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Preface

Charles University in Prague and particularly Department of Applied
Mathematics (KAM), Computer Science Institute of Charles University
(IUUK) and its international centre DIMATIA, are very proud that they
are hosting one of the very few International REU programmes which are
funded jointly by NSF and the Ministry of Education of Czech Republic
(under the framework of Kontakt programmes ME 521, ME 886 and ME
09074). This programme is a star programme at both ends and it exists
for more than a decade since 2001. Repeatedly, it has been awarded for its
accomplishments and educational excellence.

The program of Kontakt on the Czech side was not renewed for year 2013
and thus the programme was financed jointly by Section Informatics of MFF
and our grants CE-ITI P202/12/G061, ERCCZ LL1201 and SVV - 202-
09/267313 (Discrete Models and Algorithms). We thank all the contributors
and hope that the next year will bring us a stable support.

This booklet reports just the programme in 2013. I thank to Martin
Balko, the Czech mentor of this year, for a very good work both during the
programme itself and after.

Prague, October 17, 2013

Jaroslav Nešetřil
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DIMACS/DIMATIA Research Experiences for Undergraduates (REU)
is a joint program of the DIMATIA center, Charles University in Prague
and DIMACS center, Rutgers University, New Jersey. This year’s partici-
pants from Charles University were students Martin Koutecký, Karel Král,
Jitka Novotná, Karel Tesař and Vojtěch Tůma. Their coordinator was Mar-
tin Balko, who participated in the scientific work, but mainly took care of
organizing the DIMATIA part of the program. Together with more than
thirty students from universities from all over the United States, they partic-
ipated in the first part of the program, at Rutgers University of New Jersey
in Piscataway, USA, from June 2nd to July 21st. Four American students
were selected to join, together with their coordinator, the Czech students
in the second part which took place at Charles University in Prague from
July 23th to August 7th. The students were Kaleigh Clary, Elizabeth Field,
Kevin Sung and Kevin Wong. The coordinator was Glen Wilson.

The first part of the program mainly consists of students solving open
mathematical problems brought by their mentors. Students attended sev-
eral lectures and they also participated in a trip to AT&T Labs which was
organized by DIMACS. Here the students heard about applications of math-
ematics and computer science.

In Prague, the students attended a series of lectures given by professors
mainly from the Department of Applied Mathematics and the Computer
Science Institute of Charles University. They also had the opportunity to
attend the Midsummer Combinatorial Workshop.

In addition to the scientific program, an important part of the REU is an
intercultural experience. During the first part, an afternoon was dedicated
to presentations of Czech Republic and cultures from which the American
students come from. The students participated together in informal sport
activities and sightseeing trips.

The students got important experiences with research and life abroad.
For some of them, the program will certainly be an important milestone in
their future scientific career.

This booklet presents the results of the Czech students stemming from
the REU programme and reports of the American students about their visit
to Prague. I would like to thank Josef Cibulka for providing the source files
for this booklet.

Martin Balko
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The participants of the Prague part of the programme.
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Midsummer Combinatorial Workshop excursion to the Klementinum li-
brary, meeting at Neboźızek.
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Ramsey Numbers of Ordered Graphs

Martin Balko1 and Karel Král

1 Introduction

Ramsey theory is one of the most active areas of research within combi-
natorics. Its underlying philosophy is that every sufficiently large system
contains a well-organized subsystem. The main result of this field is the
Ramsey theorem which concerns edge-colored graphs. In this paper we de-
rive some Ramsey-type results for graphs with ordered vertex sets which is
a concept introduced by Milans et al. [25]. We also discuss the differences
between ordered and unordered graphs in the view of Ramsey theory and
we pose plenty of questions related to Ramsey numbers of ordered graphs.

Even though ordering of vertices may seem like an insignificant alter-
nation in otherwise well known concept it can be seen that in the terms of
Ramsey theory we can get substantially different results compared to the
unordered case. The main goal of this paper is to understand the effects
of vertex-orderings on the Ramsey numbers. Before stating our results we
also mention some motivation examples and applications in which ordered
hypergraphs can arise.

The concept of ordered graphs appeared earlier in the literature [25, 27],
but we are not aware of any Ramsey-type results for such graphs except for
the case of monotone paths and hyperpaths [6, 11, 16, 25, 26].

2 Preliminaries

In this section we state a notation of ordered hypergraphs introduced by
Milans et al. [25]. Before doing so, we first mention some basic definitions
related to hypergraphs and some fundamental results in Ramsey theory, as
we use them later to point out the differences between the unordered and
ordered case.

A hypergraph (also called a set system) is a pair H = (X,E) where X
is a set of vertices and E is a set of non-empty subsets of X called edges.
For a positive integer k, we say that a hypergraph H is k-uniform if each of

1The first author was supported by the grant SVV-2013-267313 (Discrete Models and
Algorithms), and by the grant Grant Agency of Charles University, GAUK 1262213.
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its edges contains exactly k vertices. If k = 2 then we speak about graphs.
We consider only finite hypergraphs without loops or multiple edges in this
paper. An edge-hypergraph coloring is a function f : E → C where C is a
finite set of colors. A coloring with c colors is called a c-coloring.

We say that two hypergraphs H1 = (X1, E1) and H = (X2, E2) are
isomorphic, written H1 ' H2, if there is a one-to-one mapping g : X1 → X2

which maps every edge of H1 to an edge of H2. A (hyper)graph G = (Y, F )
is a sub(hyper)graph of H = (X,E) if Y ⊆ X and F ⊆ E.

Ramsey’s Theorem guarantees the existence of Ramsey numbers for
edge-colored ordinary (unordered) hypergraphs. A hypergraph which con-
tains all possible hyperedges is called complete. Let Kk

n denote the complete
(unordered) k-uniform hypergraph on n vertices. For given positive inte-
gers c, k and r Ramsey’s Theorem says that for sufficiently large n every
c-coloring of edges of complete k-uniform hypergraph on n vertices contains
a monochromatic copy of Kk

r as a subgraph. The minimum such n is called
the Ramsey number and we denote it by Rk(Kk

r ; c). For graphs we just
use R(Kr; c) instead of R2(Kr; c). Classical results of Erdős [12] and Erdős
and Szekeres [13] give 2r/2 ≤ R(Kr; 2) ≤ 22r. Even though there have been
many improvements on this bounds during the last sixty years (see [8] for
example), the constant factors in these exponents remain the same.

Since every k-uniform hypergraph on r vertices is contained inKk
r we can

consider the following generalization of Ramsey numbers. Let H1, . . . ,Hc

be finite k-uniform hypergraphs and let c be a positive integer. Then Ram-
sey’s Theorem implies that there exists a number Rk(H1, . . . ,Hc) such that
every c-coloring of edges of a complete k-uniform hypergraph with at least

Rk(H1, . . . ,Hc; c) vertices contains a monochromatic copy of Hi in color i
for some i ∈ {1, 2, . . . . , c}. If all the hypergraphsH1, . . . ,Hc are isomorphic,
we just write Rk(H; c).

2.1 Ordered Hypergraphs

An ordered hypergraph is a pair (H,≺) where H = (X,E) is a hypergraph
and ≺ is a total ordering of its vertex set. The ordering ≺ is called a vertex
ordering. Most of the properties of hypergraphs (vertex degrees, coloring,
indistinguishable vertices and so on) can be defined the same for ordered
hypergraphs as for hypergraphs, but the vertex orderings also bring some
new additional properties.

For an ordered hypergraph (H = (X,E),≺) and its vertices x, y ∈ X we
say that y is a left neighbor of x (right neighbor) if x and y are adjacent and
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y ≺ x (x ≺ y, respectively). We say that two ordered hypergraphs (H1,≺1)
and (H2,≺2) are isomorphic if we have H1 ' H2 via a one-to-one mapping
g which preserves the orderings. That is, for every x, y ∈ X, x ≺1 y implies
g(x) ≺2 g(y). In such a case we write (H1,≺1) ' (H2,≺2).

An ordered hypergraph (G,≺1) is an ordered sub(hyper)graph of (H,≺2)
if G is a sub(hyper)graph ofH and ≺1 is a suborder of ≺2. Having a notation
of subgraphs we can introduce Ramsey numbers of ordered hypergraphs.
For given finite ordered k-uniform hypergraphs (H1,≺1), . . . , (Hc,≺c) we
denote as ROk((H1,≺1), . . . , (Hc,≺c)) the least number n such that every
c-coloring of edges of a complete ordered k-uniform hypergraph with at least
n vertices contains a monochromatic copy of some (Hi,≺i) in color i as an
ordered subgraph. If all the given ordered hypergraphs are isomorphic, we
may just write ROk((H,≺); c) and, again, in the case of graphs we omit k.

In complete hypergraphs, all orderings of Kk
r are the same up to iso-

morphism and thus there is no difference between unordered and ordered
cliques in a given hypergraph. We therefore obtain the following.

Observation 2.1. For arbitrary positive integers r1, . . . , rc, k, c and total
orderings ≺1, . . . ,≺c we have

Rk(Kk
r1 , . . . ,K

k
rc) = ROk((Kk

r1 ,≺1), . . . , (Kk
rc ,≺c)).

A simple consequence of this observation is that ordered Ramsey num-
bers exist for an arbitrary collection of ordered k-uniform hypergraphs, since
every ordered k-uniform hypergraph (H,≺) on n vertices is a subgraph of
(Kk

n,≺).

Corollary 2.2. Let c be a positive integer and let (H1,≺1), . . . , (Hc,≺c) be
an arbitrary collection of ordered k-uniform hypergraphs, then the number
ROk((H1,≺1), . . . , (Hc,≺c)) exists and it is finite.

Another simple fact is that

Rk(H1, . . . ,Hc) ≤ ROk((H1,≺1), . . . , (Hc,≺c))

always holds, since if Hi is not contained in a given graph as (unordered)
subgraph, it cannot be there as an ordered subgraph.

For an ordering ≺ we use ≺−1 to denote the reversed ordering, i.e. x ≺ y
if and only if y ≺−1 x. Sometimes we want to see how Ramsey numbers
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behave with increasing number of vertices. To be able to do this for ordered
hypergraphs, we need to introduce so called ordering schemes which are
vertex orderings uniquely determined by the given hypergraph H. That is,
there are specific rules which tell us how to order vertices of H with in-
creasing number of vertices. For example, a k-uniform monotone hyperpath
(P k

r ,Cmon) is a k-uniform hypergraph with vertices v1 Cmon . . . Cmon vr
and r − k + 1 edges, each consisting of k consecutive vertices (see Figure 1
for an example). Throughout the paper we use a symbol C instead of ≺ to
emphasize the fact that the vertex ordering follows some ordering scheme.

a) b)

Figure 1: Examples of 2-uniform and 3-uniform monotone hyperpaths on
seven vertices.

2.2 Motivation

In this subsection we show various examples in which Ramsey-type problems
on ordered hypergraphs arise. Some of the results mentioned are nowadays
classical statements, but some other ones appeared only recently. In any
case these examples should help the reader to get used to the notation and
show some interesting applications. Some results and definitions are also
used later in this paper.

Erdős-Szekeres Lemma. This well-known statement says that for a given
k ∈ N one can find a decreasing or increasing subsequence of length k in
every sequence of at least (k− 1)2 + 1 distinct integers and that this bound
is sharp. This lemma can be proved using many approaches (see [29] for
the list of proofs), but one can observe that it is basically a special case of
far more general Ramsey-type result on ordered graphs.

Given such a sequence S = (s1, . . . , sn) we can construct an ordered
graph (Kn,≺) with vertex set S and ordering chosen according to the po-
sitions in S. That is for si, sj ∈ S we have si ≺ sj if i < j. Then we
2-color the edges of this graph in the following manner: an edge {si, sj} is
red if si < sj and blue otherwise. It is not difficult to see that red mono-
tone paths correspond to increasing and blue monotone pats to decreasing
subsequences of the same length in this graph. The rest follows from the
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following result of Choudum and Ponnusamy (see Milans et al. [25] for the
proof in the language of ordered Ramsey theory).

Proposition 2.3 (S. A. Choudum and B. Ponnusamy [6]). For monotone
ordered paths (Pr1 ,Cmon), . . . , (Prc ,Cmon), we have

RO((Pr1 ,Cmon), . . . , (Prc ,Cmon)) = 1 +

c∏

i=1

(ri − 1).

Note that the decreasing and increasing subsequences actually corre-
spond to monochromatic cliques in our complete colored graph, since the
obtained coloring is transitive. That is, if the hyperedges {x1, . . . , xk} and
{x2, , . . . , xk+1}, x1 ≺ . . . ≺ xk+1, have the same color, then every hyper-
edge {xi1, . . . , xik}, {i1, . . . , ik} ⊆ [k + 1], is of the same color.

Integer Partitions. Another example shows a surprising connection be-
tween Ramsey theory of ordered hypergraphs and high-dimensional integer
partitions. A d-dimensional partition is a d-dimensional (hyper)matrix A
of nonnegative integers such that A is decreasing in each line. That is
Ai1,...,it,...,id ≥ Ai1,...,it+1,...,id for every possible i1, , . . . , id and 1 ≤ t ≤ d.
For example if d = 1, then we have a decreasing sequence of nonnegative
integers a1 ≥ a2 ≥ . . . which is called a line partition.

Let Pd(n) denote the number of n × n d-dimensional partitions with
entries from {0, . . . , n}. Observe that in the case d = 1 we have P1(n) =(
2n
n

)
, since we can think of such line partition as a lattice path in Z2 starting

at (0, n) and ending at (n, 0). It is also known, although it is much more
difficult to prove it, that P2(n) =

∏
1≤i,j,k≤n

i+j+k−1
i+j+k−2 .

The following theorem was proved by Moshkovitz and Shapira [26] last
year and it establishes a close connection between integer partitions and
Ramsey numbers of monotone 3-uniform hyperpaths.

Theorem 2.4 (G. Moshkovitz and A. Shapira [26]). For every c ≥ 2 and
r ≥ 2 we have RO3((P 3

r ,Cmon); c) = Pc−1(r − 2) + 1.

We use this result in the following motivation example which concerns
a classical result in Ramsey theory and combinatorial geometry. Studying
of Ramsey numbers of monotone hyperpaths brought attention of many
researchers in recent years, see [11, 16, 25].

Happy Ending Problem. One of the original results that led to the de-
velopment of Ramsey theory was the following statement, also called Happy
Ending Problem.
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Theorem 2.5 (P. Erdős and G. Szekeres [13]). For k ∈ N there exists a
number ES(k) such that every set of at least ES(k) points in R2 in general
position contains k points in convex position.

As noted by Erdős and Szekeres, it can be shown that this result is
implied by Ramsey theorem applied to 4-uniform hypergraphs, but the up-
per bound for ES(k) obtained by this approach is astronomically large.
In the original paper of Erdős and Szekeres much more reasonable bound
ES(k) ≤

(
2k−4
k−2

)
+ 1 is also shown. Even though there is a better upper

bound now (Valtr and Tóth [31] hold current record ES ≤
(
2k−5
k−2

)
+ 1),

Moshkovitz and Shapira [26] showed that Ramsey theory for ordered 3-
uniform hypergraphs can be used to derive ES(k) ≤

(
2k−4
k−2

)
+ 1.

Suppose that we have a set S ⊂ R2 of n ≥ ES(k) points in general
position (that is, no three points are collinear). Let (K3

n,≺) be an ordered
3-uniform hypergraph with vertex set S where for two vertices x, y ∈ S
x ≺ y holds if their x-coordinates satisfy X(x) < X(y). Then we color an
edge {x, y, z} red if the triangle xyz is oriented counterclockwise and blue
otherwise.

Note that then a monochromatic monotone 3-uniform path in this graph
corresponds to a (special) convex k-gon in S (which is sometimes called a
k-cup or a k-cap). The previous result of Moshkovitz and Shapira then gives
us the desired upper bound ES(k) ≤

(
2k−4
k−2

)
+ 1. Note that, similarly as in

the first motivation example, the obtained 2-coloring is transitive.
A long standing conjecture of Erdős and Szekeres says that ES(k) =

2k−2 + 1. The language of ordered hypergraphs also allows us to state the
generalized version of this conjecture introduced by Peters and Szekeres [30].
Let L ⊆ {2, . . . , k − 1} for some k ≥ 3 and let (PPL,≺) denote an ordered
3-uniform hypergraph with vertex set {v1, . . . , vk} consisting of a red hy-
perpath P on vertices vi with i ∈ {1, k} ∪ L and a blue hyperpath Q on
vertices vi with i ∈ {1, . . . , k} \ L where vi ≺ vj if i < j. Note that for
L = ∅ the path P does not have any edges and the same holds for Q and
L = {2, . . . , k − 1}.
Conjecture 2.6 (G. Szekeres and L. Peters [30]). For k ≥ 3 and for every
complete ordered 3-uniform hypergraph (H, <) on 2k−2 + 1 vertices with
edges colored red and blue there exists L ⊆ {2, . . . , k − 1} such that (H, <)
contains (PPL,≺) as an ordered subgraph.

Using computer experiments Peters and Szekeres verified this conjecture
for k ≤ 5 and showed a construction which achieves the same lower bound
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for general k. This construction also follows from the construction of Erdős
and Szekeres.

Extremal Problems on Matrices. The last motivation example shows
a connection between extremal theory of {0, 1}-matrices (see [4, 17], for
example) and ordered Turán numbers of ordered bipartite graphs. This is
particularly useful for us, as we use some results from this area later in this
paper, see Section 3.2.

A {0, 1}-matrix A contains an r × s submatrix M if A contains a sub-
matrix M which has ones on all the positions where M does. A matrix A
avoids M if it does not contain M . The extremal function of M is the max-
imum number exM (m,n) of 1-entries in an m × n {0, 1}-matrix avoiding
M .

Consider a complete bipartite graph Kr,s with the following vertex or-
dering which we denote as Csep: if Kr,s is a complete bipartite graph with
vertices divided into classes A and B of size r and s respectively, then
for every x ∈ A and y ∈ B we have x Csep y. The rest of Csep can be
completed arbitrarily, as the vertices from the same color class are indis-
tinguishable. See Figure 2 for an example. Note that (Kr,s,Csep) does not
contain (Pl,Cmon), l ≥ 3, as a subgraph.

Let (G = (A ∪ B,E),≺), |A| = r and |B| = s, be a a subgraph of
(Kr,s;Csep). Then (G,≺) corresponds to a r × s {0, 1}-matrix M(G,≺)
where the i-th row represents the i-th vertex of A in ≺ (the same holds for
columns and vertices in B) and M(G,≺)i,j = 1 if vi ∈ A and vj ∈ B are
adjacent and 0 otherwise. It is easy to see that the Turán number of (G,≺)
in (Km,n,Csep) is exactly the value of exM(G,≺)(m,n).

Figure 2: The ordered complete bipartite graph (K4,3,Csep) with distin-
guished vertex classes.

2.3 Our Results

The main field of our interest are graphs and the effects of vertex orderings
on Ramsey numbers of various classes of graphs. For many of these classes
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the unordered Ramsey numbers were resolved a long time ago, but adding
the vertex orderings can lead to completely different results. Some examples
of differences between ordered and unordered Ramsey numbers can be seen
already in the motivation examples.

