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Preface

The 19th Prague Midsummer Combinatorial Workshop was held from
July 29th to August 2nd 2013 in our beautiful building Malostranské
náměst́ı 25. This of course contributed to the comfort of the participants
as all the activities (including the lunches) could be taken on the same site.
Besides, as it was expressed by several participants, the renovated faculty
building surely belongs to the most beautiful math and computer science
departments in the world! The workshop was organized by the Department
of Applied Mathematics (KAM) of Charles University jointly with DIMA-
TIA, CE-ITI and Computer Science Institute (IUUK) of Charles University.
Only a small but distinguished group of mathematicians was invited and we
were particularly happy to have Peter J. Cameron among the participants.
The list of speakers is included in this booklet.

As it already became a tradition, the workshop benefited from par-
ticipation of young researchers and PhD students. For example four un-
dergraduate students from the USA and five undergraduate students from
Charles University, together with their mentors Glen Wilson from US side
and Martin Balko from Prague side took part in the workshop, within the
DIMATIA-DIMACS program International REU.

The workshop followed an informal daily routine with morning and early
afternoon discussions and presentations. This report reflects some of the
presentations during the workshop. Perhaps you can digest some of the
atmosphere at the workshop from these proceedings, and you can also see
that the fruitful exchange of ideas led directly to some new results and
papers.

This volume was edited by Dušan Knop. Most of the contributions were
supplied by the authors in an electronic form. In a few cases, slight typo-
graphical changes were necessary. We apologize for any possible inaccuracies
which might have occurred in the editing process.

We gratefully acknowledge financial support of CE-ITI P202/12/G061
and CORES ERC CZ LL1201 research projects.

We hope to meet again in 2014 the same midsummer week!
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Silvia Gago 19

Delia Garijo 20
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Perfect digraphs: Answers and Questions

Stephan Dominique Andres
FernUniversität in Hagen

dominique.andres@fernuni-hagen.de

Joint work with Winfried Hochstättler.

We consider some problems that occur when we generalize the notion
of perfect graphs to digraphs using the notion of dichromatic number [6].
The dichromatic number ~χ(D) of a digraph D is the smallest cardinality
of a color set for a vertex coloring of D without monochromatic directed
cycles. Undirected graphs are considered as symmetric digraphs. The clique
number ~ω(D) of D is the size of the largest symmetric clique in D. D is
called perfect if, for any induced subdigraph H of D, ~χ(H) = ~ω(H).

The symmetric part S(D) of D is the graph of all symmetric arcs of D.
A digraph D is a superorientation of a graph G if G is the underlying graph
of D. A superorientation D of G is clique-acyclic if it does not contain
complements of directed cycles. A filled odd hole/antihole is a digraph D,
so that S(D) is an odd hole/antihole.

We obtain the following characterization of perfect digraphs.

Theorem 1.1. A digraph D = (V,A) is perfect if and only if S(D) is

perfect and D does not contain any directed cycle ~Cn with n ≥ 3 as induced
subdigraph.

This result can be combined with several strong results to obtain some
corollaries. Using the SPGT [3] we obtain a strong perfect digraph theorem.

Corollary 1.2. A digraph D = (V,A) is perfect if and only if it does neither

contain a filled odd hole/antihole nor a directed cycle ~Cn, n ≥ 3, as induced
subdigraph.

Using the results of Grötschel, Lovász, and Schrijver [4] we obtain the
following two complexity results.

Corollary 1.3. There is a polynomial time algorithm to determine an in-
duced acyclic subdigraph of maximum cardinality of a perfect digraph D.

Corollary 1.4. k-coloring of perfect digraphs is in P for any k ≥ 1.
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Question 1.5. Are there other interesting NP-hard problems on digraphs
that are polynomially solvable for perfect digraphs?

Note that a digraph may be perfect but its complement may be not
perfect. However, using the Weak Perfect Graph Theorem [5] we obtain

Corollary 1.6. A digraph D is perfect if and only if its loopless complement
D is a clique-acyclic superorientation of a perfect graph.

Using the theorem on kernel solvability of perfect graphs [2] we obtain

Corollary 1.7. For any perfect digraph D, its complement D has a kernel.

The preceding result is in contrast to the following theorem.

Theorem 1.8. It is NP-complete to decide whether a perfect digraph has
a kernel.

Question 1.9. Are there other problems that are NP-complete or co-NP-
complete for digraphs in general as well as for perfect digraphs?

The proof of the following intractibility result uses a similar reduction
as for the NP-completeness proof of recognizing digraphs containing a ~Cn,
n ≥ 3, in [1].

Theorem 1.10. The recognition of perfect digraphs is co-NP-complete.

Corollary 1.11. The recognition of clique-acyclic superorientations of per-
fect graphs is co-NP-complete.

Question 1.12. What is the complexity of recognizing superorientations of
perfect graphs that have a kernel?

Question 1.13. Are there other interesting solvable problems on perfect
graphs that have generalizations to perfect digraphs which are (co-)NP-
hard?

We note two open questions that date back to the work of Neumann-
Lara.

Question 1.14. Determine the maximum dichromatic number of a tour-
nament of order n.

Conjecture 1.15. Orientations of planar graphs are 2-colorable.
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List Hadwiger conjecture and extremal
K5-minor-free graphs with fixed girth

János Barát
Monash University, Melbourne

Joint work with David R. Wood.

We survey the results connected to the so called List Hadwiger conjecture
that every Kt-minor-free graph is t-choosable. It is true for t ≤ 5. Since
there was no progress for larger values of t the following weak version was
popularised:

There exists a constant c such that every Kt-minor-free graph is ct-
choosable.

Kawarabayashi and Mohar explicitly stated that c might be 3/2, Wood
conjectured c = 1.

Barát, Joret and Wood proved that the List Hadwiger conjecture is false
for t ≥ 8 and c ≥ 4/3 in the weak version.

We recall that there are K6-minor-free graphs that are not 5-choosable.
Mader proved that every K6-minor-free graph is 7-degenerate and therefore
8-choosable by the greedy algorithm. We ask whether this can be improved
and every K6-minor-free graph is 6-degenerate and therefore 7-choosable.
We also conjecture that possibly they are even 6-choosable.

There are numerous refinements of the same question with a constraint
on the girth. We recall Mader’s idea that large girth and minimum degree
implies a large complete minor. In particular, every K5-minor-free graph of
girth at least 11 must have a vertex of degree 2. It is easy to improve this to
girth 6. We ask the question whether girth 5 suffices here. Every such graph
is 3-choosable by Thomassen’s planar result and Wagner’s theorem, which is
an affirmative indication. However, the dodecahedron is a counterexample.
We modify the question and ask whether every K5-minor-free graph of girth
5 is either planar or have a vertex of degree 2. We show a construction
refuting this modified conjecture.

Similar constructions are used to show the extremal number of this class
of graphs; K5-minor-free and girth 5.
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Two of my favorite problems

Steve Butler
Dept. of Mathematics, Iowa State University

1 Minimizing monochromatic progressions

Problem 1.1. Find the coloring of 1, 2, . . . , n using r colors which has the
fewest number of monochromatic k-term arithmetic progressions (i.e., sets
of a, a + d, a + 2d, . . . , a + (k − 1)d all having the same color).

As an example for n = 28, k = 3 and r = 2 the (unique!) best known
pattern is rrBBrrrBBBBBBrrrrrrBBBrrBBB.

Note that van der Waerden’s theorem shows that there must be at least
one monochromatic k-term arithmetic progression for n sufficiently large.
Frankl, Graham and Rödl extended this to show that in face there must
be xn2 + o(n2) monochromatic patterns (i.e., a positive fraction must be
monochromatic).

Theorem 1.2 (Parrilo-Robertson-Saracino; Butler-Costello-Graham). Ex-
panding the following coloring gives

117

2192
n2 + O(n) =

117

137
· 1

16
n2 + O(n)

monochromatic 3-APs:

r · · · r
︸ ︷︷ ︸

28

B · · · B
︸ ︷︷ ︸

6

r · · · r
︸ ︷︷ ︸

28

B · · · B
︸ ︷︷ ︸

37

r · · · r
︸ ︷︷ ︸

59

B · · · B
︸ ︷︷ ︸

116

r · · · r
︸ ︷︷ ︸

116

B · · · B
︸ ︷︷ ︸

59

r · · · r
︸ ︷︷ ︸

37

B · · · B
︸ ︷︷ ︸

28

r · · · r
︸ ︷︷ ︸

6

B · · · B
︸ ︷︷ ︸

28

It is conjectured that this is best possible. One way to approach this is
to turn it from a discrete problem to a continuous problem; this was done in
the paper of Butler, Costello and Graham to show that the above is locally
optimal.

