
Online Colored Bin Packing

Martin Böhm∗ 1, Jǐŕı Sgall∗ 1, and Pavel Veselý∗ 1

1Computer Science Institute, Charles University, Prague,
Czech Republic. {bohm,sgall,vesely}@iuuk.mff.cuni.cz.

Abstract

In the Colored Bin Packing problem a sequence of items of sizes
up to 1 arrives to be packed into bins of unit capacity. Each item has
one of c ≥ 2 colors and an additional constraint is that we cannot
pack two items of the same color next to each other in the same bin.
The objective is to minimize the number of bins.

In the important special case when all items have size zero, we
characterize the optimal value to be equal to color discrepancy. As
our main result, we give an (asymptotically) 1.5-competitive algorithm
which is optimal. In fact, the algorithm always uses at most d1.5 ·
OPTe bins and we show a matching lower bound of d1.5·OPTe for any
value of OPT ≥ 2. In particular, the absolute ratio of our algorithm
is 5/3 and this is optimal.

For items of unrestricted sizes we give an asymptotically 3.5-
competitive algorithm. When the items have sizes at most 1/d for
a real d ≥ 2 the asymptotic competitive ratio is 1.5 + d/(d − 1). We
also show that classical algorithms First Fit, Best Fit and Worst Fit
are not constant competitive, which holds already for three colors and
small items.

In the case of two colors—the Black and White Bin Packing
problem—we prove that all Any Fit algorithms have absolute compet-
itive ratio 3. When the items have sizes at most 1/d for a real d ≥ 2
we show that the Worst Fit algorithm is absolutely (1 + d/(d − 1))-
competitive.

∗This work was supported by the project 14-10003S of GA ČR and by the GAUK
project 548214.

1

1 Introduction

In the Online Black and White Bin Packing problem proposed by Balogh
et al. [3, 2] as a generalization of classical bin packing, we are given a list
of items of sizes in [0, 1], each item being either black, or white. The items
are coming one by one and need to be packed into bins of unit capacity so
that the colors inside the bins are alternating, i.e., no two items of the same
color can be next to each other in the same bin. The goal is to minimize the
number of bins used.

Online Colored Bin Packing is a natural generalization of Black and
White Bin Packing in which items can have more than two colors. As before,
the only additional condition is that we cannot pack two items of the same
color next to each other in one bin.

Observe that optimal offline packings with and without reordering the
items differ in this model. The packings even differ by a non-constant factor:
Let the input sequence have n black items and then n white items, all of
size zero. The offline optimal number of bins with reordering is 1, but an
offline packing without reordering (or an online packing) needs n bins, since
the first n black items must be packed into different bins. Hence we need to
use the offline optimum without reordering in the analysis of online colored
bin packing algorithms.

There are several well-known and often used algorithms for classical Bin
Packing. We investigate the Any Fit family of algorithms (AF). These al-
gorithms pack an incoming item into some already open bin whenever it is
possible with respect to the size and color constraints. The choice of the open
bin (if more are available) depends on the algorithm. AF algorithms thus
open a new bin with an incoming item only when there is no other possibility.
Among AF algorithms, First Fit (FF) packs an incoming item into the first
bin where it fits (in the order by creation time), Best Fit (BF) chooses the
bin with the highest level where the item fits and Worst Fit (WF) packs the
item into the bin with the lowest level where it fits.

Next Fit (NF) is more restrictive than Any Fit algorithms, since it keeps
only a single open bin and puts an incoming item into it whenever the item
fits, otherwise the bin is closed and a new one is opened.

Previous results. Balogh et al. [3, 2] introduced the Black and White
Bin Packing problem. As the main result, they give an algorithm Pseudo with
the absolute competitive ratio exactly 3 in the general case and 1 +d/(d−1)
in the parametric case, where the items have sizes at most 1/d for a real
d ≥ 2. They also proved that there is no deterministic or randomized online
algorithm whose asymptotic competitiveness is below 1 + 1

2 ln 2
≈ 1.721.

2

Concerning specific algorithms, they proved that Any Fit algorithms are
at most 5-competitive and even optimal for zero-size items. They show input
instances on which FF and BF create asymptotically 3 ·OPT bins. For WF
there are sequences of items witnessing that it is at least 3-competitive and
(1 + d/(d− 1))-competitive in the parametric case. Furthermore, NF is not
constant competitive.

The idea of the algorithm Pseudo, on which we build as well, is that
we first pack the items regardless of their size, i.e., treating their size as
zero. This can be done optimally, and the optimum equals the maximal
discrepancy in the sequence of colors (to be defined below). Then these bins
are partitioned by NF into bins of level at most 1.

Balogh et al. [3] also gave a 2.5-approximation offline algorithm with
O(n log n) time complexity and an asymptotic polynomial time approxima-
tion scheme, both when reordering is allowed.

Very recently and independent of us Dósa and Epstein [9] studied Colored
Bin Packing. They improved the lower bound for online Black and White
Bin Packing to 2 for deterministic algorithms, which holds for more colors as
well. For 3 colors and more they proved an asymptotic lower bound of 1.5 for
zero-size items. They designed a 4-competitive algorithm based on Pseudo
and a balancing algorithm for zero-size items. They also showed that Any
Fit algorithms are not competitive at all (with non-zero sizes).

Our results. We completely solve the case of Colored Bin Packing for
zero-size items. As we have seen, this case is important for constructing
general algorithms. The offline optimum (without reordering) is actually not
only lower bounded by the color discrepancy, but equal to it for zero-size
items. For online algorithms, we give an (asymptotically) 1.5-competitive
algorithm which is optimal. In fact, the algorithm always uses at most d1.5 ·
OPT e bins and we show a matching lower bound of d1.5 ·OPT e for any value
of OPT ≥ 2. This is significantly stronger than the asymptotic lower bound
of 1.5 of Dósa and Epstein [9], in particular it shows that the absolute ratio
of our algorithm is 5/3, and this is optimal.

We use this optimal algorithm for zero-size items and the algorithm Pseu-
do to design an (asymptotically) 3.5-competitive algorithm which is also
(asymptotically) (1.5 + d/(d− 1))-competitive in the parametric case, where
the items have sizes at most 1/d for a real d ≥ 2. (Note that for d < 2 we
have d/(d−1) > 2 and the bound for arbitrary items is better.) It is interest-
ing that the algorithm for zero-size items belongs to the Any Fit family, even
though such algorithms cannot be competitive for general items as Dósa and
Epstein [9] show. Of course, our combined algorithm for general sizes is not
Any Fit.

3

For general sizes we show that algorithms BF, FF and WF are not con-
stant competitive, even for instances with only three colors and very small
items, in contrast to their 3-competitiveness for two colors.

For Black and White Bin Packing, we improve the upper bound on the
absolute competitive ratio of Any Fit algorithms in the general case to 3
which is tight for BF, FF and WF. For WF in the parametric case we prove
that it is absolutely (1 + d/(d − 1))-competitive for a real d ≥ 2 which is
also tight. Therefore, WF has the same competitive ratio as the Pseudo
algorithm.