For example, Proposition 2.3 shows that there is a graph G and its
vertex ordering ≺ such that the unordered Ramsey number R(G; c) and the
ordered Ramsey number RO((G,≺); c) differ in an asymptotically relevant
manner, since the unordered Ramsey number R(Pr; c) for paths is linear
with respect to r while RO((Pr,Cmon); c) is quadratic.

Even larger gap can be obtained concerning hypergraphs of higher uni-
formity. It is known that Ramsey numbers Rk(H; 2) of sparse unordered k-
uniform hypergraphs H are linear with respect to the number of vertices H.
Formally, for positive integers ∆ and k, there exists a constant C(∆, k) such
that if H is a k-uniform hypergraph with r vertices and maximum degree ∆,
then Rk(H; 2) ≤ C(∆, k)r (see [9]). In contrast to this result, Theorem 2.4
together with the fact P1(n) =

(
2n
n

)
gives us RO3((P 3

r ,Cmon); 2) =
(
2r−4
r−2

)
.

Thus we see that there are 3-uniform hypergraphs H and vertex orderings ≺
such that RO3((H,≺); 2) grows exponentially with the number of vertices
of H while R3(H; 2) remains linear.

In the first part of this paper we try to derive Ramsey numbers for
various classes of ordered graphs: stars, paths and cycles. First, we show
that Ramsey numbers of all ordered stars are linear with respect to the
number of vertices.

Theorem 2.7. For positive integers c and r1, . . . , rc and for a collection of
ordered stars (K1,r1−1,≺1), . . . , (K1,rc−1,≺c) there is a constant C = C(c)
such that

RO((K1,r1−1,≺1), . . . , (K1,rc−1,≺c)) ≤ C max{r1, . . . , rc}.

Considering the multi-colored case we find a graph G and its vertex
orderings ≺ and ≺′ such that Ramsey numbers for (G,≺) and (G,≺′) differ
exponentially in the number of colors (Proposition 3.4). This result is an
example of the fact that long monotone paths as ordered subgraphs affect
ordered Ramsey numbers significantly. We also derive some exact formulas
for Ramsey numbers of specific ordered stars.

In the following section we discuss ordered cycles. First, we show Ramsey
numbers for all possible orderings of C4 (Proposition 3.10). Then we derive
the exact formula for ordered Ramsey numbers of so called monotone cycles
(Cn,Cmon) which consist of a monotone path on vertices v1 Cmon . . .Cmon
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vn with the edge {v1, vn} added. See an example of a monotone cycle in
Figure 3.

Figure 3: The monotone cycle (C6,Cmon).

Theorem 2.8. For integers r ≥ 2 and s ≥ 2 we have

RO((Cr,Cmon), (Cs,Cmon); 2) = 2rs− 3r − 3s+ 6.

As a consequence of this theorem we obtain tight bounds for so called
geometric and convex geometric Ramsey numbers of cycles which which
were introduced by Károlyi et al. [21, 22]. The definitions as well as the
result, Corollary 3.12, are mentioned in Section 3.3.

In Section 3.2 we show, using specific ordered paths, that there are
graphs for which different ordering schemes can affect ordered Ramsey num-
bers in an asymptotically relevant term.

Then we derive some general lower bounds for ordered Ramsey num-
bers. We apply a probabilistic approach showing a general lower bound for
ordered Ramsey numbers which depends on the density of the given graph.
See Proposition 4.1 which implies the following assertion.

Proposition 2.9. Let c ≥ 2 be a positive integer and let (G,≺) be an
ordered graph with n vertices and n1+ε edges, ε > 0. Then RO((G,≺); c) =
Ω(ncn

ε

) holds.

Then we construct a graph with maximum degree three whose ordered
Ramsey number grows faster than quadratically with respect to its size
(Theorem 4.3). This result is in contrast with unordered Ramsey theory,
where, as we previously discussed, it is known that graphs with bounded
degrees have linear Ramsey numbers.

At the end of the paper, we discuss several new open problems and
possible ways for further research.
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3 Ordered Ramsey Numbers for Specific
Classes of Graphs

In this section we compute Ramsey numbers for various classes of ordered
graphs such as stars, cycles and paths. We use some of the results later
to derive more general bounds. We also compare the formulas obtained
and bounds with known Ramsey numbers of unordered graphs and discuss
relations between those cases.

3.1 Stars

A star is a complete bipartite graph K1,r−1. Since there are only two groups
of indistinguishable vertices, the position of the central vertex determines
the ordering uniquely up to isomorphism. Ramsey numbers of unordered
stars are known exactly [2] for a long time now and they are given by

R(K1,r−1; c) =

{
c(r − 2) + 1 if c ≡ r − 1 ≡ 0 (mod 2),

c(r − 2) + 2 otherwise.

Using a simple observation a similar formula can be derived for ordered
stars (K1,r−1,Cmin) where Cmin is a vertex ordering in which the central
vertex is the minimum element.

Figure 4: The ordered star (K1,6,Cmin).

Observation 3.1. For positive integers c, r1, . . . , rc we have

RO((K1,r1−1,Cmin), . . . , (K1,rc−1,Cmin)) = 2(1− c) +

c∑

i=1

ri.

Proof. Assume that we have a complete ordered graph (Kn,≺) with n ≥
2(1 − c) +

∑c
i=1 ri vertices and c-colored edges. Then, according to the

pigeon-hole principle, the first vertex in ≺ has at least ri−1 right neighbors
in color i. This forms a monochromatic copy of (K1,ri−1,Cmin).
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On the other hand, we can construct a graph on 1−2c+
∑c

i=1 ri vertices
which does not contain any forbidden star. It suffices to divide the right
neighbors of each vertex v into c parts where the i-th part has size at most
ri − 2 and each of its vertices is adjacent to v with an edge colored with
i.

Thus in the case r1 = · · · = rc = r the ordered Ramsey numbers are
almost the same as the unordered ones. They differ by one only if c ≡
r − 1 ≡ 0 (mod 2). One can observe that a complete characterization
of ordered Ramsey numbers for two arbitrary ordered stars is implied by
results of Choudum and Ponnusamy [6]. For integers x, y, let ≺r,s denote
an ordering of star on r + s− 1 vertices where r − 1 vertices are to the left
of the central vertex and s− 1 vertices are to the right.

Theorem 3.2 ([6]). For any two integers r1, r2 ≥ 2 we have

RO((K1,r1−1,Cmin), (K1,r2−1,C
−1
min)) =

b−1 +
√

1 + 8(r1 − 2)(r2 − 2)/2c+ r1 + r2 − 2.

Moreover, for arbitrary stars K1,r1−1, K1,r1+s1−2 and K1,r2+s2−2 we have

RO((K1,r1−1,Cmin), (K1,r2+s2−2),≺r2,s2) =

RO((K1,r1−1,Cmin), (K2,r2−1,C
−1
min)) + r1 + s2 − 3

and

RO((K1,r1+s1−2,≺r1,s1), (K1,r2+s2−2,≺r2,s2)) =

RO((K1,r1−1,C
−1
min), (K1,r2+s2−2,≺r2,s2))+

RO((K1,s1−1,Cmin), (K1,r2+s2−2,≺r2,s2))− 1.

We further show that for any vertex ordering Ramsey numbers of ordered
stars also remain linear with respect to the size of the stars for an arbitrary
number of colors. That is, Theorem 2.7 which we restate for convenience:

Theorem 3.3. Let c, r1, . . . , rc be positive integers and let (K1,r1−1,≺1),
. . . , (K1,rc−1,≺c) be ordered stars. Then there is a constant C = C(c) such
that

RO((K1,r1−1,≺1), . . . , (K1,rc−1,≺c)) ≤ C max{r1, . . . , rc}.
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Proof. Let r = max{r1, . . . , rc} and let (Kn,≺) be an ordered complete
graph on n = Cr vertices with edges colored by {1, 2, . . . , c} where C is a
sufficiently large constant. Let A0 be the vertex set of (Kn,≺). We want
to find a vertex with r − 1 left and r − 1 right neighbors of the same color
i. Then (K1,ri−1,≺i) is clearly contained in (Kn,≺). So suppose for a
contradiction that there is no star (K1,ri−1,Cmin) of color i in (Kn,≺).

Note that each vertex which is at least (c(r − 1) + 2)-th in the ordering
≺ (taken from left) has, according to the pigeon-hole principle, at least r−1
left neighbors of the same color. Thus we have at least Cr − c(r − 1) − 1
vertices with at least r−1 monochromatic left neighbors. We consider a set
A1 of vertices which have at least r − 1 left neighbors of color 1. Without
loss of generality we may assume that |A1| ≥ (Cr − c(r − 1)− 1)/c.

From the assumption there is no vertex in A1 with at least r − 1 right
neighbors of color 1, as otherwise we would have (K1,r1−1,≺1) of color 1.
Thus between vertices in A1 there is less than (r − 1)|A1| edges of color 1,
since every one of them is counted for its left endpoint. Also we see that A1

contains at least (|A1| − (c(r− 1)− 1))/c vertices which have at least r− 1
right neighbors in A1 all of the same color i (without loss of generality, let
i = 2). We denote this set as A2. From the assumption the vertices in A2

have less than r−1 left neighbors of color 2 in (Kn,≺) and thus there is less
than (r− 1)|A2| edges of color 2 (and 1, since A2 ⊆ A1) between vertices in
A2.

We repeat this process analogously, bounding the number of edges of
colors 1, . . . , i in Ai by (r−1)|Ai| and keeping |Ai| ≥ (|Ai−1|−c(r−1)−1)/c
for i ≥ 1. After all colors are processed we get, summing over all colors,
that the number of all edges is strictly less than c(r − 1)|Ac|. The total

number of edges connecting vertices from Ai is exactly
(|Ai|

2

)
. Altogether

we have obtained |Ac|(|Ac| − 1)/2 < c(r− 1)|Ac| which can be rewritten as
|Ac| < 2c(r − 1) + 1. However |Ac| = Ω(Cr/cc) and thus we can choose C
large enough so that the upper bound on Ac does not hold and obtain a
contradiction.

Since we know that Ramsey numbers for unordered stars and for stars
ordered according to Cmin are linear even with respect to the number of
colors, one might ask if this is a case also for other vertex orderings and if
the upper bound from the previous theorem is not too weak. The following
proposition shows that this is not the case, since the situation there turns
out to be substantially different from the one for Cmin. Even for orderings
of stars in which the central point has only a single left neighbor Ramsey
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numbers grow exponentially with respect to the number of colors. A similar
construction as been known for the paths P3.

Proposition 3.4. Let c, d, r1, . . . , rc be positive integers, (G1,≺1), . . . ,
(Gc,≺c) be ordered graphs such that (Pd,Cmon) ⊆ (Gi,≺i) and |V (Gi)| = ri
for every i = 1, . . . , c. Then we have

RO((G1,≺1), . . . , (Gc,≺c)) > (d− 1)c−1(max{r1, . . . , rc} − 1).

Proof. Let (Kn,≺) be an ordered complete graph on vertices v1 ≺ . . . ≺ vn
where n = (d − 1)c−1(r − 1) and r = max{r1, . . . , rc}. Without loss of
generality, let r = r1. We color edges of (Kn,≺) with c colors from {1, . . . , c}
such that it does not contain a monochromatic copy of any (Gi,≺i), i =
1, . . . , c.

The construction of the coloring is done by induction on c. For c = 1 we
have a monochromatic clique of color 1 with r − 1 vertices. Such a clique
cannot contain even any unordered monochromatic Gi. For c > 1 we color
the cliques on vertices which are divided into (d−1) consecutive blocks each
of size (d−1)(c−2)(r−1) using d−1 colorings from the previous step. Then
we use color c to color all edges between those d − 1 cliques to obtain a
c-coloring of all edges. See Figure 5.

Using the inductive hypothesis it suffices to show that this coloring does
not contain (Gr,≺c) in color c. Since (Pd,Cmon) is an ordered subgraph of
(Gr,≺c), while (Pd,Cmon) is not contained in the ordered complete (d−1)-
partite graph which is induced by the edges colored with c, we get the
rest.

r − 1

Figure 5: The construction in the proof of Proposition 3.4 for d = 3 and
c = 4.
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Corollary 3.5. Let c and r1, . . . , rc be positive integers and let ≺i 6= Cmin,
C−1min be a vertex ordering of K1,ri−1 where i = 1, . . . , c. Then we have

RO((K1,r1−1,≺1), . . . , (K1,rc−1,≺c)) > 2c−1(max{r1, . . . , rc} − 1).

Corollary 3.6. Let c and r1, . . . , rc be positive integers and let (G1,≺1

), . . . , (Gc,≺c) be ordered graphs on r1, . . . , rc vertices respectively. If no Gi

is bipartite, then we have

RO((G1,≺1), . . . , (Gc,≺c)) > 2c−1(max{r1, . . . , rc} − 1).

Proof. According to Proposition 3.4 it suffices to show that (P3,Cmin) is
contained in every given ordered graph. Since each Gi is not bipartite, it
contains an odd cycle. Now it is easy to observe that in any ordering of an
odd cycle there is always a monotone path with three vertices.

3.2 Paths and Matchings

Before discussing ordered Ramsey theory for paths, we, again, recall results
for unordered Ramsey numbers of paths. For two colors the problem of
finding an exact formula for R(Pr, Ps) has been settled by Gerensér and
Gyárfás [18] who showed that for 2 ≤ r ≤ s

R(Pr, Ps) = s− 1 +
⌊r

2

⌋

holds. The multi-color case turned out to be more difficult, but some partial
results are known (see [15, 20], for an example).

The following natural question arises in ordered Ramsey theory: is
there a graph G with two vertex ordering schemes C and C′ such that
RO((G,C); 2) and RO((G,C′); 2) differ in an asymptotically relevant term
with respect to the number of vertices of G? Using a specific ordering of
the path Pr we show that this is indeed the case.

We know (see Proposition 2.3) that Ramsey numbers for ordered paths
(Pr,Cmon) can grow quadratically with respect to r. Let us define another
ordering scheme of a path. If Pr is a path with vertices v1, . . . , vr and
edges {v1, v2}, {v2, v3}, . . . , {vr−1, vr}, then an alternating path (Pr,Calt) is
an ordered path where v1Caltv3Caltv5Calt . . .CaltvrCaltvr−1Caltvr−3Calt

. . .Caltv2 for r odd and v1Caltv3Caltv5Calt . . .Caltvr−1CaltvrCaltvr−2Calt
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. . . Calt v2 for r even. That is (Pr,Calt) ⊆ (Kdr/2e,br/2c,Csep). Note that
an alternating path is a subgraph of every complete ordered bipartite graph
with sufficiently many vertices and that similar statement does not hold for
monotone paths. An example of an alternating path is found in Figure 6,
part a).

b)a) 


1 0 0
1 1 0
0 1 1
0 0 1




Figure 6: An ordered path (P7,Calt) and its corresponding matrix
M(Pr,Calt).

Proposition 3.7. For every positive integer r > 2 we have

2r − 2 ≤ RO((Pr,Calt); 2) ≤ (4r − 3 +
√

8r2 − 8r − 7)/2.

Thus RO(Pr,Calt; 2) remains linear with respect to r although they are
not precise. To derive the upper bound we use a result from extremal theory
of {0, 1}-matrices which was mentioned in the motivation (Section 2.2).

The following definitions are taken from [4]. We say that a r× s matrix
M is minimalist if exM (m,n) = (s − 1)m + (r − 1)n − (r − 1)(s − 1). If
the matrix M ′ was created from a matrix M by adding a new row (or a
column) as the new first or last row (column) and this new row (column)
contains a single 1-entry next to a 1-entry of M , then we say the M ′ was
created by an elementary operation from M .

Lemma 3.8 (Z. Füredi and P. Hajnal [17]). Let M be an r × s minimal-
ist matrix and let M ′ be an r′ × s′ nonempty matrix obtained from M by
applying several elementary operations. Then M ′ is minimalist.

Proof of proposition 3.7. For the lower bound we color the edges {vi, vj} in
(K2r−3,≺) red if |i− j| is even and blue otherwise. Suppose that there is a
red copy of (Pr,Calt) in our coloring. Then the number of vertices between
the first and last one in the alternating path is at least 2r − 4 which is,
together with the first and last one, more than the total number of vertices.
An analogous argument works for a blue copy of (Pr,Calt).
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For the upper bound we find a monochromatic copy of (Pr,Calt) in a
given edge 2-colored graph (Kdn/2e,bn/2c,Csep). Suppose that at least one
half of edges is colored red and consider only such edges. Note that (Pr,Calt)
is an ordered subgraph of (Kdr/2e,br/2c) and thus we can consider the dr/2e×
br/2c {0, 1}-matrix M(Pr,Calt) = M introduced in the motivation. An
example of such matrix can be found in Figure 6, part b). By Lemma 3.8
all such matrices are minimalist.

Therefore exM (dn/2e, bn/2c) = (br/2c − 1)dn/2e + (dr/2e − 1)bn/2c −
(dr/2e−1)(br/2c− 1) and this is at most 1/4(2rn+ 4r−3n−4− r2). Thus
every Kdn/2e,bn/2c which does not contain (Pr,Calt) as a subgraph must
have at most this many edges. On the other hand our graph formed by
red edges has at least 1/2dn/2e · bn/2c ≥ n(n − 1)/8 edges. Thus to avoid
(Pr,Calt) the inequality

1/4(2rn+ 4r − 3n− 4− r2) ≥ n(n− 1)/8

must hold and consequently we obtain n ≤ (4r− 5 +
√

8r2 − 8r − 7)/2 and
the result follows.

There is still a place for improvement, as the multiplicative factor is
between 2 and 2+

√
2. Computer experiments indicate that the right values

of RO(Pr,Calt; 2) could be of the from b(r − 2) 1+
√
5

2 c+ r. See Table 1.

r 2 3 4 5 6 7 8 9 10 11
RO((Pr,Calt); 2) 2 4 7 9 12 15 17 ≥ 20 ≥ 22 ≥ 25

Table 1: Estimates for Ramsey numbers RO((Pr,Calt); 2) for r ≤ 13.

If we consider orderings Cmon and Csep and compare the previous result
with Proposition 2.3, we see that there is a graph G on n vertices and
ordering schemes C and C′ of G such that RO((G,C); 2)/RO((G,C′); 2) =
Ω(n).

Similar result can be derived if we consider matching Mn, which is a
graph on n vertices consisting of bn/2c disjoint pairs of edges, and the two
orderings from Figure 7. Again, using a coloring similar to the one from
Proposition 2.3 we see that ordered Ramsey number of the first ordered
matching grows quadratically with respect to n while one can observe that
for the second one the ordered Ramsey number remains linear in n.
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Figure 7: Two orderings of Mn with asymptotically different ordered Ram-
sey numbers.

For general ordered paths not much is known currently. In [5] J. Cibulka
et al. showed that for every ordered path (Pr,≺) and clique Ks we have

RO((Pr,≺), (Ks,≺′)) ≤ 2dlog2(s)e(dlog2(r)e+1).