For r = 2 and k = 4 a very different type of coloring was found by
Lu and Peng that has 1

72n
2 + O(n) monochromatic 4-APs. Namely, given

ℓ =
∑

bi · 11i and j is the smallest index so that bj 6= 0, then

color ℓ

{
red if bj = 1, 3, 4, 5, or 9;
blue if bj = 2, 6, 7, 8, or 10.
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More generally, the following is believed true and has been verified for
small cases; a general approach is not currently known.

Conjecture 1.3. For fixed k (=AP-length) and r (=colors) there is a col-
oring of 1, . . . , n which can beat random coloring.

2 Induced universal graphs

Problem 2.1. Given a family F of graphs, construct a small graph F which
contains each graph in F as an induced subgraph.

This has been done for several families. Notably Moon did it for the
family of all graphs and showed that the smallest such universal graph (in
terms of number of vertices N) has 2(n−1)/2 < N < 2n2(n−1)/2. Chung
made major impact by looking at trees, planar graphs, and graphs with
bounded arboricity. In particular she established the following.

Theorem 2.2. Let F be an induced universal graph for F . If every graph
in H can be edge-partitioned into k graphs in F , then there is an induced
universal graph H where

|V (H)| ≤ |V (F )|k and |E(H)| ≤ k|E(F )||V (F )|2k−2.

This theorem can be easily extended to multigraphs, directed graphs,
hypergraphs, etc. In particular once with a good decomposition then we can
construct good universal graphs. For example, Butler used decomposition
of regular graphs of even degree k into cycles to construct universal graphs
for graphs with bounded degree using Cn⌈k/2⌉ vertices, which for k even is
within a constant of optimal.

Almost no work has been done in this area for hypergraphs. A starting
point would be to find a decomposition theorem into smaller, more man-
ageable hypergraphs.
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Synchronization

Peter J. Cameron

A (finite deterministic) automaton has a finite set of states and a finite
set of transitions, each a map on the set of states. Think of a black box
with coloured buttons on front, which changes its state in a certain way
each time a button is pressed.

The automaton is synchronizing if there is a sequence of transitions
which brings it into the same state from any starting state; such a sequence
is called a reset word. Here is an example.

s

s

s s

1

2

3

4

�
�
�

�
�
�

❅
❅

❅
❅

❅
❅

ւ

ց ր

տ

.
.......................

......................

.....................
.....................
......................
.......................ւ

..................................................
................ ........ ........... ..............

.
.................................................................
........
...........
..............

. .............. ........... ........ ................
.................................................

It can be checked easily that BRRRBRRRB is a reset word of length 9. In fact,
this is the shortest reset word.

The Černý Conjecture asserts that if an n-state automaton is synchronizing,
then it has a reset word of length at most (n− 1)2. The above example, with the
square replaced by an n-gon, shows that this would be best possible. The problem
has been open for about 45 years. The best known bound is cubic.

It is known that testing whether an automaton is synchronizing is in P, but
finding the length of the shortest reset word is NP-hard.

Since we can compose transitions, it makes sense to study the transformation
semigroup generated by the transitions; the automaton is synchronizing if and
only if this semigroup contains an element of rank 1, in which case we say that
the semigroup is synchronizing.

There is just one kind of obstruction to synchronization. A graph here has no
loops, multiple edges, or directed edges.

Theorem 1.1. A transformation semigroup S is non-synchronizing if and only
if there is a non-null graph Γ on the set of states such that

• S is contained in the semigroup of endomorphisms of Γ;

• the clique number and chromatic number of Γ are equal.
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Recently João Araújo and I (and others) have been studying the case where
all but one of the transitions are permutations: that is, S is generated by a per-
mutation group G and a single non-permutation f . I will say that G synchronizes
f if 〈G, f〉 is synchronizing.

Rystsov showed that a permutation group G is primitive (that is, preserves
no non-trivial equivalence relation on the domain) if and only if it synchronizes
every map of rank n− 1. This theorem has a particularly simple proof using the
above theorem about graph endomorphisms.

It is not true that a primitive group synchronizes every non-permutation.
Indeed, the class of such “synchronizing” groups is contained between the classes
of primitive and doubly transitive groups. Both of these classes have recognition
algorithms in P, but this is not known for the class of synchronizing groups. (The
best algorithm we have does the following: given the primitive group G, find all
the G-invariant graphs, and check each of them to see whether its clique number
and chromatic number are equal. If we find one, the group is non-synchronizing.)

However, Araújo made the following bold conjecture:

Conjecture If the permutation group G is primitive, then it synchronizes every
non-uniform map (one for which the inverse images of points in the image do not
all have the same size).

I concluded the talk with a brief discussion of the (small amount of) progress
we have made on this conjecture.
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The Erdos-Hajnal Conjecture, product
tournaments and the strong EH property

Krzysztof Choromanski

The celebrated and still unresolved Erdos-Hajnal Conjecture states that
for every undirected graph H there exists constant ǫ(H) > 0 such that every
n-vertex undirected graph G that does not have H as an induced subgraph
contains a clique or a stable set of size at least nǫ(H).

Some time ago its directed version was formulated. The directed version
is equivalent to the undirected one and states that for every tournament
H there exists ǫ(H) > 0 such that every n-vertex H-free tournament T
contains a transitive subtournament of size at least nǫ(H).

In this talk we present some very recent results concerning the directed
version of the Conjecture.

In particular we introduce a very useful definition of the strong EH-
property and using it prove the Conjecture for new classes of tournaments
containing infinitely many prime tournaments. Furthermore, we introduce
new procedure for combining two tournaments satisfying the conjecture to
get the bigger one that also satisfies it. This method is different that the
so-called substitution procedure (the only method of that flavour known be-
fore) because using it one can produce infinitely many prime tournaments
satisfying the Conjecture. Since prime tournaments are crucial in the re-
search on the conjecture, this new method may potentially help to prove
the Conjecture for many families of tournaments for which it is still open.

It has been already used by us to prove that all but at most one 6-vertex
tournaments satisfy the Conjecture.
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Restricted degree sequences

Péter L. Erdős
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

With the current burst of network theory research (especially in con-
nection with social and biological networks) there is a renewed interest on
realizations of given degree sequences and uniform sampling of those re-
alizations. In this paper we propose a new degree sequence problem: we
want to find graphical realizations of a given degree sequence on labeled ver-
tices, where certain would-be edges are forbidden. Then we want to sample
uniformly all possible realizations.

More precisely let’s fix a labeled underlying vertex set V of n elements.
The degree sequence d(G) of a simple graph G = (V,E) is the sequence of
its vertex degrees: d(G)i = d(vi). Call F ⊂

(
V
2

)
the set of forbidden edges.

The restricted degree sequence problem (or RDS for short) dF is to
find a graphical realization G of d which completely avoids the elements of
F .

It is easy to see that the restricted degree sequence problem is very
closely related to Tutte’s f -factor theorem. However, while Tutte’s approach
provides a polynomial time algorithm to decide wether a given degree se-
quence satisfies a dF problem, it does not provide all possible realizations.

If F is empty then the RDS simplifies to the original degree sequence
problem, which can be solved efficiently with Havel’s greedy algorithm ([4]).
A slightly modified algorithm can provide all possible realizations ([6]).

When G1 and G2 are two realizations of d one can prove that G1 can
be transformed into G2 by the means of swap operation through a series
of valid graphic realizations. (It was proved already in [7]). A similar
statement applies for all RDS problem dF through a suitable generalization
of the swap operation, called F-swap (see [1]).

In the paper [2], as a first step, we solved the RDS problem if the for-
bidden edges form the union of a (not necessarily maximal) 1-factor and a
(possible empty) star in a bipartite graph. (Here F consists of the forbidden
edges among the vertex classes only.)

As it turns out the RDS problem with a factor + star forbidden set can
be solved by the means of a slightly modified Havel-type swap operation.
This new operation makes the space of all possible realizations connected,
and - using standard technics - one can show the fast mixing nature of
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the natural Markov chain Monte Carlo sampling method in case of half-
regular bipartite graphs. (In a half-regular bipartite graph in one class the
vertices are uniform.)

This result is a common generalization of the well-known theorem of
Kannan, Tetali and Vempala (on sampling regular bipartite graphs, [5]); a
recent result of Greenhill (on sampling regular directed graphs, [3]), and
others, providing new proofs for them ([2]). More importantly this new
generalization is a self-reducible problem which ensures that all the men-
tioned Markov chain methods can efficiently count the approximate number
of the corresponding realizations.

Open problem: Find other forbidden edge set F for which the restricted
degree sequence problem dF can be solved with a Havel-type greedy algo-
rithm.
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Degree-based graph construction, J. Phys. A: Math. Theor. 42 (2009)
392001 (10pp)

17



[7] Petersen, J.: Die Theorie der regularen Graphen, Acta Math. 15
(1891), 193–220.

18



Boundary value problems on a weighted path

Silvia Gago
Universitat Politècnica de Catalunya, Barcelona

silvia.gago@upc.edu

Joint work with A.M. Encinas and A. Carmona.

