Extending Partial Representations
of Circle Graphs*

Steven Chaplick**, Radoslav Fulek*™, and Pavel Klavik***

Abstract. The partial representation extension problem is a recently intro-
duced generalization of the recognition problem. A circle graph is an intersec-
tion graph of chords of a circle. We study the partial representation extension
problem for circle graphs, where the input consists of a graph G and a partial
representation R’ giving some pre-drawn chords that represent an induced sub-
graph of G. The question is whether one can extend R’ to a representation R
of the entire G, i.e., whether one can draw the remaining chords into a partially
pre-drawn representation.

Our main result is a polynomial-time algorithm for partial representation
extension of circle graphs. To show this, we describe the structure of all rep-
resentation a circle graph based on split decomposition. This can be of an
independent interest.

1 Introduction

Graph drawings and visualizations are important topics of graph theory and
computer science. A frequently studied type of representations are so-called
intersection representations. An intersection representation of a graph repre-
sents its vertices by some objects and encodes its edges by intersections of these
objects, i.e., two vertices are adjacent if and only if the corresponding objects
intersect. Classes of intersection graphs are obtained by restricting these ob-
jects; e.g., interval graphs are intersection graphs of intervals of the real line,
string graphs are intersection graphs of strings in plane, and so on. These rep-
resentations are well-studied; see e.g. [30].

For a fixed class C of intersection-defined graphs, a very natural computa-
tional problem is recognition. It asks whether an input graph G belongs to C.
In this paper, we study a recently introduced generalization of this problem
called partial representation extension [23]. Its input gives with G a part of the
representation and the problem asks whether this partial representation can be
extended to a representation of the entire GG; see Fig. 1 for an illustration. We

* Supported by ESF Eurogiga project GraDR as GACR GIG/11/E023.

** Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské namésti 25, 118 00 Prague, Czech Republic. E-mails:
chaplick@kam.mff.cuni.cz, radoslav.fulek@gmail.com.

*** Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Mal-
ostranské nameésti 25, 118 00 Prague, Czech Republic. E-mail: klavik@iuuk.mff.cuni.cz.
Supported by Charles University as GAUK 196213.

>
S w
v t v W
u v u ’ ‘
S S
t x
G R TN R’
w t

Fig. 1. On the left, a circle graph G with a representation R is given. A partial representation
R’ given on the right with the pre-drawn chords s, t, w, and x is not extendible. The chords
are depicted as arcs to make the figure more readable.

show that this problem can be solved in polynomial time for the class of circle
graphs.

Circle Graphs. Circle graphs are intersection graphs of chords of a circle.
They were first considered by Even and Itai [13] in the early 1970s in study of
stack sorting techniques. Other motivations are due to their relations to Gauss
words [12] (see Fig. 2) and matroid representations [11,5]. Circle graphs are
also important regarding rank-width [27].

Let x(G) denote the chromatic number of G, and let w(G) denote the clique-
number of G. Trivially we have w(G) < x(G) and the graphs for which every
induced subgraph satisfies equality are the well-known perfect graphs [6]. In
general, the difference between these two numbers can be arbitrarily high, e.g.,
there is a triangle-free graph with an arbitrary high chromatic number. Circle
graphs are known to be almost perfect which means that x(G) < f(w(G)) for
some function f. The best known result for circle graphs [24] states that f(k)
is 2(klogk) and O(2%).

Some hard computational problems, such as 3-colorability [15], or max-
imum weighted clique and independent set [16], become tractable on circle
graphs. On the other hand, the problems such as vertex colorability [15] or
Hamiltonicity [10] remain NP-complete even for circle graphs.

Fig. 2. A self-intersecting closed curve with n intersections numbered 1, ..., n corresponds to
a representation of circle graph with the vertices 1,...,n where the endpoints of the chords
are placed according to the order of the intersections along the curve.

The complexity of recognition of circle graphs was a long standing open

problem; see [30] for an overview. The first results, e.g., [13], gave existential
characterizations which did not give polynomial-time algorithms. The mys-
tery whether circle graphs can be recognized in polynomial time frustrated
mathematicians for some years. It was resolved in the mid-1980s and several
polynomial-time algorithms were discovered [4,14,25] (in time O(n") and sim-
ilar). Later, a more efficient algorithm [29] based on split decomposition was
given, and the current state-of-the-art recognition algorithm [17] runs in a
quasi-linear time in the number of vertices and the number of edges of the
graph.
The Partial Representation Extension Problem. It is quite surprising
that this very natural generalization of the recognition problem was considered
only recently. It is currently an active area of research which is inspiring a
deeper investigation of many classical graph classes. For instance, a recent
result of Angelini et al. [1] states that the problem is decidable in linear time
for planar graphs. On the other hand, Fary’s Theorem claims that every planar
graph has a straight-line embedding, but extension of such an embedding is
NP-hard [28].

In the context of intersection-defined classes, this problem was first consid-
ered in [23] for interval graphs. Currently, the best known results are linear-
time algorithms for interval graphs [3,22] and proper interval graphs [20], a
quadratic-time algorithm for unit interval graphs [20], and polynomial-time
algorithms for permutation and function graphs [19]. For chordal graphs (as
subtree-in-a-tree graphs) several versions of the problems were considered [21]
and all of them are NP-complete.