That is, for general ordered paths (Pr,≺) we have RO((Pr,≺); 2) ≤ rO(log(r)).
We are not aware of any other general bounds.

3.3 Cycles

Ramsey numbers for (unordered) cycles are known for some time now. It is
a folklore in Ramsey theory that R(C3; 2) = R(C4; 2) = 6 holds. The first
partial results on Ramsey numbers of cycles were obtained by Chartrand
and Chuster [3], and Bondy and Erdős [1]. These were later extended by
Rosta [28], and Faudree and Schelp [14]. Nowadays we know all values of
Ramsey numbers for cycles in 2-colored complete graphs:

R(Cr, Cs) =





2r − 1 if (r, s) 6= (3, 3) and 3 ≤ s ≤ r,
s is odd,

r + s/2− 1 if (r, s) 6= (4, 4) and 4 ≤ s ≤ r,
r and s are even,

max{r + s/2− 1, 2s− 1} if 4 ≤ s < r, s is even and

r is odd.

The multicolor case turned out to be more demanding (see [10, 23, 24]),
but the following is known.

Theorem 3.9 (T. Luczak et al. [24]). For every c ≥ 4 and n odd, we
have R(Cn; c) ≤ c2cn + o(n), and for every c ≥ 2 and n even, we have

R(Cn; c) ≤ cn+ o(n) as n→∞.
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Similarly to the original development in unordered Ramsey theory we
also first focus on small examples before we target the general case. The
first obvious case is C4. This ordered graph has three possible orderings
up to isomorphism, see Figure 8. In the following proposition we show how
Ramsey numbers of ordered C4 behave.

(C4,≺A) (C4,≺B) (C4,≺C)

Figure 8: Possible orderings of C4.

Proposition 3.10. We have

1. RO((C4,≺A); 2) = 14,

2. RO((C4,≺B); 2) = 10,

3. 11 ≤ RO((C4,≺C); 2) ≤ 13.

Proof. The lower bounds follow from the colorings presented in Figure 9,
thus it remains to show the upper bounds for each ordering. For this,
suppose that (Kn,≺) is an ordered complete graph with 2-colored edges
(red and blue) where n is relevant to each case.

1. This result is implied by far more general statement, see Theorem 2.8
whose proof is shown bellow.

2. Suppose for contradiction that (K10,≺) does not contain monochro-
matic (C4,≺B). That is, no two vertices share a monochromatic right
common neighborhood of size at least two. Then our claim is that K10

does not contain a vertex with monochromatic right degree grater than
five. If it does, then without loss of generality there is a vertex v with
right red degree at least six. This red neighborhood contains a ver-
tex w which either has a red right degree at least two or a blue right
degree at least four. To avoid (C4,≺B) the second case has to occur.
However then the same observation implies that this blue neighbor-
hood of w contains a vertex with either red or blue left degree at least
two. In any case we obtain (C4,≺B) and thus a contradiction.
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a)

b)
c)

Figure 9: Colorings for the lower bounds in the proof of Proposition 3.10.

Thus there is no vertex with monochromatic right neighborhood of
size at least six. From the assumptions each pair of vertices has at
most one common neighbor in every color. Without loss of generality
we assume that the first vertex v1 in ≺ has a red right degree five and
a blue right degree four.

If the second vertex v2 is a a blue neighbor of v1, then it has at most
one (right) red neighbor between red neighbors of v1 and the remaining
four are its blue neighbors. Then however the third vertex v3 has at
least two common right monochromatic neighbors either with v1 or v2
between these four vertices.

If v2 is a red neighbor of v1, then it necessarily has three blue right
neighbors between the remaining four red neighbors of v1 and three

26



red neighbors between four blue neighbors of v1. Independently on
the location of v3 we get that v3 has at least two common neighbors
of the same color either with v1 or v2.

3. The first vertex v1 in (K13,≺) has either six blue and six red left
neighbors, or at least seven monochromatic neighbors. In any case,
since every two vertices can have at most a single common neighbor
of the same color between them, there are (without loss of generality)
at least five vertices which are red right neighbors of v1 and blue left
neighbors of vn. We can see that those five vertices has always either
a vertex with red left degree at least two or a vertex with blue right
degree at least two. Both situations imply the existence of (C4,≺C).

Computer experiments have shown that the lower bound in the third
case is optimal, that is RO((C4,≺C); 2) = 11. Again, one can see that the
ordered Ramsey numbers differ from the unordered ones.

Similarly as with paths, the most natural ordering scheme is the mono-
tone one. In the rest of the section we establish the precise value of ordered
Ramsey numbers for monotone cycles. That is, Theorem 2.8 which says
that

RO((Cr,Cmon), (Cs,Cmon)) = 2rs− 3r − 3s+ 6

for every r, s ≥ 2. Note that the obtained formula is much simpler than the
one in the unordered case. Before proving this statement, we first prove an
auxiliary lemma.

Lemma 3.11. For positive integers r and s and every total ordering ≺ we
have

RO((Pr,Cmon), (Ks,≺)) = (r − 1)(s− 1) + 1.

Proof. The lower bound can be obtained from the same construction as in
the proof of Proposition 2.3 (see [29]). For the upper bound we use induction
on r. If r = 2, then this statement holds since we either have a monochro-
matic Ks, or a blue edge. Suppose that r > 2 and let (K(r−1)(s−1)+1,≺′)
be an ordered complete graph with edges colored red and blue. Assume
that it does not contain blue (Ks,≺) nor red (Pr,Cmon). Using inductive
hypothesis we know that there is at least

(r − 1)(s− 1) + 1− (r − 2)(s− 1) = s

27



distinct vertices which are the last vertices of a red copy of (Pr−1,Cmon).
From the assumption every edge between such vertices is blue, otherwise
we would extend one of these paths. However then we have a blue copy of
Ks, a contradiction.

As a simple corollary of this lemma one can see that for every ordered
graph (G,≺) on s vertices which contains a monotone Hamiltonian path we
have RO((Pr,Cmon), (G,≺)) = (r−1)(s−1)+1. This, again, supports the
idea that monotone paths play an important role in the ordered Ramsey
theory.

Proof of Theorem 2.8. First, we show the upper bound. In an ordered 2-
colored complete graph (Kn,≺) with n = 2rs − 3r − 3s + 6 vertices the
first vertex v1 has either at least (r− 2)(s− 1) + 1 red neighbors or at least
(r− 1)(s− 2) + 1 blue neighbors, according to pigeon-hole principle. In the
first case there is, according to Lemma 3.11, a red copy of (Pr−1,Cmon)
which creates red (Cr,Cmon) together with v1 or a blue copy of (Cs,Cmon).
The second case with large blue neighborhood is analogous and we thus
always get either red (Cr,Cmon) or blue (Cs,Cmon).

For the lower bound we show a coloring of (Kn,≺) where n = 2rs−3r−
3s+5, which avoids a red copy of (Cr,Cmon) and a blue copy of (Cs,Cmon).
An example of such coloring for r = s = 4 can be found in Figure 9, part
a). Consider a partition of the vertex set of (Kn,≺) into the following
consecutive (in the ordering ≺) and disjoint subsets which we denote as Si,
i = 1, 2, . . . , 2r − 3. If r is odd, then the first and last (r − 1)/2 subsets Si

in ≺ have size s− 1 and the remaining r − 2 subsets Si have size s− 2. If
r is even, then the first and last (r − 2)/2 subsets Si contain s− 2 vertices
and the remaining r − 1 subsets Si have s − 1 vertices. Note that in both
cases we have n vertices in total. We assume that the vertices of Si are of
the form vij where j = 1, . . . , |Si| and vij ≺ vik whenever j < k. We also refer

to the index j as the index of a vertex vij .
The coloring of the edges is then defined as follows. First, we color all

edges between vertices from the same set Si blue. Next, we introduce four
types of pairs (Si, Sj), i < j, according to which we color edges between
vertices from sets Si and Sj . We say that (Si, Sj), i < j, is of the type:

• T< if j − i ≤ r − 2 and |Si| ≤ |Sj |. In this case we color the edges

{vik, vjl } blue if k < l and red otherwise.
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• T≥ if j− i > r−2 and |Si| < |Sj |. Then the edges {vik, vjl } are colored
blue if k ≥ l and red otherwise.

• T> if j− i > r−2 and |Si| ≥ |Sj |. Then the edges {vik, vjl } are colored
blue if k > l and red otherwise.

• T≤ if j− i ≤ r−2 and |Si| > |Sj |. Then the edges {vik, vjl } are colored
blue if k ≤ l and red otherwise.

The main idea is that for the types T< and T≤ we color blue the edges
between vertices such that their indices are increasing or non-decreasing (i.e.
those vertices are relatively far from each other), while for T> and T≥ the
indices are decreasing or non-increasing (such vertices are relatively close
to each other). For red edges, the indices behave exactly opposite. The
distribution of the types of pairs, as well as the definition of those types, is
illustrated on small examples in the following two figures.

Si Sj Si Sj

Si Sj Si Sj

T<: T≥:

T≤:T>:

Figure 10: The types of pairs (Si, Sj) for s = 5 and colorings of correspond-
ing edges.

It remains to show that this coloring avoids forbidden cycles. We claim
that our coloring does not contain a red copy of (Cr,Cmon). To prove this
claim, suppose for a contradiction that there is such a copy. Note that it
contains at most one vertex from each set Si, because their vertices induce
blue cliques. The monotone path of length r induced by a red cycle also
cannot have an edge which connects vertices from Si and Sj where (Si, Sj)
is of type T> or T≥, because in both cases we do not use vertices from at
least r−2 sets Sk. This leaves at most 2r−3−(r−2) = r−1 sets each from
we can use a single vertex. This is not possible, as (Cr,Cmon) contains r
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T>

T≤ T<

s − 1 s − 1

S1 S2 S3

T>

T≥ T>

T< T< T<

T< T< T< T≤

s − 1 s − 1 s − 1s − 2 s − 2

S1 S2 S3 S4 S5

s − 2

a) b)

Figure 11: Distribution of types of pairs (Si, Sj) for r = 3 (part a) and
r = 4 (part b).

vertices. Hence the vertex indices on this monotone path are non-increasing,
as the path uses red edges between pairs (Si, Sj) only of types T< or T≤.

Since the number of sets Si of size s − 1 and the sets of size s − 2 is
less than r, we have to use vertices from both of those variants. If we
have an edge between (Si, Sj) of type T≤ in the monotone path, then the
vertex indices decrease at least once (as they are connected with a red edge).
However the longest edge in our red cycle is between sets of type T> or T≥
and thus it connects vertices whose indices are non-decreasing. This is a
contradiction, because from our observations their indices should decrease.

The other possibility is that all edges of the red monotone path are
between pairs of types T<. Then the longest edge of the red cycle is of type
T≥, because it has to connect Si with Sj where |Si| < |Sj |. Here we have
used the specific distribution of small and large sets Si. However then the
vertex indices have to increase at least once and we already observed that
this is not possible. A contradiction.

Now we prove the nonexistence of a blue copy of (Cs,Cmon). Again,
suppose that there is such a cycle. This time, we can use edges whose both
endpoints are in the same Si. However the blue cycle has to use vertices
from at least two sets Si, because neither of them contains s vertices.

Consider the blue monotone path of length s in our blue cycle. If it
does not contain an edge between (Si, Sj) of type T> or T≥, then the vertex
indices are non-decreasing. According to the distribution of small and large
sets Si, there is at most one edge between vertices with the same vertex
index. Such an edge corresponds to a jump from a larger Si to a smaller Sj ,
i.e. a pair of type T≤. Therefore the length of every such blue monotone
path is at most vertex index of its last vertex plus one, where the additional
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one is added only when we use the previously described jump. Since every
vertex has index at most s − 1, we see that the path uses exactly one pair
of type T≤. Then the vertices of the path cannot remain in the smaller sets
Si, as their indices would be at most s− 2. However then the edge between
the first and the last vertex of the path must be of type T>, because we
need to jump from a larger set to a smaller one and then conversely (for r
even this is already impossible), thus this edge is between Si and Sj of the
same size and j − i > r − 2. Then the indices decrease at least once and
this is impossible.

The last case to analyze is when the blue monotone path uses (exactly
once) an edge e between Si and Sj with j − i > r− 2, i.e. a pair T> or T≥.
Such an edge is at most one, because it jumps over at least r−2 sets and we
have 2r−3 in total. Thus all the other edges of this path are either between
pairs (Si, Sj) of types T< or T≤ or they connect vertices from the same set.
That is, except of the edge e the indices of endpoints of all other vertices
are non-decreasing. The only case when vertex indices are not increasing is
when we jump using an edge from a larger set to a smaller one and this can
also happen at most once, according to the distribution of small and large
sets. The construction implies that the longest edge of the blue monotone
cycle is between a pair of type T> or T≥, therefore the index of the last
vertex is at most as large as the index of the first vertex.

Suppose that we do not use a pair of type T≤. Then the indices on the
path increase by at least s − 2, because we use s − 2 pairs of type T< or
edges within the same Si. The only possibility for the indices to decrease
is on the edge of type T>, because the decrease must be by at least s − 2,
thus we need to jump from vertex with index s − 1 to a vertex with index
1. We cannot do this with an edge of type T≥, as it jumps from a smaller
set where the indices are at most s − 2. Now, consider the longest edge in
the cycle. It must be of type T> or T≥ as it jumps across at least r−2 sets.
However neither of the possibilities can occur. The edge of type T> would
connect vertices whose indices decrease, but the last vertex has index of size
at least as large as the index of the first one, according to the size of the total
decrease and increase. The longest edge of type T≥ would connect a vertex
from a smaller set Si with a vertex from larger Sj and this is impossible
according to the distribution of the sets, because we have used an edge of
type T>.

So assume that we have used (exactly once) an edge of type T≤ to jump
between vertices whose indices are the same. Such an edge connects a larger
set with a smaller one and thus, according to their distribution, the longest

31



edge in the cycle is of type T>. This means that the index of the first vertex
is strictly larger than the index of the last one. The total decrease of indices
must then be also strictly larger than their increase which is at least s− 3,
as at least s− 3 edges of the path are of type T< or are between edges from
the same Si. To finish the proof note that we cannot use an edge of type
T> on the path together with the edge of type T≤. This is again because of
the distribution of the sets and thus the total decrease is at most s− 3, as
edges of type T≥ jump from a smaller to a larger set.

It could be interesting to extend this theorem to a multicolored case,
even though it might be more demanding, as this question is still open for
unordered cycles.

As noted by Cibulka et al. [5], the coloring we have just constructed
can be used to show an exact formula for so called geometric and convex
geometric Ramsey numbers for cycles which is a concept introduced by
Károlyi, Pach and Tóth [21].

For a finite set of points P ⊂ R2 in general position (no three points are
collinear), we denote as KP the complete geometric graph on P which is a
complete graph with vertex set P whose edges are straight-line segments
between pairs of points of P . The graph KP is convex if the points from P
are in convex position, that is, the set of vertices ofKP is the set of vertices of
a convex polygon. The geometric Ramsey number of G, denoted by RG(G),
is the smallest integer n such that every complete geometric graph KP on
n vertices with edges colored by two colors contains a monochromatic non-
crossing copy of G. If we consider only convex complete geometric graphs
KP in this definition, then we get so called convex geometric Ramsey number
RC(G). Note that these numbers are finite only if G is outerplanar and
that RC(G) ≤ RG(G) holds for every outerplanar graph G.

For cycles Cn, n ≥ 3, Károlyi, Pach and Tóth [22] showed an upper
bound RG(Cn) ≤ 2n2 − 6n + 6 = 2(n − 2)(n − 1) + 2 and also observed
that RC(Cn) ≥ (n− 1)2 + 1 holds. The previous theorem implies that the
upper bound is actually tight.

Corollary 3.12. For every integer n ≥ 3, we have RC(Cn) = RG(Cn) =
2(n− 2)(n− 1) + 2.

Proof. According to the upper bound of Károlyi et al. and the fact RC(Cn) ≤
RG(Cn), it suffices to show that RC(Cn) ≥ 2(n − 2)(n − 1) + 2. To do
so, we use Theorem 2.8. Consider the coloring of complete ordered graph
(KN ,≺), N = 2(n − 2)(n − 1) + 1 obtained in the proof of this theorem.
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If V (KN ) = {v1, . . . , vN} and vi ≺ vj for i < j, then we can map vi to
the points (i, i2) forming a set P ⊆ R2 and join these points by straight
line segments. Thus we obtain a convex geometric complete graph KP

on N vertices. Now, it suffices to observe that each monochromatic non-
crossing copy of Cn in KP would correspond to a monochromatic copy of
(Cn,Cmon) in (KN ,≺). This is because edges vivj and vkv` cross if and
only if i < k < j < `.

4 Lower Bounds

The following proposition, whose proof is based on a classical probabilistic
argument, gives us a general lower bound on Ramsey numbers of ordered
graphs. Using this result we can derive a lower bound for dense graphs
which is exponential in the number of vertices. Proposition 2.9 is a special
case of this assertion as if a graph G on v vertices has Ω(v1+ε) edges for
some ε > 0, then we get RO((G,≺); 2) = Ω(v2v

ε

) for any vertex ordering
≺ of G. Applying this result to complete bipartite graphs Kk,k, we see that
their ordered Ramsey numbers are bounded by Ω(k2k/2) no matter what
vertex ordering we choose. See Corollary 4.2.

Let us mention that for the unordered case, except of R(K3,3; 2) = 18,
basically no exact values for R(Kr,s; c) are known. However Chung and
Graham [7] derived the following general bounds

(2π
√
rs)1/(r+s)

(
r + s

e2

)
c(rs−1)/(r+s) < R(Kr,s; c) ≤ (s− 1)(c+ c1/r)r,

where e is the base for natural logarithms.

Proposition 4.1. Let c, r and s be positive integers and let ≺1, . . . ,≺c be
vertex orderings of a graph G = (V,E) with v vertices and m edges. Then
we have

RO((G,≺1), . . . , (G,≺c)) ≥ (2πv)1/v
(v
e

)
c(m−1)/v.

Proof. Let (Kn,≺) be a complete ordered graph. We c-color its edges inde-
pendently at random with probability 1/c for each color. Then the proba-
bility that a set S ⊂ V of size v induces (G,≺i) in color i is (1/c)m, since
the ordering ≺i determines the set of edges.
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Using union bound we derive

Pr[∃i ∈ {1, . . . , c} such that (G,≺i) ⊆ (Kn,≺) in color i] ≤
(
n

v

)
· c ·

(
1

c

)m

=

(
n

v

)(
1

c

)m−1
≤ nv

v!

(
1

c

)m−1
.

Considering the Stirling’s approximation formula k! ∼
√

2πk
(
k
e

)k
we can

bound this probability from above by

nv√
2πv

(
v
e

)v
cm−1

.

This expression is strictly smaller than 1 for n < v
√

2πv(v/e)c(m−1)/v.
Hence we get that for such n there exists a c-coloring of edges of (Kn,≺)
which avoids (Kr,s,≺i) for all i = 1, . . . , c.