We determine explicit expressions for the Green matrix associated with
any regular boundary value problem on a weighted path, via orthogonal
polynomials. The weights are determined by the coefficients of the three
terms recurrence relation defining the polynomials. We use similar tech-
niques to the ones for solving boundary value problems associated with
ordinary differential equations.
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A red-blue intersection problem

Delia Garijo1

University of Seville, Seville, Spain

dgarijo@us.es

Joint work with C. Cortés, M.A. Garrido, C.I. Grima, A. Márquez, A.
Moreno-Gonźlez, J. Valenzuela, and M.T. Villar.

A geometric intersection problem that has been intensively studied is the
bichromatic segment intersection problem: given two sets of segments in the
plane, say red and blue, whose total size is n, report all the intersections
between red segments and blue segments. These red-blue intersections are
called bichromatic intersections. In the case where monochromatic intersec-
tions exist (i.e., intersections between segments having the same color) which
is considered to be the difficult case, Agarwal [1] and Chazelle [3] showed

that the k bichromatic intersections can be reported in O(k+n4/3 logO(1) n)
time using a partitioning technique called cuttings. See also [2, 4, 5] for more
information about this topic.

In this work, we introduce a variation of the bichromatic segment in-
tersection problem in the case where monochromatic intersections exist.
Instead of reporting all bichromatic intersections between two sets of col-
ored segments, we are given two sets of colored points defining two sets of
colored segments, and study the problem of reporting the set of segments
of each color intersected by segments of the other color.

Let R and B be two disjoint sets of nr red points and nb blue points in
the plane, respectively, such that no three points of R ∪ B lie on the same
line. Let n = nr + nb. A line segment defined by two red points is a red
segment, and that defined by two blue points is a blue segment. Let Sb be
the set of blue segments that intersect at least one red segment, and let Sr

be the set of red segments crossed by at least one blue segment.

Theorem 1.1. The sets Sb and Sr can be computed in O(n2) time and
space.

Theorem 1.2. Computing |Sb| and |Sr| is 3-Sum hard.

Corollary 1.3. Computing Sb and Sr is 3-Sum hard.

1Supported by projects 2009/FQM-164 and 2010/FQM-164.
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As a natural extension of our study, it would be interesting to consider
the problem in 3D, i.e., given two sets of points in 3D, consider the same
problem but using monochromatic triangles instead of segments. The goal
is to improve the trivial brute force algorithm for the problem.
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Cops and robbers on infinite graphs

Geňa Hahn1

Informatique et de recherche opérationnelle, Université de Montréal

hahn@iro.umontreal.ca

The original cop-and-robber game is played by two players on an undi-
rected reflexive graph (connected, no multiple edges) in rounds, each of
which consists of two moves, first one by the cop, then one by the robber.
At round 0 the cop chooses a vertex, then the robber chooses one. At round
i > 0, first the cop moves to a vertex adjacent to her current vertex, then
the robber moves to a neighbour of his current vertex. The object of the
game is for the cop to occupy the same vertex as the robber, and for the
robber to escape such a situation. For finite graphs, the graphs on which
the cop has a winning strategy (called cop-win) were characterised in [8]
and, independently, in [9, 10, 11]. The characterization depends strongly
on the existence of retractions implied by the cop’s winning strategy. It
follows from the characterisation that chordal and bridged graphs are cop
win. A second characterization is given in [8] that also applies to infinite
graphs and leads to a simple pseudo-polynomial algorithm that can check in
time in O(n5(k+ℓ)) whether k cops can catch ℓ robbers on a general oriented
graph2 with n vertices and give their optimal strategies. Is not obvious to
check the condition for infinite graphs, even for one cop and one robber.

Anstee and Farber asked if (countably) infinite bridged graphs are cop-
win. Obviously not - trees are chordal, hence bridged, and a ray (one-way
infinite path) is clearly not cop-win. But there is a stronger statement to
be made, [6]. While Theorem 0.1 and its generalisation to arbitrary cardi-
nalities in Theorem 0.3 can be proven directly by construction, it follows
easily by compactness from Theorem 0.2, whose proof is more instructive,
if also long.

Theorem 0.1. There is a countably infinite chordal graph of diameter two
that is not cop-win.

Theorem 0.2. For every k ∈ N there is a chordal graph of diameter two
on which the cop needs at k rounds to catch the robber.

1Research partially supported by grants from NSERC and MITACS.
2A general oriented graph is a directed graph obtained from a reflexive undirected

graph by replacing each edge by a pair of symmetric arcs and each loop by an arc, and
then removing some of the resulting arcs.
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Theorem 0.3. For every infinite cardinal κ there is a chordal graph diam-
eter two on κ vertices that is not cop-win.

It is, therefore, interesting to search for infinite cop-win graphs. Such
graphs must have vertices of infinite degree since, as Gavenčiak observed
(private communication), infinite locally finite graphs cannot be cop-win
(think breadth-first-search and König’s lemma). Finding non-trivial infinite
cop-win graphs is surprisingly difficult. One recent example was constructed
by Anna Lubiw and Hamideh Vosoughpour based on visibility in polygons.

One obvious candidate to consider is the random graph R. It has the
property that for any finite disjoint subsets A,B of vertices there is a vertex
uA,B adjacent to all the vertices of A and no vertices of B. This clearly
allows a robber to escape from a finite number of cops, so the graph is not
cop-win and requires ℵ0 cops to catch a robber. A reasonable question can
then be asked: how dense (sic) do the cops have to be to win? It turns out,

seem [3], that if the density (cop-density) is defined as limi<ω
c(Gi)
|V (Gi)

| with

Gi an induced subgraph of Gi+1, R = (∪i<ωV (Gi),∪i<ωE(Gi)) and c(Gi)
the number of cops necessary and sufficient to catch a robber on Gi, then
any real number in [0, 1] can be realised as cop-density even if we insist,
reasonably, that each Gi be connected.

An interesting class of examples can be obtained by taking powers of cop-
win graphs, be they finite or infinite. For a graph G and an infinite cardinal
κ ≥ |V (G)|, the κ-power κG of a graph G has as its vertices the functions
from κ×V (G) into V (G) that differ in only finitely many coordinates from
the canonical base function (projection) bG : κ × V (G) −→ V (G) defined
by bG(α, v) = v. This is based on a construction of Imrich from the 1980’s.
Perhaps surprisingly, a κ-power of G is vertex-transitive (see [2] whose proof
for canonical powers extends) and (work in progress) is are cop-win if and
only if G is. This contrasts with (an easy exercise) the fact that a finite
vertex-transitive graph is never cop-win.

The κ-powers of a graph have other interesting properties. For example,
κP3 (a path on three vertices) already contains all countable graphs and no
uncountable star (even if κ is uncountable). Yet it is not homogeneous since
then it would be the Rado graph which we have seen is not cop-win.

This writing is in the hope of generating some interest in infinite graph
theory in general and cop-and-robbers on infinite graphs in particular. It
must, therefore, be concluded by some open questions that either are di-
rectly related to cop-and-robber games, or are off-shoots of research into
them.
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1. Find more classes of (non-trivial) infinite cop-win graphs.

2. For each k < ω, find classes of infinite graphs G with c(G) = k, if
possible. Perhaps an infinite graphs requires either one or infinitely
many cops to catch a single robber.

3. Can (finite or infinite) cop-win graphs on which the cop wins in at
most (exactly?) d > 1 rounds be characterised?

4. Let P be a property of graphs and let G be a countable graph with P .
Find examples of P such that every finite subset of V (G) is contained
in a finite induced subgraph of G that also has P . One simple example
is chordality: every finite subset of an infinite chordal graph is itself
chordal. It is also true, but more difficult to prove, for bridgeness, see
[5]. The origin of this probleme is [6].

5. Characterise properties P described above.

Acknowledgements. The work described is based on published and un-
published collaboration with Anthony Bonato, François Laviolette, Norbert
Sauer, Claude Tardif, Changping Wang and Robert Woodrow. For some
basics on cop-and-robber games on graphs see [4].
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The number of homomorphisms hom(G,Kk) from a graph G to the
complete graph Kk is the value of the chromatic polynomial of G at a
positive integer k. This motivates:

Definition 1.1 ([2]). A sequence of graphs (Hk), k = (k1, . . . , kh) ∈
Nh, is strongly polynomial if for every graph G there is a polynomial
p(G;x1, . . . , xh) such that hom(G,Hk) = p(G; k1, . . . , kh) for every k ∈ Nh.

Many important graph polynomials p(G) are determined by strongly
polynomial sequences of graphs (Hk): e.g. the Tutte polynomial, the
Averbouch–Godlin–Makowsky polynomial [1] (which includes the matching
polynomial) and the Tittmann–Averbouch–Godlin polynomial [4] (which
includes the independence polynomial).