The Structure of Representations. To solve the recognition problem for
(G, one just needs to build a single representation. However, to solve the par-
tial representation extension problem, the structure of all representations of G
must be well understood. A general approach used in the above papers is the
following. We first derive necessary and sufficient constraints from the partial
representation R’. Then we efficiently test whether some representation R sat-
isfies these constraints. If none satisfies them, then R’ is not extendible. And
if some R satisfies them, then it extends R’.

It is well-known that the split decomposition [8, Theorem 3] captures the
structure of all representations of circle graphs. The standard recognition algo-
rithms produce a special type of representations using split decomposition as
follows. We find a split in G, construct two smaller graphs, build their repre-
sentation recursively, and then join these two representations to produce R. In
Section 3, we give a simple recursive descriptions of all possible representations
based on splits. Our result can be interpreted as “describing a structure like
PQ-trees for circle graphs.” It is possible that the proof techniques from other

papers on circle graphs such as [7,17] would give a similar description. However,
these techniques are more involved than our approach which turned out to be
quite elementary and simple.

Restricted Representations. The partial representation extension problem
belongs to a larger group of problems dealing with restricted representations of
graphs. These problems ask whether there is some representation of an input
graph G satisfying some additional constraints. We describe two examples of
these problems.

An input of the simultaneous representations problem, shortly SiMm, con-
sists of graphs G4, ..., G with some vertices common for all the graphs. The
problem asks whether there exist representations Rq, ..., Ri representing the
common vertices the same. This problem is polynomially solvable for permu-
tation and comparability graphs [18]. They additionally show that for chordal
graphs it is NP-complete when k£ is part of the input and polynomially solvable
for k = 2. For interval graphs, a linear-time algorithm is known for k = 2 [3]
and the complexity is open in general. For some classes, these problems are
closely related to the partial representation extension problems. For example,
there is an FPT algorithm for interval graphs with the number of common
vertices as the parameter [23], and partial representations of interval graphs
can be extended in linear time by reducing it to corresponding simultaneous
representations problems [3].

The bounded representation problem [20] prescribes bounds for each vertex
of the input graph and asks whether there is some representation satisfying
these bounds. For circle graphs, the input specifies for each chord v a pair of
arcs (A,, Al) of the circle, and a solution is required to have one endpoint of
v in A, and the other one in A]. This problem is clearly a generalization of
partial representation extension since one can describe a partial representation
using singleton arcs. It is known to be polynomially solvable for interval and
proper interval graphs [2], and surprisingly it is NP-complete for unit interval
graphs [20]. The complexity for other classes of graphs is not known.

Our Results. We study the following problem (see Section 2 for definitions):

Problem: Partial Representation Extension — REPEXT(CIRCLE)
Input: A circle graph G and a partial representation R’.
Output: Is there a representation R of G extending R'?

In Section 3, we describe a simple structure of all representations. This is
used in Section 4 to obtain our main algorithmic result:

Theorem 1. The problem REPEXT(CIRCLE) can be solved in polynomial time.

4

To spice up our results, we show in Section 5 the following for the simulta-
neous representations problem of circle graphs:

Proposition 2. For k part of the input, the problem SiM(CIRCLE) is NP-
complete.

Corollary 3. The problem SiM(CIRCLE) is FPT in the size of the common
subgraph.

2 Definitions and Preliminaries

Circle Representations. A circle representation R is a collection {C’u | u €
V(G)} of chords of a circle such that C,, intersects C, if and only if uv € E(G).
A graph is a circle graph if it has a circle representation, and we denote the
class of circle graphs by CIRCLE.

Notice that a representation of a circle graph is completely determined by
its circular order of the endpoints of the chords in the representation, and two
chords C, and C), cross if and only if their endpoints alternate in this order.
For convenience we label both endpoints of the chord representing a vertex by
the same label as the vertex.

A partial representation R’ is a representation of an induced subgraph G’.
The vertices of G’ are pre-drawn vertices and the chords of R’ are pre-drawn
chords. A representation R extends R’ if C,, = C, for every u € V(G’).

Interval Overlap Graphs. Suppose that we pick an arbitrary point of the
circle that is not an endpoint of a chord (depicted by white cross in Fig. 3). We
cut the circle at this point and straighten it into a segment. Moreover, we turn
each chord into an arc connecting its two endpoints. Notice that two chords
C, and C,, cross if their endpoints appear in the order uvuv or vuvu from left
to right. See Fig. 3 on the right. Alternatively, circle graphs are called interval
overlap graphs. Their vertices can be represented by intervals and two vertices

z@w C, 2 m N
$ >

w oz T Yy w z Yy T

Fig. 3. An example of a circle graph with a circle graph representation on the left; an interval
overlap representation of the same graph on the right.

are adjacent if and only if their intervals overlap which means they intersect
and one is not a subset of the other.

Word representations. A sequence 7 over an alphabet of symbols Y is a
word. A circular word represents a set of words which are cyclical shifts of
one another. In the sequel, we represent a circular word by a word from its
corresponding set of words. We denote words and circular words by small Greek
letters.

