
DIMACS-DIMATIA International REU

Research Experience for Undergraduates 2014

June 1 – August 1 2014,

Piscataway, NJ, USA and Prague, Czech Republic

Dušan Knop (ed.)

1

DIMACS/DIMATIA International REU 2014

Published by IUUK–ITI series 2014-619.
Centre of Excellence – Institute for Theoretical Computer Science,
Faculty of Mathematics and Physics, Charles University
Malostranské náměst́ı 25, 118 00, Praha 1, Czech Republic

Published by MATFYZPRESS,
Publishing House of the Faculty of Mathematics and Physics,
Charles University in Prague,
Sokolovská 83, 186 75 Prague 8, Czech Republic
as the 478th publication

Prague 2013

c©Dušan Knop (ed.), 2014
c© MATFYZPRESS, Publishing House of the Faculty of Mathematics
and Physics, Charles University in Prague, 2014

ISBN 978-80-7378-284-9

2

Preface

Charles University in Prague and particularly Department of Applied
Mathematics (KAM), Computer Science Institute of Charles University
(IUUK) and its international centre DIMATIA, are very proud that they
are hosting one of the very few International REU programmes which are
funded jointly by NSF and the Ministry of Education of Czech Republic
(under the framework of Kontakt programmes ME 521, ME 886 and ME
09074). This programme is a star programme at both ends and it exists
for more than a decade since 2001. Repeatedly, it has been awarded for its
accomplishments and educational excellence.

The program of Kontakt on the Czech side was not renewed for year 2014
and thus the programme was financed jointly by Section Informatics of MFF
and our grants CE-ITI P202/12/G061, ERCCZ LL1201 and SVV—202-
09/260103 (Discrete Models and Algorithms). We thank all the contributors
and hope that the next year will bring us a stable support.

This booklet reports just the programme in 2014. I thank to Dušan
Knop, the Czech mentor of this year, for a very good work both during the
programme itself and after.

Prague, October 17, 2014

Jaroslav Nešetřil

3

The Center for Discrete Mathematics and Theoretical Computer Sci-
ence (DIMACS) at Rutgers University, New Jersey and the Center for Dis-
crete Mathematics, Theoretical Computer Science and Applications (DI-
MATIA) have collaborated on a joint Research Experiences for Undergrad-
uates (REU) program for more than a decade. The program entails nine
weeks of intensive research during the summer. It is highly competitive
with approximately 25 American students being selected from more than
300 applications. The first part of the program is held at the DIMACS of-
fices at Rutgers University with both Czech and American students working
on open problems with their mentors. The American side of the program
consists of regular lunches and teas, a weekly seminar series hosting both lo-
cal speakers and renowned outside speakers and workshops devoted to such
topics as graduate school applications, ethical behavior in research, and field
trips to DIMACS industrial partners. Weekly Bridge Workshops are held
in which Czech and American students are given the opportunity to work
together on problems in discrete mathematics. Four American students are
selected to return to Prague with the Czech students to participate in the
second part of the program at DIMATIA. At DIMATIA, the students con-
tinue to work on their research projects and participate in daily seminars
and lectures as well as attend the Midsummer Combinatorial Workshop.

The DIMACS/DIMATIA REU joint collaboration provides students with
a unique cultural experience providing students valuable insight into re-
search activities on an international scale.

Eugene Fiorini
Associate Director, DIMACS

4

DIMACS/DIMATIA Research Experiences for Undergraduates (REU)
is a joint program of the DIMATIA center, Charles University in Prague and
DIMACS center, Rutgers University, New Jersey. This year’s participants
from Charles University were students Pavel Dvořák, Lukáš Folwarczný,
Peter Korcsok, Karel Král and Veronika Steffanová. Their coordinator was
Dušan Knop, who participated in the scientific work, but mainly took care
of organizing the DIMATIA part of the program. Together with more than
thirty students from universities from all over the United States, they partic-
ipated in the first part of the program, at Rutgers University of New Jersey
in Piscataway, USA, from June 1st to July 19thst. Four American students
were selected to join, together with their coordinator, the Czech students
in the second part which took place at Charles University in Prague from
July 21st to August 1st. The students were David DeSimone, Dylan Quin-
tana, Zachary Wheeker and Elizabeth Yang. The coordinator was Rachel
Levanger.

The first part of the program mainly consists of students solving open
mathematical problems brought by their mentors. Students attended sev-
eral lectures and they also participated in a trip to IBM which was organized
by DIMACS. Here the students heard about applications of mathematics
and computer science.

In Prague, the students attended a series of lectures given by professors
mainly from the Department of Applied Mathematics and the Computer
Science Institute of Charles University. They also had the opportunity to
attend the Midsummer Combinatorial Workshop.

In addition to the scientific program, an important part of the REU is
an intercultural experience. During the first part, whole day was dedicated
to presentations of Czech Republic and cultures from which the American
students come from. The students participated together in informal sport
activities and sightseeing trips.

The students got important experiences with research and life abroad.
For some of them, the program will certainly be an important milestone in
their future scientific career.

This booklet presents the results of the Czech students stemming from
the REU programme and reports of the American students about their
visit to Prague. I would like to thank Josef Cibulka and Martin Balko for
providing the source files for this booklet.

Dušan Knop

5

The participants of the Internation REU programme at Rutgers University.

6

The participants of the Prague part of the programme.

7

Midsummer Combinatorial Workshop—conference group photo.8

Contents

David DeSimone 10

Dylan Quintana 14

Zachary J. Wheeler 20

Elizabeth Yang 24

Pavel Dvořák 34

Lukáš Folwarczný 43

Karel Král 49

Veronika Steffanová 54

9

Lecture Notes on Memory Efficiency in
Modeled RAM/Disk Systems (lecture by

Michal Koucký)

David DeSimone

We may have the situation where we have a program, and that program
runs out of memory. We have several solutions to this problem. One solu-
tion would be to swap important information into the Hard Disk, treating
it almost like RAM. However the situation may be that the Hard Disk is
also full, and swapping may not be an option. In this case we would like
a more creative solution that can use the Hard Disk for memory storage
without disturbing any existing data present.

We start by examining two situations, the situation that our computer
system has only RAM, and the situation where our computer system has
a full Hard Disk. It will be shown that, for certain computations, it is
preferable to have a full hard disk over no hard disk at all. Let us model
the second situation in terms of a classical Turning Machine. In this case,
our TM has one read-only input tape, multiple read/write tapes referred to
as the “Working Memory”, one write-only output tape, and one read/write
“Hard Drive” tape.

The first problem we will examine in this situation is that of basic ma-
trix multiplication. What is the memory needed to compute A · B = C,
asssuming that A and B are nxn matrices. One can see that using a triv-
ial matrix multiplication approach, one would only need O(log(n))-bits of
memory for the multiplication. This is due to that fact that we only need
to store one non-output number at any time,

∑
k

AikBkj , which corresponds

to the particular resultant matrix entry we are calculating.

Now let’s not just consider two matrices, but the general case of n ma-
trices We could follow a naive approach, and directly calculate each entry
in the resultant matrix through the summation formula. This would results
in something like O(nlog(n)). However this problem can be done far more
efficiently. It is possible to do this computation in O(log2(n)) time.

10

As an aside, this problem brings us into the issue of NLog Space-completeness.
The problem of n-matrix multiplication in known as NLog Space-complete.
An important problem in complexity theory is if LOG = NLOG. In order to
solve the n-matrix multiplication problem, we will examine another problem
that may seem unrelated at first. However this solution to this problem will
help us greatly in developing the solution to n-matrix multiplication. The
problem is the following:

We can express arithmetic expressions in terms in binary trees. Given the
expression (15 * 20) + 35, we imagine it’s binary tree representation, where
each number is a leaf of the tree, and each operator has exactly two children
joining the two things it operates on. Given such a tree, what is the mini-
mum amount of storage needed to calculate the end result of the expression?

We could preform a modified version of DFS on this tree to calculate
the result, however we would need d total “numbers” stored, where d is the
depth of the tree. Note that we will restrict our “numbers” to be finite,
or else we could just cheat and play games concatenating numbers together
like strings for efficient storage.

However, it is possible to solve this problem only storing 3 numbers. A
caveat to this, is that whatever we are acting on must form a Ring, (R, +,
*). For this lecture we say that a ring is an algebraic structure such that
the set forms a group under the addition, but need not form a group under
the multiplication. For this problem, we would like to shift of model slightly
to work in terms of general registers. These general registers have limited
operations. In fact, they only have two operations.

For register ri,
ri ← ri + rj [· rk]where i 6= j, k
ri ← ri + rj [· constant]where i 6= j.