We are interested here in how to construct strongly polynomial sequences
from basic building blocks, rather than verifying whether or not a given se-
quence of graphs – such as that of hypercubes (Qk) – is strongly polynomial.

Proposition 1.2 ([2] and [3]). If (Hk) is strongly polynomial, and each Hk

simple, then the complements (Hk) and line graphs (L(Hk)) are strongly
polynomial. Also, (ℓHk) is strongly polynomial in k, ℓ.

For graph H, we let Hℓ denote the same graph but with ℓ loops attached
to each vertex (if H already has loops, then these are first deleted before
adding the ℓ loops).

Proposition 1.3 ([3]). If (Hk) is strongly polynomial, with at most one
loop on each vertex of Hk, then (H0

k) and (H1
k) are strongly polynomial.

More generally, (Hℓ
k) is strongly polynomial in k, ℓ.

Proposition 1.4 ([2] and [3]). If (Fj), (Hk) are strongly polynomial, then
the disjoint unions (Fj ∪Hk), joins (Fj + Hk), direct products (Fj ×Hk),
and lexicographic products (Fj [Hk]) are all strongly polynomial in j, k.

1Supported by CE-ITI P202/12/G061, and by Project ERCCZ LL1201 Cores.
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Example 1.5. Beginning with the trivial strongly polynomial sequence
(K1), the following are strongly polynomial:

(i) multiple: (kK1) = (Kk)

(ii) complement: (Kk) (chromatic polynomial)

(iii) loop-addition: (Kℓ
k) (Tutte polynomial)

(iv) join: (K1
k−j + Kℓ

j ) (Averbouch–Godlin–Makowsky polynomial)

The main contribution of our paper [3] is to give a new method of con-
structing strongly polynomial sequences of graphs. (This method can be
used to produce the graph sequence determining the Tittmann–Averbouch–
Makowsky polynomial.)

We start with a simple graph H encoded by a coloured rooted tree T .
For each vector of edge variables k= (ks : s∈E(T )) ∈ N|E(T )| corresponds
another coloured rooted tree Tk, which is recursively constructed from T
using the following operation of “branching” until no more edge variables
remain.

Definition 1.6 (k-branching). Let s = uv be an edge of a coloured rooted
tree with endpoint u nearest the root. Suppose s has been assigned edge
variable k. To branch at s, remove the edge variable k from s and create
k isomorphic copies of the subtree Tv of T rooted at v, each pendant from
u by a copy of edge s. (Isomorphism here includes colours on vertices in
V (Tv) and any remaining variables on edges in E(Tv).)

For the statement of our main theorem we restrict attention to the fol-
lowing ways of representating a graph H by a coloured rooted tree T :

(i) H as a subgraph of the closure of T : colour v ∈ V (T ) = V (H) with a
subset of {0, 1, . . . , height(T )} (consisting of levels in T of vertices u
on the path from v to the root of T such that uv ∈ E(H));

(ii) ornamented version of (i): strongly polynomial sequence (Fv;jv ) for
each vertex v ∈ V (H), colour as in (i) paired with Fv;jv ;

(iii) cotree T encoding cograph H: colour non-leaf of T from {∪,+}, leaves
of T comprise V (H).
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Theorem 1.7 ([3]). Let T be a coloured rooted tree representing a graph H
under one of the schemes (i), (ii) or (iii) above, and let k = (ks : s ∈ E(T ))
be branching variables on the edges of T . Let Hk be the graph represented by
the coloured rooted tree Tk obtained from T after recursively ks-branching
on edge s for each s ∈ E(T ).

Then (Hk) is strongly polynomial in k.

References

[1] I. Averbouch, B. Godlin, J.A. Makowsky, A most general edge elim-
ination polynomial, in: H. Broersma, T. Erlebach, T. Friedetzky, D.
Paulusma (eds.), Graph-Theoretic Concepts in Computer Science, 34th
International Workshop, WG2008, Durham, UK, June/July 2008, Lect.
Notes Comput. Sci. 5344 (2008), 31–42

[2] P. de la Harpe and F. Jaeger, Chromatic invariants for finite graphs:
theme and polynomial variations, Lin. Algebra Appl. 226–228 (1995),
687–722
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Abstract

In this talk, we introduce two kinds of power for graphs [2, 3]. First,
for a given graph G, we consider G

r
s , i.e., the rth power of the sth

subdivision of G, and we present some basic properties of this power.

In the sequel, we introduce the graph power G

2s+1

2̃r+1

. We show that
these powers can be considered as the dual of each other. Precisely,
we show that

G
2r+1
2s+1

−→ H ⇐⇒ G −→ H

2s+1

2̃r+1

.

Next, we review some coloring properties of graph powers [4]. In this

regard, we show that if 2r+1
2s+1

≤ χc(G)
3(χc(G)−2)

, then χc(G
(2r+1)/(2s+1)) =

(2s+1)χc(G)
(s−r)χc(G)+2r+1

. Also, we present an upper bound for the fractional
chromatic number of subdivision graphs. Precisely, we show that

χf (G
1/(2s+1)) ≤

(2s+1)χf (G)

sχf (G)+1
.
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Let X be a finite set. A (rooted) phylogenetic tree on X is a rooted tree
with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled
by the elements of X. Phylogenetic trees are especially popular in biology,
where the set X represents a collection of species and the tree describes
a hypothesis of how these species are related. To model more complex
genealogical relationships, the following more general model has been intro-
duced. A (rooted) phylogenetic network on X is a rooted directed acyclic
graph with no indegree-1 outdegree-1 vertices whose leaves are bijectively
labelled by the elements of X. To quantify the amount of reticulation (i.e.
non-treelike evolutionary events), the reticulation number of a phylogenetic
network N is defined as

∑

v∈V (N)\{root}

d−(v) − 1.

A “tree-based” approach for constructing phylogenetic networks is to
first construct a phylogenetic tree for each gene, and then to find a phylo-
genetic network that “contains” each of these trees. To formalize this, we
say that a phylogenetic tree T is displayed by a phylogenetic network N
if T can be obtained from a subgraph of N by contracting edges. Given two
rooted phylogenetic trees T1 and T2, the problem Minimum Reticulation

is to find a rooted phylogenetic network with minimum reticulation number
that displays T1 and T2.

Recently, we showed that there exists a constant factor approximation
algorithm for Minimum Reticulation if and only if there exists such an
algorithm for Directed Feedback Vertex Set [2]. However, whether
such an algorithm exists is still an open question.

Much less is known about the generalization of this problem to more than
two phylogenetic trees. In particular, there is no algorithm with running
time O(c|X|) known, for any constant c, even for instances consisting of
three binary phylogenetic trees. In addition, it is not known whether the
problem is fixed parameter tractable when the number of phylogenetic trees
and their degrees are unrestricted (see [3]).
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A “character based” approach for constructing phylogenetic networks
aims to construct them directly from character data, optimizing e.g. the
“parsimony score”. A p-state character on a set S is a function α : S →
{1, . . . , p}. Given a phylogenetic network N and a p-state character τ
on V (N), the change cτ (e) on edge e = (u, v) of N w.r.t. τ is 0 if τ(u) = τ(v)
and 1 otherwise. We distinguish between two variants of the parsimony
score of phylogenetic networks, both of which generalize the well-known
parsimony score of phylogenetic trees (which can be computed in polyno-
mial time).

The hardwired parsimony score of a phylogenetic network N on X and
p-state character α on X is given by

PShw(N,α) = min
τ

∑

e∈E(N)

cτ (e),

where the minimum is taken over all p-state characters τ on V (N) that
extend α.

The softwired parsimony score of a phylogenetic network N and p-state
character α is given by

PSsw(N,α) = min
T∈T (N)

PShw(T, α),

where T (N) is the set of phylogenetic trees on X displayed by N .

Computing the hardwired parsimony score is closely related to the prob-
lem Minimum Multiterminal Cut. Consequently, it is polynomial-time
solvable for binary characters and, for general p-state characters, 1.3438-
approximable and fixed-parameter tractable (FPT) in the parsimony score.

Computing the, biologically more relevant, softwired parsimony score
of a phylogenetic network is, unfortunately, much harder. There is no
polynomial-time approximation algorithm that approximates PSsw(N,α)
to a factor |X|1−ǫ, for a rooted phylogenetic network N and a binary char-
acter α, for any constant ǫ > 0, unless P = NP [1].