Related work. In the classical Bin Packing problem, we are given items
with sizes in (0, 1] and the goal is to assign them into the minimum number of
unit capacity bins. The problem was proposed by Ullman [22] and by John-
son [16] and it is known to be NP-hard. There is an asymptotic polynomial-
time approximation scheme (APTAS) [14] and a fully polynomial-time ap-
proximation scheme (FPTAS) [17]. See the survey of Coffman et al. [6] for
the many results on classical Bin Packing and its many variants.

For the online problem, there is no online algorithm which is better
than 248/161 ≈ 1.540-competitive [4]. Regarding AF algorithms, NF is
2-competitive and both FF and BF have the absolute competitive ratio ex-
actly 1.7 [11, 12]. This is similar to Black and White Bin Packing in which
FF and BF have the absolute competitive ratio of 3 and the hard instances
proving tightness of the bound are the same for both algorithms.

Currently best algorithms (in the worst-case behavior) are based on
the Harmonic(K) algorithm [19] which assigns items into K size classes
(1
2
, 1], (1

3
, 1
2
], . . . (1

K
, 1
K−1], (0, 1

K
]. Each class of items is packed separately

by NF. The asymptotic competitive ratio of Harmonic is 1.691 for K large
enough. The ratio was later improved a few times by modifying size classes.
The current best algorithm Harmonic++ by Seiden [21] uses 70 items classes
to achieve the ratio of approximately 1.589. On the other hand, Harmonic-
type algorithms cannot achieve better performance than 1.583.

In the context of Colored Bin Packing, we are interested in variants that
further restrict the allowed packings. Of particular interest is Bounded Space
Bin Packing where an algorithm can have only K ≥ 1 open bins in which it
is allowed to put incoming items. When a bin is closed an algorithm cannot
pack any further item in the bin or open it again. Such algorithms are called
K-bounded-space.

Next Fit-K that keeps the last K created bins open is the first studied
bounded space algorithm with the asymptotic competitive ratio 1.7+ 3

10(K−1)
for K ≥ 2 [7, 20]. The champion among these algorithms is K-Bounded
Best Fit, i.e., Best Fit with at most K open bins, which is (asymptotically)

4

1.7-competitive for all K ≥ 2 [8]. Lee and Lee [19] presented Harmonic(K)
which is K-bounded-space with the asymptotic ratio of 1.691 for K large
enough. Lee and Lee also proved that there is no bounded space algorithm
with a better asymptotic ratio.

The Bounded Space Bin Packing is an especially interesting variant in
our context due to the fact that it matters whether we allow the optimum
to reorder the input instance or not. If we allow reordering for Bounded
Space Bin Packing, we get the same optimum as classical Bin Packing. In
fact, all the bounds on online algorithms in the previous paragraph hold if
the optimum with reordering is considered, which is a stronger statement
than comparing to the optimum without reordering. This is a very different
situation than for Colored Bin Packing, where no online algorithms can be
competitive against the optimum with reordering, as we have noted above.

The bounded space offline optimum without reordering was studied by
Chrobak et al. [5]. It turns out that the computational complexity is very
different: There exists an offline (1.5 + ε)-approximation algorithm for 2-
bounded-space Bin Packing with polynomial running time for every constant
ε > 0, but exponential in ε. No polynomial time 2-bounded-space algorithm
can have its approximation ratio better than 5/4 (unless P = NP). In
the online setting it is open whether there exists a better algorithm than
1.7-competitive K-Bounded Best Fit when compared to optimum without
reordering; the current lower bound is 3/2.

Another interesting variant with restrictions on the contents of a bin
is Bin Packing with Cardinality Constraints, which restricts the number of
items in a bin to at most k for a parameter k ≥ 2. It was introduced by
Krause et al. [18] who also showed that Cardinality Constrained FF has the
asymptotic ratio of at most 2.7 − 2.4/k. Interestingly, the lower bound for
the asymptotic competitive ratio for large k is 1.540 [4], i.e., the same as for
standard Bin Packing, while the lower bound is 1.428 for k = 2 and 1.5 for k
from 3 to 5 [15, 1]. For k ≥ 3, there is an asymptotically 2-competitive online
algorithm [1] and better algorithms are known for small k [13]. Regarding
the absolute competitive ratio there is a tight bound of 2 for any k ≥ 4 [10].

Motivation. Suppose that a television or a radio station maintains sev-
eral channels and wants to assign a set of programs to them. The programs
have a types like “documentary”, “thriller”, “sport”, on TV, or music genres
on radio. To have a fancy schedule of programs, the station does not want
to broadcast two programs of the same type one after the other. Colored
Bin Packing can be used to create such a schedule. Items here correspond
to programs, colors to genres and bins to channels. Moreover, the programs
can appear online and have to be scheduled immediately, e.g., when listeners

5

send requests for music to a radio station via the Internet.
Another application of Colored Bin Packing comes from software which

renders user-generated content (for example from the Internet) and assigns
it to columns which are to be displayed. The content is in boxes of different
colors and we do not want two boxes of the same color to be adjacent in a
column, otherwise they would not be distinguishable for the user.

Moreover, Colored Bin Packing with all items of size zero corresponds to
a situation in which we are not interested in loads of bins (lengths of the
schedule, sizes of columns, etc.), but we just want some kind of diversity or
colorfulness.

2 Preliminaries and Offline Optimum

Definitions and notation. There are three settings of Colored Bin Packing:
In the offline setting we are given the items in advance and we can pack them
in an arbitrary order. In the restricted offline setting we also know sizes and
colors of all items in advance, but they are given as a sequence and they need
to be packed in that order. In the online setting the items are coming one by
one and we do not know what comes next or even the total number of items.
Moreover, an online algorithm has to pack each incoming item immediately
and it is not allowed to change its decisions later.

We focus mostly on the online setting. To measure the effectiveness of
online algorithms for a particular instance L, we use the restricted offline
optimum denoted by OPT (L) or OPT when the instance L is obvious from
the context. Let ALG(L) denote the number of bins used by the algo-
rithm ALG . The algorithm is absolutely r-competitive if for any instance
ALG(L) ≤ r · OPT (L) and asymptotically r-competitive if for any instance
ALG(L) ≤ r · OPT (L) + o(OPT (L)); typically the additive term is just a
constant. We say that an algorithm has the (absolute or asymptotic) com-
petitive ratio r if it is (absolutely or asymptotically) r-competitive and it is
not r′-competitive for r′ < r.

For Colored Bin Packing, let C be the set of all colors. For c ∈ C, the
items of color c are called c-items and bins with the top (last) item of color
c are called c-bins. By a non-c-item we mean an item of color c′ 6= c and
similarly a non-c-bin is a bin of color c′ 6= c. The level of a bin means the
cumulative size of all items in the bin.

We denote a sequence of nk items consisting of n groups of k items of

colors c1, c2, . . . ck and sizes s1, s2, . . . sk by n×
(
c1
s1
, c2
s2
, . . . ck

sk

)
.

Lower Bounds on the Restricted Offline Optimum. We use two

6

lower bounds on the number of bins in any packing. The first bound LB1 is
the sum of sizes of all items.