Let us assume initially that all registers contain 0, except r2, which con-
tains 1. We define our goal to be to calculate a “formula” f(x1, x2, . . . xn)
that captures the value of the expression until a particular point of the
statement. We will do this be defining an inductive argument. For our
base case we will examine the case where f(x1, x2, . . . , xn) = xi. Then
r1 ← r1 + r2 · f(x1, x2 . . . xn) implies that r1 = xi which is our desired re-
sult. For our inductive step, we examine two cases, that case that we com-

11

bine two sub-formulas g(x1, x2, . . . xn) and h(x1, x2, . . . xn) under addition
and under multiplication. Case 1: f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn) +
h(x1, x2, . . . , xn)

Let us preform the following operations:

r1 ← r1 + r2 · g(x1, x2, . . . , xn)
r1 ← r1 + r2 · h(x1, x2, . . . , xn)

With initial values of r1 = 0, r2 = 1, the first line will place the value
of g into r1, and the second line will add the value of h into r1, which equals
g. Thus by the end of the assignment, r1 holds the value of g + h, which is
f(x1, x2, . . . , xn), which was our desired outcome.

Case 2: f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn) · h(x1, x2, . . . , xn)

We start be preforming the following operations:

r3 ← r3 + r2 ∗ g(x1, x2, . . . , xn)
r1 ← r1 + r3 ∗ h(x1, x2, . . . , xn)

Note that at this point, r1 holds the value we it to hold, namely f(x1, x2, . . . , xn),
and thus the proof is complete. However we can take it a step further and
show that by preforming

r3 ← r3 − r2 · g(x1, x2, . . . , xn)
r1 ← r1 − r3 · h(x1, x2, . . . , xn)

you can restore the previous value of r1 and r3.

Recall that in that the original problem statement one of our conditions
were that our Hard Drive was full, and if we were to use it, we could not
compromise any data on it. More over, the length of the program will be
≤ 4d where d is the depth of the tree. We can guarantee the restoration
due to the fact that we require our input form a ring structure.

We can use the above to solve our original problem by looking at the
Ring of nxn matrices over GF2, and building a binary tree of matrices in

12

a similar manner to the previous problem. In this case we would initialize
r1, and r3 to be the 0 matrix, and r2 to be the appropriately sized identity
matrix, In. The overall running time for the approach is approximately
O(n4). In total we used O(log(n))-bits of RAM, and O(n2) bits of Hard
Drive.

13

Planar Graph Drawing (lecture by Partice
Ossona de Mendez)

Dylan Quintana

Suppose we have some planar graph G represented in computer memory.
We would like to have an algorithm to draw G in its planar form; that is,
with no crossing edges. As it turns out, there is an algorithm that can do
this in linear time that relies on a depth-fist search. However, it is much too
complicated to explain here, so instead we will focus on interesting ways of
representing special cases of planar graphs.

1 2-Connected Graphs

Definition 1.1. A 2-connected graph is a connected graph that requires
the removal of at least two vertices to become disconnected.

Consider a 2-connected planar graph G. It is possible to direct the edges
of G to form a graph G′ that has a unique source node s with indegree 0
and sink node t with outdegree 0; this is known as a bipolar orientation of
G. As a consequence of this, every vertex of G′ must lie on at least one path
from s to t. This places some constraints on the structure of the graph. For
instance, every cycle in G must have one group of consecutive edges directed
in one orientation and the rest of the edges directed in the other orientation.
Otherwise, we would violate either planarity or uniqueness of the source and
sink. Similarly, if we consider the orientations of the edges incident with
a particular vertex, it must be the case that all of the outward edges are
consecutive and all of the inward edges are consecutive (going around the
vertex) Figure 1.

We can define two partial orders on the graph G′. If e and f are two
edges on a common path from the source to the sink, we say that e < f
if e comes before f on the path. If e and f are two edges that do not
share a path from the source to the sink, we say that e <∗ f if e is to the
left of f on a planar representation of G′ (there is a precise mathematical
definition of what “to the left” means in this context). Based on these two
partial orders, we can represent G′ in a nice way by having every vertex
be a horizontally enlongated rectangle, with incoming edges entering the
bottom and outgoing edges exiting the top Figure 2.

14

Figure 1: Allowed orientations of edges of G′ in cycles and around single
vertices

Figure 2: A planar graph with vertices drawn as boxes.

Given this planar representation of the graph G′, we can create a dual
graph G∗ as follows: every face of G′ will become a vertex of G∗, and
two vertices of G∗ will have an edge between them if their faces in G′ are
adjacent. The dual graph will have a new source node s′ to the left of G′

and sink node t′ to the right of G′. The edges of G∗ will be directed from
the source to the sink, from left to right. Such a construction is shown in
Figures 3 and 4.

If G is two-colorable, we can create a representation of G in which the
vertices are represented as horizontal or vertical line segments based on their

15

Figure 3: The construction of the dual graph. The gray vertices and edges
belong to the orignal graph G′, the black to the dual graph G∗.

Figure 4: We find that G∗ obeys the same structural constraints as G′,
because the cycle and single vertex orientation restrictions are in fact duals
of each other (original graph in gray, dual in black).

color, and edges are formed between line segments that meet at a corner
Figure 5.

16

Figure 5: A two-colorable planar graph (left) and its representation as a set
of perpendicular line segments (right).

2 Packing

Definition 2.1. A bounded indegree orientation is a way of directing the
edges in a graph such that no vertex has an indegree larger than some
specified constant.

By Euler’s formula, a planar graph satisfies e ≤ 3v − 6, which suggests
it might be possible to orient the edges of any planar graph in such a way
that the indegree of each vertex is bounded by 3. This is indeed possible,
and we can find such an orientation through a process called packing. We
begin by adding edges to the graph until it becomes maximal, containing
only triangular faces. We then draw the graph in a planar form with a set
of three adjacent vertices forming a large upward-pointing triangle with a
horizontal base, and the remainder of the vertices lying within this triangle.
We number the two outer vertices at the base of the triangle 1 and 2. An
example of the result is shown in Figure 6.

The next step is performing the following process until all vertices are
numbered:

1. Choose a vertex v that is adjacent to at least two numbered vertices
such that the face F formed by v and the all numbered vertices it is
adjacent to has no other vertices in its interior.

2. Orient toward v the two edges connecting v to the two vertices it is
adjacent to in the cycle that forms the perimeter of F .

17

Figure 6: A maximal planar graph in a triangular representation at the
start of the packing algorithm.

3. Orient outward from v all other edges that connect v to a numbered
vertex.

4. Number v with the next unused natural number.

This algorithm ensures that all vertices will have an indegree of 3 or
lower: two edges are oriented toward each vertex v when it is numbered,
and a maximum of one edge can be oriented toward v when a later vertex is
numbered, because once one such edge is added, v will be in the interior of
the subgraph induced by all numbered vertices Figure 7. As a final step, we
remove the edges we added at the beginning to make the graph maximal,
which can of course only decrease the indegree of each vertex.

When the packing process is complete, the graph will have a nice orien-
tation where the indegree of each vertex is bounded by 3, which can be used
to represent the graph in different ways. For instance, numbering the ver-
tices and labeling the edges in this manner is the first step in an algorithm
for representing the graph with vertices in a 2n× 2n grid of equally spaced
points and straight edges. The vertex numbers also allow us to represent
the vertices of the graph as a set of triangles where two triangles touch if
the vertices are adjacent in the graph Figure 8.

As a final interesting note, it can be shown that the leftward, rightward,
and downward-oriented edges in the maximal graph each form a tree that
spans all vertices except two of the three outer corners.

18

Figure 7: The planar graph from Figure 6 with its edges directed in an
orientation with a bounded indegree of 3, with vertices numbered using the
packing algorithm. Either orientation can be chosen for the bottom edge.

Figure 8: A represenation of the planar graph from Figure 7 where the
vertices are isosceles triangles.

19

Hamiltonian Paths on Interval Graphs
(lecture by Jǐŕı Fiala)

Zach J. Wheeler

1 Overview

Professor Fiala first noted that the first few days of morning lecture were
intended to give us a little additional background in discrete math, with
a sampling from different topics. Professor Fiala himself presented a few
solved problems, and also suggested a few open problems, all focused on the
subject of Hamiltonian paths on interval graphs. The style of the presenta-
tion was very interactive.

2 Interval Graphs

2.1 Hamiltonian Paths

Given a collection of intervals in R, can the intervals be arranged into a
sequence such that consecutive intervals intersect? If we define an interval
graph to be a vertex set of intervals in R with edges between intervals that
intersect, the problem becomes finding a Hamiltonian path on an interval
graph.

Note that if some intervals are included in others, it is possible for the
graph to have a claw (i.e. a K1,3 subgraph) that precludes a Hamiltonian
path.

A known necessary condition for the existence of a Hamiltonian path in
any graph is the following: for any S ⊆ V we must have #comp(G
S) ≤ |S|+1, where #comp(G) denotes the number of connected components
of G. This can be seen by taking an arbitary S ⊆ V and considering it in the
context of a Hamiltonian path P = (p0, p1, ..., pn) on the same graph: for
any pi, pj ∈ S, with i < j, the subgraph of G induced by pi+1, pi+2, ..., pj−1

must be connected, else P is not a path. This condition is not sufficient in
general. However, is it sufficient for interval graphs?

