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__________________________________________ 

ABSTRACT: We previously showed that for 

prognostication of hepatocellular cancer (HCC) 

outcomes, disease parameters need to be considered 

within a total personal clinical context. This requires 

preserving the coherence of data values, observed 

simultaneously for each patient during baseline 

diagnostic evaluation. Application of Network 

Phenotyping Strategy provided quantitative 

descriptors of these patient coherences. 

Combination of these descriptors with Fisher 

information about a patient’s tumor mass and the 

histogram of the tumor masses in the whole cohort, 

permitted estimation of the time that passed from 

disease onset until clinical diagnosis (tbaseline). We 

found faster growth of smaller tumors having total 

masses <70 (80% of cohort) which involved ~3 times 

more interacting cellular processes than were 

observed for slower growing larger tumors (20% of 

cohort) with total masses >70. Combining the 

clinical survival and tbaseline normalized all HCC 

patients to a common 1045 days of mean total 

disease duration (tbaseline plus post diagnosis 

survival). We also found a simple relationship 

between the baseline clinical status, tbaseline and 

survival.  Every difference between a patient 

baseline clinical profiles and special coherent 

clinical status (HL1) reduced the above common 

overall survival by 65 days. In summary, we showed 

that HCC patients with any given tumor can best 

have their tumor biology understood, when account 

is taken of the total clinical and liver context, and 

with knowing the point in its total history when an 

HCC diagnosis is made. This ability to compute the 

tbaseline from standard clinical data brings us closer 

to calculating survival from diagnosis of individual 

HCC patients. 

__________________________________________

INTRODUCTION 

Two general processes are thought to contribute to 

hepatocellular cancer (HCC) prognosis. They are 1: 

liver damage, monitored by indices such as plasma 

levels of bilirubin and transaminases such as serum 

glutamic oxaloacetic acid (AST), and 2: tumor 

aggressiveness, monitored by indices such as tumor 

size, tumor number, presence of portal vein 

thrombosis (PVT) and blood alpha-fetoprotein (AFP) 

levels (1,2). These two general processes may also 

affect one another.  Non disease-specific factors such 

as gender and age can also influence HCC outcomes, 

suggesting that any individual disease parameter 

needs to be considered within a total personal clinical 

context. This context might even provide 

personalization for the prognostic meaning of these 

factors for each patient, given the individual patient 

pattern of the measured parameters. Thus, a given 

level of bilirubin or tumor diameter might have a 

different significance in different total clinical 

personal contexts. 

We developed a new approach to clinical data 

processing (3,4), a Network Phenotyping Strategy 

(NPS), which allowed the conversion of the above 

qualitative statements about the importance of the 

complete clinical context for determination of 

personal prognostic significance for levels of the 
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parameters, into a quantitative prognostic scheme. 

Improvements in prognostication likely require 

finding new information in the standard clinical data. 

We previously demonstrated that this new 

information resides in the coherence of data values, 

observed simultaneously for one particular person 

during the standard clinical screening at the baseline, 

provides that additional clinical characteristic, and 

provides additional patient characterization into HCC 

subtypes (3). This has been possible in the current 

work because we have combined into one clinical 

profile of every patient, not only the observed 

individual levels of the liver function parameters and 

the tumor indices, but also combined these personal 

values into a pattern, storing the total clinical context 

for each patient by explicitly capturing all the 

relationships between all of the parameters together. 

Without any reference to the actual tumor sizes in this 

NPS processing, HCC patients were classified by 

their baseline data coherence patterns into 2 

subgroups, which were found to have significantly 

different S (‘smaller tumor’) and L (‘larger tumor’) 

phenotypes (5). The on-line tool allowing to enter the 

clinical data and obtain the HCC S/L subtype 

classification is available at 
 http://www.entromics.com/pnm/.  
This insight provides the necessary complementary 

clinical information to the conventional HCC 

subtyping, because “closeness” or “difference” is not 

evaluated by the identity or difference of the 

respective parameter levels, but by the identity or 

difference between the relationships between the pairs 

of parameter levels for concrete patient and respective 

landmark patterns. For L-phenotype patients, hepatic 

inflammation and tumor factors contributed 

collectively to more aggressive L tumors, with 

parenchymal destruction and shorter survival. This 

was manifested in the simultaneous observation of the 

following parameter values, and their relationship 

dominated the five L-characteristic patterns: presence 

of PVT in the context of simultaneously high levels of 

tumor growth indicators (AFP and/or platelet levels 

higher than the above thresholds), together with 

alcohol related liver damage. NPS thus integrated the 

liver, tumor and basic demographic factors and 

processed the information how all these data were 

simultaneously present for every patient into 

characterization of the new HCC subtypes, with 

indication for important differences in the underlying 

tumor biologies (micro- and macro environment 

related). We found that patients in the L phenotype 

group had 1.5 x larger mean tumor masses relative to 

S, p=6×10−16. In addition, S-phenotype patients had 

statistically highly significantly 1.7 × longer mean 

survival, p<10-15, compared to L-phenotype.  