Some interesting open questions remain. First of all, are there any re-
stricted classes of networks for which computing the (hardwired or soft-
wired) parsimony score is easier? In particular, is there a polynomial-time
algorithm for networks with bounded treewidth (of the underlying undi-
rected graph)? In addition, is there an approximation algorithm for com-
puting the softwired parsimony score of a binary phylogenetic network that
is tree-child, i.e. in which each non-leaf vertex has at least one child with
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indegree 1? Furthermore, can we go beyond computing the parsimony score
of a given network, and search for a network with optimal parsimony score
(e.g. for a fixed reticulation number)?
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We say that a permutation π is merged from permutations ρ and τ , if
we can color the elements of π red and blue so that the red elements are
order-isomorphic to ρ and the blue ones to τ . Claesson, Jeĺınek and Ste-
ingŕımsson [4] have shown that every permutation π that avoids 1324 can be
merged from a permutation avoiding 132 and a permutation avoiding 213.
From this, it follows that there are at most 16n 1324-avoiding permutations
of order n. This argument can be extended to more general patterns, show-
ing in particular that if σ is a layered pattern of size k, then there are at
most (2k)2n σ-avoiding permutations of size n. This bound is again based
on an argument showing that a permutation avoiding a certain pattern can
be merged from permutations avoiding smaller patterns.

Motivated by these results, we introduce the concept of splittability
of permutation classes; we say that a hereditary permutation class C is
splittable if it has two proper hereditary subclasses A and B such that every
element of C can be obtained by merging an element of A with an element
of B. We address the general problem of identifying which permutation
classes are splittable. We mostly focus on principal classes, i.e., classes
defined by avoidance of a single forbidden pattern, although some of our
results are applicable to general hereditary classes as well.

On the negative side, we show that every permutation class closed under
inflations is unsplittable. This implies, in particular, that if σ is a simple
permutation, then the class Av(σ) of all σ-avoiding permutations is unsplit-
table. We also find examples of unsplittable classes that are not closed under
inflations, e.g., the class of layered permutations or the class of 132-avoiding
permutations.

On the positive side, we show that if σ is a direct sum of two nonempty
permutations and has size at least four, then Av(σ) is splittable. This
extends the results of Claesson et al. [4], who address the situation when σ
is a direct sum of three permutations, with an extra assumption on one of
the three summands.
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Apart from these results, we will also show that splittability is closely
related to other previously studied structural properties of classes of re-
lational structures. In particular, splittability is related to the notions of
Ramseyness and amalgamation [2, 3, 7].

We also establish a less direct, but perhaps more useful, connection be-
tween splittability and coloring of circle graphs. Let σk be the permutation
k(k − 1) · · · 32(k + 1) of size k + 1. From our general results, it follows that
all σk-avoiding permutations can be merged from a bounded number, say
f(k), of 213-avoiding permutations. Moreover, we prove that the small-
est such f(k) is equal to the smallest number of colors needed to properly
color every circle graph with no clique of size k. We may therefore exploit
previous results on colorings of circle graphs [1, 6, 5] to deduce results on
splittability of permutation classes.
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An arrangement of pseudocircles is a finite collection of Jordan curves
in the plane with the additional properties that (i) every two curves meet
in at most two points; and (ii) if two curves meet in a point p, then they
cross at p.

We say that two arrangements C = (c1, . . . , cn) and D = (d1, . . . , dn)
are equivalent if there is a homeomorphism ϕ of the plane onto itself such
that ϕ[ci] = di for all i ∈ {1, . . . , n}. Linhart and Ortner (2005) gave an
example of an arrangement of five pseudocircles that is not equivalent to an
arrangement of circles, and they conjectured that every arrangement of at
most four pseudocircles is equivalent to an arrangement of circles. Here we
prove their conjecture.

We consider two related recognition problems. The first is the problem of
deciding, given a (combinatorial description of a) pseudocircle arrangement,
whether it is equivalent to an arrangement of circles. The second is deciding
whether it is equivalent to an arrangement of convex pseudocircles. We
prove that both problems are NP-hard, answering questions of Bultena,
Grünbaum and Ruskey (1998) and of Linhart and Ortner (2008).

We also give an example of an arrangement of convex pseudocircles with
the property that its intersection graph (i.e. the graph with one vertex for
each pseudocircle and an edge between two vertices if and only if the cor-
responding pseudocircles intersect) cannot be realised as the intersection
graph of a family of circles. This disproves a folklore conjecture communi-
cated to us by Pyatkin.

1Supported by EPSRC grant EP/G066604/1 and by a VENI grant from Netherlands
Organisation for Scientific Research (NWO).
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Open questions on matroids and list colouring

Tamás Király

The list edge-colouring conjecture states that the list edge-chromatic
number χ′

l(G) equals the edge-chromatic number χ′(G) for every loopless
graph G. In other words, if every edge of G has a list of χ′(G) possible
colours, then it is possible to choose a proper edge-colouring from the lists.
The bipartite case was solved by Galvin in 1995 [2], but the general conjec-
ture is still open.

In this talk we discuss possible generalizations of Galvin’s theorem to
matroids, and some related open questions on matchings. Our starting point
is the following result of Seymour [5].

Theorem 1.1. Let M = (S, I) be a matroid where S can be covered by k
independent sets, and let Ls be a list of k colours for every s ∈ S. It is
possible to choose a colour from each list such that every monochromatic set
is independent.

It is tempting to formulate a common generalization of this result and
Galvin’s theorem by extending it to matroid intersection. Given two ma-
troids M1 = (S, I1) and M2 = (S, I2) on a common ground set S, we
can define their chromatic number χ(M1,M2) as the minimum number of
common independent sets that can cover S. The list chromatic number
χl(M1,M2) is the smallest number k such that given arbitrary lists Ls of
k colours (s ∈ S), it is possible to choose a colour from each list such that
every monochromatic set is a common independent set.

Question 1.2. For which matroid pairs (M1,M2) is it true that
χl(M1,M2) = χ(M1,M2)?

We are not aware of any matroid pair where equality does not hold; on
the other hand, there are very few classes of matroids where the answer
is known. Galvin’s theorem means that equality always holds for two par-
tition matroids; some other simple cases are discussed in [3], where it is
observed that Galvin’s theorem implies χl(M1,M2) = χ(M1,M2) for any
two transversal matroids. The following are some interesting special cases
where the question is still open:

• two strongly base orderable matroids,
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• a partition matroid and a graphic matroid,

• a special case of the previous one: colouring of a digraph where each
colour class must be a branching,

• χ(M1,M2) = 2 (that is, lists of size 2),

• if the total number of colours is χ(M1,M2) + 1, i.e. each element has
a single forbidden colour.

Let us mention a special case of this last problem. Let M1 be a matroid
of rank k+1 that can be partitioned into k disjoint bases B1, . . . , Bk, and let
S1, . . . , Sk+1 be disjoint transversals of the family B1, . . . , Bk. If M2 is the
partition matroid defined by classes S1, . . . , Sk+1, and the forbidden colour
of elements in Si is the i-th colour, then we obtain the following conjecture.

Conjecture 1.3. In the above setting, there exist disjoint independent sets
I1, . . . , Ik+1 of M1 such that

|Ii ∩ Sj | =

{

1 if i 6= j

0 if i = j.

Notice that such sets exist if the family B1, . . . , Bk has a transversal
that is a common independent set of M1 and M2. Indeed, let I be the
transversal; then the sets I,B1 \I, . . . , Bk \I, taken in an appropriate order,
satisfy the conditions of the conjectureecture. In fact, the existence of such
a transversal is conjectured by Aharoni et al. [1] for any pair of matroids.

Conjecture 1.4 ([1]). Let M1 and M2 be two matroids of rank k + 1 on
ground set S, and suppose that S can be partitioned into common bases
B1, . . . , Bk. Then the family B1, . . . , Bk has a transversal that is indepen-
dent in both matroids.

It should be noted that contrary to the list colouring conjecture, this is
open even for matchings in bipartite graphs:

Conjecture 1.5 (Aharoni, Berger). If a bipartite graph is the disjoint union
of k matchings M1, . . . ,Mk of size k+1, then it has a matching that contains
exactly one edge from each of M1, . . . ,Mk.

Kotlar and Ziv [4] proved the approximate result that such a matching
exists if M1, . . . ,Mk all have size ⌊ 5

3k⌋. Finally, let us conclude with another
possible generalization of Galvin’s theorem that is related to the above
conjectures on matroids, but does not seem to be implied by them.
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Conjecture 1.6. Let G be a bipartite graph, and k a positive integer. If
every edge has a list of k possible colours, then we can choose edge colours
so that every node v is incident to at least min{dG(v), k} different colours.
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Domination Game
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The domination game is played on a graph G by two players, named Dom-
inator and Staller. They alternatively select vertices of G such that each
chosen vertex enlarges the set of vertices dominated before the move on
it. Dominator’s goal is that the game is finished as soon as possible, while
Staller wants the game to last as long as possible. It is assumed that both
play optimally. Game 1 and Game 2 are variants of the game in which
Dominator and Staller has the first move, respectively. The game domina-
tion number γg(G), and the Staller-start game domination number γ′

g(G),
is the number of vertices chosen in Game 1 and Game 2, respectively. The
game was introduced in [1] and studied afterwards in several papers. In this
talk we will present main results obtained so far and point out to intrin-
sic differences between the game domination number and usual domination
number.