20

2.2 Monotone Hamiltonian Paths

An additional restriction we could apply to Hamiltonian paths may be ob-
served by considering each interval to represent the start and end time of
some event. Suppose we wished to spend some time visiting each event ex-
actly once; in this case, we cannot return to an earlier time, we are forced to
proceed only forward. We call such a path monotone. If an interval graph
G has a Hamiltonian path P , is it possible to rearrange P so it becomes
monotone?

At this point we were left to tackle these two questions, which at first
seemed unrelated, but as we discovered later, the second is an intermediate
step toward solving the first. Two hints were given for this second problem:
one was that we should look at the “times” that the path transfers between
intervals and hold those times fixed, and the other was that we should
endeavor to simplify the problem before attempting a proof.

2.3 Simplification Structure

We made little progress in the time we were left, but we did succeed in
clarifying the second problem to our satisfaction, establishing a more rig-
orous definition. The only way is to consider the transfer times between
intervals, and require these to be non-decreasing. We decided that unlike
the general Hamiltonian path problem on interval graphs, it is probably not
helpful to think of the monotone Hamiltonian path in terms of a purely
graph abstraction.

Professor Fiala returned and guided us toward finding a way we could
simplify an interval graph while still retaining exactly the same monotone
paths. In essence, we project the interval endpoints to integers, and contract
the lengths as much as possible without creating or destroying intersections
between any pair of intervals. If we stack the intervals as shown below and
draw vertical lines where interval endpoints appear, we can constrain the
transfer times to places where vertical lines are drawn, which also correspond
to maximal cliques in the interval graph.

If an algorithm can be found to compute a monotone Hamiltonian path,
then the Hamiltonian path problem is solved on interval graphs if every

21

graph that has a Hamiltonian path also has a monotone Hamiltonian path.
We were beginning to see the connection.

2.4 Constructing a Monotone Hamiltonian Path

We were left to work by ourselves again, and again we made little progress.
We tried several approaches to both problems, but none quite worked, so it
was necessary for Professor Fiala to finally show us. As it turned out, we
were nearly there. The solution to constructing a monotone Hamiltonian
path is given below.

Note that any Hamiltonian path will be piecewise monotone. So, first
consider the case where we want to merge two monotone paths P and Q
that both begin at the same interval u which is leftmost in both P and
Q. This is equivalent to merging one path that changes direction from left
to right at u. (Note the argument is symetric if we reverse left and right.)
Next sort the intervals in the order of the time the path transfers to another
interval, and call this sorted list L = (p1, p2, ..., pn), denoting the transfer
times T = (t1, t2, ..., tn). There are two special cases; for u, the path leaves
twice, so we ignore the earlier time; for the last interval in each monotone
path, the path never leaves, so we consider the end of the interval to be the
time the path leaves. Now consider any pair of intervals in L, pi and pi+1,
where one is in P and the other is in Q. WLOG pi ∈ P and pi+1 ∈ Q, and
ti ≤ ti+1. Suppose pi transfers to x at time ti. Since P and Q both start at
u, and ti and ti+1 are adjacent in T , it must be possible to transfer from pi
to pi+1 instead of x at ti. A simple induction argument shows that applying
this alteration to every such pair will create a monotone Hamiltonian path
R through all the intervals in P and Q.

To merge three monotone paths P , Q, and S, which WLOG are mono-
tone in the directions left, right, and left respectively, we first construct R
from P and Q as before. This gives us two monotone Hamiltonian paths
which do not begin at the same interval. However, we can simply choose
some interval u in R which overlaps the endpoint of S that joined S to Q,
cut R at u into R′ on the left and R′′ on the right, so that S and R′′ both
begin with leftmost u, merge the two paths as before, and then simply con-
catenate R′ with the resulting path. Actually it is not quite that simple, but
the precise argument is very complex, and the idea is the same, so Professor
Fiala skipped the details.

The two methods given above allow us to construct a monotone Hamil-
tonian path from any Hamiltonian path inductively, so it follows that every

22

interval graph that has a Hamiltonian path also has a monotone Hamilto-
nian path.

2.5 Algorithm to Find Monotone Hamiltonian paths

A proof was not given – the day was drawing to an end, and Professor Fiala
could see we were feeling the effects of jet lag – but essentially, once the set of
intervals has been simplified as specified before in section 2.3, it is enough to
sweep from left to right, choosing as the next interval whichever is shortest
among those that can be reached. This together with the above proof solves
the Hamiltonian path problem for interval graphs with a polynomial time
algorithm.

Additionally, it was mentioned that the inequality from section 2.1 is
indeed sufficient for interval graphs, but this again was not proved.

3 Open Problems

Along the way, three open problems were mentioned. They are given below:

1. A game can be defined on an interval graph where players alternate
turns choosing from a collection of intervals to extend a path until it
is not possible to extend it further. What are the winning strategies?
A few variants of the game are possible. We thought briefly about
this problem, and concluded that it falls under the Sprague-Grundy
theorem for impartial games.

2. In the case of a Hamiltonian cycle, is it possible to choose a “leftmost”
and “rightmost” interval such that the two paths between them can
be made monotone? How can these intervals be chosen?

3. What can we say about Hamiltonian paths in interval graphs where
one or both of the endpoints are fixed? More is known about this
question than the others.

23

3-Colorings and 4-Critical Graphs (lecture by
Zdeněk Dvořák)

Elizabeth Yang

1 Introduction

Consider the 3-coloring of a graph G. Determining whether or not a graph
is 3-colorable is interesting from an algorithmic point of view, however it
has been shown that this problem is NP-hard. Instead, we discuss 4-critical
graphs, the theorem of Kostochka and Yancey, its proof, and its applications.

1.1 Definition

A graph G is 4-critical if G is not 3-colorable, but any proper subgraph of
G is.

Figure 1: These are two examples of 4-critical graphs.

1.2 Preliminary Results

Proposition 1.1. If a graph G is 4-critical, the minimum degree of G is
at least 3.

Proof. Assume for contradiction that there exists a vertex v of degree at
most 2. Since G is 4-critical, G\v is 3-colorable. v has at most 2 neighbors,
so we do not need a fourth color for v. G is then 3-colorable as well, a
contradiction.

Corollary 1.2. Given a 4-critical graph G, |E(G)| ≥ 3|V (G)|
2 .

24

Proof. We know that 2 · |E(G)| = ∑v∈V (G) deg(v). Since deg(v) ≥ 3 for all

v ∈ V (G), |E(G)| ≥ 3|V (G)|
2 as desired.

Note that the bound from Corollary 1.2 is tight; equality is achieved by K4.
K4 is the only 4-critical graph with this property, to be proven below.

Theorem 1.3. (Brooks) Let ∆ be the maximum degree of connected graph
G. If G 6= K∆+1 and G is not an odd cycle, then G can be colored with ∆
colors.

Corollary 1.4. If graph G is 4-critical and ∆ = 3, G must be K4.

Proof. Since G cannot be colored with ∆ colors, G must either be K4 or an
odd cycle. ∆ = 3 implies G must be K4.

2 Statement of Theorem

Kostochka and Yancey were able to improve the bounds from Corollary 1.2.

Theorem 2.1. (Kostochka, Yancey) If graph G is 4-critical,

|E(G)| ≥ 5|V (G)| − 2

3

.

We will next outline the proof.

3 Proof of Theorem

3.1 The Potential Function

Given graph G, define its potential function:

P (G) = 5|V (G)| − 3|E(G)|

Proving the bound from the theorem is equivalent to showing that P (G) ≤ 2.

25

3.2 Proof Lemmas

For contradiction, assume there exists some 4-critical graph G with P (G) ≥
3. Choose G with the minimum |V (G)|+ |E(G)|.

Lemma 3.1. Let H be a subgraph of G. Then:

(i) P (H) ≥ 3 if H = G.

(ii) P (H) = 5 if H is a single vertex.

(iii) P (H) ≥ 6 otherwise.

Proof. The first two statements are easily verified. Choose subgraph H such
that H 6= G and H is not a single vertex. If H is the subgraph of a triangle,
we can easily show that P (H) ≥ 5.

We may assume H is not the subgraph of a triangle. Since H is a proper
subgraph of G, it has a 3-coloring. Condense all vertices in V (H) of the
same color to a single vertex. We have condensed H into triangle T .

Figure 2: The left shows G, with H highlighted. The right shows G1.

Let G1 be the graph obtained after condensing H into T in G. G1 cannot
be 3-colorable; otherwise, we can expand T back into H and obtain a 3-
coloring for G. Thus, G1 contains a 4-critical subgraph G2. Replace G2∩T
with H to obtain G3.

26

Figure 3: G2 is on the left, G3 on the right. In this particular case, G3 = G.

We now obtain the expression P (G3) = P (G2) − P (G2 ∩ T) + P (H). By
minimality of G, P (G2) ≤ 2. Since G2 ∩ T is the subgraph of a triangle,
P (G2 ∩ T) ≥ 5. Therefore, P (G3) ≤ P (H)− 3.