Corollary 4.2. Let c, r and s be positive integers and let ≺1, . . . ,≺c be
vertex orderings of Kr,s. Then we have

RO((Kr,s,≺1), . . . , (Kr,s,≺c)) ≥ (2π(r + s))1/(r+s) r + s

e
c(rs−1)/(r+s).

Proof. It suffices to apply Proposition 4.1 on (Kr,s,≺1), . . . , (Kr,s,≺c) where
m = rs and v = r + s.

The same approach used for unordered complete bipartite graphs pro-

duces a lower bound which would differ by r+s

√(
s+t
s

)
. For n→∞ this can

be treated as a constant C ≤ 2, because the binomial coefficient is largest
when s = t and

(
2k
k

)
∼ 4k/

√
πk.

Seeing how lower bounds for dense ordered and unordered graphs start
growing exponentially, one might ask: what is the maximum difference be-
tween ordered and unordered Ramsey numbers of a given graph? That is,
what is the maximum asymptotic ratio between R(G; 2) and RO((G,C); 2)
taken over all ordered graphs (G,C)? For sparse graphs we can consider

the ratio RO((G,C);2)

R(G;2) , while for dense graphs the ratio logRO((G,C);2)
logR(G;2) might

be more convenient, as we know, according to the previous proposition,
that their ordered Ramsey numbers are exponential. So far we have seen
examples (monotone paths and cycles) where the order of this first ratio
was O(n). Using the fact that graphs with bounded maximum degree have
linear Ramsey numbers with respect to their size, the following theorem
implies that we can do better.
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Theorem 4.3. There is a graph G with maximum degree three and ordering
C of its vertices such that RO((G,C); 2) = Ω(nlog2 5).

Proof. First, we show a recursive construction of such ordered graph, which
we denote as (Gk,Ck), k ∈ N. Let (G1,C1) consist of a single edge. Then
for k ≥ 1 the graph (Gk+1,Ck+1) is constructed as follows. Let nk =
|V (Gk)| and consider vertices v0 Ck+1 . . . Ck+1 v2nk+1. On the vertices
from {vink+1, . . . , v(i+1)nk

}, i = 0, 1, we build copies of (Gk,Ck) and then
we place new edges {vnk

, vnk+1}, {v2nk
, v2nk+1}, {v0, v1} and {v0, v2nk+1}.

That is, (Gk+1,Ck+1) consists of two consecutive copies of (Gk,Ck) and
two new extremal vertices placed on Hamiltonian monotone cycle. The first
steps of the construction are depicted in Figure 12, part a). It is easy to
check that nk = 2k+1 − 2 and that no vertex has degree more than three.

. . .

a)

b)

S1 S2 S3 S4 S5

R

Figure 12: Construction of the graphs Gk (a) and colorings ck (b).

Now, we show a construction of a coloring ck of a sufficiently large com-
plete graph which avoids monochromatic copy of (Gk,Ck). We do it, again,
recursively with respect to k. Let Nk denote the number of vertices of a
complete graph whose edges are being colored according to ck. The coloring
c1 is trivial, as we set N1 = 1. For k ≥ 1, let Nk+1 = 5Nk = 5k and let the
given ordered set of Nk+1 vertices be separated into five disjoint consecutive
subsets Si of size Nk. We color the edges induced by the vertices from each
Si by ck. It remains to color the edges between Si and Sj , i 6= j. To do so,
we use the coloring from Figure 12, part b), which avoids monochromatic
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monotone cycles. Each set Si corresponds to the i-th vertex of the graph R
from this figure and all edges between Si and Sj get the same color as the
edge between the i-th and j-th vertex in R.

It remains to show that there is no monochromatic copy of (Gk,Ck) in
(KNk

,≺) colored with ck. This is done by induction on k. The coloring c1
avoids (G1,C1) as KN1 has only one vertex. Let k ≥ 2 and suppose for a
contradiction that there is a monochromatic copy of (Gk,Ck) in (KNk

,≺).
Then this copy cannot be contained in at most two sets Si, as otherwise
there would be a monochromatic copy of (Gk−1,Ck−1) in one of those sets.
However this is impossible, as the edges induced by Si are colored by ck−1
which, using inductive hypothesis, avoids such copy. Thus (Gk,Ck) occu-
pies at least three sets Si. However this is also impossible, as in this case
there are edges between such sets Si which would form a monochromatic
monotone cycle of length at least three in R. In any case we have obtained
a contradiction, so we have RO((Gk,Ck); 2) ≥ Nk and expressing k as
k = log2 (nk + 2)− 1 we get the result.

The ratio between numbers R(G; 2) and RO((G,C); 2) achieved by this
theorem is
Ω(n−1+log2 5) ∼ Ω(n1.32). However the maximum difference one can obtain
is still unknown.

5 Conclusions

We have introduced Ramsey theory for ordered graphs and showed esti-
mates and exact formulas for Ramsey numbers of various classes of graphs,
including stars, complete bipartite graphs, cycles and paths. We have also
discussed how the vertex orderings can affect Ramsey numbers showing that
different orderings really matter.

There is a plenty of new questions which arise in the ordered Ram-
sey theory. We still do not know exact formulas for wide spectrum of
graphs. It could be possible to show such formulas for all ordered stars,
since their vertex orderings are not difficult to describe. Showing exact
forms of ordered Ramsey numbers for ordered complete bipartite graphs
such as (Kk,k,Csep) or (Kk,k,Cmix) might be more challenging, but some
non-trivial upper bounds or explicit constructions for lower bounds could
be also interesting.

As we already mentioned, computing the exact formula for ordered Ram-
sey numbers of monotone cycles with at least three colors involved would
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be of its own interest too. Although the monotone orderings of cycles seem
to be the most natural ones, there are also other possible orderings one can
consider. Note that every ordering of C4 shown in Figure 8 can be natu-
rally extended into the following ordering schemes. We say that a cycles
Cr with edges {v1, v2}, . . . , {vr−1, vr} and {v1, vr} is an alternating cycle if
the vertices are ordered the same as in alternating paths (see Section 3.2).
Similarly, this cycle is called mixed if v1 Cmix vr Cmix v2 Cmix vr−1 Cmix

. . . vdr/2+1eCmix vdr/2e. See Figure 13. Having these schemes we can ask, as
in the case for monotone cycles, for the exact forms of Ramsey numbers of
these ordered cycles. It could be especially interesting for even alternating
cycles, as they do not contain monotone path of length three as an ordered
subgraph. Similar situation holds for paths. Except for the well-known
monotone case, what are the Ramsey numbers of other ordered paths?

. . .

b)a)

Figure 13: An example of mixed and alternating cycles.

Computing exact formulas for Ramsey numbers are not the only prob-
lems ordered Ramsey theory can offer. We can also ask questions which
concern the structure of optimal colorings. Let us define the maximum or-
dered Ramsey number ROmax

k (H; c) for positive integers c and k and for a
k-uniform hypergraph H as the maximum of ROk((H,≺); c) taken over all
possible vertex orderings of H. We can define the minimum ordered Ram-
sey number ROmin

k (H; c) of a hypergraph H analogously. Afterwards we
can not only ask what are such Ramsey numbers for different hypergraphs,
but we can also be interested in what properties of vertex orderings make
ordered Ramsey numbers grow faster. We have observed that the length of
monotone paths contained in the ordered graphs might be important. For
paths this observation indicates that Cmon could maximize ordered Ramsey
numbers for ordered paths.

Question 5.1. Is it true that for every positive integer r we have

ROmax(Pr; 2) = RO((Pr,Cmon); 2)?
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Also, is it true that for every positive integer r we have

ROmin(Pr; 2) = RO((Pr,Calt); 2)?

More fundamental question is whether there is a formula for the numbers
ROmax(Gr; 2) or ROmin(Gr; 2) where Gr are graphs on r vertices from
some specified graph class (such as paths, cycles, cliques, etc.) and if so,
what is the asymptotic difference between those numbers?

Another very natural question is: what are the ordered Ramsey numbers
of graphs with bounded degrees? We have seen that they can grow poly-
nomially with respect to the number of vertices. However we do not have
any reasonable upper bound. So we do not even know whether there are
graphs with bounded degrees such that their ordered Ramsey numbers grow
exponentially or if those numbers are always bounded by some polynomial.

Question 5.2. Let G be a graph with maximum degree ∆ and let C be
some ordering scheme of its vertices. How fast (with respect to the number
of vertices) can RO((G,C); 2) grow?

We might also ask whether for every sparse graph G there is an ordering
of its vertices such that the corresponding ordered Ramsey number behaves
similarly as the unordered one.

Question 5.3. Is it true that for every graph G on n vertices with degrees
bounded by a constant ∆ there exists an ordering ≺ such that

RO((G,≺); 2) = Cn

where C = C(∆) is a constant which depends on ∆?

This result, if true, would be a natural strengthening of the fact that
such unordered graphs have linear unordered Ramsey numbers. The last
question we would like to mention is the following:

Question 5.4. What is the maximum difference one can get comparing
RO((G,C); 2) and RO((G,C′); 2) with respect to the size of G?

So far we have a gap which grows super-quadratically, while the upper
bound is exponential.
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Erdős and Szekeres, in: Discrete Probability and Algorithms (Springer-
Verlag, 1995), The IMA Volumes in Mathematics and Its Applications
72 (1995), 111–131.

[30] G. Szekeres and L. Peters, Computer solution to the 17-point Erős-
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Investigating Neighborhood Diversity

Martin Koutecký

1 Introduction

The topic I investigated during my time in the USA was one I already
started working on in my master thesis. It lies in the areas of parameter-
ized complexity and structural graph theory. Generally speaking, I tried to
further investigate a graph structural parameter called Neighborhood Diver-
sity. For a more detailed introduction and formal definitions see chapters 1
and 2 of my thesis.

This parameter was introduced in 2010 by Michael Lampis as an answer
to the open question of if there is a parameter for which the MSO1 model
checking problem is fixed-parameter tractable with complexity O(f(k)n)
with f an elementary function. On neighborhood diversity the function f
is just a double exponential and thus Lampis’s result answers the question
positively.

What turned out to be a somewhat more interesting property of graphs
with bounded neighborhood diversity is that many problems which are hard
even with respect to treewidth become FPT w.r.t. neighborhood diversity.
Moreover all the known results use an old (’83) result by Lenstra which says
that solving the Integer Linear Programming is FPT w.r.t. the dimension,
i.e., if we can come up with an ILP, which solves a given problem, and
the ILP uses only f(nd(G)) variables for some function f , we’ve shown the
problem to be FPT w.r.t. neighborhood diversity.

This technique works for a fairly large number of problems. This was
shown in the original paper of Lampis, in a later paper by Ganian and even
later by me and other authors. Let me summarize that in a list:

• Lampis: Coloring, Hamiltonian Cycle

• Ganian: p-Vertex-disjoint paths, Graph Motif, Precoloring
Extension

• Koutecký: Capacitated Dominating Set, Equitable Color-
ing, Complete Coloring

• Fiala, Gavenčiak, Knop, Kratochv́ıl: Generalized Channel
Assignment, Distance Constrained Labeling
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Let me stress how remarkable this is. In my experience, understand-
ing an algorithm for a specific problem parameterized by, for example,
treewidth, takes a fair amount of time. With all but one (Graph Motif)
of the above mentioned problems the algorithm is a fairly straightforward
application of the ILP technique.

At the beginning of the REU the above raised two major questions
I investigated:

1. Where does this technique fail? Is there anything hard about
neighborhood diversity?

2. Is there a way to generalize these results to some wider param-
eter? What is a good way to generalize neighborhood diversity
as a parameter?

I’ve spent most of my time trying to generalize the algorithm for Color-
ing on graphs with bounded neighborhood diversity to graphs with bounded
shrub-depth. At the very end of the REU I learned about a new paper (yet
to be published, submitted to IPEC) by Gajarský, Lampis and Ordyniak
which actually proves that this is W[1]-hard. Even though this is unfortu-
nate, I think I’ve gathered some very interesting questions and ideas and
I will be investigating them together with professors and other graduate
students in the upcoming year.

2 Research directions

2.1 Hardness and Neighborhood Diversity

One of the ways in which neighborhood diversity as a parameter is curious
is that graphs with this parameter bounded can be described in a very
concise manner. We can look at a graph of neighborhood diversity k as
a graph constructed according to some template graph by replacing the
vertices of this template with either cliques or independent sets of some
given sizes. Thus, it is enough to have the information about the template
graph (k2 bits for the edges, k bits to say which vertices are cliques and
which are independent sets) and the information of how big are the nodes
(k · log n bits), in total O(k3 log n) bits. This is of course assuming there’s
no additional information on the graph, such as labels, weights etc.

In an email Michael Lampis send me a few months ago he conjectured
that all graph problems where only the graph is the input will be FPT
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w.r.t. neighborhood diversity. This turns out to be trivially false because of
a long-known result of Courcelle, Makowsky and Rotics from 2000 showing
that MSO2 model checking on cliques cannot be even in XP (much less
FPT). But this result seems kind of weird, because intuitively, what could
possibly be hard about cliques?

So I’ve tried to understand precisely why this is happening. Unfortu-
nately the mentioned result relies on old papers about logic spectra by Fagin
from 1974 which are very hard to read and use a very different vocabulary
than today’s Finite Model Theory textbooks. Fortunately Lampis reproves
this result in his recent (’13) paper using a different, constructive technique.

The reason is, very roughly, this. First Lampis reproves the well-known
lower-bounds for MSO1 model checking by Frick and Grohe. These lower-
bounds say that checking MSO1-expressible properties cannot be done in
time f(|ϕ|)nc even on (uncolored) paths, or equivalently on unary strings.
This is done by proving that MSO1 can be used to express the rules for
a computation of a Turing machine on a unary string in a very concise
manner. For the MSO2 result we first notice that MSO2 can be used
to select a path within the clique, and second that some formulae in the
previous construction are even simpler to express on cliques, giving us the
stronger result: MSO2 model checking on cliques is not possible in time
nf(|ϕ|). All of these results use the complexity assumption EXP 6= NEXP .

So there is a problem whose only input is the graph which is hard w.r.t.
neighborhood diversity. But seeing how this is proven makes me wonder:
does this really tell us anything about neighborhood diversity specifically?
The problem is very artificial, and also it is already hard on cliques And
also, who uses MSO2 to simulate the computation of a Turing machine?
This leads to the following questions:

1. What is a natural problem that is at least W[1]-hard
w.r.t. neighborhood diversity?

2. What is a good logic other than MSO whose model
checking complexity we could investigate?

As for the first question, my guess is that a natural hard problem could
be something like the Edge Odd Circuit Traversal problem. This
problem is to find the smallest set of edges in a graph whose removal will
make it bipartite. I’ve tried to prove this problem is FPT w.r.t. neigh-
borhood diversity in my master thesis with no success, and the problems
I ran into look very numeric. (We’re basically asking what is the best way
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to divide the vertices within the nodes?, and the number of parts to which
we divide doesn’t seem to be bounded by the parameter, etc.) What is left
to do now is find a W[1]-hard problem similar to the 3-partition problem
(or other strongly NP-complete numeric problem) and see if we can reduce
it to the Edge OCT problem.

As for the second question, some work has already been done on that.
In a recent paper Pilipczuk1 shows that all problems expressible in a certain
logic (ECML Existential Counting Modal Logic) are FPT w.r.t. treewidth
in single exponential time. Lampis mentions it would be interesting to show
what is the complexity of model checking of this (or similar) logic w.r.t
neighborhood diversity and related parameters.

Also, there is some interest in generalizing the ILP technique (IPEC
paper) how can we describe the set of problems for which this technique
works? Can we prove some kind of a meta-theorem for it?

2.2 Generalizing Neighborhood Diversity

Another path to explore are possible generalizations of neighborhood diver-
sity.

2.2.1 Modular-width

In the aforementioned paper by Gajarský, Lampis and Ordyniak a new
generalization of neighborhood diversity called modular-width is introduced.
Roughly speaking, a graph has modular-width bounded by k if it we can
find for it a modular decomposition of arbitrary depth and arity bounded
by k. Using the idea of templates mentioned above, we can say the graph
has to lie in the closure of a following operation: take a graph on at most
k vertices and replace every vertex with an arbitrary graph with modular-
width at most k; let be neighbors precisely those graphs corresponding to
neighboring vertices in the template.

The authors then prove that Coloring and Hamiltonicity are FPT
w.r.t modular-width. Moreover, they are using very similar techniques in-
volving the ILP result of Lenstra that I described were so useful when deal-
ing with neighborhood diversity. That makes it natural to ask the question
which other problems we know are FPT w.r.t neighborhood diversity could
be proven to be proven to be FPT w.r.t modular-width by generalizing the

1Problems parameterized by treewidth tractable in single exponential time: a logical
approach
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existing solutions? In particular what happens to the family of Distance
Constrained Labeling problems? Or the Capacitated Dominating
Set and Capacitated Vertex Cover problems?

2.2.2 Information compression parameterization

Above we mentioned that graphs with small neighborhood diversity can be
described using significantly less information than general graphs. I was not
able to deduce much from this besides that any problem restricted to graphs
with bounded neighborhood diversity (with no additional information) is a
sparse language. This means (by Mahoney’s theorem) that if P 6= NP
then it is not NP-complete and that it falls somewhere in the hierarchy that
forms between P and NP.

Still, it might be interesting to investigate how other parameters com-
pare to neighborhood diversity in this regard. Are graphs with bounded
treewidth significantly simpler in their description than general graphs?
What about tree-depth, shrub-depth, modular-width or others?

2.2.3 Intersecting parameterization and approximation

A talk at the REU by Spiros Papadimitriou inspired a different idea. What
if we worked with graphs that were almost like graphs with bounded neigh-
borhood diversity? Such that we could get them from a graph of bounded
neighborhood diversity by few edge deletions or insertions?

Of course, like this the idea is silly: if the original graph had neighbor-
hood diversity k and we made l edge operations on it, then it would just
have neighborhood diversity O(k + l). In this way it wouldn’t make sense
to consider this double-parameterization. But what if we could prove some
FPT results for graphs with k constant and l ≤ log(n) or something similar?

Or, looking at it from the other side, what if we knew that a given
graph is within 5% of a graph with bounded neighborhood diversity, i.e.,
that we would need to flip (insert or delete) at most 5% of all edges to get
a graph with neighborhood diversity at most k? Could we then prove that
an algorithm exists which runs in polynomial time when k is constant and
gives an approximate result whose error depends on the 5% difference? This
could be useful for huge graphs if we have a graph with billions of vertices
that would have neighborhood diversity in the tens or hundreds if we added
or removed say thousands of edges, maybe the optimum values for many
discussed problems couldn’t change much. In other words, what matters
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is the rough structured captured by the neighborhood diversity template,
not some small irregularities. (Mind that this is just intuition. Nothing is
proven yet.)

2.3 Specific questions

1. Hardness results

1. Can we show that EOCT is W[1]-hard w.r.t.
neighborhood diversity?

2. Other logics

1. Can we show that ECML model checking is
FPT w.r.t neighborhood diversity?

2. How to characterize the effectiveness of ILP on
neighborhood diversity and related parameters
as an algorithmic meta-theorem?