A fundamental result, one of which was proved [2] and the other half
in [5], asserts that for any graph G, |γg(G)−γ′

g(G)| ≤ 1, holds. The theorem
will be discussed and tools for its proof presented. In view of the theorem,
a pair (r, s) of integers is called realizable if there exists a graph G such
that γg(G) = r and γ′

g(G) = s. By the theorem, only possible realizable
pairs are: (r, r), (r, r + 1), (r, r − 1). As proved in [6], pairs (r, r), r ≥ 2,
(r, r + 1), r ≥ 1, and (2k, 2k − 1), k ≥ 2, can actually be realized by 2-
connected graphs, while pairs (2k+1, 2k), k ≥ 2 are realizable by connected
graphs [6]. On the other hand, for any integer ℓ ≥ 1, there exists a graph G
and its spanning tree T such that γg(G)−γg(T ) ≥ ℓ [2]. IN the same paper
it was moreover proved that for any m ≥ 3 there exists a 3-connected graph
Gm and its 2-connected spanning subgraph Hm such that γg(Gm) ≥ 2m−2
and γg(Hm) = m.

In the second part of the talk some open problems will be discussed.
Two 3/5-conjectures from [5] will be presented. The first asserts that for an
n-vertex forest T without isolated vertices, γg(T ) ≤ 3n

5 and γ′
g(T ) ≤ 3n+2

5 ,
while the second asserts that the same conclusions hold for any connected
graph. The first conjecture has been very recently (cf. [4]) proved for forests
in which no two leaves are at distance 4. Extremal families of graphs for
these 3/5-conjectures constructed in [3] will be presented. The talk will be
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concluded with the following algorithmic problems: (1) What is the com-
putational complexity of the game domination number? (2) What is the
computational complexity of the game domination number on trees? (3)
Can we say anything about the computational complexity of the domina-
tion game?

References
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Graphons are analytic objects associated with convergent sequences of
dense graphs. The theory of dense graph limits has recently been built in a
series of papers authored by several authors, in particular, by Borgs, Chayes,
Lovász, Sós, Szegedy and Vesztergombi. Finitely forcible graphons, i.e.,
those determined by densities of finitely many subgraphs, play an important
role because of their relation to extremal graph theory. Lovász and Szegedy
intensively studied finitely forcible graphons and they conjectured that the
topological space of typical vertices of a finitely forcible graphon must be
compact and its dimension is always finite. We disprove both conjectures.

We construct a finitely forcible graphon such that the associated space
is not compact and it even fails to be locally compact. We also provide
another construction of a finitely forcible graphon such that the associated
space of typical vertices has a subspace homeomorphic to [0, 1]∞, i.e., its
dimension is infinite for all standard notions of dimension.
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Community structure detection methods assume that the network of
interest divides naturally into subgroups, so the job is to find these groups.
The number and size of the groups is determined by the network itself. It
is possible that no good division even exists.
A given group of vertices in a network is considered to be a community if
the number of edges within the group is significantly more than we expect
by chance.
A modularity, proposed by Newman and Girvan (2004), is a measure of
the quality of a particular division of the network. It is proportional to the
number of links falling within groups of vertices minus the expected number
in an equivalent network with links placed at random.
For a graph G with n vertices and m edges, the modularity is defined as

Q =
1

2m

n∑

i=1

n∑

j=1

(

aij −
didj
2m

)

δij

where aij is the element of the adjacency matrix of G, di is the degree of
vertex i and δij is a Kronecker delta function which equals one if and only
if vertices i and j belongs to the same group.
The main goal is to maximize the modularity by choosing an appropriate
division of the network. If the number of links within the group is no better
than random, then the modularity is zero.
The modularity can be written as

Q =
1

4m
sτBs,

where B = A − 1
2mddτ is the modularity matrix and s is the index vector

with values ±1.
The modularity matrix is symmetric real matrix with all row sums eqaul to
zero. It is a special rank-one modification of the adjacency matrix.
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The maximization of modularity relies on spectral partitioning method. It
requires calculation of the components of the leading eigenvector i.e. the
eigenvector that belongs to the largest eigenvalue of B. The modularity is
maximized by dividing the vertices according to the signs of the elements
of the leading eigenvector. The magnitudes of these elements measure how
strong the corresponding vertex belongs to the community. If the com-
ponents of the leading eigenvector are all equal to one, then the graph is
indivisible.
For a graph division into more than two communities, this algorithm can
be easily applied.
Although there are various numerical results concerning the largest eigen-
value of modularity matrix, not much is known about its spectral properties.
I present the main results concerning the sufficient condition for indivisibil-
ity of a graph:
Theorem 1 For a complete multipartite graph Kn1,n2,...,nk

with n =
n1 + . . .+nk vertices, let n′

1 > n′
2 > . . . > n′

k′ be the sequence of all distinct
eigenvalues among n1, . . . , nk, and let si, i = 1, . . . , nk be the number of
occurences of n′

i among n1, . . . , nk. The spectrum of modularity matrix of
Kn1,n2,...,nk

consists of:
(i) an eigenvalue 0 of multiplicity n− k + 1
(ii) an eigenvalue −n′

i of multiplicity si − 1 whenever si ≥ 2 and
(iii) k′ − 1 eigenvalues λ, one from each of the intervals (−n′

i,−n′
i−1),

i = 2, . . . , k′ satisfying
k∑

p=1

n2
p(n− np)

2m(λ + np)
= 1.

Theorem 2 A connected graph has the largest eigenvalue of modularity
matrix equal to zero if and only if it is a complete multipartite graph.
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For a countable relational structure A, the class of all finite structures
that embed into A is called the age of A and we denote it by age(A). A class
K of finite structures is an age if there is countable structure A such that
K = age(A). It is easy to see that a class K of finite structures is an age if
and only if K is an abstract class (that is, closed for isomorphisms), there
are at most countably many pairwise nonisomorphic structures in K, K
has the hereditary property (HP), and K has the joint embedding property
(JEP). An age K is a Fräıssé age (= Fräıssé class = amalgamation class) if
K satisfies the amalgamation property (AP). For every Fräıssé age K there
is a unique (up to isomorphism) countable homogeneous structure A such
that K = age(A). We say that A is the Fräıssé limit of K.

For example, the class of all finite linear orders is a Fräıssé class whose
Fräıssé limit is isomorphic to (Q, <); the class of all finite graphs is a Fräıssé
class whose Fräıssé limit is called the random graph; the class of all finite
posets (= partially ordered sets) is a Fräıssé class whose Fräıssé limit is
called the random poset and denoted by P.

Note that (Q, <) is not only a Fräıssé limit, but also a carrier of a more
elaborate algebraic structure – that of an ordered field. In this talk we show
that the random poset P also carries an algebraic structure compatible
with the underlying partial order, albeit not as rich as the one usually
endowing Q.

Let us first recall the Hubička-Nešetřil presentation P∈ of the random
poset [2]. Fix a model M@

fin of hereditarily finite set theory with a single
atom @. For m ∈ M@

fin let Lm = {x : @ /∈ x ∈ m} and Rm = {x\{@} : @ ∈
x ∈ m}. Clearly, @ /∈ Lm and @ /∈ Rm. On the other hand, for a, b ∈ M@

fin

such that @ /∈ a and @ /∈ b let (a | b) = a ∪ {x ∪ {@} : x ∈ b}. It is easy to
see that @ /∈ (a | b) and that if @ /∈ m then m = (Lm | Rm). For a, b ∈ M@

fin

we write a 4 b if
({a} ∪ Ra) ∩ ({b} ∪ Lb) 6= ∅.

Definition ([2]) Let P∈ be the set of all m ∈ M@
fin such that:

1. [correctness] @ /∈ m, Lm ∪Rm ⊆ P∈, Lm ∩Rm = ∅;
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2. [ordering] x 4 y for all x ∈ Lm, y ∈ Rm;

3. [completeness] Lx ⊆ Lm for all x ∈ Lm, and Rx ⊆ Rm for all x ∈ Rm.

Theorem 1.1 ([2]). The binary relation 4 is a partial order on P∈. More-
over, (P∈,4) is isomorphic to the random poset.

Let S be the class of John Conway’s surreal numbers (see [1, 3]). By
a slight abuse of notation, we can assume that each surreal number x ∈ S

takes the form x = (Lx | Rx). Let ⊑ denote Conway’s ordering on S. One
of the main observations on the ordering of surreal numbers is that ⊑ is a
quasiorder (it is not antisymmetric). We, therefore, write

x ≈ y if x ⊑ y and y ⊑ x

and say that x, y ∈ S are equal if x ≈ y. We say that x and y are identical
if x = y. An important observation in [2] is that it is safe assume that
P∈ ⊆ S (justifying the abuse of notation, that is, using (· | ·) as the pairing
operator in the Hubička-Nešetřil presentation of the random poset, and as
the pairing operator in the construction of surreal numbers). Moreover,

Theorem 1.2 ([2]). For all a, b ∈ P∈, if a ≺ b then a ⊏ b. In other words,
the restriction of ⊏ to P∈ is a linear extension of ≺.