Iterate this process, treating G3 as the new H to get G′3. (G3 is indeed
a subgraph of G.) Stop once the entirety of G is restored. The iteration
gives us the following chain of inequalities:

P (G3) ≤ P (H)− 3

P (G′3) ≤ P (G3)− 3

P (G′′3) ≤ P (G′3)− 3

...

P (G) ≤ P (G
(k)
3)− 3

Here, k represents the number of iterations to get to G. From the system,
we have P (G) ≤ P (H) − 3k. Since k ≥ 1 and P (G) ≥ 3 by assumption,
P (H) ≥ 6.

The following lemma is a corollary of Lemma 3.1.

Lemma 3.2. K4 without an edge (K4 \ e) is not a subgraph of G.

Figure 4: K4 \ e, the forbidden subgraph.

27

Proof. P (K4 \ e) = 5, but K4 \ e is not a single vertex.

Lemma 3.3. Let H be a proper subgraph of G with H 6= G \ e. Consider
vertices u, v ∈ H. The graph H + uv is 3-colorable.

Proof. Suppose for contradiction that H + uv is not 3-colorable. Then,
H + uv contains a 4-critical subgraph, H ′. Since H ′ is smaller than G,
P (H ′) ≤ 2. Since H is a subgraph of G, P (H) ≥ 6. However, P (H ′) =
P (H + uv) = P (H)− 3, so P (H ′) ≥ 3, a contradiction.

Lemmas 3.2 and 3.3 help us make an improvement on Lemma 3.1.

Lemma 3.4. Let H be a subgraph of G. Then:

(i) P (H) ≥ 3 if H = G.

(ii) P (H) = 5 if H is a single vertex.

(iii) P (H) = 6 if H is a triangle.

(iv) P (H) ≥ 6 if H = G \ e.
(v) P (H) = 7 otherwise.

Proof. The first four statements can be easily verified. The proof of the last
statement follows in a similar way from the proof of Lemma 3.1.

Choose H a proper subgraph of G with H 6= G \ e. We may also as-
sume H is not a subgraph of a triangle. Take 2 vertices in H, x and y,
which have neighbors in V (G \H. Call the edges from x and y (out of H)
e1 and e2, respectively.

Consider H + xy. By Lemma 3.3, H + xy is 3-colorable, with x and y
guaranteed different colors. We proceed with the proof of Lemma 3.1, first
contracting H into triangle T . After obtaining graph G3, we have the in-
equality P (H) ≥ P (G3) + 3. We now have two cases:

• If G3 6= G, P (G3) ≥ 6 because G3 is a proper subgraph of G, so
P (H) ≥ 8.

• If G3 = G, edges e1 and e2 belong to E(G3). These edges also belong
to E(G2). G2 also contains at least 2 vertices of T because e1 and e2

have two different ends in T , so P (T ∩ G2) ≥ 6. Therefore, P (H) ≥
P (G3) + 4 and P (H) ≥ 7.

28

Lemma 3.4 helps us discover some more forbiddens subgraphs.

Lemma 3.5. G does not contain 2 vertices of degree 3 in the same triangle.

Proof. Assume for contradiction that G contains 2 vertices of degree 3 in
the same triangle. Let these vertices be u and v. u and v share a neighbor
w, but cannot share any other neighbor by Lemma 3.2. Let graph G1 be
obtained from G by deleting u and v and adding an edge e between two
neighbors of u and v that are not equal to w.

Figure 5: The forbidden subgraph in G and the same configuration in G1.

Any 3-coloring of G1 would extend to a 3-coloring of G, so G1 cannot have
a 3-coloring. G1 therefore has a 4-critical subgraph, G2. G2 contains edge
e; otherwise, G2 is a subgraph of G. Next, obtain graph G3 by restoring
vertices u and v, but not joining them to w.

Figure 6: The forbidden subgraph in G2 and the same configuration in G3.

This tells us that P (G3) = P (G2) + (5 · 2 − 3 · 2) = P (G2) + 4. Since
G2 is smaller than G, P (G2) ≤ 2, so P (G3) ≤ 6, contradicting Lemma
3.4.

29

Lemma 3.6. If u and v are adjacent vertices of degree 3, then both u and
v are contained in some triangles.

Proof. Without loss of generality, let u not be part of any triangle, so its
neighbors do not have an edge between them. Perform the following reduc-
tion to graph G1. Remove u and v and condense u’s neighbors into a single
vertex.

Figure 7: The forbidden subgraph in G and the same configuration in G1.

Any 3-coloring of G1 would extend to a 3-coloring of G, so G1 cannot
be 3-colorable. G1 must have a 4-critical subgraph G2. G2 must contain
the condensed vertex, otherwise, G2 would be a subgraph of G. Obtain the
graph G3 by restoring u but not v. G3 is a subgraph of G.

Figure 8: The forbidden subgraph in G2 and the same configuration in G3.

This tells us P (G3) = P (G2) + (5 · 2− 3 · 2) ≤ 6, a contradiction to Lemma
3.4.

Lemma 3.7. Every vertex of degree 3 has at most one neighbor of degree
3.

Proof. Assume for contradiction there exist some vertex of degree 3, u, with
two neighbors of degree 3, v and w. Lemma 3.6 says u and v must belong
in triangles, so there exists an edge between the neighbors of u and the
neighbors of v. The triangle containing u now also contains w. However, u
and w now contradict Lemma 3.5.

30

We can now proceed to the actual proof. The proof uses a double-counting
method.

3.3 Proof

Assign initial charges to the vertices according to the following charge func-
tion: ch0(v) = 10− 3 deg(v). Then, we compute the total charge:∑

v∈V (G)

ch0(v) =
∑

v∈V (G)

[10− deg(v)]

= 10|V (G)| − 3
∑

v∈V (G)

deg(v)

= 10|V (G)| − 6|E(G)|
= 2P (G) ≥ 6

Next, we discharge the graph by sending a charge of 1
2 from each vertex of

degree 3 to each neighbor of degree at least 4. Let ch(v) represent charge
after discharging.

For vertices of degree 3, ch(v) ≤ 0 by Lemma 3.7. For vertices of degree
at least 4, we can perform the following computation, where we assume the
worst case scenario (all neighbors degree 3):

ch(v) ≤ ch0(v) +
deg(v)

2

≤ 10− 3 deg(v) +
deg(v)

2

=≤ 10− 5 deg(v)

2
≤ 10− 10 = 0

31

This computation also confirms that ch(v) ≤ 0 for all other vertices. It
follows that

∑
v∈V (G) ch(v) ≤ 0, a contradiction to the initial charge com-

putation.

3.4 Tightness of Bound

P (G) ≤ 2 is a tight bound for |V (G)| arbitrarily large. Below is an example
of one graph in a family of graphs that satisfy P (G) = 2.

4 Applications of Theorem

We can apply the bound to prove the following theorem:

Theorem 4.1. (Grotzsch) Any planar, triangle-free graph is 3-colorable.

Proof. Assume for contradiction that there exist planar, triangle-free graphs
that are not 3-colorable. Choose G such that |V (G)| + E(G)| is the mini-
mum. Observe that G must be 4-critical. We now have two cases:

• G has no 4-faces. In this case, we apply Euler’s formula and that

|F (G| ≤ 2|E|
5 :

|E(G)|+ 2 = |V (G)|+ |F (G)|

≤ |V (G)|+ 2|E(G)|
5

3|E(G)|
5

≤ |V | − 2

|E(G)| ≤ 5|V (G)| − 10

3

32

This contradicts our theorem and G cannot be 4-critical.

• G has a 4-face. The idea is to identify a pair of opposite vertices of
the 4-face and consolidate them, forming graph G′. G′ cannot have a
3-coloring, otherwise it extends to a 3-coloring of G.

The only time we may run into an issue is when for both pairs of
opposite vertices in the 4-face, a triangle forms when consolidated.
However, this may not happen; we obtain a contradiction to the pla-
narity of G. See the figure below.

We are then reduced to the first case and we are done.

4.1 Extensions and Generalizations

We can establish similar bounds for 5-critical graphs. We can attempt
to generalize our proof for 4-critical graphs using the potential function
9|V (G)| − 4|E(G)| ≤ 5.

These bounds have already been generalized for k-critical graphs.

33

Hardness of the L-bounded cut

Pavel Dvořák and Dušan Knop

In this part we prove MLBC parametrized by path-width is W[1]-hard
by FPT-reduction from k-Multicolor Clique.

PROBLEM: k-Multicolor Clique
Instance: k-partite graph G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E), where Vi is

independent set for every i and they are pairwise disjoint
Parameter: k
Goal: find a clique of size k

Denoting Sets V1, . . . , Vk are always the color class of G. We denote
edges between Vi and Vj by Eij . The problem is W[1]-hard even if every
independent set Vi has same size and the number of edges between every
Vi and Vj is same. In whole part we denote the size of arbitrary Vi by N
and size of arbitrary Eij by M . For FPT-reduction from k-Multicolor
Clique to MLBC we need:

1. Create a MLBC instance G′ = (V ′, E′), s, t, L from k-Multicolor
Clique instance G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E) where size of G′ is poly-
nomial from the size of G.