3. Other parameters

1. Can we generalize the algorithms for distance
constrained labeling problems to modular-width?

2. What is the information complexity of graphs
of bounded tree-width? What about tree-depth,
shrub-depth or modular-width?

3. Can we say that if a graph differs from a neigh-
borhood diversity bounded graph by at most
5% of edges, the optimum values of some rele-
vant problems will not differ much?

3 Conclusion

I am very glad for the time I spend at the REU. I’ve got to meet interesting
people and discuss many problems from various areas. The problems I de-
cided to work on are a long-term interest of mine and I hoped to get easy
results soon because I was successful in this area before. Unfortunately that
did not happen and I spent most of my time trying to prove a theorem that
turns out to be false (which proved a different set of authors).
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Still, I believe my time was not completely wasted, because along the
way I noticed several more or less interesting research directions, which are
discussed and listed in this document. Future will tell where they lead.
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Routing

Jitka Novotná

1 Introduction

1.1 Motivation

Suppose that we are given a graph with one vertex marked as goal. We
want to decide whether it is possible to prescribe possible moves from a
vertex to its neighbors such that starting at arbitrary initial vertex we can
find a tour to the goal even if some edges were removed.

1.2 Definitions

Let G be a graph with one vertex marked as goal. This is the vertex we
want to reach from any starting position in G.

Whenever we use terms like connectivity, cut and so on we always mean
edge connectivity, edge cut, and so on.

A switching table for a vertex v is a table with deg(v) rows a k columns.
The neighbors of v correspond to the rows of this table. In the first column
and the i-th row it is prescribed which neighboring vertex of v we should
switch when we arrived to v from the i-th adjacent vertex. In the j-th
column, j ≥ 2, it is prescribed where to switch when the first j−1 prescribed
edges were removed.

Figure 1: K4; a ragged K4’; a prescribed tour from vertex 1.

For edges e1, . . . , ek of a graph G a ragged graph G′ = G′(e1, . . . , ek) is
G \ {e1, e2 . . . ek}.
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vertex 1
switching

neighbor table
0 0 2 3
2 0 2 3
3 2 3 0

vertex 2
switching

neighbor table
0 0 3 1
1 0 3 1
3 1 0 3

vertex 3
switching

neighbor table
0 0 2 1
1 0 2 1
2 0 2 1

Table 2: The switching tables for K4. (0 is the goal)

A prescribed tour in G′ starting at an edge (u, v) is a tour which goes
from every vertex w to an edge which is prescribed in the switching table
of w.

We say that a graph G has a k-routing if there are switching tables with
k columns such that for every ragged graph obtained from G by deleting
k edges there exists a prescribed tour which for any vertex says how to
continue to reach the goal.

A graph G has a routing if it has a (mincut(G)− 1)-routing, i.e. it has
a k-routing for the largest possible k.

2 2-connected graphs

We show how to find switching tables with two columns for 2-connected
graphs such that those tables work even if some edge was removed. We
start by the well known lemma.

Lemma 2.1. A graph is 2-(edge)-connected if and only if it can by created
from cycle by adding paths between two vertices. Those vertices are not
necessary distinct.

Proof. A graph created in such way is 2-connected because we cannot create
a bridge.

We can, show how to create a given 2-connected graph G using this
construction. Let G0 by arbitrary cycle of G. A graph Gi is created from
Gi−1 by adding a path from G. If we cannot add any path, then Gi = G.
Now suppose for a contradiction that Gi 6= G. Then we focus on an edge
(u, v), u ∈ V (Gi), v ∈ V (G \Gi). By definition there are two distinct paths
between u and v. In a path which does not contain an edge (u, v), we can
take the part starting at the vertex v and ending in the first vertex of Gi.
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This part together with the edge (u, v) is a path which we can add to Gi.
A contradiction.

Theorem 2.2. Every 2-connected graph G has a 1-routing.

Proof. We prove that G has a 2-routing using two independent spanning
trees a, b. By that we mean two oriented spanning trees which are routed
in the goal and do not use any edge of G in same direction.

We create switching tables for a vertex v int the following way:

• If we arrive to v from an edge which is not in a nor b, then we rec-
ommend an edge of the spanning tree a which leads from v and as a
second option we recommend an edge of b.

• If we arrive to v from an arbitrary edge of a, then we recommend an
edge of a and as a second option we recommend an edge of b which
leads from v.

• If we arrive to v from an arbitrary edge of b, then we recommend an
edge of b and as a second option we recommend an edge of a which
leads from v.

Using these tables, we can prescribe a tour which reaches the goal in
every ragged graph. We start by using one spanning tree and if we meet a
removed edge, then we change to the second spanning tree and subsequently
we reach the goal.

We prove that there are such spanning trees by induction on the number
of added paths.

First, we choose a cycle which contains the goal. If G is just a cycle,
then its spanning trees are two maximal paths, as you can see in Figure 2.

Suppose that G was created from a graph H by adding a path P . Then
the goal can not be contained in the path P , because the goal lies in the
cycle. The graph H contains, using the induction step, two independent
spanning trees. The path P also contains two spanning trees similarly to
the case for a cycle. We can combine these spanning trees into spanning
trees of G as depicted in Figure 2.
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Figure 2: Spanning trees in circle; induction step

3 Three independent spanning trees generate
a 3-routing

There is a way how to find switching tables using three independent spanning
trees. Those are three oriented spanning trees, which are rooted in the goal,
and do not use same edge of G in same direction. We assign red, green and
blue color to those trees. You can see an example of independent spanning
trees in Figure 9.

Theorem 3.1. If a graph has three independent spanning trees, then it has
a 3-routing.

Proof. Let G be a graph with three independent spanning trees. We show
that a prescribed tour reaches the goal even if two arbitrary edge were
removed.

We create switching table for a vertex v in the following way:

• If we arrive to v from an edge which is not contained in any of the
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Figure 3: A prescribed tour in a graph with three independent spanning
trees.

independent spanning trees, then we recommend an edge of the red
spanning tree.

• If we arrive to v from an edge which is contained in some of the
independent spanning trees, then we continue to an edge of the same
independent spanning tree.

• If a recommended edge of the red tree was removed, then we recom-
mend a green edge.

• If a recommended edge of the green tree was removed, then we rec-
ommend a blue edge.

• If a recommended edge of the blue tree was removed, then we recom-
mend a red edge.

We show that every prescribed tour ends in the goal. After the fist step
of the tour we are either in the goal or in an edge of some independent
spanning tree, w.l.o.g., in a red edge. If some red edge e on the red path
was removed, then the tour continues on a green path. The green path
cannot use the edge e, because one of its orientation is already occupied by
the red tree and the other orientation could create a green cycle. Either
the green path reaches the goal or some green edge f was removed. In the
latter case we switch to the blue path. The blue path cannot use an edge f
for the same reason as the green path could not use the edge e. Blue path
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either reaches the goal or it uses an edge e in the other orientation then the
red path did. In this case we continue on the red path as if the edge e was
not removed. Red path the either reaches the goal or an edge f . In the
second case we continue on the green path and this time we have to reach
the goal.

4 Reductions

We can prove that every 3-connected graph has three independent spanning
trees using so called reductions.

A reduction use the following idea: ”If a graph G has some attribute,
then we can use it to construct a graph H or graphs H1, H2 which have three
independent spanning trees using induction. There is only a few possibilities
how these trees use some specified part of the graph. For each of these
possibilities we construct independent spanning trees for G.”

In the following chapter we prove that for every graph with more than
four vertices we can use at least one reduction.

4.1 Useless edge reduction

Reduction 4.1 (Useless edge reduction). If a graph G contains an edge e
such that H = G \ e has three independent spanning trees, then G has three
independent spanning trees.

Proof. Independent spanning trees for G are exactly the same as the ones
for H.

4.2 Nontrivial 3-cut reduction

A 3-cut is nontrivial if it separates more than one vertex.

Reduction 4.2 (3-cut reduction). If a 3-connected graph G has a nontrivial
3-cut and all smaller 3-connected graphs have three independent spanning
trees, then G also has three independent spanning trees.

Proof. A 3-cut divides graph into two parts. Part C1 is the part which
includes the goal and part C2 is the second one. A 3-cut is composed by
edges (e1, e2), (f1, f2), (g1, g2), as you can see in Figure 4.
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Figure 4: 3-cut reduction

The graph H1 is created from G by a contraction of part C2 into the
vertex p. The graph H2 is created from G by a contraction of part C1 into
the vertex v and we mark this vertex as the goal for the graph H1.

The graphs H1, H2 are 3-connected, because they were created from a
3-connected graph by a contraction. Suppose for a contradiction that there
is a 2-cut in Hi. Then the same edges create a 2-cut in G. The graphs
H1, H2 have less edges then G because 3-cut was nontrivial. Thus H1 and
H2 have three independent spanning trees.

First, we construct oriented colored graphs in G using independent span-
ning trees of H1, H2. Then we prove that every colored path ends in the
goal.

To edges in C1 we assign the same color as they have in H1. Edges
(e1, e2), (f1, f2), (g1, g2) get the same color as edges (e1, p), (f1, p), (g1, p).
We rename colors in H2 such that the edges (c, e2), (c, f2), (c, g2) have the
same color as the edges (p, e1), (p, f1), (p, g1) in the corresponding direction.
To edges in part C2 we assign the same color as they have in H2.

There are no colored cycles in part C1 or in C2 and no cycle can use
edges from the 3-cut because the path which uses edges from a 3-cut ends
in the goal which can not be in the cycle.

We show that from every node v we can, w.l.o.g., use red edges to reach
the goal. If v ∈ C2, then there is a red path from v to c in H2. This path
leads into one of the e1, f1, g1 from these vertex leads in G then leads using
red path in H1 to the goal. If v ∈ C1, then there was a red path in G1. The
problem is that this path can include the vertex p. In this case this path
enters there from the vertex of e1, f1 or g1. W.l.o.g from e1. In G the path
continues to e2 instead of p. From e2 it leads in H2 to c and in G to f1 or
g1. From one of those nodes it continues using H1 to the goal.

4.3 Odd edge reduction

• we call an edge e = (u, v) odd if deg(u) = 3 and deg(v) ≥ 4.
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• we use H to denote the graph G \ e which is a graph obtained from
G by replacing a vertex u and two of its adjacent edges by an edge f .

Figure 5: Odd edge reduction.

Reduction 4.3 (Odd edge reduction). If a graph G contains an odd edge
e = (u, v) and H has three independent spanning trees, then G also has
three independent spanning trees.

Proof. We use independent spanning trees of H. We just divide f into two
edges and add the edge e. We do not have spanning trees yet since the
vertex u is not included in one nor two trees. Fortunately, there is enough
free edges to add it to them. See Figure 6.

Figure 6: Independent spanning trees near an odd edge.

4.4 Edge near the goal reduction

• We call an edge e = (u, v) near the goal when u is adjacent with the
goal and v is not.
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• Let H = G \ {e} where vertices u, v and their two adjacent edges are
replaced by edges f , g. This operation is called topological contrac-
tion.

Reduction 4.4 (Reduction for an edge near the goal). If a cubic 3-connected
graph G has an edge e near the goal and the graph H has three independent
spanning trees, then G also has three independent spanning trees.

Figure 7: Edge near the goal reduction

Proof. First we prove that only one spanning tree of H uses the edge f
which is adjacent to the goal and exactly two spanning trees of H use the
edge g.

The graph H is cubic with n vertices, so it has 3n/2 edges. Three of
them have just one one possible orientation and the remaining edges have
two possible orientations. So there is 3n− 3 possible places for edges of the
spanning trees. Each spanning tree uses n−1 edges. All three of them thus
use 3n− 3 edges, so every possible place is occupied.

You can see all possible variants of independent spanning trees in H in
Figure 8. We can extend spanning trees of H into spanning trees for G as
it is in Figure 8. These are spanning trees because they include all vertices
and we cannot create a cycle.

5 3-connected graphs have three independent
spanning trees

Theorem 5.1. Every 3-connected graph G has three independent spanning
trees.
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Figure 8: Independent spanning trees near the goal.

Proof. We prove the statement by induction on the number of edges. First
of all, if the graph has a nontrivial 3-cut, then we use the nontrivial 3-cut
reduction. If G contains an edge e = (u, v) such that deg(u) ≥ 4 and
deg(v) ≥ 4, then we define H = G\ e. If H has a 2-cut {f, g}, then {e, f, g}
is a 3-cut in G. A set {e, f, g} is a nontrivial 3-cut because a vertex in a
trivial 3-cut has degree three. The graph G has not a nontrivial 3-cut so
H is 3-connected and smaller than G so it has three independent spanning
trees from induction and we can use the useless edge reduction. The edge
e = (u, v) is an odd edge if deg(u) = 3 a deg(v) ≥ 4. If G contains an odd
edge, then we define a smaller graph H as G \ e where the vertex u and
two adjacent edges are replaced by the edge f . The graph H is 3-connected
from a similar reason as in the previous case. (If H has a 2-cut {f, g}, then
{e, f, g} is a 3-cut in G. The set {e, f, g} is nontrivial 3-cut because a vertex
in a trivial 3-cut has degree three and the vertex v has larger degree and
the vertex u is not in H) The graph H is 3-connected and smaller than G
so it has three independent spanning trees from induction and we can use
the odd edge reduction.
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Figure 9: Independent spanning trees in K4, K3,3 and in the cube.

The graph G has to be cubic. If G = K4 or G = K3,3 or G is a cube,
then it has three independent spanning trees. See Figure 9. We focus on
the neighborhood of the goal. The goal is not in a triangle because there
is a 3-cut around every triangle and if G 6= K4 this 2-cut is nontrivial. We
denote as Y the set of three vertices adjacent to the goal. Six edges are
between Y and the set of vertices X. The size of X is at least two because
G is cubic. If |X| = 2, then G is isomorphic to K3,3. If |X| = 3, then G is
isomorphic to the cube or there is a nontrivial 3-cut separating the goal, Y
and X from the rest of G. Finally, if |X| ≥ 4 then at least one vertex from
X is connected to Y by exactly one edge e. We call this edge edge near the
goal. Let H = G \ {e} where the vertices u, v and their two adjacent edges
are replaced by the edges f , g. If H has a 2-cut, then at least one edge of
them is f or g. If not, this 2-cut was in G also. The set {f, g} is not a
2-cut because otherwise e and two edges which were removed from G would
create a nontrivial 3-cut in G. If {f, h 6= g} is a 2-cut, then h and two edges
which were removed from G create a nontrivial 3-cut in G. Similarly for the
case when {f 6= h, g} is a 2-cut. The graph H is 3-connected and smaller
than G so it has three independent spanning trees from induction and we
can use the edge near the goal reduction.
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6 4-connected graphs

We proved that every 2-connected and 3-connected graph has a routing.
We found two, respectively three, independent spanning trees in every 2-
connected, respectively 3-connected, graph and proved that they create a
routing.

The proofs were very similar so there is question whether we can gen-
eralize them. However, it might not be so easy. I believe that there exist
four independent spanning trees in all 4-connected graphs, see an example
for K5, but it is not true that “four independent spanning trees generate
3-routing“.

When color has order red, green, blue, black, red . . . and switching tables
are created in a similar way as in the 3-connected case and edges (1, 2), (3, 4)
were removed, then the prescribed tour starting on the edge (4, 1) creates a
cycle on vertices 1, 3, 2, 4, 1, . . . and never reaches the goal.

Figure 10: Four independent spanning trees for K5.
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Construction of Graphs with a Fixed
Peeling Number

Karel Tesař

1 Introduction

We say that a graph G is k-degenerate if every H ⊆ G has a vertex with
degree at most k. Specifically we may remove vertices one by one in order
such that every removed vertex has degree at most k at the time of removing.
This order of vertices we call a k-degenerate-order.

Now we generalize this order such that we always remove a vertex v
with a minimum degree in a graph G. Let d be the maximum degree
which we have already removed. Then after removing a vertex v we define
a peeling number of v as d. It is easy to see that peeling numbers are
uniquely determined. We define a peeling-order as an order of vertices with
nondecreasing peeling numbers.

We may define a peeling numbers in another way. We have a several of
phasions of vertex removing. In a phase i we remove vertices with a degree
i or less. Vertex removed during a phase i has a peeling number i. Let us
see that both process give us the same peeling numbers.

In the next section we will be interested in graphs where all of their
vertices have the same peeling number.

Definition 1.1. Let us denote as FPk a class of graphs such that G ∈ FPk

if and only if every vertex v ∈ G has a peeling number k.

Observation 1.2. Class FPk contains exactly graphs which are k-degenerate
and have a minimum degree equals to k.

In Section 2, we show a construction of graphs in FP2, next we define
extremal cases of FPk graphs and find a construction of those graphs. Fi-
nally we show that every graph G ∈ FPk is a subgraph of some extremal
graph from FPk. Afterwards in Section 3, we show a generalization of trees
and show that a class of extremal FPk graphs equals this class. In Section
4, we show one result for k-degeneracy graphs. Specifically we show that
one can find an independent set I in k-degenerate graph G such that the
graph G \ I is at most (k − 1)-degenerate.
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2 Constructions of FPk graphs

We would like to find some operations such that we may construct every
graph from FPk using these operations on some set of initial graphs and
such that FPk is closed under these operations. These initial graphs are
called primitive graphs with a respect to FPk and given operations. First,
we find operations for the class FP2 where primitive graphs are isomorphic
to disjoint union of triangles and we prove the following theorem.

Theorem 2.1. If G = (V,E) is a graph from FP2 with a component C
which is not a triangle, then we can apply one of the following operations
to obtain a graph G′ ∈ FP2 where |V (G)| > |V (G′)|.
(a) Erase a vertex v ∈ V such that deg(v) = 2 and every neighbour u of v

satisfies deg(u) > 2

(b) A contraction of an edge uv ∈ E such that deg(u) = deg(v) = 2 and u
and v have no common neighbour.

(c) Erase vertices u, v ∈ V such that deg(u) = deg(v) = 2 and u and v have
a common neighgbour w such that deg(w) > 3.

(d) Erase a triangle uvw such that deg(u) = deg(v) = 2 & deg(w) = 3.

Proof. We know that there exists a vertex v with a degree two in every
component. We proceed by a case analysis according to the neighbors u1,
u2 of v where we assume that deg(u1) ≤ deg(u2).

• Both neighbors have degree greater than two. Then we may erase a
vertex v. According to 2-degeneracy there still exists another vertex
with degree two and according to FP2 there is no vertex with degree
less than two.

• deg(u1) = 2 and u2 is not neighbour of u1. Then we may contract an
edge vu1. The new vertex has degree two.

• deg(u1) = 2 & deg(u2) > 3 and u2 is a neighbour of u1. Then
we erase vertices v and u1 and we still stay in FP2 because of 2-
degeneracy.

• deg(u1) = 2 & deg(u2) = 3 and u2 is a neighbour of u1. If another
neighbour of u2 has degree two, we may contract an edge between it
and u2. In the other case we may erase a triangle vu1u2.
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G G G G

Figure 1: Allowed operations for a construction of graphs from FP2. From
the left to the right there are a vertex adding, an edge subdivision, an edge
adding and a triangle adding.