This indicated that the NPS diagnostic scheme 

provided detailed, survival-related “matching” of the 

patient’s personal clinical profiles that might be 

relevant for the personal survival prognosis. By 

relating the NPS characteristics of our patients to their 

actual survival, we obtained statistically significant 

prognostic models. However, the difference ranges 

between personal survival and the one that was 

predicted for individual patients from parameters 

reflecting these typical trends spanned very large 

ranges (close to thousand days) to provide 

translationally relevant predictions. The large range of 

individual survivals of patients with comparable (or 

even identical) clinical contexts and diagnostic 

relationship patterns indicates that the baseline 

clinical pattern context is not the exclusive 

determinant of the survival. 

In the current paper, we show that a combination of 

NPS characterization of the patient clinical profiles 

and coherences of the parameter observations in them 

with processing of information from tumor imaging, 

results in significant improvement in prognostication. 

One of the important reasons for problematic OVS 

prediction is the unknown tbaseline, the time that passed 

from the disease onset until the clinical baseline  

(diagnosis).  

The tumor size (or “tumor mass”, a descriptor 

computed as the product of the number of tumor 

nodules and the tumor size) is known to be associated 

with survival (6-9) in a qualitative sense (larger tumor 

means shorter survival). Unfortunately, again perhaps 

mostly due to uncertainty in tbaseline, no direct 

correlation between the tumor masses and OVS was 

observed that was significant enough to provide a 

http://www.entromics.com/pnm/
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useful relationship model between the individual 

observed tumor mass and actual survival. Thus, the 

large tumor mass as poor prognosis predictor is again 

just the “collective group property”, which is useful 

“on average”, but is difficult to personalize into a 

prediction with acceptable error range for an 

individual patient. We therefore used Fisher 

information formalism (8) to modify the tumor 

growth law, permitting estimation of personal tbaseline 

from the patient’s tumor mass and the histogram of 

the tumor masses in the whole cohort.   

 

METHODS 

1. Clinical patterns for survival prediction. 

To characterize baseline clinical data relationship 

patterns for our 641 HCC patient cohort (see ref 3 for 

cohort description), we used the same clinical 

parameters as previously (3,4). To increase the detail 

with which the coherences in clinical parameter 

values are considered in subdividing patients into 

clinically matching subgroups, we processed every 

variable separately and added the tumor mass size 

explicitly to the pattern (unlike previously). The 

baseline data were therefore transformed by the NPS 

algorithm into 15-partite graphs, where each partition 

corresponded to one clinical parameter. The ranges or 

types of parameter values were dichotomized, using 

the same tertile-based thresholds for continuous 

variable levels as in our previous work (5). All patient 

baseline data were transformed into easy to interpret 

graphs of the personal relationship profiles. One of 

these graphs is shown by solid line (green) line in Fig. 

1, representing male, older than 55 years, with self-

reported alcoholism, without HepB and HepC 

antigens, albumin<4 g/dL, hemoglobin <15 g/dL, 

ALT <80 IU/L, AST <100 IU/L, INR <13, bilirubin 

<1.5 mg/dL, platelets <200x103/dL, AFP <29,000 

ng/dL, no PVT and tumor mass <25. 

These personal profiles were unified into complete 

study pattern (see Appendix, Fig. A1), so the 

information about the total frequencies of complete 

pairwise relationships between all variable levels, 

observed simultaneously for individual patients, can 

be processed by the NPS algorithm. We recovered 

seven reference landmark patterns (see Appendix) 

into which the study pattern is decomposed. These 

patterns were then used as the definition of clinical 

statuses, relative to which actual patient’s relationship 

profiles were matched. Because every individual 

patient status is compared to the same landmark 

pattern, this permitted a simple summary 

characterization of the clinical profile subtypes by 

grouping together all patients with the same number 

of differences between their personal and landmark 

clinical profiles. An example of this quantitative 

Fig. 1. Graphical representation of two clinical patterns 

as 15-partite graph. Symbols L and H indicate 

parameter values lower or higher than tertile-based 

thresholds (see text), + and – the presence and absence 

of observed property, O is older and Y younger than 55 

years, M is male, F female gender. Green pattern 

represents the landmark pattern HL1 of parameter 

value, used providing the best characterization of the 

OVS. To demonstrate the quantification of similarity 

between two relationship patterns, we added profile, 

for another patient, shown by red line (see text for 

direct clinical characteristics). This patients differs 

from HL1 in 13 out of total 15 relationships between 

parameter values, and therefore (Pi,HL1)=13 
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characterization of differences between two patterns 

is in Fig. 1, where the green (solid) profile is patient 

characterized above. The profile of another patient, 

shown in red (dotted), differs from the previous 

profile in 13 out of total 15 relationships used in the 

NPS, so the “clinical pattern distance” (P7,HL1) for 

these two patients is 13. After computing the distances 

(Pi,HLj) of all patient profiles (i=1,…641) from all 

seven landmarks  (j=1,…,7), we tested the 

relationship of these new descriptors of the  individual 

patient clinical profiles for the relationship to overall 

survivals. We used nonlinear (cubic polynomial) 

model function and SigmaPlot 11 software for this 

purpose. We then systematically monitored the 

statistical significance and goodness of fit (using 

residual standard deviation between predicted and 

actual survival) of these predictive models, which 

used distances (Pi,HLj) from respective landmarks 

(both individually and in multivariable variants). We 

found that distances from HL1 provide the optimal 

approximation. 