2. Prove that G contains k-clique if and only if G′ contains L-bounded
cut of size f(k,N,M) where f is polynomial.

3. Prove that path-width of H is smaller than g(k) where g is computable
function.

Our ideas were inspired by work of Michael Dom et al. [1]. They proved
W[1] hardness of Capacitated Vertex Cover and Capacitated Dom-
inating Set parametrized tree width of input graph. We remarked that
their reduction also proves W[1] hardness of these problems parametrized
by path-width.

1 Basic gadget

In k-Multicolor Clique problem we need select exactly one vertex from
each independent set Vi and exactly one edge from each Eij . And we have

34

t′s′
t′s′

3

shortcuts

ridgeways
a) b)

Figure 1: a) Example of butte for h = 3 and Q = 4. b) Simply diagram for
butte of height 3.

to make certain that if e ∈ Eij is the selected edge and u ∈ Vi, v ∈ Vj are
the selected vertices then e = {u, v}. The idea of reduction is to have a
basic gadgets for every vertex and edge. Let gv be the gadget for v. We
connect gadgets gv for every v in Vi into a path Pi. The path Pi is cut in
gadget g(v) if and only if the vertex v ∈ Vi is selected into clique. The same
idea will be used for selecting the edges.

Definition 1.1. Let h,Q ∈ N. Butte B(s′, t′, h,Q) is graph which contains
h paths of length 2 and Q paths of length h+2 between s′ and t′. The short
paths (of length 2) are called shortcuts, the long paths are called ridgeways
and the parameter h is called height.

Butte for h = 3, Q = 4 is shown in Figure 1 part a. In our reduction all
buttes will have the same parameter Q (it will be computed later). For sim-
plicity we depicts butte as a dash dotted line triangle with its height h inside
(see Figure 1 part b), or only as a triangle without the height if it is not im-
portant. Let B(s′, t′, h,Q) be a butte. We denote by s(B), t(B), h(B), Q(B)
the parameters of butte B s′, t′, h and Q, respectively.

Observation 1.2. Path-width of arbitrary butte B is at most 3.

Proof. If we remove vertices s(B) and t(B) from B we get Q(B) paths
from ridgeways and h(B) isolated vertices from shortcuts. This graph has
certainly path-width 1. If we add s(B) and t(B) to every node of the path
decomposition we get proper path decomposition of B with width 3.

Let B(s′, t′, h,Q) be a butte. Let Puv be the shortest path between u

35

h

u s′ t′ v

Figure 2: The example of path going through a butte.

and v, which enters into B in s′ and leaves it in t′ (see Figure 2). The
important properties of the butte B are:

1. By removing one edge from all h shortcuts of butte B, we extend path
Puv by h. If we cut all shortcuts of butte B we say the butte B is
ridged.

2. If the size of the cut is bounded by K ∈ N we can increase Q > K.
Therefore Puv cannot be cut by removing edges from B (only extended
by ridging the butte B).

3. Butte B has constant path-width independent on h and Q.

2 Butte path

In this section we define how we connect buttes into a path, which we call
highland. The main idea is to have highland for every i 6= j. In highland
for i 6= j, there are buttes for every vertex v ∈ Vi and every edge e ∈ Ei,j .
First we connect vertex buttes into the path and after them we connect
edge buttes. Then we set the butte heights and limit the size of the cut in
such way that exactly one vertex butte and exactly one edge butte have to
be ridged. And if buttes for vertex v is ridged, then only buttes for edges
incident with v can be ridged. Thus, vertex v ∈ Vi will be chosen to clique
if and only if butte for v will be ridged. Formal description of highland is
in the following definition.

Definition 2.1. Highland H(X,Y, s, t) is a graph containing 2 vertices s
and t and Z = X + Y buttes B1, . . . , BZ where:

1. s = s(B1), t = t(BZ) and t(Bi) = s(Bi+1) for every 1 ≤ i < Z.

36

X2 + 1 X2 + 2 X2 +X X4 +X − 3 X4 X4 +X − 1

s = s1 t1 = s2 t2 sX sX+1 sX+2 sX+3 sX+Y t

X Y

Figure 3: The example of highland H(X,Y, s, t).

2. h(Bi) = X2 + i for 1 ≤ i ≤ X.

3. h(Bi) ∈ {X4, . . . , X4 +X − 1} for X + 1 ≤ i ≤ Z.

4. Q(Bi) = X4 +X2 for every i.

Let H(X,Y, s, t) be highland. We call buttes B1, . . . , BX from H low
and buttes BX+1, . . . , BX+Y high (low buttes will be used for vertices and
high buttes for edges). The vertex t(BX) = s(BX+1), where low and high
buttes meet, is called the center of highland H. Note that there can be more
buttes with the same height among high buttes and they are not ordered
by height as the low buttes. The example of highland is shown in Figure 3.

Proposition 2.2. Let H(X,Y, s, t) be a highland. Let L = 2(X + Y) +
X4 +X2 +X − 1. Let C be the L-cut of size X4 +X2 +X, which cut all
path of length L and shorter between s and t then:

1. The cut C contains only edges obtained by ridging the exactly two
buttes Bi, Bj, such that Bi is low and Bj is high.

2. Let Bi be the ridged low butte and Bj be the ridged high butte. Then,
h(Bj) = X4 +X − i.

Proof. Every butte has at least X + 1 shortcuts and X4 + X2 ridgeways.
Therefore, C can not cut all paths in H between s and t and it is useless
to add edges from ridgeways to the cut C. Note that shortest st-path in H
has length 2(X + Y).

1. If we ridge every low butte we extend the shortest st-path by X3 +
X2

2 + X
2 . However, it is not enough and at least one high butte has

to be ridged. Two high buttes from cannot be ridged otherwise the

37

cut would be bigger then the bound. No high butte can extend the
shortest st-path enough, therefore at least one low butte has to be
ridged. However, two low buttes and one high butte cannot be ridged
because the cut C would be bigger then the bound.

2. Let F be the set of removed edges from ridged buttes Bi and Bj .
Height of Bi is X2 + i. Therefore the length of the shortest st-path
after ridging Bi and Bj and the size of F is 2(X+Y)+X2 +i+h(Bj).
If h(Bj) < X4 + X − i then shortest st-path is strictly shorter then
2(X+Y)+X4 +X2 +X. Thus, F is not L-cut. If h(Bj) > X4 +X− i
then and |F | > X4 +X2 +X thus F is bigger than C.

3 Reduction

In this section we present our reduction. Let G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E) be
the input for k-Multicolor Clique. As we stated in the last section, the
main idea is to have low butte Bv for every vertex v and high butte Be for
every edge e. Vertex v and edge e is selected into the k-clique if and only
if butte Bv and butte Be are ridged. From G we construct MLBC input
G′, s, t, L:

1. For every 1 ≤ i, j ≤ k, i 6= j we create highland Hi,j(N,M, s, t) of
buttes Bi,j

1 , . . . , Bi,j
N+M .

2. Let Vi = {v1, . . . , vN}. Vertex v` ∈ Vi is represented by low butte
Bi,j

` of the highland Hi,j for every j 6= i. Thus, we have k − 1 copies
of buttes (in different highlands) for every vertex. Hence, we need to
be certain that only buttes representing the same vertex are ridged.
Note that buttes representing the same vertex have the same height
and the same distance from the vertex s.

3. Let Eij = {e1, . . . , eM}, i < j. Edge e` = {u, v} ∈ Eij(u ∈ Vi, v ∈ Vj)
is represented by high butte Bi,j

N+` of the highland Hi,j and by high

butte Bj,i
N+` of the highland Hj,i. Note that two buttes represented

the same edge has same distance from the vertex s. Let hi, hj be the
heights of buttes representing vertices u and v, respectively. We set
the height of high buttes:

38

(a) h(Bi,j
N+`) = N4 +N − hi

(b) h(Bj,i
N+`) = N4 +N − hj

4. We add edge
{
t(Bi,j

`), t(Bi,j+1
`)

}
for every 1 ≤ i ≤ k, 1 ≤ j < k, i 6= j

and 1 ≤ ` < N .

5. We add paths of length N − 1 connected t(Bi,j
`) and t(Bj,i

`) for every
1 ≤ i, j ≤ k, i 6= j and 1 ≤ ` < M .

6. L = 2(N +M) +N4 +N2 +N − 1

We call paths between highlands in Items 4 and 5 the valley paths.

Observation 3.1. Graph G′ has polynomial size from graph G.

Theorem 3.2. If graph G has a clique of size k then (G′, s, t) has an L-cut
of size k(k − 1)(N4 +N2 +N).