• deg(u1) = 2 & deg(u2) = 2 and u2 is a neighbour of u1. So this
component is a triangle.

Corollary 2.2. Every graph G ∈ FP2 can be constructed from triangles by
the following operations

• adding vertices of degree two,

• subdivision of edges,

• adding two vertices of degree two connected by an edge,

• adding a triangle and connecting it to the rest of the graph by an edge.

Note that the class FP2 is closed under these operations.

Now we define extremal graphs in FPk. We use them later for con-
struction of the class FPk for other values of k. We say that G ∈ FPk on
n vertices is extremal if it has the maximal number of edges. Here is the
formal definition.

Definition 2.3. We say that a graph G = (V,E) from FPk on n vertices
is extremal if for every edge e /∈ E the graph G+ e is not in FPk.

First we notice that every FPk extremal graph on n vertices has the
same number of edges.

Lemma 2.4. Let G be an extremal graph from FPk on n vertices. Then G
has exactly

(
k
2

)
+ k(n− k) edges.
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K4

v5

v6

v7

v8

Figure 2: Example of an extremal graph from FP3. First we have a clique
K3, by adding one vertex we get a clique K4 and then we add vertices
v5, v6, v7, v8.

Proof. We know that G is k-degenerate and it has a minimum degree k. So
every vertex vi in k-degenerate-order has min{k, i} forward edges where i
is a backward position in that order. If this was not true then we could add
a new edge and stay into a FPk class.

Now it follows that the number of edges is exactly
(
k
2

)
+ k(n− k).

From this fact and k-degenerate-order follows the construction of ex-
tremal FPk graphs.

Claim 2.5. Every extremal graph G ∈ FPk on n > k vertices can be
constructed from a clique Kk by adding (n− k) vertices of degree k.

Next we prove that any G from FPk is a subgraph of some extremal
graph from FPk on the same number of vertices. To prove this, we look
at k-degenerate-order of G and expand it into k-degenerate-order of some
extremal graph.

Theorem 2.6. Let G be an graph from FPk on n vertices. Then there
exists an extremal graph H ∈ FPk such that H also has n vertices and G is
a subgraph of H.

Proof. We take a k-degenerate-order of G – every vertex vi ∈ G has at most
min{k, i} forward edges. Additionally we construct an extremal graph H
and add to every vertex all forward edges which are also in G. The rest of
the edges can be added arbitrarily.

From the last theorem we get a construction of any graph G ∈ FPk.
First we construct an arbitrary extremal H such that G ⊆ H and then we

64



remove some edges. Let us note that the earlier construction for FP2 is
more convenient for proofs by induction, because we are only adding new
vertices and edges and we never delete anything. On the other hand if we
want to obtain a result only for extremal graphs from FPk, then the last
construction is also usable.

3 Generalization of trees

In trees every leaf has degree one and the leafs form an independent set and
if we remove all of them we obtain another tree. Repeating this process, we
end with K1 or K2. Now we try to generalize this idea. For a given graph
G and the positive integer k we apply the following peeling process.

Algorithm 3.1. peel(G, k):

1. I := {v : deg(v) = k}

2. If I is not independent or there exists a vertex v with degree lower
than k then return G.

3. G := G \ I

4. Go to step 1.

This algorithm may output various graphs. We focus on cases where we
end up with a clique Kk or Kk+1.

Definition 3.2. Let k be a natural number and define a class of general-
ized trees Tk such that graph G is in Tk if and only if peel(G, k) = Kk or
peel(G, k) = Kk+1.

We say that a vertex of G ∈ Tk with degree k which is not in the final
clique Kk or Kk+1 is a leaf.

The interesting thing, about this class of graphs, is that the class of
generalized trees is equivalent to extremal FPk graphs.

Claim 3.3. Let EFPk be a class of extremal graphs from FPk. Then for
every k : Tk = EPFk.

Proof. If we take some G ∈ Tk then we may repeatively remove some inde-
pentent sets I1, . . . , Il of vertices of degree k and end with Kk or Kk+1. If
we remove the vertices one by one we actually get a construction of extremal
case of FPk. So G is also in EFPk
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Figure 3: Example of a tree from T3.

For a given graph G ∈ EFPk we prove by induction on |V (G)| that
G is also contained in Tk. The cliques Kk and Kk+1 trivially are in Tk.
Let us assume that G is a graph with at least k + 2 vertices. We have a
k-degenerate order of G where every vertex except the last k has k forward
edges. Therefore every vertex with degree k has only forward edges. So
they form an independent set I if we remove this independent set we get
G \ I which is also from EFPk and smaller. So G \ I is from Tk and if we
add I into this graph as a leafs we get that G is also from Tk.

Here follows another interesting thing about Tk.

Theorem 3.4. For every graph G from Tk there exist trees T1, T2, . . . , Tk ∈
T1 such that G is an edge disjoint union of T1, T2, . . . , Tk and every leaf in
G is also a leaf in every tree Ti.

Proof. We prove it by induction. For a clique Kk+1 on vertices {1, 2, . . . , k+
1}, for every 1 ≤ i ≤ k we define Ti as a graph on vertices {1, 2, . . . , k + 1}
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with edges {{i, j} : j ≥ i}. Obviously these trees are edge disjoint and
every edge is covered.

If we have a larger graph G, then we remove some leaf l ∈ V (G). By
induction on |V (G)| we have trees T1, . . . , Tk which are edge disjoint and
their union is G \ {l}. Now we add a vertex l in all of them such that every
Ti stays to be connected. We may do this because there are at most i − 1
vertices which are not in Ti. So first we choose a neighbor of l which is in
Tk, then we choose a neighbor which is in Tk−1 and so on until the last one
which remains is in T1. Obviously every Ti is still a tree and Ti and Tj are
edge disjoint for every i and j. We also covered every edge incident with
l.

4 k-degeneracy and independent sets

Theorem 4.1. For every k-degenerate graph G = (V,E) there exists an
independent set I ⊆ V such that G \ I is at most (k − 1)-degenerate.

Proof. We take a k-degenerate order and greedily find a proper coloring of a
graph G with colors {1, 2, . . . , k+ 1}. We take vertices one by one from the
last one to the first one. Everyone of them has at most k forward edges so
there exists a color which we may use. We always use the smallest possible
color.

Now we claim that a set of vertices with color 1 is the independent set
we are looking for. Every vertex v either have color 1 or some of it’s forward
neighbour have color one. So if a vertex v remains, then its forward degree
decrease at least by one and hence the degeneracy of G \ {v : v has color 1}
is at most (k − 1)-degenerate.
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Dynamic Data Structure for Tree-Depth
Decomposition

Zdeněk Dvořák, Martin Kupec and Vojtěch Tůma1

The concept of tree-depth, introduced in [12], appears prominently in
the sparse graph theory and in particular the theory of graph classes with
bounded expansion, developed mainly by Nešetřil and Ossona de Mendez [11,
13, 14, 15, 16, 17]. One of its many equivalent definitions is as follows. The
tree-depth td(G) of an undirected simple graph G is the smallest integer t
for that there exists a rooted forest T of height t with vertex set V (G) such
that for every edge xy of G, either x is ancestor of y in T or vice versa—in
other words, G is a subgraph of the closure of F .

Alternatively, tree-depth can be defined using (and is related to) rank
function, vertex ranking number, minimum elimination tree or weak-coloring
numbers. Futhermore, a class of graphs closed on subgraphs has bounded
tree-depth if and only if it does not contain arbitrarily long paths. Tree-
depth is also related to other structural graph parameters—it is greater or
equal to path-width (and thus also tree-width), and smaller or equal to the
smallest vertex cover.

Determining tree-depth of a graph is NP-complete in general. Since tree-
depth of a graph G is at most log(|G|) times its tree-width, tree-depth can
be approximated up to log2(|G|)-factor, using the approximation algorithm
for tree-width [1]. Furthermore, for a fixed integer t, the problem of deciding
whether G has tree-depth at most t can be solved in time O(|G|). Minimal
minor/subgraph/induced subgraph obstructions for the class of all graphs
of tree-depth at most t are well characterized, see [4]. Clearly, tree-depth is
monotone with respect to all these relations. For more information about
tree-depth, see the book [18].

A motivation for investigating structural graph parameters such as tree-
depth is that restricted structure often implies efficient algorithms for prob-
lems that are generally intractable. Structural parameters have a flourishing
relationship with algorithmic meta-theorems, combining graph-theoretical
and structural approach with tools from logic and model theory—see for
instance [8]. A canonical example of a meta-theorem using a structural
parameter is the result of Courcelle [3] which gives linear-time algorithms

1The work leading to this invention has received funding from KONTAKT II LH12095
and SVV 267313.
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for properties expressible in MSO logic on classes of graphs with bounded
tree-width.

Tree-depth is similar to tree-width, in the sense that it measures “tree-
likeness” of a graph and also allows decomposition with algorithmically ex-
ploitable properties. However, tree-depth is more restrictive, since bounded
tree-depth implies bounded tree-width, but forbids the presence of long
paths. Long paths turn out to be related to the hardness of model checking
for MSO logic [10, 6]. This motivated a search for meta-theorems similar
to [3] on more restricted classes of graphs, such as the result of Lampis [9]
that provides algorithms with better dependence on the size of the formula
for classes such as those with bounded vertex cover or bounded max-leaf
number. This result was subsequently generalized by Gajarský and Hliněný
to graphs with bounded tree-depth [7].

In the usual static setting, the problem is to decide whether a graph
given on input has some fixed property P . Our work is of dynamic kind,
that is, the considered graph gradually changes over time and we have to
be able to answer any time whether it has the property P . One application
comes immediately in mind. Graphs modelling many natural phenomena,
such as the web graph, graphs of social networks or graphs of some physi-
cal structure all change rapidly. However, there is another area where this
dynamic approach is useful. For example, one reduces a graph by remov-
ing edges, and each time an edge is removed, some procedure has to be
performed. Instead of running the procedure from scratch every time, it
makes sense to keep some dynamic information. Classical examples are the
usage of a disjoint-find-union data structure in minimal spanning tree algo-
rithms [2] or Link-cut trees for network flow algorithms [19]. A more recent
example is a data structure for subgraph counting [5] with applications in
graph coloring and social networking.

The main theorem of our paper follows.

Theorem 0.1. Let φ be a MSO2 formula and D ∈ N. There exists a
data structure for representing a graph G with td(G) ≤ D supporting the
following operations:

• insert edge e, provided that td(G+ {e}) ≤ D,

• delete edge e,

• query—determine whether G satisfies the formula φ.
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The time complexity of deletion depends on D only, in particular, it does
not depend on φ or |G|. The time complexity of insertion depends on φ and
D, but does not depend on |G|. The time complexity of the initialization of
the data structure depends on φ, D and |G|. The query is done in constant
time, as is addition or removal of an isolated vertex.

The dependence of the initialization and edge insertion is roughly a tower
of height D where the highest element of the tower is the number of nested
quantifiers of φ squared.

The basic idea of the data structure is to explicitly maintain a for-
est of smallest depth whose closure contains G, together with its compact
constant-size summary obtained by identifying “equivalent” subtrees. This
summary is sufficient to decide the property expressed by φ, as outlined in
the following paragraph.

Two graphs are said to be n-equivalent, if they satisfy the same first order
formulas with at most n quantifier alterations—that is, for instance, of the
form ∀x1..i1∃xi1+1..i2∀xi2+1..i3 . . . ∃xin−1+1..inφ(x1..n), where φ is quantifier-
free. This concept of n-equivalency is of practical use for model checking.
It serves to reduce the investigated graph to a small one, so that time-
expensive approaches as brute force become possible (a technique known
as kernelization). An example of such application is the following theorem
(from section 6.7 of [18]): for every D,n exists N such that every graph
G with td(G) ≤ D is n-equivalent to one of its induced subgraphs of order
at most N . This can be extended even to labeled graphs. In our work we
use a similar theorem, taken from [7]. Informally, the result says that when
one is interested in checking whether a specific formula is true on a class
of trees of bounded depth, then one can also assume bounded degree. This
allows us to only maintain the summary of the tree-depth decomposition as
described above.

In the rest of the paper, the first section reviews necessary definitions and
tools we use, and the second section describes in detail the data structure
and its operations. We conclude the paper with the application to dynamic
model checking.

1 Preliminaries

In this paper, all trees we work with are rooted. For simplicity, we assume
in this section that all graphs we work with are connected. If we encounter
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a disconnected graph, we consider each of its connected components indi-
vidually.

Let T be a tree, the depth of T is the maximum length of a path from
the root of T to a leaf of T . Two trees are isomorphic if there exists a
graph-isomorphism between them such that the root is preserved under it.
Mostly we will work with trees with vertices labelled from some set of l
labels – two l-labelled trees are l-isomorphic if they are isomorphic as trees
and the isomorphism preserves labels.

The closure clos(T ) is the graph obtained from T by adding all edges
(x, y) such that x is an ancestor of y, and x 6= y. For instance, the closure of
a path is a complete graph. The tree-depth td(G) is the minimum number
t such that there exists a forest T of depth t such that G ⊆ clos(T ). For
instance, the tree-depth of a path on n vertices is dlog2(n+ 1)e. A limb of a
vertex v ∈ T is the subgraph induced by some of the children of v. A second-
order logic formula φ is in MSO1 logic, if all second-order quantifiers are
over sets of elements (vertices) and the language contains just the relation
edge(u, v).

The following result is a simplification of Lemma 3.1 from [7].

Lemma 1.1. Let φ be an MSO1 sentence, l, D ∈ N. Then there exists a
number S with the following property. Let T be an l-labelled tree of depth
at most D with vertices labelled with l labels, and v a vertex of T . If v has
more than S pairwise l-isomorphic limbs, then for the tree T ′ obtained by
deleting one of those limbs we have that

T ′ satisfies φ ⇐⇒ T satisfies φ.

The Lemma implies in particular that with respect to φ-checking there
are only finitely many l-labelled trees of depth at most D – that is, every
l-labelled tree of depth at most D is φ-equivalent to some l-labelled tree
of depth at most D and maximum degree at most S. We call such trees
φ-minimal.

Let G be a graph of tree-depth D, the tree decomposition T of G is a
2D−1-labelled tree such that G ⊆ clos(T ), where a vertex v is labelled by
a 0-1 vector of length D − 1 that encodes the edges between v and the
vertices on the path from v to the root (1 whenever the edge is present,
0 otherwise). Let lD be a set of labels we describe later, compressed tree
decomposition of the graph G is an lD-labelled tree C obtained from a tree
decomposition T of G as follows. For every vertex, all its limbs that are
pairwise-isomorphic are deleted except for one representative, in which we
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Figure 1: Graph
Figure 2: Tree-depth decomposition

additionally store the number of these limbs. Vertices of C are called cab-
inets, and the underlying tree decomposition T is called a decompression
of C. A set of all vertices corresponding to the same cabinet (that is, in-
ducing lD-isomorphic limbs) and having the same vertex as a father in the
decompression is called a drawer. Thus every cabinet is disjointly parti-
tioned into drawers. For an example how a graph, its tree decomposition
and compressed tree decomposition look like, see the figures on page 73 (in
the compressed tree decomposition, the number next to the drawers denotes
how many vertices are there in each drawer).

Now we describe the labelling. We start inductively, with l0 being just
a set of vectors of length D − 1. Assume that φ is some fixed formula we
specify later (in Section 2.5) and let S be the number obtained from applying
Lemma 1.1 to it. Let B be a cabinet that induces a subtree of depth t′ ≤ t
in C. The label of B consists of the label of a corresponding vertex b of T
and of a vector vec with entry for every lt−1-labelled φ-minimal tree M of
depth smaller than t′ with value

vecM = min{S, number of limbs of b which are φ-equivalent to M}.

During the update operations, we will be occasionally forced to have
more than one cabinet for a given isomorphism type (that is, a cabinet
will have two pairwise-isomorphic limbs). Both the decomposition and the
individual cabinets that have isomorphic children will be called dirty.
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Figure 3: Compressed graph

2 Data structure

Our data structure basically consists of storing some extra information for
every vertex v of the represented graph G, and of a compressed tree-depth
decomposition T of G with depth at most D. We will store the following
for every v ∈ G.

• Label of the cabinet corresponding to v, that is, the vector of its
neighbors on the path to root and the vector with the numbers of
limbs of v isomorphic to individual φ-minimal trees.

• Pointer to the father of v in T (more precisely, pointer to a vertex
u of G that is the father of v in the decompression of T ). However,
in some operations we need to change the father of all vertices in a
drawer at once – thus instead of storing father individually for every
vertex, for every drawer we will maintain a pointer to the common
father of the vertices in this drawer, and every vertex in the drawer
will have a pointer to this pointer.

• Linked list of sons of v in T . This is again implemented by having a
linked list of drawers at v, and for every drawer in it, a linked list of
vertices in this drawer.

Additionally, we keep the vertex v which is the root of T and we call it
r – we again assume connectedness of G in this section, otherwise we keep
a list of roots corresponding to individual components.
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2.1 Extraction of a path

In this subsection we describe an auxiliary operation of extracting a path.
It can be seen as a temporary decompression of a part of T in order to
make some vertex accessible. The result of extracting v from T is a dirty
compressed tree decomposition T ′ of G, such that on the cabinets in T ′

corresponding to r − v path there are no cabinets to which corresponds
more than one vertex of G.

First, we find the vertices of the r − v path, and the corresponding
cabinets in T . This is done by simply following the father-pointers from
v, and then by going backwards from r, always picking the cabinet that
corresponds to the label of the vertex on the r − v path. Then, for every
cabinet B on this path with more than one vertex, let b be the vertex of the
r − v path lying in B, and c its father – which we assume to be the only
vertex in its cabinet, C. We remove b from the lists of sons of c of the label
of b, and move b into a new list for c, and do the corresponding change in
T ′, that is, creating a new cabinet of the same label as a son of C, thus
making C a dirty cabinet.

The complexity of this operation is clearly linear in D.

2.2 Edge deletion

Edge deletion is simple – let vu be the edge to be deleted, with v the lower
vertex (in the tree-order imposed by T ). We extract the vertex v from T .
Now u lies on the r − v path, and as there are no other vertices in the
cabinets on the corresponding path in T , we remove the edge vu from the
graph and change the labels for the cabinets and vertices accordingly. The
only affected labels are on the r − v path, and we will precompute during
initialization what the label should change into. It can also happen that
removal of such edge disconnects the graph – this also depends only on labels
and thus will be precomputed in advance. When such situation occurs, we
split T into two components – the new root depends only on the labels, and
the vertices for which labels change are only on the r − v path.

Now, we need to clean the dirty cabinets. As the only dirty cabinets are
on the r−v path, we traverse this path, starting from v and going upwards,
and for every vertex w in a dirty cabinet, we compare the label of w with
the labels of other present drawers at the father of w, and move w to the
correct drawer/cabinet.

The complexity of this operation is clearly linear in D.

75



2.3 Rerooting

Rerooting is also an auxiliary operation, which will allow us to easily handle
the edge insertion. This operation takes a compressed tree decomposition
T and a vertex rN of G, for which we have a guarantee that there is a tree
decomposition with depth at most D such that rN is its root, outputs one
such compressed tree decomposition T ′ and updates data for vertices in G
accordingly. In this subsection we denote by rO the root of T , that is, the
old root.

