated explicitly the strongest inter-relationships 

(pairwise correlations) within the data and thus reduced the number of parameter-parameter 

relationships to be considered. The paired parameter values were dichotomized into high (H) and low 

(L) using terciles (L corresponded to 2/3 of patient’s cohort with the lowest paired parameter values, H 

to the upper 1/3). This approach allowed direct combination with the rest of the clinical data 

(demographic, hepatitis, portal vein thrombosis) in a unified quantitative scheme. All individual 

clinical profiles were collected into 10-partite network K10 (Fig.1c) with edges weighted by the co-

occurrence frequencies quantifying all relationships between all parameters. This study network was 

then used to generate reference relationship patterns, relative to which we compared the actual 

individual clinical profiles, using specific algorithm (11,13). It was found (Fig.1d) that the training set 

network was a weighted combination of 19 reference relationship patterns. By definition, these 19 

reference relationship patterns collect independently all pairwise context relationships (such as when 

males have PVT present, when the PVT is present with AFP and platelet levels in the high, upper 

tercile subgroup etc., covering the complete set of all 45 pairwise relationships between the 10 

parameter groups (Fig.1a). We collected into the respective reference relationship patterns those 

pairwise parameter relationship patterns, which were observed in the study data with identical 

frequencies. This guarantees that results are independent of the parameter ordering in the clinical 

profile. In the final step of the clinical data transformation, we compared actual individual clinical 

profiles for each patient with these reference relationship patterns and characterized the closeness 
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between them by counting differences (see Fig.1e). In this way, we arrived at our new characterization 

of the context relationships in the study data, quantified by the set of 19 “distances” from respective 

ideal reference clinical relationship patterns. We previously found, using the variable selection in 

combination with the logistic regression least squares optimization,  that distances from only 9 out of 

these 19 reference relationship patterns are significantly associated with tumor mass (Fig. 1d) as the 

HCC outcome parameter.  

For the purpose of this validation study, we converted the data from this cohort of 1619 HCC patients 

into their individual clinical profiles identically to the training set data processing. We then computed 

the distances of every individual clinical profile from 9 significant reference relationship patterns 

(Fig.1e shows an example of this computation for one concrete patient). For each patient, the individual 

9 distances from the common reference relationship patterns were used as independent variables in the 

logistic regression equation resulted from the training set data processing. Based on the odds 

comparisons, each patient was classified as L- or S- phenotype. This resulted in 772 patients (48%) in 

the L group and 847 patients (52%) in the S group. 
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Figure 1. Scheme of the Network Phenotyping Strategy processing of HCC data. a) Scheme of all relationships 

between the clinical data levels and statuses, compiled into 10-partite graph (see Methods for details). b) 

Equivalent representation of the complete information about all data relationship for a concrete patient p in 

simpler 10-partite clinical profile. c) Union of clinical profiles for all patients results in 10-partite study 

network. Edge thicknesses are proportional to the occurrence frequency of every binary relationship in the 

training (Taiwan) study. d) Flow chart of the analysis steps (see Methods and ref. [Taiwan] ) e) Example of 

conversion of actual clinical data for one patient from this validation study (top table) into vector of distances 

from the nine reference relationship pattern, found as significant for S and L tumor phenotype classification in 

ref [Taiwan].  The vector of these 9 pattern-pattern distances is converted by logistic regression into diagnosis 

of S or L tumor phenotype for each patient. 
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To characterize the clinical differences between the S and L subgroups, we used statistical testing of 

means of outcome parameter distributions (SigmaPlot 11), Kaplan-Meier survival analysis (survival 

package in R, version 2.15.1) and moving average processing with windows of 61 patients 

(implemented in Maple 12). 

 

Results 

Independent validation of S and L clinical phenotyping 

Fig. 2a presents the box plots of the distributions of the tumor masses for patients from the  

test set in the S and L phenotypes. The means of these distributions were significantly different, p=6 

x10
-16

. The significance of this outcome of the 2 HCC groups independently validates the significant 

Figure 2. Validation of HCC outcome differences for patients with S and L tumor phenotypes. Boxplots of 

the differences in the a) tumor masses and b) in the overall survival for patients with the S and L 

phenotypes. Kaplan-Meier plots of the significant differences between the probabilities to find equivalent 

c) tumor masses and d) overall survivals for patients with the S and L phenotypes. 
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tumor mass differences between these two HCC tumor phenotypes, identified by our relationship 

pattern analysis in the Chinese patient training dataset. 