 

2. Fisher information based estimation of time to 

baseline (tbaseline) 

To improve the prognosis prediction from distances 

between each individual patient personal coherence 

clinical profiles from the HL1 landmark profile, we 

applied Fisher information based processing of the 

tumor mass histogram. This allowed us to derive the 

analytical formula for the tumor growth law (10) and 

to use this law to estimate the time from the disease 

onset, tbaseline, for each individual patient from his/her 

observed tumor mass (Tmass).  Mathematical details 

are in the Appendix. There are several important 

aspects to this novel approach. Firstly, the clinical 

information that allows an estimation of the tbaseline is 

not just the tumor mass of individual patients, but 

instead includes the integrated probabilities, 

describing how probable it is to observe the individual 

patient’s known tumor mass in the whole cohort. 

Practically, the personal patient contributions to the 

estimation of tbaseline are these probabilities, computed 

as the personal partial areas (Ai) of the tumor mass 

histogram for this study, integrated from zero (no 

tumor) to the actual tumor mass of every individual 

patient (see Fig. 2).   

Secondly, the personal patient contributions were 

processed in a common (to all patients) disease 

context, characterizing HCC. These common HCC-

specific parameters, needed for tbaseline estimate, were 

obtained from the tumor growth formula, derived by 

Fisher information processing (see Appendix). It is a 

power law, 

 ρ(Tmass) = Ẽ
2

. Tmass
2γ

.        Equation (1) 

Here 𝜌(𝑇𝑚𝑎𝑠𝑠) are frequency values, obtained from 

normalized histogram of all 641 tumor masses in the 

study, E and  are constants to be obtained by fitting 

this formula to the actual histogram of tumor masses.  

Thirdly, the processing of the personal integrated area 

in the observed tumor mass histogram through the 

differential equation, based upon Fisher information 

resulted in the formula (1), relating the personal 

values, obtained by the above described 

Fig. 2. Explanation of extracting the information 

about personal component Ai (red area) of tbaseline for 

patient with Tmassi=38 from the histogram of tumor 

masses in this study (blue bars), normalized to 

represent the 𝜌(𝑇𝑚𝑎𝑠𝑠). Natural cubic spline 

interpolation and integration was used to obtain the 

numerical values of Ai. 
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computational processing of the tumor mass 

histogram to tbaseline: 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑇𝑚𝑎𝑥 . 𝑒

(
𝑙𝑛[

2𝛾.𝐴𝑖+𝐴𝑖+𝐸2

𝐸2 ]

(2𝛾+1)
)

    Equation (2) 

In this equation, input parameters Ai,  and E are 

described above and derivation of the optimal value 

Tmax = 1200 days is described in the Appendix. 

RESULTS: 

Evidence for a power law for tumor growth. 

We supposed that among many possible factors, a 

main contributor to the broad range of OVS (overall 

survival) is uncertainty in our knowledge of time for 

tumor development until diagnosis.  From available 

parameters in the standard baseline clinical 

examination, tumor mass (Tmass) is one of the most 

important that can carry the time to baseline 

information. In our prognostic approach, we therefore 

decided to use the Tmass, obtained from the baseline 

CT scan as the information from which we would 

estimate the time to the onset of tumor presentation. 

As we did not have specific detailed data about our 

patients that would allow us to use current tumor 

growth models (11-13) (this would be the case for 

most standard clinical practice situations), we took 

advantage of Fisher information processing, which is 

a valid approach to obtain the relationship between 

tumor mass data from clinical radiology and time 

tbaseline till appearance of the tumor mass (clinical 

presentation).   

This new approach, which was shown to derive other 

natural laws from its fundamental principles, is 

applicable to the problem of tumor growth (10). We 

modified the results from ref 10 as shown in the 

Appendix.  From a clinical point of view, in this 

approach we did not look for a “microscopic law” of 

tumor growth, but instead looked for the answer to the 

following question. Given the known distribution of 

probabilities of finding a tumor mass in the patient 

cohort, what is the law of tumor growth in time, that 

exactly reproduces that actual tumor mass 

distribution? The first result of the mathematical 

solution of this problem, which Fisher information-

based formalism enabled us to find, is a power law, 

(see eq. 1 in Methods). This result indicates that there 

is a linear relationship between the log of the 

probability of observing a tumor mass and the log of 

the actual tumor mass. 

Fig 3 provides experimental validation for the 

existence of this law, by examining actual clinical 

data from our 641 patients. It shows that when the 

tumor mass histogram (see Fig. 2) was converted into 

a log-log scale, then the transformed data obey the 

predicted law (eq. 1) of tumor growth. Additionally, 

it is clear that the two intersecting lines, needed to 

obtain the proper statistically best fit of the 

relationship, are likely to reflect two tumor-growth 

processes, one for Tmass ≤70, and the other for 

Tmass >70.   