We proceed as follows:

1. extract rN from T ,

2. remove rN from T entirely,

3. consider the connected components thereof – those that do not contain
rO have depth < D and thus can be directly attached under rN .
Recurse into the component with rO.

Only the third point deserves further explanation. The components are
determined by the labels only, so we will precompute which labels are in
which components and what vertices are the roots of the components. Every
connected component of T − rN that does not contain rO must have as its
highest vertex (under the tree-order) a son of rN , thus these components
are already in their proper place. For the component C with rO, either it
has depth < D and thus can be attached under rN , with rO being a son of
rN . We have to deal with two details – firstly, there might be some edges
to rN from vertices that were above rN in T – but none of these vertices
was in a cabinet with more than one vertex, thus we only change the labels
accordingly.

Secondly, the limbs of rN in T that are in C have no father after removal
of rN . But as they are in C, for every such limb there is an edge from it
to some vertex on the rN − rO path T . Choose lowest such vertex, and
make it new father for that limb. This refathering is done by using the
pointers for the drawers – note that every cabinet that is a root of such
limb consist only of single drawer, thanks to the extraction of rN . Thus the
total number of operations we have to do is linear in D and the maximum
number of children of rN , which is ld. As in the case of edge deletion, we
have to clean dirty cabinets (which are in C) in the end. This can again be
done by simply comparing labels on that former rN − rO path.
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However, it might happen that C has depth exactly D. But we are
guaranteed that there exist a tree decomposition with rN as a root, which
implies that there exists a tree decomposition of C with depth D − 1. If
we know which vertex can serve as a root of such decomposition, we can
apply the operation recursively. We describe the procedure to find a root
in Section 2.5. An additional thing we have to care about is that some
vertices of C have an edge to rN – this information has to be preserved in
the recursive call. But the number of such vertices is bounded by a function
of D and thus it is not a problem – we only modify their labels accordingly.
After this recursive call, we again clean dirty cabinets.

The complexity of this operation for one call is linear in D + ld+ time
to find new root, and there are at most D recursive calls.

2.4 Edge insertion

Let u, v be two vertices not connected with an edge, such that G+ uv has
treedepth at most D, we now describe how to add such edge. If the edge
uv respects the tree-order (that is, either u lies on v− r path or vice versa),
we just extract the lower of the two vertices, add the edge, and get rid of
dirty cabinets.

Otherwise, there exists a vertex r1 which is a root of some tree decom-
position of G+ uv. We describe the procedure for finding it in Section 2.5.
Reroot into this vertex to obtain decomposition T1. Now, u and v must be
in the same connected component C1 of T1 − r1. Again, unless the edge uv
respects the tree-order now, we can find a vertex r2 in C1 which is a root
of some tree decomposition of C1 + uv of depth at most D − 1, and reroot
into it to obtain decomposition T2 of C1, with u and v lying in the same
component C2 of C1 − r2. Carrying on in the obvious manner, this process
stops after at most D iterations.

The complexity of this operation is O(D· complexity of rerooting).
Finally, we just remark that addition and removal of a vertex (with-

out incident edges) is implemented trivially by just adding/removing new
component with the corresponding label.

2.5 Finding a root

Let us recall what we have to face in this section. We want to find a vertex
v such that there is a tree T of depth at most t′ ≤ t such that its closure
contains the connected component C of the graph G+(a, b)−{v1, v2, . . . , vk}
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as a subgraph and v is a root of T . The vertices v1, v2, . . . , vk correspond
to the roots found in previous applications of this procedure, (a, b) denotes
the edge we are trying to add.

At this point we define the formula φ according to which we constructed
the labelling of our trees. Let γ(C) be a formula which is true whenever C
is connected — this is easily seen to be expressible in MSO1 logic — and
τd(G) the following formula:

τd(G) = (∃v ∈ G)(∀C ⊆ G)(γ(C − {v})⇒ τd−1(C − {v})),

with τ1(v) being always true. Then τd(G) says that there exists a tree T
with depth at most d such that G ⊆ clos(T ). Furthermore, as we need
to express the addition of an edge, we work with the logic with two extra
constants a, b, and modify the formula for γ accordingly to obtain γ′ and
τ ′. The resulting formula τ ′t is the formula φ.

Using Lemma 1.1, we construct all φ-minimal trees – note that we have to
consider every possible evaluation of the constants a, b, that is, we construct
all trees of depth at most t such that no vertex has more than S pairwise-
isomorphic limbs, and then for every two of labels, we choose two arbitrary
vertices having that label, and choose them to be a and b. For every such
minimal tree, we evaluate the formula, that is, we find which vertex is to
be the root of the tree decomposition. It might happen that the formula is
false, that is, no such vertex exists, which means we evaluated a and b so
that the graph has tree-depth greater than d. But such evaluation will not
occur during the run of the structure — recall that we restricted the edge
additions — and thus we can safely discard these minimal trees. Thus for
every minimal tree we store the label of the vertices that can be made root,
and when applying the rerooting subroutine, we find an arbitrary vertex of
this label. This has complexity at most D, because when looking for the
given vertex, we follow first pointer from the corresponding linked list of
children for a vertex.

This means that the total complexity of the edge insertion is O(D(D +
lD)). Finally, let us remark on the complexity of initialization. From [7] we
conclude that lD, that is, the number of φ-minimal trees, is roughly a tower
of 2’s of height linear in D, to the power |φ|2. The complexity of operations
we do for every φ-minimal tree is bounded by a polynomial in D and lD.
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2.6 Dynamic model checking

We now describe how to modify the structure so that it also allows queries
of the form “does G satisfy the formula ϕ”, where ϕ is some fixed MSO
formula. The modifications affect only the Section 2.5. Instead of using
just the formula φ to obtain the φ-minimal trees, we apply the Lemma 1.1
to the formula ϕ also and in the construction of the minimal trees and the
labelling, we use the higher of the two numbers obtained from the Lemma.
Then for every such obtained minimal tree we evaluate whether it satisfies
ϕ or not, this time without evaluating the constants a, b.
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1 Introduction

My experiences in Prague have provided me with a unique insight into the
Czech culture and exposed me to many interesting problems in discrete
mathematics.

2 Workshop Talks

I appreciated the lectures from Martin Balko, Dr. Andrew Goodall and
Dr. Jǐŕı Fiala. They provided excellent introductions to various proofs of
Cayley’s formula, graph chromatic polynomials, and Hamiltonian paths in
interval graphs.

2.1 Lectures: Dr. Andrew Goodall

A graph coloring is an assignment of colors to each vertex of the graph. A
proper coloring of a graph is one in which no adjacent vertices share the
same color. The chromatic polynomial P (G, k) of a graph G = (V,E) is
the number of proper colorings of G using k colors. P (G, k) can be defined
recursively using deletion and contraction of the edges of G. The Funda-
mental Reduction Theorem states P (G, k) = P (G−uv, k)−P (G/uv, k) for
some edge uv ∈ E [1].

2.2 Problem Solutions

If G is a tree on n vertices, find P (G, k).

Let S(n) state that for a tree G on n vertices, P (G, k) = k(k − 1)n−1.

Since there are k ways to color one vertex with k colors, and k(k−1)0 =
k, S(1) is true.
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Assume S(i) is true. Note that P (G1 ∪ G2, k) = P (G1, k)P (G2, k),
where G1∪G2 is the disjoint union of a graph. Because a tree is connected,
removing any edge results in a disjoint union of two trees. Let e be an edge
connected to a vertex of degree 1 in a tree T on i + 1 vertices and T1 be
the vertex of degree 1 with edge e, where T1 ∪ T2 = T . So T2 has i vertices.
Then the chromatic polynomial of T is

P (T, k) = P (T − e, k)− P (T/e, k)

= P (T1, k)P (T2, k)− P (T/e, k)

= kP (T2, k)− P (T2, k)

= (k − 1)P (T2, k)

= (k − 1)k(k − 1)i−1

= k(k − 1)i,

(1)

so S(i) is true. By the Principle of Mathematical Induction, a tree on n
vertices has k(k − 1)n−1 proper k-colorings.

3 Midsummer Combinatorial Workshop Talks

I really enjoyed hearing so many interesting problems presented by the
mathematicians at the MCW. I found Dr. Maria Garijo’s presention over a
solution to the the red-blue intersection problem in R2 most compelling.

3.1 Red-Blue Intersection Problem

We are given a set of n red and blue points in R2 in general position i.e.,
where no three points are colinear. We draw complete graphs on the set of
points per color, and we want to report the number of intersections between
different colored line segments in the plane. This has applications in map
overlays in GIS and polygon clipping in computer graphics, and is related
to separability.

Let sb be the set of blue line segments intersecting red line segments. We
can determine sb by using the convex hull of the red lines. Blue points on
the interior form a complete graph from line segments that do not intersect
any red line segments. However, lines that start from points on the exterior
and end on the interior of the hull will intersect red line segments. Because
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there are still red line segments inside the hull that may intersect the blue
segments on th interior, this algorithm must iterate over convex regions
of the plane formed by red line segments. We can do this by defining an
equivalence relation bi ∼ bj if an only if bibj crosses no red line. This
partitions the lines into planar subdivisions. sb is then the set of lines
starting and ending at points belonging to different equivalence classes.

3.2 Open Problem: Extending to 3D

Dr. Garijo closed by introducing an open problem for extending the red-blue
intersection solution to R3 using monochromatic triangles. I attempted to
identify potential approaches to a solution. Since monochromatic triangles
in R3 would define a plane, I thought we could start by finding a solution
for red-blue intersections of planes and find a reduction to line segments.
Garijo’s algorithm would essentially remain the same by dividing the space
into convex polyhedra by defining a similar equivalence relation bi ∼ bj if
and only if bibj does not intersect a red plane. It is perhaps possible this
could be restricted to edge-edge intersections only.

Another approach I considered is based on an existing algorithm for sep-
arability problems in R3 using infinite prisms. The algorithm determines
whether there exists an infinite prism containing all the blue points and no
red points [2]. In this algorithm, the infinite prism is defined by a direction
vector, which is restricted based on the placement of red points. Perhaps
the infinite prism algorithm could iterate over the set of all points and de-
termine blue polygons in R3 whose edges do not intersect red line segments.
Another approach may be to use the vectors forbidden by red points to de-
termine red-blue segment intersections between monochromatic polygons.
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1 Talks

The first week that we were here, there were talks given by some professors
from Charles University. Two of those talks were especially interesting to
me. The first was one given by Jǐŕı Fiala on interval graphs. An interval
graph is the graph which represents the intersection of intervals along a
real line and a given graph is an interval graph if and only if it has an
interval model. Fiala explained to us that the model of an interval graph
can be simplified because the usual model of intersecting invervals contains
unneeded information. For instance, an interval model involving n intervals
can be represented as a sequence of at most n−1 cliques in which each vertex
appears in a consecutive subsequence of cliques. Fiala also informed us of
the various practical applications of interval graphs, including scheduling
problems wherein the maximum independent set represents the maximum
number of tasks which can be done without conflict and the colouring of a
graph minimizes the number of machines needed to complete a task.

What really intrigued me about Fiala’s talk was when he discussed
the problem of finding Hamiltonian paths, cycles, and k-staves on inter-
val graphs. While not every interval graph has a Hamiltonian path, K1,3

for instance is an interval graph with no Hamilton path, Fiala explained
that if an interval graph has a Hamiltonian path, then it must also have
a monotone Hamiltonian path beginning at vertex v1 and ending at vn.
This claim is a consequence of a lemma by Peter Damaschke which gives
a means of constructing a monotone path from two vertex disjoint paths.
Fiala then went through the algorithm that Damaschke presents in [1] to
find a spanning k-stave in an interval graph. After going through the proof
of the algorithm and discussing the relationship between scattering number
and the existence of spanning k-staves, Fiala left us with two problems to
think about. The first was the problem of finding a Hamiltonian path in an
interval graph with one fixed endpoint and the second was the problem of
finding a Hamiltonian path in an interval graph with two fixed endpoints.
These problems were very interesting to me and although I was not able to
make much progress toward solving them, I learned a lot while trying.

84



The other topic which interested me was the one presented to us by
Andrew Goodall. He gave two talks on counting the proper k-colourings of
graphs and acyclic orientations of graphs. I was familiar with the definition
of a proper k-colouring of a graph, G, as a function, f : V (G) → [k], such
that if uv ∈ E(G), f(u) 6= f(v). However, I had never considered count-
ing the number of such colourings and was quite intrigued when Goodall
introduced the following definition:

Definition 1.1. The chromatic polynomial of a graph, G, counts the num-
ber of proper k-colourings of the vertices of G and is denoted by P (G; k).

Therefore, P (G; k) > 0 if and only ifG has a proper k-colouring. Goodall
then went on to explain that a proper colouring of G defines a unique acyclic
orientation of G whereby u → v if f(u) < f(v) because f is a total order.
Therefore, the longest directed path that can exist in this orientation is a
Pk. This motivated us to prove the following theorem about the converse
of this statement:

Theorem 1.2. If G has an acyclic orientation in which all dipaths have
length less than k, P (G; k) > 0.

To prove this statement, we needed that every acyclic orientation has
at least one source and one sink. This follows from the fact that if Pr with
r ≤ k is the longest dipath in G, then the first vertex in this path can
only have edges leaving from it and the last vertex in this path can only
have edges entering. The graph G can now be shown to have a proper
r ≤ k-colouring as follows. Colour all sinks in G with the colour r (since no
edges can exist between sinks) and then delete these vertices. The resultant
subgraph still has an acyclic orientation (if it did not, this would imply
G did not have an acyclic orientation) with maximum dipath Pr−1 and so
we can colour all sinks in this subgraph with r − 1. Continuing on in this
fashion, it is clear that G can be given a proper r-colouring and, since r ≤ k,
it follows that P (G; k) > 0.

Goodall then talked about the chromatic polynomial in more depth. We
were able to deduce that P (K̄n; k) = kn and that P (Kn; k) = kn, where kn

denotes the falling factorial k(k−1) · · · (k−n+ 1) by greedily colouring the
vertices. After some explanation, we arrived at the following definition of
the chromatic polynomial:

Definition 1.3. P (G; k) =
∑k

r=1 ar(G)kr, where ar(G) is the number of
ways to partition the vertices of G into r non-empty stable sets.
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This definition makes sense because for each partition of the vertices into
r non-empty stable sets, there are kr ways to assign colours, since vertices
in each set can receive the same colour.

We then established the following recurrence relation for the chromatic
polynomial of a graph, G with some non-edge, xy /∈ E(G):

P (G; k) = P (G+ xy; k) + P (G · xy; k).

This recurrence is true because the number of colourings of G is the number
of colourings of G where f(x) 6= f(y) plus the number of colourings of G
where f(x) = f(y). The first is the number of colourings of the graph G′

where xy ∈ E(G) and the second is the number of colourings of the graph
G′′ where x and y are identified as a single vertex. From here, we were able
to arrive at the following recurrence by setting H = G + xy, G = H\xy,
and G · xy = H/xy, where H\xy denotes the deletion of the edge xy and
H/xy denotes the contraction of the edge xy:

P (H; k) = P (H\xy; k)− P (H/xy; k).

The first recurrence is useful for dense graphs and the second is useful for
sparse graphs.

Goodall then left us with several exercises to attempt, several of which
I will present in the following section.

A few days later, Goodall returned to talk to us more about acyclic
orientations and the chromatic polynomial. We began by reviewing the
chromatic polynomials of cycles and trees on n vertices (proofs in next
section). They are as follows :

P (Cn; k) = (k − 1)n + (−1)n(k − 1)

P (Tn; k) = k(k − 1)n−1.

We then discussed the coefficients of terms in the chromatic polynomial.
We will denote the coefficient of the term kr by [kr]P (G; k). Goodall ex-
plained that the deletion-contraction recurrence could be used to show that
for all graphs G on n vertices without loops, [kn]P (G; k) = 1. To find
[kn−1]P (G; k), we returned to our definition of the chromatic polynomial as
P (G; k) =

∑n
i=1 ai(G)ki. We saw that an(G) = 1, since there is only one

way to partition V (G) into n stable sets (each vertex goes into its own set).
We also saw that an−1(G) =

(
n
2

)
− |E(G)| because the only way partition

V (G) into n − 1 sets is for one set to contain two vertices and the rest to
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be singletons. There are
(
n
2

)
choices for the set which contains two vertices,

however |E(G)| of these will be an edge and therefore will not be stable.
From here, we were able to show that

[kn−1]P (G; k) = −(

n−1∑

i=1

i)an(G) + an−1(G) = −
(
n

2

)
+

(
n

2

)
− |E(G)|

= −|E(G)|.

We then began to calculate the coefficient of kn−2, but ran into problems
when we could not count the number of partitions of vertices into n−2 stable
sets. I was very interested in this, however, and so I looked at [2] in which
Meredith proves that if a graph G with n vertices and m edges has a girth
of n− s+ 1 and p cycles of this length, then for r > s, |[kr]P (G; k)| =

(
m

n−r
)

and |[ks]P (G; k)| =
(

m
n−s
)
− p. This implies that for any graph on at least

three vertices, [kn−2]P (G; k) =
(
m
2

)
− p, where p is the number of triangles

in G. Additionally, for any triangle-free graph on at least four vertices,
[kn−3]P (G; k) =

(
m
3

)
− q, where q is the number of C4’s in G. Beyond these

small values, however, it seems quite difficult to compute the coefficients of
terms in the chromatic polynomial.

After discussing these coefficients, we went on to define the following
polynomial:

Q(G; k) = (−1)nP (G;−k) =

n∑

i=1

bi(G)kn−i,

where bi(G) counts the number of subgraphs of G with i edges containing
no broken cycles. Goodall pointed out that if the girth of G = g, then
bi(G) =

(
m
i

)
for 0 < i < g−1 and bg−1(G) =

(
m

g−1
)
−q, where q is the number

of g-cycles. This makes sense because if the smallest cycle in G is a Cg, then
any subgraph on up to g−2 vertices cannot possibly contain a broken cycle,
and so the number of subgraphs of G with i ≤ g−2 edges without a broken
cycle is just the number of subgraphs of G with i edges. Additionally, for
each subgraph on g − 1 vertices, there is only one way to have a broken
cycle for each cycle of length g. These two formulas correspond exactly
with Meredith’s theorem in [2]. The point of this discussion was to bring
us back to the topic of acyclic orientation of graphs. Goodall explained
that the evaluation of Q(G; 1) = (−1)nP (G;−1) =

∑
bi(G) calculates the

number of acyclic orientations of G. He then asked us to think about a
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combinatorial interpretation for why the number of acyclic orientations of a
graph should be the same as the total number of subgraphs with no broken
cycles. I thought about this problem for quite some time and this question
was the topic of my final presentation. I present one thought below.