Proof. Let G has a k-clique {v1, . . . , vk} where vi ∈ Vi for every i and
eij = {vi, vj} ∈ Eij . For every i we ridge all k − 1 buttes representing the
vertex vi in G′. And for every i < j we ridge both buttes representing the
edge eij .

We claim that set of removed edges from ridged buttes forms the L-cut.
Let Hi,j be an arbitrary highland. There is no st-path shorter then L in
Hi,j . Let h(Bv) = N2 + ` where Bv is arbitrary butte representing the
vertex vi. By construction of G′, the high butte representing the edge eij in
Hi,j has height N4 +N − `. Thus, ridged buttes in Hi,j extend the shortest
st-path by N4 + N2 + N and it has length 2(M + N) + N4 + N2 + N .
Buttes representing the vertex vi have same height. Thus, path through
the low buttes of highlands using some valley path is always longer then
path going through low buttes of only one highland. Therefore, it is useless
to use valley paths among low buttes for the shortest st-path.

Other situation is among high buttes because buttes representing the
same edge have different heights. Butte Bv representing vertex vi extend
the shortest path at least by N2 +1. Butte Be representing edge ei,j extend
the shortest at least by N4. However, if h(Bv)+h(Be) < N4 +N2 +N then
Bv and Be have to be in different highlands. Therefore, the st-path going
through Bv and Be has to use a valley path between high buttes, which has
length N−1. And such st-path has length at least 2(N+M)+N4+N2+N .

We remove N4 +N2 +N edges from each highland and there are k(k−1)
highlands in G′. Therefore, G′ has L-cut of the size k(k − 1)(N4 + N2 +
N).

39

H i,ℓ

H i,m

s

s Bℓ

BmB′
ℓ

Figure 4: How to miss every ridged low butte if there are ridged two low
buttes representing two different vertices from one color class. Ridged butte
is depicted as triangle without hypotenuse.

Theorem 3.3. If (G′, s, t) has an L-cut of size k(k−1)(N4 +N2 +N) then
G has a clique of size k.

Proof. Let C be an L-cut of G′. Every shortest st-path going through every
highland has to be extended by N4 +N2 +N . By Proposition 2.2 (Item 1),
exactly one low butte and exactly one high butte of each highland has to be
ridged. We remove (N4 + N2 + N) from every highland in G′. Therefore,
there can be only edges from ridged buttes in C.

For fixed i and j 6= i, highlands Hi,j are the highlands which low
buttes represent the vertex from Vi. We claim that ridged low buttes of
Hi,1, . . . ,Hi,k represent the same vertex. Suppose for contradiction, there
exists two low ridged buttes B` of Hi,` and Bm of Hi,m which represent
different vertex from Vi. Without loss of generality Hi,` and Hi,m are next
to each other (i.e. |`−m| = 1) and distance from s to s(B`) is smaller than
distance from s to s(Bm). Let B′` be a butte of Hi,m such that it has same
distance from s as butte B`. The path s–t(B′`)–t(B`)–t (see Figure 4) does
not go through any ridged low butte.

Therefore, this path is shorter than L, which is contradiction. We can
use the same argument to show that there are not two high ridged buttes
of highland Hi,j and Hj,i which represent different edges from Eij .

We put into the k-clique K ⊂ V (G) the vertex vi ∈ Vi if and only
if arbitrary butte representing the vertex vi is ridged. We proved in the
previous paragraph that exactly one vertex from Vi can be put into the
clique K. Let eij ∈ Eij is an edge represented by ridged buttes. We claim
that vi ∈ eij . Let B ∈ Hi,j be a butte representing vi with height N2 + `.
Then by Proposition 2.2 (Item 2), butte B′ ∈ Hi,j of height N4 +N − ` has
to be ridged. By construction of G′, only buttes representing edges incident

40

H i,1

H i,2

H i,k

H2,1

H2,i

Hk,2

N M

N − 1

s

s

s

s

s

s

t

t

G′:

H i,1

H i,2

H i,k

H2,1

H2,i

H2,k

s t

N M
H :

H i,1

H i,2

H i,k

N − 2 M − 2
H ′:

H i,1

H i,2

H i,k

a

b

Figure 5: Transformation a replace all buttes in G′ by single edges and con-
tract long valley path into single edges. Transformation b removes vertices
s and t and all highland centers (highlighted by dotted ellipsis) from H.

with vi have such height. Therefore, chosen edges are incident with chosen
vertices and they form the k-clique of the graph G.

Observation 3.4. Graph G′ has path-width in O(k2).

Proof. Let H be a graph created from G by replacing every butte by single
edge and contract the valley paths between high buttes into single edges,
see Figure 5 transformation a. Let U be a vertex set containing s, t and
every highland center. Let H ′ be a graph created from H by removing all
vertex from U , see Figure 5 transformation b.

Graph H ′ is unconnected and it contains k grids of size (k−1)× (N−2)
and

(
k
2

)
grids of size 2 × (M − 2). Path-width of (k − 1) × (N − 2) grids

41

is in O(k), therefore pw(H ′) ∈ O(k). If we add set U to every node of a
path decomposition of H ′ we get proper path decomposition of H. Since
|U | ∈ O(k2), path-width of H is in O(k2). The edge subdivision does not
increase path-width. Moreover, replacing edges by buttes does not increase
it either (up to multiplication constant) because butte has constant path-
width (Observation 1.2). Therefore, pw(G′) = pw(H) ∈ O(k2).

Theorem 3.5. Minimal Length Bounded Cut parametrized by path-
width is W[1]-hard.

Proof. The theorem is corollary of Observation 3.1 and 3.4 and Theorem 3.2
and 3.3.

References

[1] Michael Dom, Daniel Lokshtanov, Saket Saurabh and Yn-
gve Villanger Capacitated Domination and Covering: A Parameter-
ized Perspective, Parameterized and Exact Computation, pages 78–90,
2008.

42

Hardness of IV-matching

Lukáš Folwarczný, Dušan Knop1

Abstract

This text is just a preliminary version of our future article. IV-
matching is a generalization of perfect bipartite matching. The com-
plexity of finding IV-matching in a graph was posted as an open
problem at ICALP 2014 conference. We give the proof that this
problem is NP-complete.

1 Introduction and Problem Definition

The generalization of perfect bipartite matching called IV-matching
is formulated in the full version of the article by Fiala, Klav́ık, Kra-
tochv́ıl and Nedela [1].

Authors study algorithmic aspects of regular graph covers and one
of their subproblems reduces to searching IV-matching thus the au-
thors ask the question whether there is an efficient algorithm solving
this problem.

In this article we prove that the problem is NP-complete and
hence it is unlikely that there would an efficient algorithm.

Definition 1.1 (IV-matching). Let G = (V,E) be a bipartite graph
with following properties:

• Vertices are partitioned into sets V1, . . . , V` called layers. There
are only edges between two consecutive layers Vk and Vk+1 for
k = 1, . . . , `− 1.

• Each layer is further partitioned into clusters.

• Edges of G are described by edges on clusters; we call these
edges macroedges. If there is a macroedge between two clusters,
then vertices of these two clusters induce a complete bipartite
graph. If there is no macroedge, then these vertices induce an
edge-less graph.

• Macroedges between clusters of layers V2k and V2k+1 form a match-
ing (not necessarily a maximum matching).

• There are arbitrary macroedges between clusters of layers V2k−1

and V2k.

1Author supported by the project SVV-2014-260103.

43

V1 V2 V4V3 V5 V6

2×
3×

5× 5×

3×
3×

2×

7× 6×

2×

3×

1×

2×

2×3×

Figure 1: An example of IV-matching.

IV-matching is a subset of edges M ⊆ E such that: Each vertex
from an even layer V2k is incident to exactly one vertex from V2k−1 ∪
V2k+1. Each vertex from the layer V2k+1 is either incident to exactly
two vertices from V2k, or exactly one vertex from V2k+2 (these two
options are exclusive).

It implies that edges between layers V2k+1 and V2k+2 form a match-
ing (I-shapes) and edges between layers V2k and V2k+1 form indepen-
dent V-shapes with centers in the layer V2k+1.

As IV-matching we denote the decision problem of finding out
whether there is an IV-matching in a given graph.

PROBLEM: IV-matching
Instance: Graph G in the described format.
Question: Is there an IV-matching in G?

Note that for ` = 2 the problem is just ordinary bipartite match-
ing. For odd values of `, the clusters of the layer V` can be matched
in only one possible way, thus this odd case reduces to the case with
(`− 1) layers. First interesting case is ` = 4 and we prove in the next
section that this case is already NP-complete.

2 NP-completeness

We prove the NP-completeness of IV-matching by reduction from
the problem 3D-matching.

Three-dimensional matching In the problem 3D-matching
we are given a hypergraph H = (U,F). The set of vertices is split

44

into three equally sized partites X, Y and Z. Each edge consists of
exactly one vertex from each partite thus F ⊆ X × Y × Z.

We call perfect matching a set of pairwise disjoint edges covering
all vertices.