For a word 7 and a symbol u we write u € 7, if u appears at least once in
7. Thus, 7 is also used to denote the set of symbols occurring in 7. A word 7 is
a subword of o, if T appears consecutively in . A word 7 is a subsequence of o,
if the word 7 can be obtained from o by deleting some symbols. We say that u
alternates with v in 7, if uvuv or vuvu is a subsequence of 7. The corresponding
definitions also apply to circular words. If ¢ and 7 are two words, we denote
their concatenation by or.

The above interpretation of circle graphs as interval overlap graphs allows
to associate each representation R of G with the unique circular word 7 over
V. The word 7 is obtained by the circular order of the endpoints of the chords
in R as they appear along the circle when traversed clockwise. The occurrences
of u and v alternate in 7 if and only if uv € E(G). For example R in Fig. 1
corresponds to the circular word 7 = suszvzrtutwow.

Let G be a circle graph, and let R be its representation with the correspond-
ing circular word 7. If G’ is an induced subgraph of G, then the subsequence
of 7 consisting of the vertices in G’ is a circular word o. This o corresponds to
a representation R’ of G’ which is extended by R.

3 Structure of Representations of Splits

Let GG be a connected graph. A split of G is a partition of the vertices of G into
four parts A, B, s(A) and s(B), such that:

— For every a € A and b € B, we have ab € E(G).

— There is no edge between s(A) and BUs(B), and between s(B) and AUs(A).

— Both sides of the split have at least two vertices: |[AUs(A)| > 2 and |B U
s(B)| > 2.

Fig. 4 shows two possible representations of a split. Notice that a split is
uniquely determined just by the sets A and B, since s(A) consists of con-
nected components of G \ (A U B) attached to A, and similarly for s(B) and
B. We refer to this split as a split between A and B.

In this section, we examine the recursive structure of every possible repre-
sentation of G based on splits.

{

N/
A

)

N

Y
X

N>/ ‘
: \ 7
: "

£ J—

g TA2

S

7A'Bl 7B,

TA;

Fig. 4. Two different representations of G with the split between A and B.

3.1 Split Structure of a Representation

Let R be a representation of a graph G with a split between A and B. The
representation R corresponds to a unique circular word 7 and we consider
the circular subsequence v induced by A U B. The maximal subwords of ~
consisting of A alternate with the maximal subwords of v consisting of B. We
denote all these maximal subwords 71, ..., y2x according to their circular order;
SO Y = Y172 - - - Yok Without loss of generality, we assume that ~; consists of
symbols from A. We call v; an A-word when 7 is odd, and a B-word when ¢ is
even.
We first investigate for each ~; which symbols it contains.

Lemma 4. For the subwords vy, ...,V the following holds:

(a) Each ; contains each symbol at most once.
(b) The opposite words ~y; and ;1 contains the same symbols.
(c) Leti # j. If v € v; and y € v}, then zy € E(G).

Proof. (a) Since ab € E(G) for every a € A and b € B, we know that a
and b alternate in the circular word ~. So if some v; would contain the both
occurrences of, let’s say, a, then a and b would not alternate in ~.

(b) Let v; be, let’s say, an A-word. We first prove that all the other occur-
rences of the symbols from ~; are contained in one word ~;; so we get a matching
between the words. Suppose that this is not true and there is x € ~;,v; and
Y € 74,7; for j # j'. There is at least one B-word 7, placed in between v; and

7

7v; (in the part of the circle not containing «;). It is not possible for z € v, to
alternate with both x and y, which gives a contradiction with zz,yz € E(G).

Now, let v; and 7; be two matched A-words. Then every pair of matched
B-words must occur on opposite sides of the circle with respect to ~; and ;.
Therefore the same number of B-words occur on both sides of v; and ~;, and
thus j =17+ k.

(c) This is implied by (a) and (b) since the occurrences of x and y alternate
in . O

If A, B C V(G) give rise to a split in G, we call the vertices of A and B the
long vertices with respect to the split between A and B. Similarly the vertices
s(A) and s(B) are called short vertices with respect to the split between A and
B. In the sequel, if the split is clear from the context, we will just call some
vertices long and some vertices short.

Consider a connected component C' of §(A) (for a component of s(B) the
same argument applies) and consider the subsequence of 7 induced by AUBUC.
By Lemma 4(a)-(b) and the fact that no vertex of s(A) is adjacent to B, this
subsequence almost equals v. The only difference is that one subword ~; is re-
placed by a subword which additionally contains all occurrences of the vertices
of C'. By accordingly adding the vertices of all components of s(A) and s(B) to
v, we get 7. Thus, 7 consists of the circular subwords 74, ..., 7o, concatenated
in this order, where 7; is obtained from ~; by adding the components of s(A)
or s(B) attached to it. In particular, we also have the following:

Lemma 5. If two long vertices x,y € A are connected by a path having the
internal vertices in s(A), then x and y belong to the same pair v; and ~;ij in
any representation.

Proof. If x and y belong to different subwords v; and ~v;, where i < j and
j # i,i+ k, of v, by Lemma 4(a)-(b) any path connecting x and y has an
internal vertex adjacent to a vertex of B. However, no vertex in s(A) is adjacent
to a vertex of B. O

3.2 Conditions Forced by a Split

Now, we want to investigate the opposite relation. Namely, what can one say
about a representation from the structure of a split? Suppose that x and y are
two long vertices. We want to know the properties of and y which force every
representation R to have a subword ~; of v containing both x and y.