Fig. 3. Explanation of extracting the information 

about HCC-specific parameters of tbaseline from 

tumor growth law (1), which indicated that log-log 

transformed Tmass histogram should be 

represented by linear functions. The two lines for 

tumor masses below (red) and above (blue) 70 

were least-square fitted, resulting in the numerical 

values of Ej and j as is shown. 
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Examination of the slopes of these two fitted lines 

shows that the larger tumors grew more slowly than 

the smaller tumors. This is consistent with the known 

sigmoid shape of growth curves of other biological 

populations (14,15). The Fisher method provides 

additional insight into the functional meaning of the 

parameters found in the Fig. 3.  To show this, we used 

the definition of the slope  in the power law as 𝛾𝑖 =

(
𝜅𝑖

1+𝜅𝑖
) (see detailed derivation in the Appendix), 

where in our case i=1 (for Tmass ≤ 70) and i=2 (for 

Tmass > 70) and 𝜿𝒊 are the numbers of growth related 

processes, contributing to the tumor masses observed. 

By using the estimated values of 𝛾1 and 𝛾2 from Fig. 

3, we found that 
𝜅1

κ2
= 2.8. Our Fisher entropy-based 

analysis thus showed that growth of these smaller 

tumors, which constituted about 80% of all tumors 

found in this cohort, involved on average ~3 times 

more interacting cellular processes than were 

observable for multiple, very large tumors with total 

masses above 70, observed for the remaining 20% of 

screened patients. This can be also interpreted as 

showing that smaller tumors are more sensitive to the 

overall clinical context of the patient (micro- and 

macro environmental factors) (16-18).  

Estimation of tbaseline from individual tumor masses 

The above results justified our computing a corrected 

survival (OVSC) for each patient, using 

OVSC = OVS+tbaseline. We used eq. (2) with 

parameters obtained from Fig. 3 together with the 

individual tumor masses to compute tbaseline for each 

patient. These results were combined with the 

characterization of the patient clinical status, which 

we described quantitatively by the differences 

(Pi,HL1)  from the landmark pattern HL1 (see Fig. 1 

and related text for clinical characterization of HL1). 

We were then able to derive the final optimal 

relationship between (Pi,HL1) and OVSC (corrected 

overall survival). Fig. 4a shows a comparison 

between these relationships before (solid black 

points) and after correction for tbaseline (blue circles).    

 

Fig. 4. a) Relationships between (Pi,HL1), OVS (black points) and OVSC (blue circles). The lines are least-square fits 

of the relationships by cubic model. 15 groups of patients (GK, K=1,...,15) with matching differences (PiK,HL1)of their 

personal clinical relationship profiles form the vertical groups of points.   

b) Linear relationship between the clinical profile differences and mean values <tbaseline> computed as average of 

individual values of tbaseline for each patient group GK.   

a)  
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We observed that OVSC has a flat dependence on the 

(Pi,HL1), with a common mean of ~1045 days. By 

contrast, we found (see Fig. 4b) a linear dependence 

between (Pi,HL1)  and  mean tbaseline . The parameters 

of this simple linear relationship can be combined into 

the following practical observation:  

A. The 300 days is the shortest mean tbaseline typical 

for patients with the HL1 baseline profile.  

B. Every difference of patient's baseline clinical 

profile from HL1 adds 65 days to the mean tbaseline.  

These results together give a simple rule for OVS 

estimation (prognostication): the predicted OVS is 

1045 – (65 x |(Pi,HL1)|). Thus, if a patient has the 

HL1 profile at baseline, then OVS is 1045 – (65 x 0) = 

1045 days. As another extreme example, the largest 

tbaseline is found for patients with profiles that have 

nothing in common with HL1, so their |(Pi,HL1)|=15 

and the corresponding tbaseline = 15 x 65 = 975 days. 

Predicted survival for these “non-HL1” patients is the 

shortest OVS = 1045 - 975, just 70 days and less. 

Validation of clinical relevance of tbaseline in the 

context of hepatitis status. 

We examined differences in tumor masses for 

combinations of patient subgroups with different 

hepatitis status (Hep B, Hep C, Hep B+Hep C, 

neither) and we undertook this separately for the S and 

L phenotypes because of their quite different 

biologies and outcomes (4,19). We found that no 

differences in tumor masses were statistically 

significant for Hep B versus Hep C HCC patients (see 

examples in Fig.  5a,b). By contrast, examination of 

tbaseline for the same hepatitis-type defined subgroups 

(Fig. 5c,d) resulted in significant differences, which 

were more pronounced in S than in L phenotype 

patients.  

 

 

 

 

DISCUSSION 

We previously developed an NPS-based classification 

system for HCC patients, using only blood based 

common hematologic and biochemical parameters, 

that resulted in the identification of 2 HCC 

phenotypes, labeled S and L, that differed 

significantly in their median tumor masses and 

survival.  We attempted to relate descriptors of 

personal clinical profiles available by NPS to 

survival, but we found that for each group of patients 

with matching NPS clinical profiles, the survival 

range was very wide. In order to improve the survival 

prediction for an individual patient, in the current 

study, we have added tumor mass from baseline 

radiological measurements, to our prediction 

algorithm. We did this, because we suspected that 

aspects of tumor mass reflected previously 

unaccounted for characteristics of tumor biology that 

strongly impacted survival calculations. The most 

important of these characteristics that is the focus of 

this study, is the unknown period of tumor evolution 

till clinical diagnosis, that we have called tbaseline. We 

found that the estimate of tbaseline requires two 

Fig. 5. Comparisons of distributions of tumor masses 

(a and b) which show no statistically significant 

differences and tbaseline values (c and d) for S (left 

panels) and L (right panels) HCC phenotypes. 
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components, one being disease-specific (HCC 

characteristics) and the other being individual patient 

characteristic. The HCC specific factors are common 

for all patients, which exhibited interesting 

heterogeneity, defining two categories of HCC 

tumors, those < and > Tmass of 70.  