PROBLEM: 3D-matching
Instance: Hypergraph H = (U,F) such that F ⊆ X × Y × Z.
Question: Is there a perfect matching in G?

3D-matching is well-known to be NP-complete; it is actually the
seventeenth problem in Karp’s set of 21 NP-complete problems [2].

Theorem 2.1. The problem IV-matching is NP-complete already
for the case with ` = 4.

Proof. It is easy to see that the problem is in the NP class: The
IV-matching itself is a polynomial certificate and its corectness can
be directly verified.

To begin with the reduction let H = (U,F) be an instance of 3D-
matching with partites X, Y , Z and let us denote n = |X| = |Y | =
|Z| and m = |F |.

We construct the instance G = (V,E) of IV-matching in this
way: We put vertices from X and Y into the layer V1 and vertices
from Z into the layer V4. Each vertex forms its own cluster of the
size one. Then for each edge e = {x, y, z} we add a cluster with
two new vertices xe, ye into the layer V2 and a cluster with one new
vertex ze into the layer V3. We then add these four edges on clusters:
〈{x}, {xe, ye}〉, 〈{y}, {xe, ye}〉, 〈{xe, ye}, {ze}〉 and 〈{ze}, {z}〉. We
call the vertices xe, ye and ze edge vertices of e.

The key idea of this construction is that Vs in IV-matching trans-
late to edges not present in the perfect matching. You can see an
example on the Figure 2.

The resulting instance of IV-matching has 3n + 3m vertices,
4m edges and it can be constructed directly in polynomial time. We
shall now prove that there is an IV-matching in G if and only if there
is a perfect matching in the original hypergraph H.
⇒ Let M be an IV-matching in G. For each hyperedge e ∈ F

observe that necessarily either all edge vertices xe, ye and ze are
matched with Is or all of them are matched by one V.

Let us put into our matching of H all edges e ∈ F such that xe,
ye and ze are matched with Is. Because M is an IV-matching, every
vertex of the original hypergraph is connected by I to exactly one
edge vertex and we chose the corresponding edge to our matching

45

V1 V2 V4V3

z2

z1

ze2

ze3

ze1

e1

x1

x2 y1

y2

z2z1

e2

e3

xe1
ye1

xe2
ye2

xe3
ye3

x1

x2

y1

y2

Figure 2: Instance of 3D-matching with a perfect matching and equivalent
IV-matching instance with an IV-matching.

so all vertices of the hypergraph are covered. Because there are 3n
vertices in V1 and V4 and 3m vertices in V2 and V3, the number of
Vs used is m − n and so we used n edges in our matching of the
hypergraph. This proves that we constructed a perfect matching.
⇐ Let N ⊆ F be a perfect matching in the hypergraph H. For

each edge e = {x, y, z} we connect by Is the pairs of vertices {x, xe},
{y, ye} and {z, ze}. For each edge e /∈ N we cover the vertices
xe, ye, ze by a V. We see that in this construction every vertex in
V2 and V3 is covered by exactly one I or one V.

Because matching N covers all vertices in H, every vertex in V1

and V4 is covered by at least one I. Because we put 3n Is into the
graph, every vertex is covered by exactly one I. This implies that
this way we obtained a correct IV-matching.

3 Elimination of cut-vertices

In this section we prove that it is sufficient to study only 2-vertex-
connected instances of the problem IV-matching. Firstly, we prove
the following technical lemma and then the theorem itself.

Lemma 3.1. Let G = (C,E) be a graph on clusters where all clusters
except for one have fixed size. If there is an IV-matching in G, there
is only one suitable size of the last cluster and can be computed in
linear time (with respect to the compact input representation).

Proof. Let us fix some IV-matching inG and let us denote by ni, n
I
i , n

V
i

the total number of vertices in Vi and the number of them matched

46

with Is and Vs respectively. We assume that the cluster with un-
known size is in the layer Vk.

Observe that for each i it holds nI2i = nI2i−1 and nV2i = 2nV2i+1.
Because we know nI1 = n1 we can compute nV2 = n2 − nI2 = n2 − nI1 .
Knowing nV2 = nV3 /2 we have nI3 = n3−nV3 . We repeat this procedure
until we compute both nIk−1 and nVk−1.

Because we also know nI` = n` or nV` = n` depending on the
parity of ` we can use a similar process to compute nIk+1 and nVk+1.

This computation running in linear time gave us nIk−1, n
V
k−1, n

I
k+1

and nVk+1. From this we also have the size of Vk and therefore there
is only possible size for the cluster with unknown size so that Vk has
the proper size.

Theorem 3.2. In linear time (with respect to the compact input rep-
resentation) it is possible to decompose the instance of IV-matching
into 2-vertex-connected parts such that the original instance has an
IV-matching if and only if each of the parts has an IV-matching.

Proof. The idea of this proof is to use Lemma 3.1 to split cut-vertices
between components that share it. Instead of the term 2-vertex-
connectivity we only say 2-connectivity in this proof.

Let us have an instance of IV-matching with the graph of clusters
G = (C,F). Let the tree T = (V,E) be a decomposition of G into 2-
connected components. Vertices V of the tree represent components
of the decomposition and two components are connected by an edge
if they share a cut-cluster.

This decomposition may be made in linear time by a standard
technique involving depth-first search. Parts of our decomposition
will be all the components of 2-connectivity, but sizes of cut-clusters
in these components will be conveniently modified.

We find the proper sizes of cut-clusters and prove the correctness
of our construction by induction on the number of vertices in the
tree T .

In the case when T has only one component the whole graph is
2-connected and our decomposition consists of only one part – the
whole graph G.

Let us assume that the theorem holds for instances with k − 1
components of 2-connectivity and that G has k components. Let L
be a leaf-component in T and c ∈ L the cut-cluster by which it is
connected to the rest of G.

If we consider L to be a separate IV-matching instance, then
Lemma 3.1 tells us that there is only one possible number of vertices

47

to be used in an IV-matching of L if there exists any. Let this number
be x; the lemma also tells us that it can be computed in linear time.

Let us denote by L′ the component L where the size of the cluster c
is set to x and by G′ the graph G without L \ {c} and with x vertices
removed from the cluster c.

If there is an IV-matching both in G′ and L′, then there is an
IV-matching in G because we can simply take the union of these
matchings. If there is an IV-matching in G, then the existence of
IV-matchings in G′ and L′ is implied by our use of Lemma 3.1.

By induction we can now decompose G′ into k − 1 proper parts
and our decomposition is finished. The construction can be made
in linear time because all our subtasks are done in linear time and
ordering of the components in “leaf-order” can also be made in linear
time.

Acknowledgements

We would like to thank Pavel Klav́ık for introducing the problem
and a fruitful discussion. Moreover we note that part of the research
was conducted during the summer REU program 2014 at DIMACS,
Rutgers University.

References

[1] Jiř́ı Fiala, Pavel Klav́ık, Jan Kratochv́ıl and Roman
Nedela Algorithmic Aspects of Regular Graph Covers with Ap-
plications to Planar Graphs, Lecture Notes in Computer Science,
Automata, Languages, and Programming, pages 489–501, 2014.

[2] Richard M. Karp Reducibility among Combinatorial Prob-
lems, Complexity of Computer Computations, The IBM Re-
search Symposia Series, pages 85–103, 1972.

48

Kakeya Problem for Binary Strings

Dušan Knop, Peter Korcsok, Karel Král

Abstract

For two binary strings x, y ∈ {0, 1}n we define a line to be the set
Lx,y = {xi⊕y | i = 0, . . . , n−1} where ⊕ stands for xor operation and
xi means the i-th rotation of x. We are interested in the smallest size
of a set S such that for all x there exists an y such that Lx,y ⊆ S.

1 Introduction

The original meaning of a Kakeya set is a set S ⊆ Rn that is compact
and contains a unit length segment in every direction. The conjecture
is that such a set must have Hausdorff dimension equal to n. For more
information see Bourgain [1] or references in Dvir [2].

Lately the analogy of this question was asked for finite fields. Let F
stand for a finite field with q elements. We call a set S ⊆ Fn a Kakeya
set if it contains a line in every direction. That is for every x ∈ Fn there
is a point y ∈ Fn such that Lx,y = {y + a · x | a ∈ F} ⊆ S. Dvir [2]
shows that the size of every Kakeya set is at least Cn ·qn for a constant
Cn depending only on n and q = |F|.

2 Problem Definition

Koucký [3] asks for the least size of a Kakeya set S ⊆ {0, 1}n containing
a line for every direction. We denote a line of a direction x as Lx,y ={
y ⊕ xi | i ∈ {0, . . . , n− 1}

}
where xi is the i-th rotation of the binary

word x and ⊕ stands for the xor operation. More formally:

Question 2.1. What is the minimal size of a set S ⊆ {0, 1}n such
that for every x ∈ {0, 1}n there is an y ∈ {0, 1}n such that Lx,y ⊆ S.

3 Observations

Observation 3.1. For all x, y ∈ {0, 1}n we have
∑n

j=1(y ⊕ xi)j ≡∑n
i=1(yi + xi) (mod 2).