We define a relation ~ on AU B where x ~ y means that x and y has to be
placed in the same subword ~; of . This relation is given by two conditions:

(C1) Lemma 4(c) states that if xzy ¢ E(G), then = ~ y, i.e., if z and y are
placed in different subwords, then C, intersects Cj,.

(C2) Lemma 5 gives z ~ y when = and y are connected by a non-trivial path
with all the inner vertices in s§(A) U s(B).

Let us take the transitive closure of ~, which we denote by ~ thereby slightly
abusing the notation. Thus, we obtain an equivalence relation ~ on A U B.
Notice that every equivalence class of ~ is either fully contained in A or in B.
For the graph in Fig. 4, the relation ~ has four equivalence classes A1, Ao, By
and Bs.

Now, let @ be an equivalence class of ~. We denote by s(®) the set consisting
of all the vertices in the connected components of G \ (A U B) which have a
vertex adjacent to a vertex of @. Since ~ satisfies (C2), we know that the sets
s(®) of the equivalent classes of ~ define a partition of s(A) Us(B).

Recognition Algorithms Based on Splits. The splits are used in the cur-
rent state-of-the-art algorithms for recognizing circle graphs. If a circle graph
contains no split, it is called a prime graph. The representation of a prime
graph is uniquely determined (up to the orientation of the circle) and can be
constructed efficiently. There is an algorithm which finds a split between two
sets A and B in linear time [9]. In fact, the entire split decomposition tree (i.e.,
the recursive decomposition tree obtained via splits) can be found in linear
time. Usually the representation R is constructed as follows.

We define two graphs G4 and Gg where G4 is a subgraph of G induced by
the vertices corresponding to A Us(A) U {va} where the vertex v4 is adjacent
to all the vertices in A and non-adjacent to all the vertices in s§(A), and Gp is
defined similarly for B, s(B), and vg. Then we apply the algorithm recursively
on G4 and G and construct their representations R4 and Rpg; see Fig. 5. It
remains to join the representations R4 and Rp in order to construct R.

To this end we take R 4 and replace C,,, by the representation of BUs(B) in
R . More precisely, let the circular ordering of the endpoints of chords defined
by R4 be vaTavaT4 and let the circular ordering defined by Rp be vgTpvpTs.
The constructed ‘R has the corresponding circular ordering 747p7a75. It is easy
to see that R is a correct circle representation of G.

Structure of All Representations. The above algorithm constructs a very
specific representation R of G, and a representation like the one in Fig. 4 on
the right cannot be constructed by the algorithm. In what follows we describe
the structure of all the representations of a circle graph G, based on different
circular orderings of the classes of ~.

We choose an arbitrary circular ordering @1, ..., P, of the classes of ~. Let
G, be a graph constructed from G by contracting the vertices V (G)\ (@;Us(&;))
into one vertex v;; i.e., GG; is defined similarly to G4 and Gpg above. Let
Ri,...,Ry be arbitrary representations of G1,...,Gy. We join these repre-
sentations as follows. Let v;7;v;7; be the circular ordering of R;. We construct

VA UB
Ga Gg

TA

UB

VA

RA 7?«B

A

TA

Fig. 5. The graphs G4 and G together with some constructed representations R4 and Rp.
By joining these representations, we get the left representation of Fig. 4.

R as the circular ordering
7172...Tk_17k7ﬁ1722...7A'k_17A']€. (1)

In Fig. 4, we obtain the representation on the left by the circular ordering
A1As B Bs of the classes of ~ and the representation on the right by A1 B1 A3 Bs.
First, we show that every representation obtained in this way is correct.

Lemma 6. Every circular ordering (1) constructed as above defines a circle
representation of G.

Proof. Every long vertex u € @; alternates with v; in R; and every short vertex
v € s(®;) has both occurrences either in 7, or in 7;, since it is not adjacent to
v;. Thus, we get a correct representation R of G. O

Second, we prove that every representation R of GG can be constructed like
this.

Lemma 7. Let 7 be the circular word corresponding to a representation R of
G. Then the symbols of ®; U s(P;) form exactly two subwords of T.

Proof. Let R be a representation of G and consider how it represents A U B.
We get the subwords ~1,...,79, of the endpoints of A U B, as described in
Section 3.1.

We claim that &; is a subset of some ~;. Suppose that some z € &; is
contained in 7;. We now use the fact that &; is an equivalence class of ~ to
show that @; C ~;. Let y € &; such that one of the conditions (C1) or (C2)

10

applies to x and y. By the transitivity of ~, it is sufficient to show that y € ;.
If (C1) applies to « and y, y € v; by Lemma 4(c). Otherwise, (C2) applies, and
we are done by Lemma 5. Hence, by Lemma 4(a) all the vertices of ®; appear
exactly once in 7y; and once in and ;.

Furthermore, we claim that the vertices of ®; form a subword of «; and
7j+k- For the sake of contradiction suppose that a symbol z € 7, \ @; is placed
between = € @; and y € @;. First, we assume that (C1) or (C2) applies to x
and y.

— If (C1) applies to = and y, we know zy ¢ E(G). Observe that in this case
z cannot be joined by an edge with both x and z. Thus z ~ z or z ~ y,
which in turn implies that z € @; (contradiction).