Our main observation in this talk is the following proposition:

Proposition 1.3. Using the underlying algebraic structure of the surreal
numbers we can define a binary operation + and a unary operation − on
P∈ such that (P∈,+,−, 0,4) is an ordered commutative monoid with invo-
lution.
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Let Forb(Kk) be the class of all graphs without a clique minor of order
k, k ≥ 2. The sharp upper bound for the minimal degree δ(G), for any
G ∈ Forb(Kk) is known only up to k = 5. Apparently, this problem is
difficult. We consider the case G is triangle-free. This problem as well is
far from settled. For k = 2, 3, 4, 5, it is easy to check that k − 2 is sharp.
What about the case k = 6? Does there exist a triangle-free graph G with
δ(G) = 5, and without K6 minor? It seems tempting to answer this in the
negative. However, to date we do not know the answer. Hence, we weaken
the requirement by forbidding more minors other than K6. The Petersen
family consists of seven graphs that are obtained from the Petersen graph
by applying the operations known as ∆-Y or Y-∆ transformations. The
complete graph K6 is one of the seven graphs in the Petersen family. We
have more structure in the class of graphs forbidding all of these seven
graphs as a minor. It is known as the class of linklessly embeddable graphs.
Even settling the case of graphs avoiding all of the Peterson family minors
would be very interesting.
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Given k < ℓ, Erdős [1] asked for the maximum integer f(n, ℓ, k) such
that every set of n points in the plane with at most ℓ collinear contains a
subset of f(n, ℓ, k) points with at most k collinear. For k = 2 this is known
as the general position subset selection problem. The density version of the
Hales–Jewett theorem implies that f(n, ℓ, k) ≤ o(n). Füredi [2] showed that
f(n, 3, 2) ≥ Ω(

√
n lnn). Much more recently, Lefmann [4] proved that for ℓ

fixed, f(n, ℓ, k) ≥ Ω(n(k−1)/k(lnn)1/k).
We consider the case when ℓ is not fixed, but varies as a function of n.

Our general approach is to combine the Szemerédi–Trotter Theorem with
various known results on independence numbers of uniform hypergraphs.
For k = 2 we show that:

• If ℓ ≤ O(
√
n) then f(n, ℓ, 2) ≥ Ω(

√
n
ln ℓ ).

• If ℓ ≤ O(n(1−ǫ)/2) then f(n, ℓ, 2) ≥ Ω(
√

n logℓ n).

For fixed k ≥ 3 we show that:

• If ℓ ≤ O(
√
n) then f(n, ℓ, k) ≥ Ω

(
n(k−1)/k

ℓ(k−2)/k

)

.

• If ℓ ≤ O(n(1−ǫ)/2) then f(n, ℓ, k) ≥ Ω
(

n(k−1)/k

ℓ(k−2)/k (lnn)1/k
)

.

These results turn out to be useful in answering a symmetric version of
the problem posed by Gowers on MathOverflow [3]. He asked for the mini-
mum integer GP(q) such that every set of at least GP(q) points in the plane
contains q collinear points or q points in general position. He noted that
Ω(q2) ≤ GP(q) ≤ O(q3). Our first result implies that GP(q) ≤ O(q2 ln q).

1The full version of this paper is available at http://arxiv.org/abs/1208.5289 and
will appear in SIAM J. Discrete Math.

2Monash University.
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Our third result answers the natural generalisation of this problem, exchang-
ing ‘general position’ for ‘with at most k collinear’, yielding GPk(q) = Θ(q2).

We end our paper with a series of conjectures. The following conjecture
would completely answer Gowers’ question, showing that GP(q) = Θ(q2).

Conjecture 1.1. f(n,
√
n, 2) ≥ Ω(

√
n).

The following colouring conjecture would imply Conjecture 1.1.

Conjecture 1.2. Every set P of n points in the plane with at most
√
n

collinear can be coloured with O(
√
n) colours such that each colour class is

in general position.

The problem of determining the correct asymptotics of f(n, ℓ, 2) (and
f(n, ℓ, k)) for fixed ℓ remains wide open.

Conjecture 1.3. If ℓ is fixed, then f(n, ℓ, 2) ≥ Ω(n/polylog(n)).

In the colouring setting, the following conjecture is actually equivalent
to Conjecture 1.3.

Conjecture 1.4. For all fixed ℓ ≥ 3, every set of n points in the plane
with at most ℓ collinear can be coloured with O(polylog(n)) colours such
that each colour class is in general position.
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A DP-ribbon is a cylinder with a distinguished core circle with a distin-
guished side and an arrangement of DP-ribbons is a finite family of at least
two DP-ribbons pairwise attached as shown in Fig. 1.

1 2

Figure 1: A DP-ribbon embedded in three-space (only the core circle is drawn,
the distinguished side is indicated by small sky blue disks, and half-twists of the
ribbon are indicated by horizontal dashed line segments), an arrangement of two
DP-ribbons, and an indexed arrangement of two oriented DP-ribbons

The reader will easily check that the underlying surface of an arrange-
ment of two DP-ribbons is a sphere with one crosscap and five boundaries.
The genus of an arrangement of DP-ribbons is the genus of its underlying
surface.

Theorem 0.1 ([2]). The arrangements of DP-ribbons of genus 1 are exactly,
modulo the adjunction of topological disks along their boundaries, the so-
called arrangements of double pseudolines, i.e., the dual arrangements of
finite families of pairwise disjoint convex bodies of (real two-dimensional)
projective planes. Furthermore an arrangement of DP-ribbons is of genus 1
if and only if its subarrangements of size 3, 4 and 5 are of genus 1.

1MP was partially supported by the TEOMATRO grant ANR-10-BLAN 0207.
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Theorem 0.2 ([2]). There is a natural one-to-one and onto correspondence
between indexed arrangements of n oriented DP-ribbons and the n-tuples of
suffles of the n−1 circular sequences jjjj, j = 2, 3, . . . , n. In particular the
number bn of indexed arrangements of n oriented DP-ribbons is

{

4n−2

(
4n− 5

3, 4, 4, . . . , 4

)}n

and the number an of arrangements of n DP-ribbons is bounded from below
by

bn/(2nn!).

Problem 0.3. Give asymptotic formulae (or, better, closed formulae) for
the numbers bn(g) of indexed arrangements of n oriented DP-ribbons of
genus g.

Comment: Let an(g) be the number of DP-ribbons of size n and genus g.
The following values of the a3(g) and b3(g) have been obtained in collabora-
tion with Carsten Lange using classical enumeration algorithms for multiset
permutations, e.g., [5, 3].

g 1 2 3 4 5 6 7

a3(g) 13 20 77 197 674 1127 2707
b3(g) 216 636 2756 8292 29032 50848 123240

g 8 9 10 11 12 13 ≥ 14

a3(g) 5173 10073 11943 13633 9115 3290 0
b3(g) 240196 475920 565016 653528 436496 157824 0

Problem 0.4. Prove that an arrangement of five DP-ribbons is of genus 1
if and only if its subarrangements of size 3 and 4 are of genus 1.

Comment : We ask for a non computer-assisted proof. So far we only
know that an arrangement of five DP-ribbons whose subarrangements of size 4
are of genus 1 is of genus 1 or its subarrangements of size 4 belong to a well-defined
family of few dozens of arrangements [2, Theorem 46]. A computer-assisted
proof is therefore doable using modest computing ressources. Preliminary
investigations in this direction, in collaboration with Carsten Lange, lead to the
following values for the numbers a∗

4(g) of arrangements of DP-ribbons of size 4

50



and genus g whose subarrangements of size 3 are of genus 1.

g 1 2 3 4 5 6 7 ≥ 8

a∗

4(g) 6 570 0 455 0 18 0 1 0
b∗4(g) 2 415 112 0 135 664 0 4 560 0 16 0
⌈b∗4(g)/2

44!⌉ 6290 0 354 0 12 0 1 0

The techniques developped in Ortner [4] might be relevant for a non computer-

assisted proof.

Problem 0.5. Devise a quadratic time algorithm to compute an arrange-
ment of n double pseudolines presented by its subarrangements of size 3.