The second bound LB2 is the maximal color discrepancy inside the input
sequence. In Black and White Bin Packing, the color discrepancy introduced
by Balogh et al. [2] is simply the difference of the number of black and white
items in a segment of input sequence, maximized over all segments. It is easy
to see that it is a lower bound on the number of bins.

In the generalization of color discrepancy for more than two colors we
count the difference between c-items and non-c-items, for all colors c and
segments. It is easy to see that this is a lower bound as well. Formally, let
sc,i = 1 if the i-th item from the input sequence has color c, and sc,i = −1
otherwise. We define

LB2 = max
c∈C

max
i,j

j∑
`=i

sc,` .

For Black and White Bin Packing, equivalently LB2 = maxi,j |
∑j

`=i s`|,
where si = 1 if the i-th item is white, and si = −1 otherwise; the abso-
lute value replaces the maximization over colors.

We prove that LB2 is a lower bound on the optimum similarly to the proof
of Lemma 5 in [2], first observing that the number of bins in the optimum
cannot decrease by removing a prefix or a suffix from the sequence of items.

Observation 2.1. Let L = L1L2L3 be a sequence of items partitioned into
three subsequences (some of them can be empty). Then OPT (L) ≥ OPT (L2).

Proof. It is enough to show that the removal of the first or the last item does
not increase the optimum. By iteratively removing items from the beginning
and the end of the sequence we obtain the subsequence L2 and consequently
OPT (L) ≥ OPT (L2).

The first item of the sequence is clearly the first item in a bin. By re-
moving the first item from the bin we do not violate any condition. Hence
any packing of L into m bins is a valid packing of L without the first item.
Similar holds for the last item.

Lemma 2.2. OPT (L) ≥ LB2 .

Proof. We prove that for all colors c that the optimum is at least LB2 ,c :=
maxi,j

∑j
`=i sc,`. Fix a color c and let i, j be arg maxi,j

∑j
`=i sc,`. Let d =

LB2 ,c. We may assume that d > 0, otherwise d is trivially at most the
optimum. By the previous observation we may assume i = 1 and j = n.

Consider any packing of the sequence and let k be the number of bins
used. Any bin contains at most one more c-item than non-c-items as colors

7

are alternating between c and other colors in the worst case. Since we have
d more c-items than non-c-items, we get k ≥ d. Therefore OPT ≥ LB2 ,c

Note that if we consider a minimal-length sequence with the maximal
discrepancy LB2 , the optimal restricted offline algorithm puts all non-c-items
into c-bins whenever it is possible.

In Black and White Bin Packing, when all the items are of size zero, all
Any Fit algorithms create a packing into the optimal number of bins [2].
For more than two colors this is not true and in fact no deterministic online
algorithm can have a competitive ratio below 1.5. However, in the restricted
offline setting a packing into LB2 bins is still always possible, even though this
fact is not obvious. This shows that the color discrepancy fully characterizes
the combinatorial aspect of the color restriction in Colored Bin Packing.

Theorem 2.3. Let all items have size equal to zero. Then a packing into
LB2 bins is possible in the restricted offline setting, i.e., items can be packed
into LB2 bins without reordering.

Proof. Consider a counterexample with a minimal number of items in the
sequence. Let d = LB2 be the maximal discrepancy in the counterexample
and n ≥ d be the number of items. The minimality implies that the theorem
holds for all sequences of length n′ < n. Moreover, d > 1, since for d = 1 we
can pack the sequence trivially into a single bin.

We define an important interval as a maximal interval of discrepancy d,
more formally a subsequence from the i-th item to the j-th such that for some
color c the discrepancy on the interval is d, i.e.,

∑j
`=i sc,` = d, and we cannot

extend the interval in either direction without decreasing its discrepancy. For
an important interval, its dominant color c is the most frequent color inside
it. At first we show that important intervals are just d items of the same
color.

Observation 2.4. Each important interval I contains only d items of its
dominant color c in the minimal counterexample.

Proof. Suppose there is a non-c-item in I and let a be the last such item in
I. Then a must be followed by a c-item b in I, otherwise I without a would
have higher discrepancy. We delete a and b from the sequence and pack the
rest into d bins by minimality.

Consider the situation after packing the item prior to a. There must be a
c-bin B, otherwise the subsequence of I from the beginning up to a (including
a) has strictly more non-c-items than c-items (each c-item from I is under a
non-c-item and a is the extra non-c-item), so the rest of I has discrepancy

8

more than d. By putting a and b into B we pack the whole sequence into d
bins, thus it is not a counterexample.

From the previous observation it follows that important intervals are dis-
joint. Clearly, there must be an important interval in any nonempty sequence.
Let I1, I2, . . . Ik be important intervals in the counterexample sequence and
let J1, J2, . . . Jk−1 be the intervals between the important intervals (Ji be-
tween Ii and Ii+1), J0 be the interval before I1 and Jk be the interval after
Ik. These intervals are disjoint and form a complete partition of the sequence,
i.e., J0, I1, J1, I2, J2, . . . Jk−1, Ik, Jk is the whole sequence of items. Note that
some of J`’s can be empty.

If k > 2 we can create a packing P1 of the sequence containing only
intervals J0, I1, J1, I2 into d bins by minimality of the counterexample. Also
there exists a packing P2 of intervals I2, J2, I3, . . . Ik, Jk into d bins. Any bin
from P1 must end with an item from the important interval I2 and any bin
from P2 must start with an item from I2. Therefore we can merge both
packings by items from I2 and obtain a valid packing of the whole sequence
into d bins. Hence k ≤ 2.

In the case k = 1 there are four subcases depending on whether J0 and
J1 are empty or not:
• J0 and J1 are nonempty: we create packings of J0, I1 and I1, J1 into d

bins and merge them as before.
• J0 is empty and J1 nonempty: we delete the first item from I1, pack the

rest into d− 1 bins (the maximal discrepancy decreases after deleting)
and put the deleted item into a separate bin.
• J0 is nonempty and J1 empty: similarly we delete the last item from
I1 and pack the rest into d− 1 bins.
• both are empty: I1 can be trivially packed into d bins.
For k = 2 we first show that J0 and J2 are empty and J1 is nonempty

in the counterexample. If J0 is nonempty, we merge packings of J0, I1 and
I1, J1, I2, J2, and if J2 is nonempty, we put together packings of J0, I1, J1, I2
and I2, J2. When J1 is empty, the sequence consists only of intervals I1 and I2
which must have different dominant colors. Thus they can be easily packed
one on the other into d bins.

The last case to be settled has only I1, J1 and I2 nonempty. If the domi-
nant colors c1 for I1 and c2 for I2 are different, we delete the first item from
I1 and the last item from I2, so the discrepancy decreases. We pack the rest
into d − 1 bins and put the deleted items into a separate bin, so the whole
sequence is in d bins again.

Otherwise c1 is equal to c2 and let c be c1. Since the important intervals
are maximal, there must be at least d + 1 more non-c-items than c-items in

9

J1. Also any prefix of J1 contains strictly more non-c-items than c-items and
at least the first two items in J1 have colors different from c.