— Otherwise, (C2) applies to x and y. Since z has to be adjacent to both z
and y, a path P from z to y having all the internal vertices in §(&;) has
at least one internal vertex adjacent to z. Thus, z ~ x and z ~ y by (C2)
(again contradiction).

Finally, if £ ~ y and neither of (C1) and (C2) applies, we can easily proceed
by an inductive argument. Indeed, if x ~ ¢’ ~ y and a vertex z € ~; \ @; is
placed between x and y in «;, then z is also placed in «; either between x and
y', or between vy’ and .

By the above argument, each class &; forms two subwords of 7. By adding
the short vertices s(®;), we obtain two subwords of 7 for each class @;. O

Now, we are ready to prove the main structural proposition, which is in-
spired by Section IV.4 of the thesis of Naji [25].

Proposition 8. Let ~ be the equivalence relation defined by (C1) and (C2)
on AU B. Then every representation R corresponds to some circular ordering
D1,...,Py and to some representations Ri,..., Ry of G1,...,Gy. More pre-
cisely, R can be constructed by arranging Ri,...,Re asin (1): 1y ... TkT1 ... Tk.

Proof. Let R be any representation with the corresponding circular word 7.
According to Lemma 7, we know ®; U s(®;) forms two subwords 7; and 7; of
7. For i # j, the edges between &; and @; form a complete bipartite graph.
The subwords 7;, 7;, 7; and 7; alternate, i.e., appear as 7;7;7;7; or 7,;7;7;7; in
7. Thus, if we start from some point along the circle, the order of 7;’s gives a
circular ordering @4, ...,9, of the classes. The representation R; is given by
the circular ordering v;7;v;7;. O

4 Algorithm

In this section, we give a polynomial-time algorithm for the partial representa-
tion extension problem of circle graphs. Our algorithm is based on the structure
of all representations described in Section 3.

11

Dealing with Disconnected Graphs. To apply the structural properties of
Section 3, we need to work with connected graphs. The partial representation
extension problems cannot be trivially restricted to connected inputs, as in the
case of most graph problems. In particular, for some classes the problems are
polynomial-time solvable for connected inputs and FPT in the number of com-
ponents for disconnected inputs, but NP-complete in general; see e.g. [20,21].
The reason is that the components are placed together in one representation
and they restrict each other.

In the case of circle graphs, we can deal with this disconnected inputs
easily. First, 7/ cannot contain axby as a subsequence where a, b belong to one
component component and x, y to another one. If this happens, we immediately
output “no”. Otherwise the question of extendibility is equivalent to testing
whether each component C' is extendible where the partial representation of C
is given by the subsequence of 7/ containing all occurrences of the vertices of
C'. So from now on we assume that the input graph G is connected.

Overview. Let 7 be the circular word corresponding to the given partial
representation R'. We want to extend 7’ to a circular word 7 corresponding to
a representation R of G.

Our algorithm proceeds recursively via split decomposition.

1. If G is prime, we have two possible representations (one is reversal of the
other) and we test whether one of them is compatible with R'.

2. Otherwise, we find a split and compute the ~ relation.

3. We test whether some ordering @1, ..., P, of these classes along the circle
is compatible with the partial representation R’. This order is partially
prescribed by short and long pre-drawn chords.

4. If no ordering is compatible, we stop and output “no”. If there is an or-
dering which is compatible with R’, we recurse on the graphs G1,...,Gy
constructed according to the equivalence classes of ~.

Now we describe everything in detail.

Prime, Degenerate and Trivial Graphs. A graph is called prime if it
contains no split. If G is a prime graph, then it has at most two different
representations R and R [9] where one is reversal of the other. We just need
to test whether one of them extends R’.

A graph is called degenerate if it is isomorphic to a complete graph K,, or
a star S,,. If G is degenerate, the partial representation extension problem can
be easily solved for it. The reason why degenerate graphs are considered as a
special case is that they are very easy to deal with, and thus they can be used
to speed-up the algorithm. Of course, one could ignore them and just apply
the split decomposition.

12

A split between A and B is called trivial if for one side, let us say A, we
have |A| = 1 and |s(A)| = 1; so s(A) is one leaf attached to A. If G contains
only trivial splits, then we call it trivial. By removing all leaves from G, we
obtain H which is either a prime graph, or a degenerate graph. If H is prime,
we have two representations Ry and 7AQH We just need to test whether we
can add pre-drawn leaves of GG. If H is degenerate, each representation of H
is restricted by the order of the pre-drawn leaves of GG, but this can again be
easily checked.

Dealing with Non-trivial Splits. So we have a non-trivial split between A
and B which can be constructed in polynomial time [9]. We compute the equiv-
alence relation ~ and we want to find an ordering of its equivalence classes. For
a class @ of ~, we define the extended class ¥ of ~ as ®Us(P). We can assume
that each extended class has a vertex pre-drawn in the partial representation,
otherwise any representation of it is good. So ~ has ¢ equivalence classes, and
all of them appear in 7’.

Now, 7 is composed of k mazximal subwords, each containing only symbols of
one extended class ¥. We denote these maximal subwords as 771, ..., 7}, accord-
ing to their circular order in 7/, so 7/ = 7/ ---7/. According to Proposition 8,
each extended class ¥ corresponds to at most two different maximal subwords.
Also, if two extended classes ¥ and W correspond to two different maximal
subwords, then occurrences of these subwords in 7/ alternate. Otherwise we
reject the input.