In [3] when Stanley proves that (−1)nP (G;−1) is the number of acyclic
orientations of G, he also shows that the number of acyclic orientations of
G are the number of equivalence classes for a particular equivalence relation
defined as follows:

Definition 1.4 (Stanley 1973). Let G be a graph on n vertices and let
σ be a bijective mapping σ : V (G) → [n]. Then if ∼ is an equivalence
relation on the set of all σ labelings of G with the condition that σ ∼ σ′ if
whenever uv ∈ E(G), then σ(u) < σ(v)⇔ σ′(u) < σ′(v), (−1)nP (G;−1) is
the number of equivalence classes of this relation.

This made me wonder whether there may be some sort of relation that
could be defined on G for which the subgraphs with no broken cycles deter-
mine the equivalence classes for the relation. I have not yet been successful
in finding one, however, and I have not yet been able to come up with a
combinatorial interpretation for why the number of acyclic orientations of
a graph is the same as the number of subgraphs with no broken cycles.

Finally, Goodall went through a proof for why the function Q(G; 1) =
A(G), where A(G) is the number of acyclic orientations of G. This involved
usingQ to show that the deletion-contraction recurrence held for A. Goodall
left us with many problems to work out, several of which I present solutions
to in the next section.

2 Exercises

1. Find the chromatic polynomial for a tree on n vertices, Tn.
The chromatic polynomial for a tree on n vertices is

P (Tn; k) = k(k − 1)n−1.

Proof. When n = 2, it is clear that there are k colours available for the first
vertex and k− 1 colours available for the second vertex, giving a chromatic
polynomial of k(k − 1). So, assume that up to some m, the chromatic
polynomial for a given tree on m vertices is k(k − 1)m−1. Now consider a
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tree on m+1 vertices. By the deletion-contraction recurrence, we have that

P (Tm+1; k) = P (Tm+1\e ∈ E(T ); k)− P (Tm+1/e ∈ E(T ); k)

= P (Tm +K1; k)− P (Tm; k)

= k(P (Tm; k))− P (Tm; k)

= P (Tm; k)(k − 1)

= k(k − 1)m.

2. Find the chromatic polynomial for the cycle on n vertices, Cn.
The chromatic polynomial for a cycle on n vertices is

P (Cn; k) = (k − 1)n + (−1)n(k − 1).

Proof. When n = 3, it is clear that there are k colours available for the
first vertex, k − 1 colours available for the second vertex, and k − 2 colours
available for the third vertex. Therefore, P (C3; k) = k(k − 1)(k − 2) =
k3− 3k2 + 2k = (k− 1)3 + (−1)3(k− 1). So, assume that up to some m, the
chromatic polynomial for the cycle on m vertices is (k−1)m+(−1)m(k−1).
Now, consider the cycle on m + 1 vertices. By the deletion-contraction
recurrence, we have that

P (Cm+1; k) = P (Tm+1; k)− P (Cm; k)

= k(k − 1)m − [(k − 1)m + (−1)m(k − 1)]

= k(k − 1)m − (k − 1)m + (−1)m+1(k − 1)

= (k − 1)m(k − 1) + (−1)m+1(k − 1)

= (k − 1)m+1 + (−1)m+1(k − 1).

3. Find the chromatic polynomial for the wheel graph on n+ 1 vertices,
Wn.

To find the chromatic polynomial for the wheel graph, we will first
start with the graph H which consists of the wheel graph Wn with an
extra vertex attached to some 3-clique in Wn. Note that once the ver-
tices of Wn are coloured, there are k − 3 colours left for the additional
vertex. Therefore, P (H; k) = (k− 3)P (Wn; k). We now apply the deletion-
contraction recurrence to H where the edge used is the edge, e, adjacent to
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the two degree four vertices in H. Note that P (H\e; k) = P (Wn+1; k) and
P (H/e; k) = (k − 2)P (Wn−1; k), since H/e is the graph which consists of
Wn−1 with an additional vertex adjacent to a degree three vertex and the
degree n − 1 vertex. This is sufficient to establish the following recursive
definition:

P (Wn; k) = (k − 3)P (Wn−1; k) + (k − 2)P (Wn−2).

This has the characteristic polynomial r2 − (k − 3)r − (k − 2) = 0 with
roots k − 2 and −1. Therefore, the chromatic polynomial for Wn must be
of the form P (Wn; k) = A(k − 2)n + B(−1)n. Using as initial conditions
P (W3; k) = k(k−1)(k−2)(k−3) and P (W4; k) = k5−8k4+24k3−31k2+14k
(calculated using the deletion-contraction relation described above), we get
that

P (Wn; k) = k(k − 2)n + k(k − 2)(−1)n.

4. Find two non-isomorphic graphs G and G′ such that P (G; k) =
P (G′; k).

Each of these graphs has a chromatic polynomial of k(k − 1)(k − 2)3.
This can be seen by using a greedy colouring. In the first graph, there
are k choices for how to colour the degree 4 vertex. Then, there are k − 1
choices for the next vertex, and k − 2 colours for each subsequent vertex
because vertices can be selected so that they are adjacent to two adjacent
and already coloured vertices. In the second graph, there are k choices for
how to colour one degree 4 vertex and then k − 1 choices for the second
degree 4 vertex. Since none of the remaining vertices are adjacent to one
another but are all adjacent to the degree 4 vertices, there are k− 2 choices
for how to color each of them.

This particular example can be extended into two infinite families whereby
for each n/geq5, the graphs on n vertices are not isomorphic but have the
same chromatic polynomial. One family consists of a cycle on n vertices
which is triangulated in such a way that one vertex is of degree n− 1. The
other family is a connected graph on n vertices which has n − 2 triangles
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such that each triangle shares one common edge, creating two degree n− 1
vertices. Both families have chromatic polynomials of k(k− 1)(k− 2)n−2 as
can be easily seen by extending the greedy colourings described above.

5. By considering the definition of the chromatic polynomial, prove that

kn =
∑

1≤i≤n
S(n, i)ki,

where S(n, i) is equal to the number of partitions of an n-set into i non-
empty sets.

Proof. We know that P (K̄n; k) = kn =
∑

1≤i≤n ai(G)ki, where ai(G) is the
number of partitions of the vertices of G into i non-empty stable sets. Since
any set of vertices of K̄n forms a stable set, ai(K̄n) = S(n, i). Therefore,
kn =

∑
1≤i≤n S(n, i)ki.

6. If G is a connected graph, what does the coefficient of k in the
chromatic polynomial P (G; k) count?

Expanding the terms of P (G; k) =
∑n

i=1 ai(G)ki, it can be seen that
[k]P (G; k) =

∑n
i=1(−1)i+1(i−1)!ai(G), where ai(G) denotes the number of

partitions of the vertex set of G into i non-empty stable sets. However, this
gives no information about the meaning of the coefficient of the chromatic
polynomial. So, we seek other interpretations.

Since (k − 1) is a factor of P (G; k) whenever G has an edge (this can
be shown by the deletion-contraction relation), P (G; 1) = 0. Therefore, the
sum of the coefficients of the chromatic polynomial must equal 0, and so
[k]P (G; k) = −∑n

i=2[ki]P (G; k). Again, this definition is unsatisfying as it
sheds no light on how to interpret this coefficient.

However, using the definition of the chromatic polynomial presented by
Whitney in [4] of P (G; k) =

∑
i(−1)ibik

n−i, we can clearly see that when
we take i = n− 1, [k]P (G; k) = (−1)n−1bn−1, where bn−1 is the number of
subgraphs of G with n− 1 edges which contain no broken cycles.

Interestingly enough, there is another equivalent definition of the chro-
matic polynomial which gives an alternative definition of the coefficient
of k. Goodall and Nešetřil leave as a problem to show that for a con-
nected graph G, P (G; k) =

∑n−1
i=0 (−1)ici(G)kn−i, where ci(G) is the num-

ber of cocliques of order n − i occurring as leaf nodes in the computation
tree for G. This interpretation of the chromatic polynomial implies that
[k]P (G; k) = (−1)n−1cn−1(G). In absolute value, this is the number of
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cocliques of order 1 which occur as leaf nodes in the computation tree for
G.

These two different interpretations of the coefficient of k in the chromatic
polynomial make me wonder whether there is some connection between the
number of cocliques of order 1 which occur as leaf nodes in the computa-
tion tree for G and the number of subgraphs of G on n − 1 edges which
contain no broken cycles. It seems that there should be some combinatorial
interpretation for why these two values are equivalent. Additionally, it must
also be true that the number of acyclic orientations of G is the number of
cocliques of any order occuring as leaf nodes in the computation tree of G.
Perhaps this may give another combinatorial explanation for the number of
acyclic orientations of G.
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1 Experience

I feel very lucky to have been chosen to come to Prague. The experience
was a nice mix of work and play. The first week consisted of lectures from
professors at Charles University. Martin Balko presented some proofs of
Cayley’s formula, Professor Goodall talked about the chromatic polynomial,
and Professor Fiala talked about interval graphs and the problem of finding
hamiltonian paths on them.

The second week I attended the Midsummer Combinatorial Workshop.
One of the talks that stood out to me was Iersal’s talk on reconstructing
phylogenetic networks. I have an interest in evolutionary biology, and it
was enlightening to learn about how people actually figure out evolutionary
relationships from DNA using graph theory analysis. Most, if not all of the
speakers at the workshop presented open problems, which I really had no
luck in figuring out.

On the last day of the workshop, Professor Nešetřil showed us around
the National Gallery. I was impressed with his knowledge of art history and
I really enjoyed seeing and learning about the art in the museum.

I am grateful to my hosts for showing me around Prague and other
parts of the Czech Republic. It is really refreshing to be in a new place and
experience a different culture. Thank you!

2 Math

The very first lecture we received consisted of three proofs of Cayley’s for-
mula, presented by Martin Balko. Cayley’s formula states that for n ≥ 2,
the number of spanning trees of Kn is equal to nn−2. I was amazed that the
number could be stated so simply, and I was impressed at the cleverness of
the proofs. I found the first proof presented, using vertebrates, particularly
elegant. However, I did not completely understand all of it, and Mr. Balko
did not quite complete the proof. I looked for the proof in the textbook
provided to us by Dr. Nešetřil, and it turned out that he, too, left parts
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of the proof as an exercise to the reader. I will present below a complete
proof.

Theorem 2.1. For each n ≥ 2, the number of spanning trees of Kn is equal
to nn−2.

3 Proof

Consider a spanning tree of Kn. Mark one vertex with a circle, and one
with a square. We allow that the same vertex may be marked twice. We
call such an arrangement a vertebrate. Let B be the set of all vertebrates
that can arise from Kn. For a given spanning tree, there are n2 possible
vertebrates. Therefore, the number of spanning trees is equal to B/n2.

Lemma 3.1. There exists a bijection F between the set B of all vertebrates
for a given n and the set of all mappings of the set {1, 2, . . . , n} to itself.

Since the number of mappings of the set {1, 2, , n} to itself is nn, it
follows from the lemma that the number of vertebrates is also nn, so the
number of spanning trees is nn−2.

Proof. Take a tree with n vertices, and order the vertices from 1 to n (the
order doesn’t matter). Now mark one with a circle and one with a square
to create a vertebrate. Since the graph is a tree, there is a unique path from
the circled vertex to the squared vertex; let’s call this path the spine. The
order of the vertices on the spine from circle to square defines a permutation
of the numbers assigned to them. Draw the cycles of the permutation. This
graph is a disjoint union of directed cycles. Call this graph P . Now, in
the original graph, remove the edges of the spine. The remaining graph is
a forest. In each tree of the forest, orient each edge to point towards the
vertex that was originally in the spine. Now, put this into the graph P :
take P , and to each vertex in P attach the tree that was remaining from
the vertebrate when the edges of the spine were removed, and orient these
edges towards the vertex. Call this graph G. We finally have that G defines
this mapping of {1, 2, . . . , n} to itself. It is a mapping because each vertex
has exactly one edge coming out of it. This is clearly true for the original
permutation graph, and it is true for the remaining vertices because there
is a unique path from each vertex to the spine.

Now, what remains to show is that we can reconstruct the vertebrate
from the mapping, and that any such mapping can be derived from some
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vertebrate. Constructing the vertebrate is easy. Given the mapping derived
above, we can construct the graph G. G contains some directed cycles.
The vertices in the directed cycles are the vertices that are on the spine on
the vertebrate, and the directed cycles define a permutation of them. The
ordering of the permutation corresponds to the ordering on the spine, and
the rest of the graph is just attached to these vertices as they are in the
graph G. To prove the other part, we need a definition and a lemma.

Definition 3.2. Given a mapping f from a vertex set V to itself, the
directed graph of f is the graph with vertex set V and edges from each v to
f(v).

Lemma 3.3. The directed graph of a mapping from V to V is always the
disjoint union of directed cycles, with each cycle possibly having trees hang-
ing off it with edges directed towards the cycle.

We can use this lemma to finish the proof of the above lemma. Given a
mapping from a vertex set V to itself, we can construct the directed graph.
Then, applying the same procedure as above, we can construct a vertebrate.

Proof. Draw each isolated vertex V . Now on each vertex put a loop. This
graph is a disjoint union of directed cycles, with trees possibly hanging off
the cycle. Let us construct the directed graph of the mapping by visiting
each vertex, removing the originally drawn loop and replacing it with the
actual edge. I will show that at each step, the graph retains the property
stated in the lemma, so that when we have visited every vertex, the final
directed graph satisfies the property. Suppose that at some point in drawing
the edges, the current graph is a disjoint union of directed cycles with trees
possibly hanging off of the cycles with edges pointed towards the cycles. We
erase the loop on the current vertex v. This vertex v is no longer part of
the cycle. Now we draw the edge from v to f(v). Case 1: f(v) = v. In
this case, the graph does not change and still satisfies the property. Case
2: f(v) lies on the same component as v. In this case, we have completed
a cycle, and the graph still satisfies the property. Case 3: f(v) lies on a
different component. In this case, the component that v is in has become
a tree hanging off of another component, so the graph still satisfies the
property. Thus, when we have drawn all the edges, we end up with a graph
that satisfies the property stated in the lemma.
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1 Introduction

In the week leading up to the Midsummer Combinatorial Workshop, we
were graciously escorted by the Czech students to a number of sights and
activities both inside and outside of Prague. We were also fortunate enough
to receive visits by a number of professors who gave us small lectures on
relevant areas of graph theory. At the end of each talk, they presented to
us a number of problems to work on.

2 Math

The talk that interested me the most was the one on interval graphs by
Jǐŕı Fiala as a part of the REU seminar series. He started by defining and
showing us an example of an interval model: simply put it is a set of in-
tervals in the real line. Based on this interval model, we can determine the
intersection graph there is one vertex for each interval, and there is an edge
between two vertices if their corresponding intervals intersect. This graph
is called the interval graph.

Note that multiple interval models can have the same interval graph, and
also that not all graphs are interval graphs. For example, the cycle graph
with 4 vertices (C4) is not a valid interval graph because it is impossible
to construct a corresponding interval model. Professor Fiala then stated
two criteria that are both necessary and sufficient for a graph to be interval
it must be chordal and asteroidal triple-free. A graph is chordal if each
cycle of length 4 or more has a chord (an edge joining two non-adjacent ver-
tices), and an asteroidal triple is a set of 3 vertices with the property that
each pair can be joined by a path that avoids the neighborhood of the third.

He continued to speak about methods of finding hamiltonian paths and
k-staves in interval graphs. Because each interval model corresponds to
exactly one graph, we worked with interval models rather than the graphs
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themselves. We found that it was visually easy to determine the existence of
a hamiltonian path using this method. He concluded the talk by presenting
us with a murder mystery(The Duke of Densmore) by Claude Berge whose
design was rooted in interval graphs.

3 Problems

3.1 Who Killed the Duke of Densmore?

”The Duke of Densmore is found dead in the explosion of his castle. The
murder was committed with a bomb placed carefully in the labyrinth, which
would require a long preparation in hiding in the mazes of the labyrinth.
During his last years, the Duke had received eight visitors to his castle; each
of them was brought first to the island and then back to the mainland by a
motor boat. None of them recalls the precise dates or duration of her stay
on the island, but each remembers with certainty whom else she had met
on the isle. Determine who killed the Duke of Densmore.”

Solution: In addition to the description above, we are given a list of
female suspects, and, for each suspect, we are also given a list of people
she had met on the isle. We can then construct a graph where each vertex
corresponds to a suspect, and an edge is drawn between two vertices if their
corresponding suspects saw each other on the isle (there are no such con-
flicts where A met B, but B did not meet A). This graph is shown in Fig 1.

Note that the graph is neither chordal nor asteroidal triple-free: vertices
A, B, H, C form a cycle on 4 vertices without a chord, as do vertices A, C,
H, G. Also, vertices B, D, F form an asteroidal triple. With these points in
mind, we can see that vertex A is the cause of this trouble. If we remove
vertex A and all its edges from the graph, we are left with a valid interval
graph (Fig 2). This implies that A’s interval was actually a disjoint union of
two intervals, which points to the following story: person A met some people
in the beginning, then went into hiding as she prepared the bomb, then came
out and met a few others later on. I propose a potential interval model for
the timeline in Fig 3., showing the time periods of A’s disappearance. Thus
we conclude that person A (Ann in the story) is the culprit.
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Figure 1: Original intersection graph, as described by the problem
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Figure 2: Intersection graph with vertex A removed
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Figure 3: One possible interval model

3.2 Rational Roots of P (G; k)

P (G; k) is a polynomial in k. Prove that all rational roots of P (G; k) are
non-negative integers when G has at least one edge.

Solution: First, we show that all rational roots of P (G; k) are integral.
Note that P (G; k) is a monic polynomial. This can be proven by starting

with a single-edge graph its monic chromatic polynomial is kn−1(k− 1), as
n− 1 vertices can have any of the k colors, and the last one only has k − 1
choices. Then, by using the deletion-contraction recursion and an inductive
argument, we can prove that this result holds for all possible G.

We can write P (G; k) as kn + an−1kn−1 + · · · + amk
m, where n is the

number of vertices in G, ai are all integers, and 0 ≤ m < n (we cannot
have m = n since G has at least one edge). We can factor km from the
polynomial: P (G; k) = km(kn−m + an−1kn−m−1 + · · ·+ am). We can then
use the rational roots theorem on the inner polynomial of degree n−m: it
states that all rational roots must be of the form p

q where p is a divisor of
am, and q is a divisor of an = 1. Since the only choice for q is 1, we can
conclude that all rational roots are integers.

Next, we show that P (G; k) has no negative roots. To do this, we will
show that either P (G;−k) > 0 or P (G;−k) < 0 for k > 0.

Consider the formula proven by Stanley in 1972:
(−1)nP (G;−k) = x, where x = the number of ordered pairs (α, f) where α
is an acyclic orientation, f is a mapping from V (G) to 1, 2, . . . , k such that
if u→ v in the orientation α, then f(u) ≤ f(v).
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If G is a graph with at least one edge, the x > 0 (the justification of this
point eludes me). Thus x = (−1)nP (G;−k) > 0. Because n = |V (G)|,it
is a constant with regards to k. Thus, we can divide both sides by (−1)n,
and we have shown that either P (G;−k) > 0orP (G;−k) < 0 for all k > 0.
Thus it cannot have a negative root.

We have shown that all rational roots of P (G; k) are integral, and that
they cannot be negative. Thus we are done.
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