We delete the first c-item p from I1, the first non-c-item q from J1 and the
last c-item r from I2. Suppose for a contradiction that there is an interval
I of discrepancy d in the rest of the sequence. As I (possibly with q) has
lower discrepancy in the original sequence it must intersect I1 and J1, hence
its dominant color is c. If I intersects also I2, we add the items p, q and r
into I (and possibly some other items from I1 or I2) to obtain an interval of
discrepancy at least d + 1 in the original sequence which is a contradiction.
Otherwise I intersects only I1 and J1, but any prefix of the rest of J1 still
contains at least as many non-c-items as c-items, so I \ J1 has discrepancy
at least d. But I \ J1 is contained in the rest of I1 that have only d− 1 items
and we get a contradiction. Therefore the maximal discrepancy decreases
after deleting the three items, so we can pack the rest into d−1 bins and the
items p, q and r are put into a separate bin. Note that important intervals
of discrepancy d− 1 may change after deleting the three items.

In all cases we can pack the sequence into d bins, therefore no such coun-
terexample exists.

3 Algorithms for Zero-size Items

3.1 Lower Bound on Competitiveness of Any Online
Algorithm

Theorem 3.1. For zero-size items of at least three colors, there is no deter-
ministic online algorithm with an asymptotic competitive ratio less than 1.5.
Precisely, for each n > 1 we can force any deterministic online algorithm to
use at least d1.5ne bins, while the optimal number of bins is n.

Proof. We show that if an algorithm uses less than d1.5ne bins, we can send
some items and force the algorithm to increase the number of black bins or
to use at least d1.5ne bins, while the maximal discrepancy stays n. Applying
Theorem 2.3 we know that OPT = n, but the algorithm is forced to open
d1.5ne bins using finitely many items as the number of black bins is increas-
ing. Moreover, we use only three colors throughout the whole proof, denoted
by black, white and red and abbreviated by b, w and r in formulas.

We introduce the current discrepancy of a color c which basically tells us
how many c-items has come recently and thus how many c-items may arrive
without increasing the overall discrepancy. Formally, we define the current
discrepancy after packing the k-th item as CD c,k = maxi≤k+1

∑k
`=i sc,`, i.e.,

10

the discrepancy on an interval which ends with the last packed item (the
k-th). Note that CD c,k is at least zero as we can set i = k + 1. We omit the
k index in CD c,k when it is obvious from the context.

Initially we send n black items, then we continue by phases and end the
process whenever the algorithm uses d1.5ne bins. When a phase starts, there
are less than d1.5ne black bins and possibly some other white or red bins. We
also guarantee CDw = 0, CD r = 0, and CDb ≤ n. Let Nb be the number of
black bins when a phase starts. In each phase we force the algorithm to use
d1.5ne bins or to have more than Nb black bins, while CDw = 0, CD r = 0,
and CDb ≤ n at the end of each phase.

We now present how a phase works. Let new items be items from the
current phase and old items be items from previous phases. We begin the
phase by sending n new items of colors alternating between white and red,
starting by white, so we send dn/2e white items and bn/2c red items. After
these new items, the current discrepancy is one either for red if n is even, or
for white if n is odd, and it is zero for the other colors.

If some new item is not put on an old black item, we send n black items.
Since the new items are on the top of less than n bins that were black item
at the start of the phase, the number of black bins increases. Moreover,
CDw = 0, CD r = 0, and CDb = n, hence we finish the phase and continue
with the next phase if we have less than d1.5ne bins.

Otherwise all new red and white items are put on old black items. If n
is even, CDw = 0 and we send additional n white items. After that we have
at least 1.5n white bins, so we reach our goal.

If n is odd, CDw = 1 and we send a black item p. If p does not go on
a new white item, we send n white items forcing dn/2e + n white bins and
we are done. Otherwise the black item p is put on a new white item. White
and red have bn/2c new items on the top of bins, CDw = 0, and CD r = 0.
We send another black item q. Since red and white are equivalent colors
(considering only new items), w.l.o.g. q goes into a red bin or into newly
opened bin.

Next we send a white item r and a red item s. After packing r there are
dn/2e bins with a new white item on the top and at least one bin with a
new black item on the top. Moreover, after packing the red item s we have
CDb = 0 and CDw = 0. So if s is not put on a new white item (i.e., it is
put into a black bin, a new bin or on an old white item), we send n white
items and the algorithm must use d1.5ne bins. Otherwise s is packed on a
new white item and we send n black items. We increase the number of black
bins, because we sent n+2 new black items and at most n+1 new non-black
items were put into a black bin (at most n items at the beginning of the
phase plus the item r). Since CDw = 0, CD r = 0, and CDb = n, we continue

11

with the next phase.

3.2 Optimal Algorithm for Zero-size Items

The overall problem of FF, BF and WF is that they pack items regardless
of the colors of bins. We address the problem by balancing the colors of
top items in bins – we mostly put an incoming c-item into a bin of color
c′ 6= c such that there is the maximal number of c′-bins. When we have more
choices of bins where to put an item we use First Fit. We call this algorithm
Balancing Any Fit (BAF).

We define BAF for items of size zero and show that it opens at most
d1.5LB2e bins which is optimal in the worst case by Theorem 3.1. Then
we combine BAF with the algorithm Pseudo by Balogh et al. [2] for items
of any size and prove that the resulting algorithm is (asymptotically) 3.5-
competitive.

After packing the k-th item from the sequence, let dk be the maximal
discrepancy so far, i.e., the discrepancy on an interval before the (k + 1)-st
item, and let Nc,k be the number of c-bins after packing the k-th item. As
in the proof of Theorem 3.1, we define the current discrepancy as CD c,k =

maxi≤k+1

∑k
`=i sc,`, i.e., the discrepancy on an interval which ends with the

last packed item (the k-th). Note that CD c,k is at least zero as we can set
i = k + 1. Let αc,k = Nc,k − ddk/2e be the difference between the number of
c-bins and the half of the maximal discrepancy so far. We omit the k index
in dk, Nc,k, CD c,k and αc,k when it is obvious from the context.

During processing the items, if we have m open bins, d ≤ m is the
maximal discrepancy so far, and for some color c it holds that d − CD c >
m−Nc, we can send d− CD c of c-items without increasing the discrepancy
and force the algorithm to open a new bin.

Hence, to end with at most d1.5de bins we try to keep αc = Nc−dd/2e ≤
CD c for all colors c. If we can keep that and there is a color c with Nc >
d1.5de, we get CD c ≥ Nc − dd/2e > d1.5de − dd/2e = d which contradicts
CD c ≤ d. Let the main invariant for a color c be

Nc −
⌈
d

2

⌉
≤ CD c. (1)

As CD c ≥ 0 keeping the invariant is easy for all colors with at most
dd/2e bins. Also when there is only one color c with Nc > dd/2e, we just
put all non-c-items into c-bins, therefore both the number of c-bins Nc and
the current discrepancy CD c decrease with an incoming non-c-item and both
increase with a c-item, so we are keeping our main invariant (1) for the color
c.

12

Moreover, there are at most two colors with strictly more than dd/2e bins
(given that we have at most d1.5de open bins), thus we only have to deal
with two colors having Nc > dd/2e. In the following let these two colors be
black and white w.l.o.g., we abbreviate them b and w in formulas. We state
the algorithm Balancing Any Fit for items of size zero.