Although the difference of means was highly statistically significant, there was still significant overlap 

in the distribution of the tumor masses in the 2 groups. The overlap reflects the complexity of the HCC 

phenotype together with the unknown point on the course of the HCC development at the point of any 

individual patient diagnosis. By inspecting these distributions separately in S and L phenotype 

subgroups we found that probability of finding the same tumor mass in the 2 HCC groups was 

significantly different (Fig. 2c, differences between the probabilities are larger than 2 times 95% 

confidence interval of the respective probability estimates). We therefore conclude that, for a given 

tumor mass, patients from the S group are significantly more likely to be in a more advanced phase of 

HCC progression than in the L group. 

Survival was also analyzed in two ways. First, we tested the statistical significance of the differences in 

means of the survival distributions, computed separately for the two groups of S and L phenotype 

patients (see box plots, Fig. 2b). The mean for S patients was 24 months, for L the mean survival was 

14 months (difference significant, p = 10
-21

). Thus S-phenotype patient had 1.7 times longer mean 

survival compared to L-phenotype. Second, we performed the Kaplan-Meier survival analysis and 

found significantly different probabilities of survival in the S and L HCC phenotype patient subgroups 

(see Fig. 2d). The typical separation of the S- and L- survival provability curves is statistically 

significant, exceeding double of the 95% confidence interval of the two estimated survival 

probabilities. 
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Tumor mass relationships in S and L groups. The identification of S and L subgroups, differing in 

the survival, resulted from the analysis of relationship patterns between clinical liver function and 

tumor parameters. This provides the basis for analysis of the functional differences between the 2 

phenotypes, because we can now analyze separately the patients from the two well defined and 

characterized phenotypic groups, S and L. To visualize the dominant trends in relationships between 

the screening and outcome clinical variables, moving average processing of biologically interesting 

parameter pairs was used. In the first part of this analysis step, relationship between screening clinical 

parameters and tumor mass were inspected. Patients were first ordered according to tumor mass, 

separately in S and L phenotype groups and then the screening clinical parameter and tumor mass 

values were processed by the moving average to reveal dominant trend between the data in the pair. 

The relationships between tumor mass and both internal tumor factors (AFP) and liver factors 

Figure 3. Trends between typical values of tumor masses and various clinical parameters as they differ 

for S and L phenotypes.  
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(bilirubin, AST, GGTP) were studied. Fig 3a shows that the typical trends between bilirubin and tumor 

mass are different between S and L phenotypes. Overall, there were higher typical bilirubin levels in S 

subgroup than in L, for a given tumor mass. For both groups, bilirubin increased with increasing mass 

for small tumors. However, with increasing tumor mass, there appeared to be no further relationship 

between increasing mass and bilirubin levels, accompanied by a lowering of typical bilirubin levels. 

This transition in the relationship between mass and bilirubin occurred at smaller tumor masses in S 

compared with L. This lack of further increase in typical bilirubin levels as the tumors continued to 

grow, suggested to us, that factors internal to the tumor were dominant in the increasing tumor growth. 

This looks like a plausible functional hypothesis, but evidence from just one (bilirubin) clinical variable 

is insufficient. The novelty of our characterization of S and L HCC tumor phenotypes is in recognizing 

them from the differences in the clinical data relationship patterns in the two groups, instead from the 

conventional normal/elevated clinical variable level approach. Thus, any functional interpretation of 

what is observed for single clinical variable in relationship to the tumor characteristic or disease 

outcome has to be contrasted and confirmed by examining the trends in other liver parameters. 

Following these novel ideas, we therefore examined trends revealed by the moving-average processing 

for AST and GGTP with respect to increasing tumor mass. They showed remarkable similarities to the 

trends for bilirubin (Figs 3b and 3c).  

These results also showed that beyond a certain small tumor mass, continued tumor growth was not 

accompanied by increased evidence for tumor damage. In this multi-variable context, it is interesting 

that the examination of AFP trends showed increased levels with increasing tumor mass and was 

comparable for both S and L groups. AFP thus appears to monitor tumor growth through its full range, 

unlike the changes in liver function parameters.  Another observation was that beyond a certain point of 

tumor growth, further increase in tumor mass was associated with a lesser increase in AFP per unit 

increase in tumor mass. This change in the slope of the tumor mass - AFP trend occurred at the same 

tumor mass as the decrease in related trend for both bilirubin and AST. All these results combined and 

interpreted in mutual context, are consistent with the hypothesis that with further tumor growth, the 

contribution from liver factors decreased and the internal tumor factors regulating growth remained 

increasing, reflected in the lesser response of AFP to further increase in tumor mass. An analysis was 

done for trends of liver parameters for increasing AFP instead of increasing tumor mass. The results 

were very similar (data not shown). 
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AFP relationships 