The advantage of this Fisher information based 

approach, which makes it more powerful than 

conventional statistical analysis, is that in addition to 

tools that describe the clinical data, we obtained 

mechanistic insights into the disease biology and 

processes.  

We attempted to find independent validation of tbaseline 

relevance by relating these new data obtained for our 

patients against known facts about the processes and 

factors which were available in the data. Thus, for 

example we examined distributions of tbaseline within 

subgroups of HCC patients with different hepatitis 

backgrounds. We found that while the tumor mass 

distributions were not significantly different between 

the hepatitis B and C and hepatitis negative 

subgroups, there were significant differences in time 

to baseline (tbaseline) when we analyzed these 

differences separately for S and L phenotypes. For S 

phenotype, we found that the significant differences 

were observed for hepatitis B only versus hepatitis C 

only patient subgroups, in which, for patients with 

hepatitis B,  tbaseline corresponded to longer tumor 

growth and thus to larger tumors compared to 

hepatitis C based HCC, in accordance to independent 

observations noted elsewhere (20-22).  

Our Fisher information-based analysis also showed 

that growth of the smaller tumors with tumor masses 

< 70, which constituted about 80% of all tumors found 

in the total cohort, involved on average ~3 times more 

interacting cellular processes than were observable 

for multiple, very large tumors with total masses 

above 70, observed for the remaining 20% of screened 

patients. This information was obtained from the ratio 

of the power law constants γ1 and γ2, governing the 

two tumor growth processes, discovered by our 

analysis of the observed Tmass distribution. This also 

indicated that earlier stages of the tumor growth are 

more sensitive to the overall clinical context of the 

patient, which can be interpreted in terms of micro- 

and macro-environmental factors (16-18). This 

increased growth rate of small compared to large 

tumors, is similar to the growth rates in other 

biological populations, such as cells in culture of 

plants in a defined area. In those instances, 

explanations have included increased competition in 

dense populations for nutrients, oxygen or light, as 

well as for the phenomenon called contact inhibition 

amongst normal, but not cancer cells. Tumor growth 

is generally considered to be a reflection of the 

balance between growth and death processes. Slowing 

tumor growth can be attributed to changes in cell 

cycle time, nutrient availability and reduced growth 

fraction, amongst other factors (23). Our model 

describes these processes quantitatively by showing 

that the balance between growth and death in tumor 

cells is proportional to the number of interacting 

tumorigenic processes and is inversely proportional to 

time. This quantitative consideration of the totality of 

these multiple complex processes thus permits a more 

realistic estimate of tbaseline and explains why the 

tumor mass alone cannot predict time till baseline 

diagnosis.  

Our results are thus consistent with two hypotheses, 

explaining the existence of 2 tumor patient 

populations, identified by the different tumor growth 

rates (Fig. 3). A simpler hypothesis is that all small 

tumors reflect at least two HCC populations, viz those 

small tumors that will be always small tumors and 

another population that are the precursors to large 

HCCs. We postulate that the small precursors of small 

tumors are subject to two types of growth influence. 

They are endogenous factors (growth factors and 

oncogenes), as well as micro-environmental factors. 

By contrast, we hypothesize that large tumors are 

likely to be mainly driven by endogenous factors, 

such as growth factor gene products (24). A more 

complex hypothesis for the 2 types of small tumors, 

supposes that the precursors for the larger tumors may 

have 2 phases of growth: an initial phase that is mainly 

microenvironment driven, and a second, endogenous 

phase, which predominates when the tumors have 

reached a certain mass. 
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The personal component of the tbaseline is 

understandable as the total probability that a patient 

with a given HCC tumor mass will be diagnosed 

radiologically at baseline evaluation. Equation 2 

showed how to combine these personal factors with 

the HCC-specific tumorigenic parameters, derived 

from the complete baseline data and encompassing in 

their values above processes, into tbaseline prediction. 

With the knowledge of tbaseline, we were then able to 

adjust the survival estimate derived from the tumors 

masses plus the personal differences of the patient 

personal profiles from calculated HL1 profile, to give 

a corrected estimate of survival time from clinical 

diagnosis (baseline). Some examples of this corrected 

calculation are shown in the Results.  

Our new analysis revealed that on average a patient 

with HCC has a disease length of 1045 days. This has 

2 components, a tbaseline during which the tumor 

develops before diagnosis and the clinically evident 

survival from clinical diagnosis.  For the clinically 

evident part of the survival, our analysis provided a 

quantitative relationship between the patient clinical 

profile descriptors at diagnosis (baseline) and OVS. 

Thus, a tumor of any given mass that is seen and 

measured radiologically, can only have its biology 

and natural history understood, both in terms of the 

total clinical and liver context, but also with 

knowledge of the point it is at in its natural history. 

This is the real value of our ability to compute the time 

in the evolution of any patient's tumor till its baseline 

clinical evaluation (tbaseline) from standard clinical 

screening data. 