Balancing Any Fit (BAF):
1. When there is at most one color with the number of bins strictly

more than dd/2e, we put an incoming c-item into a bin of color
c′ = arg maxc′′ 6=cNc′′ . If more colors have the same maximal
number of bins we can choose color c′ arbitrarily, e.g., by First
Fit. Between c′-bins we can choose again by FF or arbitrarily.

2. If Nb > dd/2e and Nw > dd/2e, we put black items into white
bins and white items into black bins. We pack items of other
colors into a white bin if Nb − dd/2e < CDb, otherwise into a
black bin.

In the second case we have to choose either black or white bin for items
of other colors than black and white, but the current discrepancy decreases
for both black and white, while the number of bins stays the same for the
color which we do not choose. So if αb = CDb and αw = CDw, we can force
the algorithm to open more than d1.5de bins. Therefore we need to prove
that in the second case, i.e., when Nb > dd/2e and Nw > dd/2e, at least one
of inequalities αb ≤ CDb and αw ≤ CDw is strict.

Theorem 3.2. Balancing Any Fit algorithm is 1.5-competitive for items
of size zero and an arbitrary number of colors. Precisely, it uses at most
d1.5 ·OPT e bins.

Proof. First we show that keeping the main invariant (1) for each color c, i.e.,
αc ≤ CD c, is enough for the algorithm to create at most d1.5de bins and thus
to be 1.5-competitive, since the maximal discrepancy equals the optimum.
As we discussed, keeping these inequalities can be done by the first case of
the algorithm, if there is at most one color c with Nc > dd/2e, thus most of
the proof deals with two colors having more than dd/2e bins.

Claim 3.3. Given that Nc − dd/2e ≤ CD c for all colors c during the whole
process, the algorithm opens at most d1.5de bins.

Proof. We prove the claim by contradiction: Suppose that the main invari-
ant (1) holds for all colors all the time and BAF opens a bin with a c-item
which is the t-th item in the sequence and we exceed the d1.5dte limit, but

13

before the t-th item there were at most d1.5dt−1e bins. Thus dt = dt−1, since
if dt = dt−1 + 1, then the bound also increases with the t-th item.

Let the k-th item be the last non-c-item before the t-th, so only c-items
come after the k-th item. None of c-items from the (k + 1)-st to the t-th
increase the maximal discrepancy d, otherwise if one such item increases d,
then all following such items also do. Thus dk = dt.

The algorithm must receive d1.5dke + 1 − Nc,k of c-items after the k-th
item, but then

CD c,t = CD c,k+d1.5dke+1−Nc,k ≥ Nc,k−
⌈
dk
2

⌉
+d1.5dke+1−Nc,k = dk+1

We get a contradiction, since it holds CD c,t ≤ dt = dk.

We now focus on the case in which Nb > dd/2e and Nw > dd/2e. Let the
secondary invariant be

2αb + 2αw ≤ CDb + CDw + 1 (2)

We show that we can maintain the secondary invariant, while black and
white are the two strictly most common colors of bins. Then we prove that
the secondary invariant holds when black and white become the two strictly
most common colors which must precede the time when the number of bins
for the second color gets over the dd/2e limit.

Observe that keeping the secondary invariant (2) is enough to have αb <
CDb or αw < CDw if both αb > 0 and αw > 0. If αb ≥ CDb and αw ≥ CDw,
the secondary invariant becomes 2αb + 2αw ≤ CDb + CDw + 1 ≤ αb +αw + 1
which is a contradiction. Note that we used that αw and αb are integral.
Therefore we can choose either black bin, or white bin for an item of another
color and keep the main invariant (1) for black and white colors in the second
case of the algorithm.

Claim 3.4. Suppose that the main invariant (1) holds for all colors and
the secondary invariant (2) also holds when black and white became the two
strictly most common colors of bins, i.e., Nc < Nb and Nc < Nw for all other
colors c. Then these invariant inequalities hold as long as black and white
are still the two strictly most common colors of bins.

Proof. We show that an incoming item does not violate the secondary invari-
ant, therefore we also keep the main invariant for all colors by the definition
of the algorithm.

First we suppose that the maximal discrepancy d is not changed by the
incoming item. There are three cases according to the color of the item:

14

• The item is black: Then αb increases and αw decreases, because black
items are put into white bins. Also the right-hand side of the inequality
does not change or even increases as CDb increases and CDw decreases
by at most one. (CDw stays the same when it is zero.)
• When the item is white, the situation is symmetric to the previous case.
• Otherwise we pack the item into a white bin if Nb−dd/2e < CDb, oth-

erwise into a black bin. If it is packed into a white bin, αw decreases and
αb stays the same, while both CDb and CDw decrease by at most one,
so the secondary invariant holds as the left-hand side decreases by two
and the right-hand side decreases by at most two. The main invariant
also holds for both colors, since for black the inequality holds strictly.
If the item is packed into a black bin, we have Nw − dd/2e < CDw,
because the secondary invariant held before packing the item, thus ei-
ther for black, or white the main invariant inequality held strictly. The
secondary invariant holds too as its left-hand side decreases by two and
the right-hand side decreases by at most two.

Otherwise d increases with an incoming c-item, thus also CD c increases
and αc′ for each color c′ decreases if d becomes odd. We follow the same proof
as if d stays the same, and the eventual additional decrease of αc′ can only
decrease the left-hand sides of the main and the secondary invariants.

Note that in the previous proof, αb or αw can be negative in the secondary
invariant. We complete the analysis of BAF by showing that the secondary
invariant starts to hold when two colors become the two strictly most common
colors of bins.

Claim 3.5. When it starts to hold that Nc < Nb and Nc < Nw for all other
colors c, then 2αb + 2αw ≤ CDb + CDw + 1.

Proof. Let the k-th item be the one after which black and white became the
two strictly most common colors and assume w.l.o.g. also Nb,k ≥ Nw,k. Note
that the k-th item can be only black or white. Before the k-th item the
number of non-black bins is at most d1.5dk−1e −Nb,k−1 = dk−1 − αb,k−1.

If the k-th item is white, then after packing it the number of non-black
bins is at most dk−1−αb,k−1 + 1 ≤ dk−αb,k (note that there is an inequality
only because of a possible increase of d). As white was not the second strictly
most common color of bins before the k-th item we have

15

αw,k = Nw,k −
⌈
dk
2

⌉
= Nw,k−1 + 1−

⌈
dk
2

⌉
≤ dk−1 − αb,k−1

2
+ 1−

⌈
dk
2

⌉
≤ dk − αb,k − 1

2
+ 1−

⌈
dk
2

⌉
= −αb,k

2
+ 0.5 +

dk
2
−
⌈
dk
2

⌉
≤ −αb,k

2
+ 0.5.

Otherwise the k-th item is black, so after it the number of non-black bins
is at most dk − αb,k ≥ dk−1 − αb,k−1 − 1. Since the number of white bins
does not change, otherwise white would not become the second strictly most
common color of bins, we get

αw,k = Nw,k −
⌈
dk
2

⌉
= Nw,k−1 −

⌈
dk
2

⌉
≤ dk−1 − αb,k−1

2
−
⌈
dk
2

⌉
≤ dk − αb,k + 1

2
−
⌈
dk
2

⌉
= −αb,k

2
+ 0.5 +

dk
2
−
⌈
dk
2

⌉
≤ −αb,k

2
+ 0.5.