Comment : In the case of crosscap arrangements, i.e., dual arrangements

of finite families of pairwise disjoint convex bodies of affine planes, a strategy,

based on the notion of pseudotriangulation, is proposed in [1].
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The random graph model G(n,M) assigns uniform probability to graphs
on n labelled vertices with M edges. A fundamental result of Erdős and
Rényi [4] is that the random graph G(n,M) undergoes an abrupt change
when M is around n/2, the value for which the average vertex degree is equal
to one. When M = cn/2 and c < 1, almost surely the connected components
are all of order O(log n), and are either trees or unicyclic graphs. When
M = cn/2 and c > 1, almost surely there is a unique giant component of
size Θ(n). We direct to reader to the reference texts [3] and [8] for a detailed
discussion of these facts.

We concentrate on the so-called critical window M = n
2 (1 + λn−1/3),

where λ is a real number, identified by the work of Bollobás [1, 2]. Let us
recall that the excess of a connected graph is the number of edges minus the
number of vertices. A connected graph is complex if it has positive excess.
As λ → −∞, complex components disappear and only trees and unicyclic
components survive, and as λ → +∞, components with unbounded excess
appear. A thorough analysis of the random graph in the critical window
can be found in [7] and [10], which constitute our basic references.

For each fixed λ, we denote the random graph G
(
n, n

2 (1 + λn−1/3)
)

by G(λ). The core C(λ) of G(λ) is obtained by repeatedly removing all
vertices of degree one from G(λ). The kernel K(λ) is obtained from C(λ)
by replacing all maximal paths of vertices of degree two by single edges.
The graph G(λ) satisfies almost surely several fundamental properties, that
were established in [10] by a subtle simultaneous analysis of the G(n,M)
and the G(n, p) models.

1. The number of complex components is bounded.

2. Each complex component has size of order n2/3, and the largest sus-
pended tree in each complex component has size of order n2/3.

3. C(λ) has size of order n1/3 and maximum degree three, and the dis-
tance between two vertices of degree three in C(λ) is of order n1/3.
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4. K(λ) is a cubic (3-regular) multigraph of bounded size.

The key property for us is the last one. It implies that almost surely the
components of G(λ) are trees, unicyclic graphs, and those obtained from
a cubic multigraph K by attaching rooted trees to the vertices of K, and
attaching ordered sequences of rooted trees to the edges of K. Some care is
needed here, since the resulting graph may not be simple, but asymptotically
this can be accounted for.

It is clear that G(λ) is planar if and only if the kernel K(λ) is planar.
Then by counting planar cubic multigraphs it is possible to estimate the
probability that G(λ) is planar. To this end we use generating functions.
The trees attached to K(λ) are encoded by the generating function T (z)
of rooted trees, and complex analytic methods are used to estimated the
coefficients of the corresponding series. This allows us to determine the
exact probability

p(λ) = lim
n→∞

Pr
{
G
(
n, n

2 (1 + λn−1/3)
)

is planar
}
.

In particular, we obtain p(0) ≈ 0.99780.
This approach was initiated in the seminal paper by Flajolet, Knuth and

Pittel [5], where the authors determined the threshold for the appearance of
the first cycles in G(n,M). A basic feature in [5] is to estimate coefficients
of large powers of generating functions using Cauchy integrals and the sad-
dle point method. This path was followed by Janson, Knuth,  Luczak and
Pittel [7], obtaining a wealth of results on G(λ). Of particular importance
for us is the determination in [7] of the limiting probability that G(λ) has
given excess. The approach by  Luczak, Pittel and Wierman in [10] is more
probabilistic and has as starting point the classical estimates by Wright [11]
on the number of connected graphs with fixed excess. The range of these
estimates was extended by Bollobás [1] and more recently the analysis was
refined by Flajolet, Salvy and Schaeffer [6], by giving complete asymptotic
expansions in terms of the Airy function.
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A 3-uniform friendship hypergraph is a 3-uniform hypergraph in which,
for all triples of vertices x, y, z there exists a unique vertex w, such that
xyw, xzw and yzw are hyperedges in the hypergraph. Sós showed in [2]
that such 3-uniform friendship hypergraphs on n vertices exist with a so
called universal friend (a vertex which is in an hyperedge with all other
pairs of vertices) if and only if a Steiner triple system, S(2, 3, n− 1) exists.
Hartke and Vandenbussche used integer programming in [5] to search for
3-uniform friendship hypergraphs without a universal friend and found one
on 8, three non-isomorphic on 16 and one on 32 vertices. So far, these five
hypergraphs are the only known 3-uniform friendship hypergraphs. Li, van
Rees, Seo and Singhi also used integer programming in [6] to show that the
only 3-uniform friendship hypergraphs, with at most 12 vertices, are the
ones found by Sós and Hartke and Vandenbussche.

A cubeconstructed hypergraph H is a hypergraph on 2k vertices for k ≥
2 where the vertices are labelled with k-bit binary strings and xyz is a
hyperedge in H if and only if distH(x, y) + distH(x, z) + distH(y, z) = 2k,
where distH(a, b) is the Hamming distance between a and b. In [3] we proved
the following theorem.

Theorem 0.1. The cubeconstructed hypergraphs are 3-uniform friendship
hypergraphs on 2k−1(3k−1 − 1) hyperedges.

Furthermore we constructed 3-uniform friendship hypergraphs on 20 and
28 vertices using a computer, which inspired us to conjecture the following.

Conjecture 0.2. For all n which is divisible by 4 and not divisible by 3,
there exist a vertex-transitive 3-uniform friendship hypergraph on n vertices.

We also we defined r-uniform friendship hypergraphs and stated that the
existence of those with a universal friend, is dependent on the existence of
a Steiner system, S(r − 1, r, n − 1). As a result hereof, we know infinitely
many 4-uniform friendship hypergraphs with a universal friend. Finally we
showed how to construct a 4-uniform friendship hypergraph on 9 vertices
and with no universal friend.
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We studied the parameterized complexity of the directed variant of the clas-
sical Steiner Tree problem on various classes of sparse graphs. While the
parameterized complexity of Steiner Tree on undirected graphs parame-
terized by the number of terminals is well understood, not much is known
about the parameterization by the number of non-terminals in the solution
tree. All that is known for this parameterization is that both the directed
and the undirected versions are W[2]-hard on general graphs, and hence
unlikely to be fixed parameter tractable (FPT). The undirected Steiner

Tree problem becomes FPT when restricted to sparse classes of graphs
such as planar graphs, but the techniques used to show this result break
down on directed planar graphs.

In this talk we precisely chart the tractability border for Directed

Steiner Tree (DST) on sparse graphs parameterized by the number of
non-terminals in the solution tree. Specifically, we show that the problem
is fixed parameter tractable on graphs excluding a topological minor, but
becomes W[2]-hard on graphs of degeneracy 2. On the other hand we show
that if the subgraph induced by the terminals is required to be acyclic then
the problem becomes FPT on graphs of bounded degeneracy.

Our algorithms for DST are based on a novel branching rule. To demon-
strate the versatility of the new branching we use it to give improved param-
eterized algorithms for Dominating Set on graphs of bounded degeneracy
and graphs excluding a topological minor. We further show that our algo-
rithm achieves the best possible running time dependence on the solution
size and degeneracy of the input graph, under standard complexity theoretic
assumptions.
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Let P ⊂ Rd, Q ⊂ Rk be two polytopes. Q is called an extended formu-
lation (EF) of P if P is the projection of Q. Defining the size of a polytope
to be the minimum number of inequalities needed to describe it, we can
define a measure of how complex a polytope is. To this end, we define the
extension complexity of a polytope P to be the minimum over the sizes of
all extended formulations of P .

It is known that the extension complexity of a polytope can be exponen-
tially smaller than the number of inequalities needed to describe the poly-
tope. For example, for regular n-gons the extension complexity is Θ(log n).

Many combinatorial optimization problems have natural polytopes as-
sociated with them. For example, consider the traveling salesman problem.
We can define the TSP polytope with parameter n to be the convex hull of
the characteristic vectors of every traveling salesman tour of the complete
graph Kn. If the extension complexity of this polytope is polynomial in n
then one can solve the traveling salesman problem in polynomial time by
optimizing a linear function over the extended formulation, thereby proving
P = NP. Indeed, in the mid eighties claims of such polynomial extended for-
mulations for the TSP polytope were made by Ted Swart. Yannakakis later
proved that every extended formulation of the TSP polytope that satisfies
certain symmetry must have large size. Swart’s EF satisfied this symmetry
requirement and was therefore proved to be wrong.

It remained open, however, whether another EF for TSP polytope ex-
isted that avoided the symmetry requirement and was of polynomial size.
Recently an unconditional superpolynomial lower bound on the size of the
TSP polytope was obtained by Fiorini et al, thereby answering this question.
However a much more general question remains unanswered: Does every lin-
ear programming formulation of NP-hard problems have superpolynomial
size?

To answer this question, one must handle the following problem first:

• How do we associate polytope with optimization problems in a canon-
ical way?
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• How do we translate lower bounds for extension complexity of a poly-
tope associated with one problem to that of another problem?

• In particular, what subset of Turing reductions allow one to translate
such lower bounds?
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