49

Proof. Let J0 be the set of indexes where y is zero and let J1 be the
set of indexes where y is one. The proof follows by a direct compu-
tation

∑n
j=1(y ⊕ xi)j ≡

∑
j∈J0

xij +
∑

j∈J1
(1 + xij) ≡

∑
j∈J0

xi+j +∑
j∈J1

xi+j +
∑

j∈J1
1 ≡

∑n
i=1 xi + |J1| ≡

∑n
i=1(yi + xi) (mod 2).

Corollary 3.2. There is a Kakeya set of size 2n−1.

Proof. Let S = {z |
∑
zi ≡ 0 (mod 2)}. For every x there is a y with

the right parity of ones.

Observation 3.3. For all b, x ∈ {0, 1}n we have {y | Lx,y 3 b} = Lx,b.

Proof. We have xi ⊕ y = b iff y = xi ⊕ b.

Observation 3.4. For every b, x ∈ {0, 1}n we have that

| {y | Lx,y 3 b} | ≤ n.

Proof. ∀i∃!y : y ⊕ xi = b else we would have y ⊕ xi = b = y′ ⊕ xi and
thus y = y′.

Corollary 3.5. There is a Kakeya set of size 2n−1(1− 1/n).

Proof. For any given x there are 2n−1 points y with the right parity of
digits 1. When we want to remove a point b ∈ S by Observation 3.4
we have at most n points y with b ∈ Lx,y, so we forbid using at most
n such points. Doing this b2n−1/nc times gives us the estimate.

Observation 3.6. For every prime and x ∈ {0, 1}n \ {0n, 1n} and for
all 0 ≤ i < j < n we have xi 6= xj.

Corollary 3.7. For every prime p we have 2p−2
p

integer.

Observation 3.8. Lx,y = Lx,y.

Observation 3.9. Let Sn be the family of all Kakeya sets on {0, 1}n.
For every x ∈ {0, 1}n and S ∈ Sn we have x⊕S ∈ Sn and S∪{x} ∈ Sn.
For any S ∈ Sn we have

{
si | s ∈ S

}
∈ Sn for any fixed i.

50

Proof. For a given direction d ∈ {0, 1}n we choose y′ = x⊕ y.
By the definition a superset of a Kakeya set is a Kakeya set.
By the definition and rotating the string x.

Observation 3.10. Intersection of lines of directions x, x needs not
to be big.

Proof. When we have xi ⊕ y = xk ⊕ y and xj ⊕ y = xl ⊕ y by xoring
both together we get xk ⊕ xi = xj ⊕ xl.

Lemma 3.11. When given a Kakeya set S we have another Kakeya
set S′ of the same or lesser size containing just vertices with the same
parity of the number of digits 1.

Proof. All points in one line have the same parity of digits 1.
For every v ∈ S of odd parity (or even the same way) we negate

the last bit of y that contributes some line into the odd part of S. This
does not influence even lines and does not add more points than there
were in the odd parity.

Question 3.12. Is Lx,y =
{
xi ⊕ x⊕ y

}
a better definition of a line?

Observation 3.13. For all Kakeya sets S we have an y such that all
neighbors of y are in the Kakeya set N(y) ⊆ S.

Proof. By the first definition with x = 0000001 we have y such that
Lx,y ⊆ S and the y is what we want.

Theorem 3.14. The size of a Kakeya set is at least |S| ≥ 2
n−1
2 .

Proof. Both definitions give us the same sizes of Kakeya sets. We
choose the second definition of line Lx,y =

{
xi ⊕ x⊕ y | i = 0, . . . , n− 1

}
.

We know that we have to use y ∈ S otherwise the first point x⊕x⊕y
is not in S.

For every x we look at the second point of the line. We would like
to say that if x, z coincide on the second point we have either z = x or

51

z = ¬x. We write the system of equations over Z2.

x1 + x2 = z1 + z2

x2 + x3 = z2 + z3

x3 + x4 = z3 + z4

. . .

xn−1 + x1 = zn−1 + z1

Thus we have to use at least k different ys where we have |S| ≥
2n−1−1

k
+ 2 and k ≤ |S| so |S| ≥ 2

n−1
2 + 1 holds.

Observation 3.15. Let Kn be the size of the smallest Kakeya set. We
have Kn ≤ K2n+` for any ` ≥ 0.

Proof. For an x of length n we choose x0`x and trim the first n bits
from its y and n bits from the bigger Kakeya set.

n 1 2 3 4 5 6
Kn 1 2 3 6 9 14

Table 1: Computer experiments gave these least sizes of Kakeya sets for
given n.

Using Observation 3.13 we can define a prototype of a Kakeya set
in such a way that the y in Observation 3.13 is equal to zero and we
can not get this set from another Kakeya set by any operation listed
in Observation 3.9.

There is just one prototype of Kakeya set with n = 4 and it is

{0001, 0010, 0100, 1000, 0111, 1101}.

There are just two prototypes of Kakeya sets with n = 5 and those
are

{00001, 00010, 00100, 01000, 10000, 10011, 01011, 10101, 11111}

and

{00001, 00010, 00100, 01000, 10000, 01101, 00111, 11001, 11111}.

52

Conjecture 3.16 (π-conjecture). We use the second definition of line.
For every n > 7 prime, for every x ∈ {0, 1}n such that x 6= 0n and
x 6= 1n and for every y ∈ {0, 1}n we have that

|
n−1⋃
i=0

Lxi,y| =

(
n

2

)
+ 1

and ∀i, j ∈ {0, . . . , n− 1} , i 6= j : |Lxiy ∩ Lxjy| = 2.

References

[1] J. Bourgain Harmonic analysis and combinatorics: How much
may they contribute to each other? IMU/Amer. Math. Soc., pages
13–32, 2000.

[2] Zeev Dvir On the size of Kakeya sets in finite fields,
arXiv:0803.2336 [math.CO].

[3] Michal Koucký personal communication, 2014.

53

L(2, 1) - Labeling On Interval Graphs

Veronika Steffanová

1 Introduction

Interval graphs are intersection graphs of a family of intervals of real num-
bers. L(p, q)-labeling of a graph G is a mapping l : VG → X where X ⊂ Z
such that |l(u)− l(v)| ≥ p whenever the vertices u and v are connected by
an edge and |l(u)− l(v)| ≥ q whenever there exists some vertex w such that
both u and v are neighbours of w. Finally, span of graph G is the smallest
number k such that there exists L(p, q)-labeling of G using X = {0, . . . , k}.
We found a formula for the span of L(2, 1)-labeling for the class of interval
graphs and its connection to the chromatic number of the graph and the
maximum degree.

The problem of finding the minimal span was firstly announced by Jer-
rold R. Griggs and Roger K. Yeh in [2]. They presented the first estimate for
general graphs λ(G) ≤ ∆2 + 2∆, but gave a conjecture λ(G) ≤ ∆2, where
∆ is the maximum degree of G. They prove the conjecture for 2-regular
graphs. They also showed that this problem is NP-complete for general
graphs.

Their estimate was later improved in [3] λ(G) ≤ ∆2 + ∆ They also gave
exact values of the span for trees: λ(G) = ∆ + 1 or ∆ + 2.

We studied the intersection graphs, which are subclass of the chordal
graphs. Following estimate for the span of chordal graphs was given by
Sakai in [1] and it is the only one, which was known for general interval
graphs, too: λ(G) ≤ (∆ + 3)2/4. This estimate proves the conjecture for
chordal graphs.

By the same author the exact estimate for unit interval graphs was
proved: 2χ(G)− 2 ≤ λ(G) ≤ 2χ, where χ denote chromatic number of the
graph G. Note that chordal graphs are perfect, so the chromatic number
equals to the clique number.

2 Our results

Theorem 2.1. There exists an algorithm which gives us correct L(2, 1)-
labeling of a given interval graph. It runs in polynomial time.

54

The algorithm is based on the clique path of the graph and greedy al-
gorithm going from the most left to the most right clique.

Theorem 2.2. Let have an interval graph G(V,E) of chromatic number χ
and maximum degree ∆. Then

Λ ≤ 2χ+ ∆− 2.

The estimate is derived from the greedy algorithm considering coloring
of each clique separately.

Lemma 2.3. There exist graphs with span λ = 2χ+ ∆− 2 arbitrary large.

The example which proves the lemma is a path of connected stars. The
problem is the example has χ = 2 and we were unable to find an example
with higher chromatic number.

References

[1] D. Sakai Labelling Chordal Graphs: Distance Two Condition SIAM
J. Discret. Math., pages 133–140, 1994.

[2] J. R. Griggs and R. K. Yeh Labelling Graphs with a Condition at
Distance 2 SIAM J. Discret. Math., pages 586–595, 1992.

[3] G. J. Chang and D. Kuo The L(2, 1)-Labeling Problem on Graphs
SIAM J. Discret. Math., pages 309–316, 1996.

55