The additional insights provided in the current work 

bring us closer to more realistically calculating 

survival from diagnosis of real HCC patients in the 

total clinical setting. 

APPENDIX  

1. Clinical profile patterns for survival prediction. 

Fig. A1 shows the union of coherence relationship 

profiles, constructed from the screening baseline data 

for all 641 patients in the study. Resulting study graph 

is shown in (Fig. A1), with the edges, representing the 

simultaneous co-occurrence of pair of variable values, 

connected by the line in the graph. Edges are weighted 

by the total co-occurrence frequencies (these 

frequencies are visualized by the proportional 

thicknesses of the lines). This graph was then 

decomposed by the NPS algorithm into seven 

subgraphs (Fig. A1), which we call heterogeneity 

landmarks, HL1, HL2 ,…, HL7.  

Fig. A1. Left panel: 15-partite study graph (symbols as 

in Fig. 1) with edge width proportional to the co-

occurrence frequencies of the relationships between the 

connected parameter levels for all 641 patients of this 

study. Right panel: Decomposition of the study graph 

into landmark subgraphs HL1-HL7. The condition for 

this decomposition is that in HLj, all co-occurrence 

frequencies are identical, which results in the 

independence of all binary relationships in the clinical 

profile patterns, captured by the respective landmarks. 
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2. Fisher information and tumor growth 

What is Fisher information? It is an information 

descriptor, allowing derivation of law(s), governing 

the phenomenon (such as hepatocellular cancer and 

consequent liver tumor growth process) generating 

the data (such as tumor mass, a number and size of 

tumor nodules, observed in liver by CT scan). 

Advantage of this approach for clinical applications is 

that the only requirement for its use is that we assume, 

that clinical data are carrying the information we want 

to estimate in the experimentally observable 

parameters (time to disease onset and the prognosis of 

patient’s survival from the diagnosis examination, 

given his/her baseline clinical status and tumor mass). 

While more widely known information descriptor, 

Shannon entropy, characterizes how well that 

(clinical) information is transmitted into the data (in 

the presence of noise), Fisher information JF 

characterizes how well we can estimate from the 

(clinical) data the function-related parameters, 

responsible for the disease-related information 

content.  

Another important feature of this information theory 

tool was identified by showing that Fisher information 

JF, describing the observability of a (disease related) 

parameter 𝜗 is in the special way equivalent to 

Kullback-Leibler entropy 𝐾𝐿 (see ref. 10): 

𝐽𝐹~ −
2

𝛥𝜗2
𝐾𝐿(𝜌(𝜗𝑛), 𝜌(𝜗𝑛 + Δ𝜗)) 

This relationship best explains the “local” character of 

the Fisher information (entropy): In contrast to global 

descriptors as Shannon entropy, which integrate the 

information over complete distribution of observed 

data  (signals), the Fisher information (applied for 

better clarity to our tumor growth analysis) quantifies 

how the information about the patient’s tumor, 

characterized by the time-dependent law  changes, 

when the tumor grows by a small increment from a 

specific tumor mass (𝜗𝑛) to a new size  (𝜗𝑛 + Δ𝜗). 

This has very important consequence for the ability to 

derive physically, biologically and clinically relevant 

laws from the Fisher information. As the tumor mass 

increase Δ𝜗 can be selected to be very small (in the 

limit allowing integration actually infinitesimally 

small), we can use simple relationships between the 

functional and clinical parameters, entering into the 

derivation of the laws, and allowing in the final result 

estimating the “hidden” information, such as time to 

disease onset, tbaseline, from the tumor mass. While in 

the global picture, such relationships can be very 

complicated, non-linear etc., in the Fisher information 

processing we deal only with small change Δ𝜗 of the 

processed data variability. In this way, it is fully 

justified to use simple relationships between the 

observed and “hidden” parameters (generally valid 

recipe is using just the first terms of the Taylor 

expansion of this complex relationship, resulting in 

the proportionality etc.). In this way, we 

mathematically correctly decompose that complicated 

relationship into piece-wise linearized series of 

relationships for consecutive steps of the tumor 

growth and then use calculus to generalize that 

discrete representation into the final law.  

Another advantage of processing the clinical data via 

the Fisher information is the consequence of the fact 

that (by direct enumeration), the JF of the normal 

(Gaussian) distribution is equal to the constant, 1
𝜎⁄ , 

which is the variance (width) of this special 

distribution. This shows, that important features of the 

data, which Fisher information studies and quantifies, 

are the underlying biological and clinically relevant 

processes that are responsible for non-random 

features and biases in the distributions of the collected 

clinical data. This indicates, why standard statistical 

techniques, with parameters derived from the 

(axiomatic) assumption, that data are independently 

and identically normally randomly distributed cannot 

capture the functional information in the data, while 

Fisher information is actually actively “pursuing” and 

fully exploiting the part of the clinical data, that are 

non-random, because of underlying functional 

processes, internal to the patient’s biosystem (cell 

system). We will show below, that this separation of 

the internal (disease-related) and external (tumor 

micro- and macro-environment in the liver, CT-scan 

experimentation, etc.) is needed for finding the 

fundamental a priori optimization principle, allowing 

to derive the result in a closed form of personal 
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formulae, converting the patient’s tumor mass into the 

estimate of the time to disease onset (and also many 

other derived laws in all fields of science – see ref 10). 