Case 1: An extended class corresponds to two maximal subwords.
We denote this class by ¥; and put this class as first in the ordering. By
renumbering, we may assume that ¥; corresponds to 71 and 7/. Then one
circular order of the classes can be determined as follows. We have ¥; < ¥ for
any other class ¥. Let ¥; and ¥; be two distinct classes. If ¥; corresponds to
7, and ¥; corresponds to 7] such that either a < b <t ort < a < b, we put
VU; < ¥;. We obtain the ordering of the classes as any linear extension of <.
One can observe that < is acyclic, otherwise the maximal subwords would not
alternate correctly.

Now, we have ordered the extended classes ¥y, ...,¥, and the correspond-
ing classes @1, ...,®P,. We construct each G; with the vertices ¥; U {v;} as in
Section 3.2, so v; is adjacent to @; and non-adjacent to s(®;). As the partial
representation R, of G;, we put the word ’U,'TZ-/’U,'TJI- where ¥; corresponds to 7;
and 7; (possibly one of them is empty). We test recursively, whether each rep-
resentation R; of G; is extendible to a representation of R;. If yes, we join
Ri1,..., Ry as in Proposition 8. Otherwise, the algorithm outputs “no”.

Lemma 9. For Case 1, the representation R’ is extendible if and only if the
representations R, ..., R} of the graphs G, ..., Gy are extendible.

13

Fig. 6. The partial representation ﬁ; is less restrictive with the respect to the position of v;.
Therefore it might be extendible even when R/ is not.

Proof. Suppose that R extends R’. According to Proposition 8, the represen-
tations of ¥q,...,¥, are somehow ordered along the circle, and so we obtain
representations Ri, ..., R, extending R}, ..., R}.

For the other implications, we just take Rq,...,Ry and put them in R
together as in (1). The ordering < was constructed exactly in such a way that
R extends R'. O

Case 2: No extended class corresponds to two maximal subwords.
In this case, we have the ordering of the classes according to their appearance
in 7/, so ¥; corresponds to the subword 7;. According to Proposition 8, we know
that in any representation R of G the class ¥; corresponds to two subwords 7;
and 7;. The difficulty here arises from the potential for 7/ to be a subsequence
of only one of 7; and 7;.

We solve this as follows. Instead of constructing just one graph G; with one
partial representation R}, we construct an additional graph G; with a partial
representation ﬁfb as follows. The graph éz is G; with an additional leaf w;
attached to v;. The partial representation R. corresponds to the word 7/v;v;
and the partial representation 7%2 corresponds to 7/w;w;. The difference is that
ﬁ; is less restrictive and only one endpoint of v; is prescribed (i.e., the location
of the “other” end of v; is not restricted). We can easily observe that if R/ is
extendible, then ﬁ; is also extendible. See Fig. 6 for a comparison of the two
partial representations R, and 7%’

The following lemma is fundamental for the algorlthm and it states that
at most one class can be forced to use G; with R’ if 7/ is extendible:

Lemma 10. The representation R’ is extendible if and only if 75; 15 extendible
for some i and R; is extendible for all j # i.

Proof. Suppose that R; corresponding to a word v;7;v;7; is an extension of
R; for j # i. And let R; corresponding to a word w;v;w;T;v;7; be an extension

of 75; Then the representation R (after removing w;) constructed as in (1)
extends R’.

14

For the other implication, suppose that R extends R’. For contradiction,
suppose that two distinct partial representations R, and 72; are not extendible.
According to Proposition 8, the representation R gives a representation R;
corresponding to v;7;v;7; of G; and R; corresponding to v;7jv;7; of G;. But
since both ¥; and ¥; correspond to single maximal words of 7/, we have that
7/ is a subsequence of 7; or 7;, or 7/ is a subsequence of 7; or 7}, and so R} or

J
R; is extendible. Contradiction. O

So we have two possible subcases for Case 2, and otherwise we output “no”.
For an overview, see the pseudocode of Algorithm 1.

— Case 2a: All representations are extendible. So we have represen-
tations Rao, ..., Ry extending the partial representations where R; corre-
sponds to v;7;v;7;. We test whether the partial representations N’l is ex-
tendible. If no, the algorithm stops and outputs “no”. If yes, we get a
representation R of G; corresponding to wiviwiTiv171. We construct the
representation R as in (1).

— Case 2b: Exactly one is not extendible. Let R be the non-extendible
representation. Then we test whether ﬁ; and R} are extendible. If at least
one is non-extendible, the algorithm stops and outputs “no”. If both are

extendible, we similarly join in R the representations R, ..., R, according
to (1).

Analysis of the Algorithm. By using the established results, we show that
the partial representation extension problem of circle graphs can be solved in
polynomial time.

Lemma 11. The described algorithm correctly decides whether the partial rep-
resentation R’ of G’ is extendible.

Proof. 1f the input graph G is prime, degenerate or trivial, we already argued
correctness of the algorithm. If the input graph G contains non-trivial split
between A and B, we proceed by Case 1, or by Case 2.

For Case 1, the algorithm is correct according to Lemma 9.

Algorithm 1 The subroutine for Case 2.