In both cases of the color of the k-th item we get αw,k ≤ −αb,k/2 + 0.5.
Therefore

2αw,k+2αb,k ≤ −αb,k+1+2αb,k = αb,k+1 ≤ CDb,k+1 ≤ CDw,k+CDb,k+1

where we use the main invariant (1) for black color which BAF keeps, since
it uses the first case of the algorithm for packing the k-th item, because black
can be the only color with more than ddk−1/2e bins. Hence the secondary
invariant (2) holds.

Therefore we can keep the main invariant Nc − dd/2e ≤ CD c for all
colors c during the whole run of the algorithm and the theorem follows by
Claim 3.3.

4 Algorithms for Items of Any Size

4.1 Constant Competitive Algorithm

We now show that there is a constant competitive online algorithm even for
items of sizes between 0 and 1. We combine algorithms Pseudo from [2] and
our algorithm BAF that is 1.5-competitive for zero-size items. The algorithm
Pseudo uses pseudo bins which are bins of unbounded capacity.

Pseudo-BAF:
1. First pack an incoming item into a pseudo bin using the algo-

rithm BAF (treat the item as a zero-size item).
2. In each pseudo bin, items are packed into unit capacity bins

using Next Fit.

16

Theorem 4.1. The algorithm Pseudo-BAF for Colored Bin Packing is
asymptotically 3.5-competitive. Precisely, it uses at most d3.5 · OPT e bins.
In the parametric case when items have size at most 1/d, for a real d ≥ 2, it
uses at most d(1.5 + d/(d− 1))OPT e bins. Moreover, the analysis is asymp-
totically tight.

Proof. In the general case for items between 0 and 1 we know that two
consecutive bins in one pseudo bin have total size at least one, since no two
consecutive items of the same color are in a pseudo bin. In each pseudo bin
we pair each bin with an odd index with the following bin with an even index,
therefore we pair all bins except at most one in each pseudo bin. Moreover,
the total size of a pair of bins is at least one. Therefore the number of paired
bins is at most 2 · LB1 ≤ 2 · OPT . The number of unpaired bins is at most
the number of pseudo bins created by the algorithm BAF which uses at most
d1.5 · LB2e ≤ d1.5 · OPT e bins as the maximal discrepancy LB2 is also a
lower bound on the optimum. Overall the algorithm Pseudo-BAF creates at
most d3.5 ·OPT e bins.

For the parametric case, inside each pseudo bin all real bins except the last
one have level at least (d− 1)/d, so their number is at most d/(d− 1) ·OPT .
The number of pseudo bins is still bounded by d1.5·OPT e, thus the algorithm
Pseudo opens at most d(1.5 + d/(d− 1))OPT e bins.

We show the tightness of the analysis by combining hard instances for
Pseudo by Balogh et al. [2] and for BAF from the proof of Theorem 3.1.
More concretely, for n (a big integer) let ε = 1

2n
. We send n − 1 groups of

three items, specifically (n− 1)×
(
white
ε
, black

1
, black

ε

)
.

The algorithm creates one pseudo bin containing every first and second
item from each group and n− 1 pseudo bins, each containing only the third
item from a group. Moreover, the first pseudo bin is split into 2 · (n− 1) unit
capacity bins (each item is in a separate bin), so we have 3 · (n−1) bins. The
optimum for n− 1 groups is n, because we can pack all tiny items together
in one bin and LB1 = n.

Then we send the hard instance with zero-size items from the proof of
Theorem 3.1 and BAF creates additional d(n− 1)/2e pseudo bins, while the
optimum on the instance is n − 1. Pseudo-BAF now have d3.5 · (n − 1)e
bins. Observe that the optimal packing for n− 1 groups does not need to be
changed to put there zero-size items, thus OPT = n.

For the parametric case, we use a modification of the first part of the
hard instance by Balogh et al. [2] on which Pseudo creates at least (d−1)n+
dn bins, while its optimal packing needs (d − 1)n + 1 bins. Moreover, we
can continue with the hard instance with zero-size items like in the general
case and force Pseudo-BAF to create additional d(d − 1)n/2e bins without

17

increasing the optimum. Therefore Pseudo-BAF ends up with asymptotically
(1.5 + d/(d− 1))OPT bins.

4.2 Classical Any Fit Algorithms

We analyze classical Any Fit algorithms, namely First Fit, Best Fit and
Worst Fit and we find that they are not constant competitive. Their com-
petitiveness cannot be bounded by any function of the number of colors even
for only three colors, in contrast to their good performance for two colors.

Proposition 4.2. First Fit and Best Fit are not constant competitive.

Proof. We send an instance of 4n items which can be packed into two bins,
but FF and BF create n+ 1 bins where n is an arbitrary integer.

Let ε = 1
4n

. The instance is n×
(
black
ε
, black

ε
, white

ε
, red
ε

)
. An optimal packing

can be obtained by putting black items from each group into the first and
the second bin, the white item into the first bin and the red item into the
second bin.

FF and BF pack the first group into two bins, both with a black bottom
item, and white and red items are in the first bin. The first black item, the
white item and red items from each following group are packed into the first
bin, while the second black item is packed into a new bin. Therefore these
algorithms create one bin with all white and red items and all first black
items from each group and n bins with a single black item.

Hence FF and BF create n+1
2

OPT bins.

Note that WF on such instance creates an optimal packing, but the in-
stance can be modified straightforwardly to obtain a bad behavior for WF.

Proposition 4.3. Worst Fit is not constant competitive.

Proof. The instance is similar to the one in the previous proof, but items
sizes are different in each group. Let ε = 1

2n
and let δ = 1

6n2+1
. The instance

is n×
(
black
δ
, black

ε
, white

δ
, red
δ

)
.

We observe that the optimal packing does not change with other sizes.
However, WF packs all δ-items into the first bin, i.e., first black items from
each group and all white and red items, since the level of the first bin stays
at most 3n

6n2+1
, which is less than 1

2n
as ε

δ
> 3n. Therefore all second black

items are packed into separate bins and WF creates n + 1 bins, while the
optimum is two.

18

5 Black and White Bin Packing

We now focus on Colored Bin Packing with two colors,i.e., Black and White
Bin Packing, studied previously by Balogh et al. [3, 2]. We improve the
upper bound on the absolute competitive ratio of Any Fit algorithms from
5 to 3. Then we show that Worst Fit performs even better for items of sizes
at most 1/d (for d ≥ 2) as it is (1 + d/(d− 1))-competitive in this case. Note
that for infinitesimally small items WF is 2-competitive, while BF and FF
are 3-competitive.

Both bounds are tight, since there are instances for FF and BF on which
the competitive ratio is asymptotically 3 and an instance for WF in the
parametric case on which WF uses asymptotically (1+d/(d−1))OPT bins [2].

5.1 Competitiveness of Any Fit Algorithms

Theorem 5.1. Any algorithm in the Any Fit family is absolutely 3-
competitive for Black and White Bin Packing.