For application to our concrete case of tumor growth, 

we follow the derivation in ref. 10, which we then 

extend to estimation of time to disease onset 

estimation from the patient’s tumor mass. What 

follows is the outline of the derivation, which 

summarizes just steps and resulting formulae, relevant 

for clinical interpretation (detailed step by step 

derivation can be found at 

 http://www.entromics.com/content/time-disease-

onset-fisher-information : 

Define the probability density 𝜌(𝑇𝑚𝑎𝑠𝑠, 𝑡) of finding 

HCC tumor of tumor mass = Tmass at some time t, 

measured from the disease onset. The 𝜌(𝑇𝑚𝑎𝑠𝑠, 𝑡) can 

be found experimentally from the properly 

normalized histogram of baseline tumor masses in a 

study/screening (see Fig. 2).  

For the purposes of the (formal) mathematical 

derivations, define the following (formal) quantities: 

𝜓2 =  𝜌(𝑇𝑚𝑎𝑠𝑠, 𝑡) 

𝑑𝜓

𝑑𝑡
= 𝜓̇     ⇒  𝜓̇2 = (

𝜕𝜓

𝜕𝑡
)

2

 

 

Define external observed Fisher information J: 

𝐽 = 4 ∫ 𝑗(𝜌(𝑇𝑚𝑎𝑠𝑠), 𝑡)𝑑𝑡 = 4 ∫ (
𝜕𝜓

𝜕𝑡
)

2

𝑑𝑡 = 4 ∫ 𝜓̇2𝑑𝑡 = 𝑗 

Define internal Fisher information I: 

𝐼 = 4 ∫ 𝑖(𝜌(𝑇𝑚𝑎𝑠𝑠), 𝑡)𝑑𝑡 = 𝑖 

Formulate the problem of balancing the external and 

internal Fisher information to achieve optimal 

estimation of parameter 𝒕𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 from the observed 

values of Tmass: 

𝐽 − 𝜅𝐼 = 4 ∫ 𝜓̇2𝑑𝑡 − 4𝜅 ∫ 𝑖(𝜌(𝑇𝑚𝑎𝑠𝑠), 𝑡)𝑑𝑡 = 𝑗 − 𝜅𝑖 = 0                        

with 𝜅 ≠ 0. 

The result  

𝑗 − 𝜅𝑖 = 0                    (A1) 

is quantitative formulation of two basic conditions 

that start the analysis:  

 First, 𝜅 ≠ 0 reflects the fact that the internal 

observed Fisher information 𝑖 (tumor mass) is a 

result of multiple interacting (cellular) processes 

and what we see is their overall effect. 

 Second, 𝑗 = 𝜅𝑖 reflects the requirement, that in the 

extraction of the desired parameter (time to 

disease onset) from the  𝜌(𝑇𝑚𝑎𝑠𝑠)-dependency on 

Tmass we want to lose minimal information about 

the internal biology of the tumor, encoded in 𝜅𝑖. 

These two conditions have to be complemented by the 

recipe, showing how to optimize the integrals, which 

define the functionals 𝑗 and 𝜅𝑖,  so the two above 

conditions are actually met simultaneously. This 

recipe is derived in the functional optimization theory 

and is called Euler-Lagrange equation. Applied this 

general equation to 𝑗 and 𝑖 results in 

𝑑

𝑑𝑡
(

𝜕(𝑗−𝑖)

𝜕𝜓̇
) =

𝜕(𝑗−𝑖)

𝜕𝜓
               (A2) 

Solving (A1) and (A2) simultaneously results in the 

following differential equation for 𝑖  

√𝜅
𝜕𝑖

𝜕𝑡
+ √𝑖

𝜕𝑖

𝜕𝜓
(1 + 𝜅) = 0         (A3) 

Solution of this equation can be found in terms of the 

amplitudes of probability density for tumor masses: 

𝜓(𝑡) = 𝐸. 𝑡
(

𝜅

1+𝜅
)

= 𝐸. 𝑡𝛾         (A4) 

Here E and 𝛾 are constants to be determined from 

study data. E is the HCC-specific “amplitude”, 

summarizing all non-tumor mass tumorigenesis 

processes  and 𝛾 = (
𝜅

1+𝜅
) is the rate constant, 

describing the probability gradient rate of finding 

certain tumor mass in the patient’s cohort at baseline 

(when CT scan was taken). Note (for interpretation 

purposes) that 𝛾 is solely determined by 𝜅, the 

parameter, which is proportional to the number of all 

http://www.entromics.com/content/time-disease-onset-fisher-information
http://www.entromics.com/content/time-disease-onset-fisher-information
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INTERACTING intercellular biological processes, 

influencing the tumor growth. Now because of local 

dependence of Fisher information on the variables, it 

is possible to use Taylor expansion of the (in general 

complicated) relationship between time to disease 

onset, tbaseline, and Tmass and use its first term. This 

means that for small changes in tumor masses along 

the HCC progression, we have Tmass proportional to 

disease duration. By integration, we convert this 

locally linearized proportionality into the (nonlinear) 

global relationship. Thus, eq. (A4) can be re-written 

as  

 𝜌(𝑇𝑚𝑎𝑠𝑠) = 𝜓2(𝑇𝑚𝑎𝑠𝑠) = 𝐸̃2. 𝑇𝑚𝑎𝑠𝑠2𝛾      (A5) 