Given the finding of AFP as a monitor of HCC 

growth, above, we next analyzed the typical 

levels of liver function parameters for patients 

with comparable AFP levels, separately for S and 

L phenotype groups.  We analyzed patterns in 

bilirubin, tumor numbers and survival with 

respect to AFP levels (Fig. 4).  We found that 

tumor tumors increased with increasing AFP 

levels in both phenotypes.  However, there was 

typically a smaller number of tumors in S 

compared with L phenotype, for patients with 

comparable AFP levels (Fig. 4A). Furthermore, 

beyond AFP log 2.5 levels, tumor numbers 

increased at a greater rate in L patients than in S. 

Thus, the increase in tumor mass from AFP log 0 

to 2.5 in Fig 3 above, is likely due to increase in 

tumor size alone, but above this AFP level, the 

increase in tumor mass also has a contribution 

from increased number of tumor nodules, mainly 

in L. The increase in numbers of tumors in S was 

only modest. Increasing AFP levels were 

associated with decreasing survival. Thus, for a 

given similarity of survival, L patients had higher 

AFP than S patients (Fig. 4B). Given the 

importance of both liver and tumor factors in 

HCC, we next plotted the trends in bilirubin 

levels as a function of increasing AFP levels. We 

found incoherency between bilirubin and AFP typical levels up to log AFP 2.0. Thereafter, this trend 

continued for S patients, but not L, in whom increasing AFP was followed by increasing bilirubin 

levels (Fig. 4D). In Fig 3A, increase in tumor mass was not associated with increase in bilirubin levels 

a) 

b) 

c) 

Figure 4. Trends between typical values of AFP 

levels in log-scale and a) bilirubin, b) tumor 

numbers and c) survival as they differ for S and L 

phenotypes. 

S 

S 

S 

L 

L 

L 
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in S patients. This transition in AFP levels around log 2 corresponds to the change in the rate of 

increase per unit of tumor mass and also to the point at which bilirubin/tumor mass level changes 

diverged between S and L in Fig. 3. 

Platelet relationships. 

After our initial analysis of complete correlations between all parameters (Methods), platelets and AFP 

were part of the set of 4 pairs with highest correlations. Examination of patterns of trends between 

platelets and other parameter were examined (Fig. 5). We found no correlation of platelets with tumor 

mass or number for S patients. However, for L patients there was a linear trend between typical platelet 

values and tumor mass or number of nodules in L patients. We found a U-shaped pattern in the trends 

for platelets with increasing AFP, with a turning point at log AFP 1.5 to 2. In addition, platelet levels 

were systematically lower in S than L. This transition point also corresponds to transitions in other 

parameters. In the majority of the AFP range, from log 1.5 to log 3 levels, there was an increase in 

platelets with increase in AFP. At the highest AFP levels at >log 2.5, where bilirubin levels also are 

increasing (Fig. 4), the platelets start to decrease, consistent with the bilirubin/platelet relationship of 

liver failure. 

c) 

L 

S 

Figure 5. Trends between typical values of platelet levels and a) tumor mass, b) tumor numbers and c) 

bilirubin as they differ for S and L phenotypes. 
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Discussion 

We have previously used a network phenotyping strategy (NPS) on a large cohort of Chinese HCC 

patients, to show that analysis of parameter relationship patterns could identify 2 sets of HCC patient 

phenotypes, called S and L. The results showed that if the parameter values were considered in the 

context of all other parameters, that for a given tumor mass, we could identify 2 possible sets of clinical 

phenotypic patterns. Survival data was not available for that analysis. We have now extended that 

initial study, by examining whether this approach could be used to examine a large and completely 

different HCC cohort amongst another ethnic patient HCC group, using the identical method of data 

processing and the quantitative model. We again found that the total cohort could be cleanly separated 

into S and L phenotypes, each associated with significantly different tumor masses and survival.  