Let ¥ be the largest class (i.e., |¥;| < n/2 for i > 1).
If R,, ..., R, are extendible then
If 7%'1 is extendible then ACCEPT else REJECT.
Else if only R is not extendible then
If R, and R/ are extendible then ACCEPT else REJECT.
Else REJECT.

A R

15

For Case 2, we have Lemma 10 which states that Case 2a or Case 2b
happens, otherwise the representation in not extendible. In both cases, we
recursively construct the representation R if it exists. O

The next lemma states that the algorithm runs in polynomial time. A pre-
cise time analysis depends on algorithm used for split decomposition, and on the
order in which we choose splits for recursion. We avoid this technical analysis
and just note that the degree of the polynomial is reasonable small. Certainly,
it would be easy to show the complexity of order O(nm).

Lemma 12. The running time of the algorithm is polynomial.

Proof. Clearly, we can test prime, degenerate and trivial graphs in polynomial
time. First we have the following special case, if, let us say, for A we have
|A] = 2 and |s(A)| = 0, and we have exactly two classes in ~. But this step
of recursion can be solved in time O(n + m) plus the time for recursion on
B Us(B), for both Case 1 and Case 2. In every other situation, the number of
the vertices in n is decreased, so the depth of the recursion is linear in n.

For Case 1 and Case 2a, we just spent time O(n +m) on G and then apply
separate recursion on Gi,...,Gy, so the complexity is polynomial subject to
each step of recursion can be done in polynomial time. For Case 2b, we get the
following recursion. Let T'(n) denotes the time complexity of the algorithm for
at most n vertices in the worst case. Then we recurse twice on ¥; such that
|¥;| < & and once on all other classes. We get:

T(n) <2-T(|%|+2)+ > T(|%| +2) + P(n),
JF
where P(n) is some fixed polynomial in n. (This polynomial time is a cost of

finding a split, computing equivalence classes of ~, and so on.) Assuming that
T is at least linear, we get that T is a convex function. Then we get

T(n)<2-T(n/24+2)+T(n—1)+ P(n),
which means that T'(n) is clearly polynomial. O
Now, we are ready to prove the main result of this paper.

Proof (Theorem 1). The result is implied by Lemma 11 and Lemma 12. O

5 Simultaneous Representations of Circle Graphs

In this section, we give two results concerning simultaneous representations
of circle graphs: We show that this problem is NP-complete and FPT in the
size of the common intersection. Formally, we deal with the following decision
problem:

16

5 4 5) 4 5) 4 5 4
w 3 w 3 w 3 w 3
R R R Rs

Fig. 7. Let S ={1,2,3,4,5} and T consisting of three triples (5, 1,2), (1,4, 3) and (2,4, 3) be
the instance of TOTALORDERING. We construct graphs Go, ..., G3 depicted in the top, with
the common vertices I depicted in white. Possible simultaneous representations are depicted
in the bottom, giving the total ordering 5 <1 <2 <4 < 3.

Problem: Simultaneous Representations of Circle Graphs — SiM(CIRCLE)
Input: Graphs G1,...,Gj such that G; NG = I for all ¢ # j.
Output: Do there exist representations Rq,..., R of G1,..., Gy which
use the same representation of the vertices of I?

Proof (Proposition 2). To show that SIM(CIRCLE) is NP-complete, we reduce
it from the total ordering problem:

Problem: The total ordering problem - TOTALORDERING
Input: A finite sets S and a finite set T of triples from S.
Output: Does there exist a total ordering < of S such that
for all (x,y,z) € T either x <y < z,0or z <y < x?

Opatrny [26] proved this problem is NP-complete.

Given an instance (S,7") of TOTALORDERING and let s = |S| and ¢t = |T|.
We construct a set of ¢t + 1 graphs Gy, G1,...,G: as follows, so the number
k from SiM(CIRCLE) is equal ¢ 4+ 1. The intersection of Gy, G1,...,Gy is an
independent set I = SU{w} where w is a special vertex. The graph G consists
of a clique K1, and to each vertex of this clique we attach exactly one vertex
of I as a leaf. The graph G; corresponds to the i-th constraint (x;,y;, z;) € T
In addition to I, each G; contains two vertices u; and v; of degree three, such

17

that wu; is adjacent to v;, x; and z;, and v; is further adjacent to y; and the
special vertex w. See Fig. 7 for an example of this construction.

The clique in G defines a split where each class of ~ is a singleton. Ac-
cording to Proposition 8, every representation Rg of Gy places the elements of
I in some circular ordering wwsis15282 - - - SsSs which corresponds to the total
ordering s; < s9 < --- < s5. Now the representations Rq,...,R; of Gy,...,Gy
can be constructed if and only if all the total ordering constraints are satis-
fied. This implies that there exist simultaneous representations Ry, ..., R; of
Go, ..., Gy if and only if the instance (S,T) of TOTALORDERING is solvable.

([l

Further, we show that the problem is FPT in size of the common subgraph
I.