Still, both sides of (4) are (continuous and general) 

functions of time. To personalize this general result, 

we therefore need to express explicitly the change of 

𝜓(𝑡) and   𝐸. 𝑡𝛾 with time and integrate the resulting 

formulae up to the time, when the patient’s tumor 

mass was observed in clinic. To facilitate direct 

comparison with tumor mass histogram, we use 𝜓2 =

 𝜌(𝑇𝑚𝑎𝑠𝑠, 𝑡): 

∫ 𝜌(𝑇𝑚𝑎𝑠𝑠)
𝑇𝑚𝑎𝑠𝑠=𝑇𝑚𝑎𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0
= 𝐸2 ∫ 𝑡2𝛾𝑑𝑡

𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0
   

(A6) 

Carrying the integration, we obtain the following 

functions of the (personal) upper integration limit 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: 

∫ 𝜌(𝑇𝑚𝑎𝑠𝑠)
𝑇𝑚𝑎𝑠𝑠=𝑇𝑚𝑎𝑠𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0
= 𝐴𝑖      (A7) 

𝐸2 ∫ 𝑡2𝛾𝑑𝑡
𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0
=

𝐸2(𝑡𝑜𝑛𝑠𝑒𝑡
(2𝛾+1)

−1)

(2𝛾+1)
= 𝐴𝑖   (A8) 

The personal parameter 𝐴𝑖 is obtained by integrating 

the (normalized) histogram of the study tumor 

masses, up to the value found for a patient. We can 

then solve the last equation for 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, obtaining the 

final formula: 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑇𝑚𝑎𝑥 . 𝑒

(
𝑙𝑛[

2𝛾.𝐴𝑖+𝐴𝑖+𝐸2

𝐸2 ]

(2𝛾+1)
)

       (A9) 

To improve the prognosis prediction from distances 

between patient’s personal coherence clinical profiles 

from the (selected) landmark profiles, we applied 

Fisher information based processing of the tumor 

mass histogram, allowing us to derive the analytical 

formula for the tumor growth law (ref. 10) and to use 

this law to estimate the time from the disease onset, 

𝒕𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆, for every individual patient from his/her 

observed tumor mass (Tmass). The first step in 

applying these theoretical results to actual data, was 

to verify that the actual Tmass histogram is 

compatible with the “power law” 𝜌(𝑇𝑚𝑎𝑠𝑠) =

𝐸̃2. 𝑇𝑚𝑎𝑠𝑠
2𝛾

.  By taking the logarithm of this result, we 

have 

𝑙𝑛(𝜌(𝑇𝑚𝑎𝑠𝑠)) = 𝑙𝑛(𝐸̃2) + 2𝛾. 𝑙𝑛(𝑇𝑚𝑎𝑠𝑠)   (A10) 

indicating that if the (normalized) tumor mass 

histogram is presented in the log-log format, the 

logarithm of 𝜌(𝑇𝑚𝑎𝑠𝑠) should be linear function of 

logarithm of Tmass, with 𝑙𝑛(𝐸̃2) being equal to 

intercept and 2𝛾 to the slope of that relationship. 

The second step is the actual derivation of the time 

𝒕𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆, which is needed to observe the tumor mass 

for any given patient. In eq. (A9), the values of 𝛾 and 

𝐸2 are obtained from the least squares fits of the law 

(A4) to the histogram of the observed tumor masses  

and the derivation of Ai which is the partial integral of 

the histogram of observed tumor masses is explained 

in the main text (see Fig. 2).  

Fig. A2 shows how the eq. (A9) is actually used to 

compute the 𝒕𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆. In Fig. 2 we demonstrated how 

is the value of Ai for one patient obtained as the partial 

area of the histogram of observed tumor masses, 

computed from zero to the actual patient’s tumor mass 

at baseline. Fig. A2 shows the plot of 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (in 

relative units) as the function of Ai, computed from 

the continuous tumor masses within the actual 

observed range, where we explicitly consider the 

presence of two tumor growth rates for tumors with 

masses below and above 70 .  
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As the eq. (A9) determines the 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 only in the 

relative units, the last step of the converting of the 

Tmass data into 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is finding the common range, 

Tmax, which will convert the relative time units in eq. 

(A9) to actual days. This range is a constant, with a 

value, that will reproduce best the survival prognosis 

computed from the coherence descriptors (Pi,HL1) of 

our patients at the baseline. To find the value of this 

constant matching that criterion, we systematically 

varied its value from 0 to 10 000 days with 10 day 

increment. For each of these values of Tmax, and for 

every patient, we corrected the patient’s survival by 

the value Tbaseline=Tmax. 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 : OVSC=OVS-Tbaseline 

and fitted the resulting set of 641 OVSC values by  

log(OVSC) = b3 x (Pi,HL1)
3 + b2 x (Pi,HL1)

2+ b1 x 

(Pi,HL1)+ q. Fig. A3 shows the residual standard 

deviations of the fits OVSC – (Pi,HL1) for all 

considered values of Tmax. The optimal prediction of 

the survival was found in the minimum of this curve, 

for Tmax = 1200 days.   
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