Proof. We use the following notation: an item is small when its size is less
than 0.5 and big otherwise. Similarly small bins have level less than 0.5 and
big bins have level at least 0.5.

We assign bins into chains — sequences of bins in which all bins except
the last must be big. If there is only one bin in a chain it must be big.
Moreover, the bottom item in the i-th bin of a chain cannot be added into
the (i− 1)-st bin – even if it would have the right color, i.e., it is too big to
be put into the (i− 1)-st bin.

A bin is contained in at most one chain. We call a bin that is not in a
chain a separated bin. We create chains such that all big bins are in a chain
and only some small bins are separated. Moreover, our chains can have at
most two bins, so the average level of bins in each chain is clearly at least
0.5.

It follows that the total number of bins in all chains is bounded from above
by 2 · OPT . We want to bound the number of separated bins from above
by the maximal color discrepancy LB2 which yields the 3-competitiveness
of AF. Therefore we want to have the number of separated bins as small as
possible.

We define a process of assigning bins into chains. We simply try to put as
many bins into chains as possible, but we add a bin into a chain only when
the last bin in the chain has another color than the bottom item of the added
bin.

Formally, when an item from the input sequence is added we do the
following:

19

• The item is added into a bin in a chain: nothing happens with chains
or separated bins.
• The item is added into a small separated bin: if the bin becomes big

we create a chain from the bin, otherwise the bin stays separated.
• The item is big and creates a new bin: the newly created bin forms a

new chain.
• The item is small and creates a new bin: if there is a chain in which

the last bin has an item of another color on the top, i.e., black for a
white incoming item and white for a black incoming item, we add the
newly created bin into the chain. (Note that the last bin in the chain
must be big.) Otherwise the new bin is separated.

Moreover, whenever a chain has two big bins we split it into two chains,
each containing one big bin. Therefore each chain is either one big bin, or a
big bin and a small bin. The intuitive reason for splitting chains is that we
can put more newly created small bins into chains.

If there is no separated bin at the end (after the last item is added), we
have created at most 2 · OPT bins. Otherwise we define k and t as indexes
of incoming items and show that the color discrepancy of items between the
k-th and the t-th item is at least the number of separated bins at the end.

Let t be the index of an item that created the last bin that is separated
when it is created (the t-th item must be small). Suppose w.l.o.g. that the
t-th item is black. Note that a small item that comes after the t-th item
can create a bin, but we put the bin into a chain immediately, therefore the
number of separated bins can only decrease after adding the t-th item.

Let bi be the number of small black bins, i.e., bins with a black item on
the top, and wi be the number of small white bins after adding the i-th item
from the sequence. From the definition of t we know that wt = 0.

We define k as the biggest i ≤ t such that bi = 0, i.e., there is no small
black bin (if bi > 0 for all i ≥ 1 we set k = 0). Clearly the (k + 1)-st item
must be small and black. Note that there can be some separated white bins
and possibly some other small white bins in chains, but there is no separated
black bin. Let W be the set of white bins that are separated after adding
the k-th item. Before adding the t-th item and creating the last bin, all bins
in W must have a black item on the top, or become big bins in chains (thus
k ≤ t− |W |).

We want to bound the number of separated bins after adding the t-th
item by the color discrepancy. Note that these bins are small by the process
of assigning bins into chains. We observe that all separated bins must have
a black item on the top before adding the t-th item and also all chains have
a black item on the top in the last bin, otherwise the bin created by the t-th
item would be added in a chain.

20

Hence for separated bins with a black item at the bottom the number of
black items is greater by one than the number of white items and separated
bins created between the k-th and the t-th item must have a black item at
the bottom, since otherwise there cannot be a small black bin and bi = 0 for
k < i < t.

Separated bins from the set W can have the same number of black and
white items before adding the t-th item, but in each such bin there is one
more black item than white items with index i such that k < i ≤ t, since the
first and the last such items are black.

Now we look at items with index i such that k < i < t which are packed
into bins that are in chains after adding the t-th item. We call such an item
a link. Note that some links can be at first packed into separated bins, but
these bins are put into chains before adding the t-th item. It suffices to show
the following claim.

Claim 5.2. In each chain the number of black links is at least the number of
white links after adding the t-th item.

Proof. When the t-th item comes and creates a new separated bin, the last
item in each chain must be black. Therefore the claim holds for the chains
with only one bin.

For the chains with two bins (the first big and the second small) we
observe that a bin created with a link has either a black item, or a big white
item at the bottom. If it would have a small white link at the bottom, there
cannot be a small black bin and bi = 0 for k < i < t which is a contradiction
with the definition of k. Since a big white item starts a new chain, the second
bin in a chain cannot have a white link at the bottom.

Moreover, the first link in the second bin of a chain must be black, be-
cause either the second bin was created after the k-th item and we use the
observation from the previous paragraph, or it was created before the k-th
item and then it must had a white item on the top when the k-th item came,
since there was no small bin with a black item on the top.

So it cannot happen in a chain with two bins that there are two white
links next to each other, or separated by some items that are not links. Note
that for black links this situation can happen. Since there must be a link in
the second bin and the last such link is black, the claim holds for chains with
one big and one small bin.

The process of assigning bins into chains does not allow chains with more
than two bins or with two big bins. Hence in each chain the number of black
links is at least the number of white links.

21

Let s be the number of separated bins. We found out that when we focus
on items with index i such that k < i ≤ t there is one more such black item
than such white items in all separated bins and at least the same number of
such items of both colors in bins in all chains, i.e., links. Moreover, after the
t-th item comes s can only decrease, since no separated bin is created. So we
have bounded the value of s at the end from above by the color discrepancy
between the (k + 1)-st and the t-th item (si is 1 when the i-th item is white
and −1 otherwise):

s ≤

∣∣∣∣∣
t∑

`=k+1

s`

∣∣∣∣∣ ≤ LB2

Note that some items after the t-th item can create a bin, but such bins
are put into chains.

5.2 Competitiveness of the Worst Fit Algorithm

The Worst Fit algorithm performs in fact even better when all items are
small which we prove similarly to the proof of Theorem 5.1.

Theorem 5.3. Suppose that all items in the input sequence have sizes at
most 1/d, for a real d ≥ 2. Then Worst Fit is absolutely (1 + d/(d − 1))-
competitive for Black and White Bin Packing.

Proof. Let OPT be the number of bins used in an optimal packing. We
divide bins created by WF into sets B (big bins) and S (small bins). Each
big bin has level at least (d − 1)/d, thus |B| ≤ d/(d − 1) · OPT . We show
that |S| is bounded by the maximal color discrepancy LB2 and we obtain
that WF is (1 + d/(d− 1))-competitive.

As items are arriving, we count the number of small black bins, i.e., bins
with a black item on the top and with level less than (d − 1)/d. Let bi be
the number of small black bins after adding the i-th item from the sequence.
Similarly let wi be the number of white bins with level less than (d − 1)/d
after adding the i-th item.