Main findings of this paper include the relationships between various parameter patterns and total 

tumor mass (Fig. 2). Three parameter trends in relation to tumor mass showed distinct differences 

between S and L: Trends for bilirubin, AST and GGTP showed an increase with increasing tumor mass 

for L, but not for S patients, beyond limited tumor mass, However, the trends for AFP were different, 

since there was a general non-linear increase in AFP with tumor mass for both S and L patients. We 

interpret this to signify the direct importance of AFP in growth of both S and L tumors. By contrast, we 

suppose that involvement of bilirubin, AST and GGTP with tumor mass is more indirect. Thus, AFP 

could be a mediator of internally-derived growth of HCCs (oncogenes, growth factors), whether of S or 

L phenotype. By contrast, the other 3 liver parameters might reflect the tumor micro-environment that 

permits or modulates HCC growth and behavior. We found that trends for bilirubin, AST and GGTP 

were all higher for the larger and more aggressive HCC L phenotype, that were associated with shorter 

survival than S phenotype patients. This NPS approach thus synthesizes and integrates both liver and 

tumor factors.  

The analysis reveals both pattern and complexity in HCC phenotypes. Both liver and tumor factors are 

well-described in HCC prognosis. Our relationship pattern based processing of the data permitted us to 

discern 2 distinct clinical HCC phenotypes. Inspecting typical trends between different parameters, we 

found increasing trends in L phenotypes for several parameters, but constancy in parameter trends for S 

phenotype, which suggests some possible mechanistic interpretations. Most HCCs arise on the basis of 

hepatic inflammation with some degree of associated cirrhosis (14, 15, 16), and is consistent with 

elevated bilirubin, AST and GGTP for the S and L tumors. The portal hypertension and splenomegaly 
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associated thrombocytopenia appeared mainly as a feature of S tumors, reflecting small HCC 

development in cirrhosis. As S tumors grew, they did not appear to further worsen the liver function 

parameters, possibly due to their significantly smaller size compared to L tumors. The parameter trends 

were more complex in L tumors, likely due to multiple factors, including hepatic inflammation and 

endogenous tumor factors. Unlike S, the L phenotype patients predominantly did not have 

thrombocytopenia. We hypothesize than in L, unlike S patients, the known platelet-derived tumor 

growth factors (17-24) and inflammation-associated cytokines (25,26) may play a role in the expansion 

of the growing tumor mass.  There is an inverse relationship between bilirubin and platelet levels in 

portal hypertension, and our patients were no exception (Fig. 5C). However, there are also other causes 

of elevated bilirubin levels, which must be involved to explain the increasing bilirubin levels associated 

with large tumors seen in Fig. 3A. These include both inflammation (Figs 3A,B, and C) as well as 

parenchymal liver destruction by larger tumor masses. S and L differ in the relative contributions of 

these mechanisms, recognizable by their different patterns.  
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Figure Legends 

Figure 1. Scheme of the Network Phenotyping Strategy processing of HCC data. a) Scheme of all 

relationships between the clinical data levels and statuses, compiled into 10-partite graph (see Methods 

for details). b) Equivalent representation of the complete information about all data relationship for a 

concrete patient p in simpler 10-partite clinical profile. c) Union of clinical profiles for all patients 

results in 10-partite study network. Edge thicknesses are proportional to the occurrence frequency of 

every binary relationship in the training (Taiwan) study. d) Flow chart of the analysis steps (see 

Methods and ref. [Taiwan] ) e) Example of conversion of actual clinical data for one patient from this 

validation study (top table) into vector of distances from the nine reference relationship pattern, found 

as significant for S and L tumor phenotype classification in ref [Taiwan].  The vector of these 9 pattern-

pattern distances is converted by logistic regression into diagnosis of S or L tumor phenotype for each 

patient (see Excel implementation of this NPS-based HCC subtype classification, provided as 

supplementary file to this paper).  

 

Figure 2. Validation of HCC outcome differences for patients with S and L tumor phenotypes. 

Boxplots of the differences in the a) tumor masses and b) in the overall survival for patients with the S 

and L phenotypes. Kaplan-Meier plots of the significant differences between the probabilities to find 

equivalent c) tumor masses and d) overall survivals for patients with the S and L phenotypes. 

 

Figure 3.Trends between typical values of tumor masses and various clinical parameters as they differ 

for S and L phenotypes.  

 

Figure 4. Trends between typical values of AFP levels in log-scale and a) bilirubin, b) tumor numbers 

and c) survival  as they differ for S and L phenotypes.  

 

Figure 5. Trends between typical values of platelet levels and a) tumor mass, b) tumor numbers and c) 

bilirubin  as they differ for S and L phenotypes. 
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Appendix 

Phenotypic Classifier: Implementation of patient classification into S and L HCC phenotypes 
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