Proof (Corollary 3). We just consider all possible representations of the com-
mon subgraph I which are all words of length 2|V (I)|. Each word gives some
partial representation R'. We just solve k instance of REPEXT(CIRCLE) for
each G; and the partial representation R’ of I, which can be done in polyno-
mial time according to Theorem 1. O

6 Conclusions

The structural results described in Section 3, namely Proposition 8, are the
main new tools developed in this paper. Using it, one can easily work with
the structure of all representations which is a key component of the algorithm
of Section 4 that solves the partial representation extension problem for circle
graphs. The algorithm works with the recursive structure of all representations
and matches the partial representation on it. Proposition 8 also seems to be
useful in attacking the following open problems:

Question 13. What is the complexity of SIM(CIRCLE) for a fixed number k of
graphs? In particular, what is it for £k = 27

Recall that in the bounded representation problem, we give two circular
arcs A, and A/ for each chord v, and we want to construct a representation
which places one endpoint of v in A, and the other endpoint in AJ.

Question 14. What is the complexity of the bounded representation problem
for circle graphs?

18

References

—_

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. P. Angelini, G. D. Battista, F. Frati, V. Jelinek, J. Kratochvil, M. Patrignani, and I. Rut-

ter. Testing planarity of partially embedded graphs. In SODA’10, pages 202-221, 2010.
M. Balko, P. Klavik, and Y. Otachi. Bounded representations of interval and proper
interval graphs. To appear in ISAAC, 2013.

T. Blasius and I. Rutter. Simultaneous PQ-ordering with applications to constrained
embedding problems. In SODA’13, pages 1030-1043, 2013.

A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinatorica,
7(3):243-254, 1987.

A. Bouchet. Unimodularity and circle graphs. Discrete Mathematics, 66(1-2):203-208,
1987.

M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics, 164:51-229, 2006.

B. Courcelle. Circle graphs and monadic second-order logic. J. Applied Logic, 6(3):416—
442, 2008.

W. Cunningham. Decomposition of directed graphs. SIAM J. Alg. and Disc. Methods,
3:214-228, 1982.

E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications to split
decomposition and parity graph recognition. Journal of Algorithms, 36(2):205-240, 1998.
P. Damaschke. The hamiltonian circuit problem for circle graphs is NP-complete. Infor-
mation Processing Letters, 32(1):1-2, 1989.

H. de Fraysseix. Local complementation and interlacement graphs. Discrete Mathematics,
33(1):29-35, 1981.

H. de Fraysseix and P. O. de Mendez. On a characterization of gauss codes. Discrete &
Computational Geometry, 22(2):287-295, 1999.

S. Even and A. Itai. Queues, stacks, and graphs. Theory of Machines and Computation
(Z. Kohavi and A. Paz, Eds.), pages 71-76, 1971.

C. P. Gabor, K. J. Supowit, and W. Hsu. Recognizing circle graphs in polynomial time.
J. ACM, 36(3):435—473, 1989.

M. Garey, D. Johnson, G. Miller, and C. Papadimitriou. The complexity of coloring
circular arcs and chords. SIAM Journal on Algebraic Discrete Methods, 1(2):216-227,
1980.

F. Gavril. Maximum weight independent sets and cliques in intersection graphs of fila-
ments. Information Processing Letters, 73(5-6):181-188, 2000.

E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle graph recog-
nition. Algorithmica, pages 1-30, 2013.

K. R. Jampani and A. Lubiw. The simultaneous representation problem for chordal,
comparability and permutation graphs. Journal of Graph Algortihms and Applications,
16(2):283-315, 2012.

P. Klavik, J. Kratochvil, T. Krawczyk, and B. Walczak. Extending partial representations
of function graphs and permutation graphs. In Leah Epstein and Paolo Ferragina, editors,
Algorithms ESA 2012, volume 7501 of LNCS, pages 671-682. 2012.

P. Klavik, J. Kratochvil, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskocil.
Extending partial representations of proper and unit interval graphs. In preparation.,
2013.

P. Klavik, J. Kratochvil, Y. Otachi, and T. Saitoh. Extending partial representations
of subclasses of chordal graphs. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee,
editors, Algorithms and Computation, volume 7676 of LNCS, pages 444-454. 2012.

P. Klavik, J. Kratochvil, Y. Otachi, T. Saitoh, and T. Vyskocil. Linear-time algorithm
for partial representation extension of interval graphs. In preparation., 2013.

19

23.

24.
25.
26.
27.
28.

29.
30.

P. Klavik, J. Kratochvil, and T. Vyskocil. Extending partial representations of interval
graphs. In Mitsunori Ogihara and Jun Tarui, editors, Theory and Applications of Models
of Computation, volume 6648 of LNCS, pages 276-285. 2011.

A. Kostochka and J. Kratochvil. Covering and coloring polygon-circle graphs. Discrete
Mathematics, 163(1-3):299-305, 1997.

W. Naji. Graphes de Cordes: Une Caracterisation et ses Applications. PhD thesis,
I’Université Scientifique et Médicale de Grenoble, 1985.

J. Opatrny. Total ordering problem. SIAM J. on Computing, 8(1):111-114, 1979.

S. Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79-100, 2005.

M. Patrignani. On extending a partial straight-line drawing. In Patrick Healy and
Nikola S. Nikolov, editors, Graph Drawing, volume 3843 of LNCS, pages 380—385. 2006.
J. P. Spinrad. Recognition of circle graphs. J. of Algorithms, 16(2):264-282, 1994.

J. P. Spinrad. Efficient Graph Representations. Field Institute Monographs, 2003.

20