If bn = 0 and wn = 0, i.e., there is no small bin at the end, WF created at
most d/(d− 1) ·OPT bins. Otherwise suppose w.l.o.g. that the last created
bin has a black item at the bottom. Let t be the index of a black item that
created the last bin. It holds that wt = 0, since otherwise the t-th item would
go into a small white bin.

Let k be the last index smaller than t for which bk = 0 (if bi > 0 for all
i ≥ 1, we set k = 0). The (k + 1)-st item must be black. We observe that
any bin created after this point has a black item at the bottom, otherwise

22

bi = 0 for some i such that k < i < t. Note that wk can be greater than 0,
i.e., there can be some small white bins and the (k+ 1)-st item goes into one
of them. Let W be the set of these bins. Before adding the t-th item and
creating the last bin, all bins in W must have a black item on the top, or
become big bins (thus k ≤ t− |W |).

We want to bound the number of small bins after adding the t-th item by
the color discrepancy. We already observed that all these bins must have a
black item on the top. Hence for small bins with a black item at the bottom
the number of black items is greater by one than the number of white items.
Small bins from the set W can have the same number of black and white
items, but in each such bin there is one more black item than white items
with index i such that k < i ≤ t, since the first such item is black.

Now we look at items with index i such that k < i < t which are packed
into bins that are big after the t-th item comes. It suffices to show that the
number of such black items is at least the number of such white items. We
observe that WF packs any such white item into a small bin, otherwise b` = 0
for some ` such that k < ` < t. Hence any white item that comes between
the k-th and the t-th item must be packed into a bin created after the k-th
item, therefore with a black item at the bottom, or into a bin from the set
W . Since the first item that falls into a bin from W after the k-th item is
black, our claim holds.

Note that this pairing of black and white items in big bins would fail for
algorithms like Best Fit or First Fit, since they can put a white item into a
big bin created before the k-th item, but not contained in W .

We found out that when we focus on items with index i such that k < i ≤ t
there is one more such black item than such white items in all small bins
and at least as many such black items as such white items in all big bins.
Moreover, after the t-th item comes the number of small bins |S| can only
decrease, since no bin is created. So we bound |S| from above by the color
discrepancy between the (k + 1)-st and the t-th item (si is 1 when the i-th
item is white and −1 otherwise):

|S| ≤

∣∣∣∣∣
t∑

`=k+1

s`

∣∣∣∣∣ ≤ LB2

Note that the last bin is already counted in the color discrepancy, since
its bottom item is black and has index t.

Conclusions and Open Problems

The Colored Bin Packing for zero-size items is completely solved.

23

For general items, our online algorithm still leaves a gap between the
lower bound 2 [9] and our upper bound of 3.5 and a corresponding gap in
the parametric setting. The upper bounds are only 0.5 higher than for two
colors (Black and White Bin Packing) where a gap between 2 and 3 remains
for general items.

Classical algorithms FF, BF and WF, although they maintain a constant
approximation for two colors, start to behave badly when we introduce the
third color. For two colors, we now know their exact behavior. In fact, all Any
Fit algorithms are absolutely 3-competitive which is a tight bound for FF,
BF and WF. However, for items of size up to 1/d, d ≥ 2, FF and BF remain
3-competitive while WF has the absolute competitive ratio 1 + d/(d − 1).
Thus we now know that even the simple Worst Fit algorithm matches the
performance of Pseudo, the online algorithm with the best competitive ratio
known so far. It is also an interesting question whether it holds that Any Fit
algorithms cannot be better than 3-competitive for two colors.

References

[1] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-
packing problems with cardinality constraints. Discrete Applied Mathe-
matics, 143:238–251, 2004.

[2] J. Balogh, J. Békési, G. Dósa, L. Epstein, H. Kellerer, and Z. Tuza.
Online results for black and white bin packing. Theory of Computing
Systems, pages 1–19, 2014.

[3] J. Balogh, J. Békési, G. Dósa, H. Kellerer, and Z. Tuza. Black and white
bin packing. In Approximation and Online Algorithms, volume 7846 of
Lecture Notes in Computer Science, pages 131–144. Springer, 2013.

[4] J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain
classes of bin packing algorithms. Theoretical Computer Science, 440-
441:1–13, 2012.

[5] M. Chrobak, J. Sgall, and G. J. Woeginger. Two-bounded-space bin
packing revisited. In C. Demetrescu and M. Halldórsson, editors, Algo-
rithms - ESA 2011, volume 6942 of Lecture Notes in Computer Science,
pages 263–274. Springer Berlin Heidelberg, 2011.

[6] E. Coffman Jr., J. Csirik, G. Galambos, S. Martello, and D. Vigo. Bin
packing approximation algorithms: Survey and classification. In P. M.

24

Pardalos, D.-Z. Du, and R. L. Graham, editors, Handbook of Combina-
torial Optimization, pages 455–531. Springer New York, 2013.

[7] J. Csirik and B. Imreh. On the worst-case performance of the nkf bin-
packing heuristic. Acta Cybern., 9:89–105, Dec. 1989.

[8] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best
is better than first. Algorithmica, 31(2):115–138, 2001.

[9] G. Dósa and L. Epstein. Colorful bin packing. To appear in proceedings
of 14th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2014), 2014. Also ArXiv 1404.3990.

[10] G. Dósa and L. Epstein. Online bin packing with cardinality constraints
revisited. ArXiv e-prints 1404.1056, Apr. 2014.

[11] G. Dósa and J. Sgall. First Fit bin packing: A tight analysis. In N. Porti-
er and T. Wilke, editors, 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013), volume 20 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 538–549, Dagstuhl,
Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] G. Dósa and J. Sgall. Optimal analysis of Best Fit bin packing. To
appear in proceedings of 41st International Colloquium on Automata,
Languages, and Programming (ICALP 2014), 2014.

[13] L. Epstein. Online bin packing with cardinality constraints. SIAM
Journal on Discrete Mathematics, 20, 2006.

[14] W. Fernandez de la Vega and G. Lueker. Bin packing can be solved
within 1 + ε in linear time. Combinatorica, 1(4):349–355, 1981.

[15] H. Fujiwara and K. Kobayashi. Improved lower bounds for the online bin
packing problem with cardinality constraints. Journal of Combinatorial
Optimization, pages 1–21, 2013.

[16] D. Johnson. Near-optimal Bin Packing Algorithms. Massachusetts Insti-
tute of Technology, project MAC. Massachusetts Institute of Technology,
1973.

[17] N. Karmarkar and R. M. Karp. An efficient approximation scheme for
the one-dimensional bin-packing problem. In Foundations of Computer
Science, 1982. SFCS ’08. 23rd Annual Symposium on, pages 312–320,
Nov 1982.

25

[18] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several
task-scheduling algorithms for a model of multiprogramming computer
systems. J. ACM, 22:522–550, Oct. 1975.

[19] C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. J.
ACM, 32:562–572, July 1985.

[20] W. Mao. Tight worst-case performance bounds for next-k-fit bin pack-
ing. SIAM J. Comput., 22:46–56, Feb. 1993.

[21] S. S. Seiden. On the online bin packing problem. J. ACM, 49:640–671,
Sept. 2002.

[22] J. Ullman. The Performance of a Memory Allocation Algorithm. Tech-
nical Report 100, 1971.

26

