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ABSTRACT 
 

A primary goal of current clinical cancer research is 
the identification of prognostic tumor subtypes. It is 
increasingly clear that tumor growth depends on both 
internal tumor factors, and factors that are external to 
the tumor, such as microenvironment. We recently 
showed that parameter values alone are less 
important than the patterns of all patient parameters 
together for the identification of prognostic subtypes 
and have identified a network phenotyping strategy 
method to quantitatively describe the dependency of 
the tumor on the environment, to characterize HCC 
subtypes. We have also shown that information about 
tumor mass together with patterns of other prognostic 
factors is related to survival. We now use a different 
patient cohort to validate this prognostic approach. A 
main finding is our identification of a common time of 
total disease duration (TDD) for every HCC patient. 
Clinical prognosis at the time of baseline patient 
evaluation is then calculable as the difference 
between TDD and the time from disease onset to 
diagnosis (Tonset). We show that the total pattern of 
all parameter values and the differences in the 
relationships between this pattern and a reference 
pattern that, together with the tumor mass, best 
reflects the patient prognosis at baseline. Our 
approach led us to identify 15 different composite 
HCC subtypes. Our results highlight the nearly 
identical TDD in all patients, which must therefore be 
a characteristic of the HCC disease, as opposed to the 
variable quantity of Tonset, which is impacted by 
multiple macro- and micro-environmental factors. 

 

INTRODUCTION 
 

It has been recently appreciated that tumors are 
not completely independent (oncogene-driven) 
from their environment, but their growth can be 
in part explained by signals from their 
macroenvironment (sex hormones, nutrition) and 
microenvironment (growth factors, inflammatory 
cytokines, cellular milieu) (1-4). This applies also 
to hepatocellular carcinomas or HCCs (5-14). 

We recently found how to quantitatively 
describe this dependency on the environment and 
characterize HCC subtypes (S and L) using new 
information that is available in the standard 
screening data once all data from a patient are 
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kept coherently throughout the processing (15). 
We previously concentrated on explaining 

Tmass (a product of maximum tumor diameter 
and number of tumor nodules), as a disease end 
point or outcome, but not used it for prognosis. 
With this separation of information about tumor 
from the information about the other clinical 
parameters, we have shown that Tmass and its 
associated clinical factors are both micro-
environmental and macro-environmental. 

In the last paper, we put information about the 
tumor mass (Tmass) back together with other the 
prognostic factors and derived how this combined 
information is related to survival.  In order to use 
the new personally coherent part of information 
in the standard data, a personal characterization 
of tumor growth was combined with personal 
coherent status of an individual patient’s clinical 
characteristics to estimate survival 
(prognosticate). This goal required relating 
tumor mass to time of tumor growth. We found 
(16) that to be able to do that, it is sufficient to 
require that the information about tumor mass, 
an observation from the radiology scan (CAT or 
MRI scan), has to be equal to the information 
about the sum of the tumorigenesis processes 
(tumor biology, reflecting internal tumor together 
with external patient influences). We then 
derived from this condition the relationship of 
tumor mass in an individual patient to time of 
tumor origin or onset until time to diagnosis using 
Fisher information formalism (16). 

We now use a different patient cohort to 
validate our recent results and we give some 
clinical patient examples of the consequences of 
this approach. 

 
METHODS 

 
We analyzed prospectively-collected data in the 
Italian Liver Cancer (ITA.LI.CA) study group 
database of HCC patients accrued at 11 centers. 
Complete data, allowing us to construct personal 
clinical patterns using the Network Phenotyping 
Strategy (NPS) were available for N=1980 
patients (17) and the database management 

conformed to Italian legislation on privacy. This 
study conforms to the ethical guidelines of the 
Declaration of Helsinki. Approval for the study on 
de-identified patients was obtained by the 
Institutional Review Board of participating 
centers. The clinical parameter data were 
processed exactly as previously (16). 

 
RESULTS 

 
Fig. 1 shows the conversion of Tmass into the first 
parameter needed to determine Tonset (time from 
tumor onset till clinical diagnosis). It represents 
a standard histogram of tumor masses, 
normalized to unit area.  

 
 
We previously showed that the first parameter 

that is needed for computing Tonset is the 
integrated area of this histogram for Tmass 
ranging between zero and an individual patient 
tumor mass. This is shown by the red area for a 

Fig.1 Explanation of extracting the information about 

personal component Ai (red area) of Tonset for patient 

with Tmassi=10 from the histogram of tumor masses in 

this study (blue bars), normalized to represent the 

𝜌 𝑇𝑚𝑎𝑠𝑠 .  Natural cubic spline interpolation and 

integration was used to obtain the numerical values of Ai. 
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patient with tumor mass 10 in Fig. 1. For the 
current cohort that is based predominantly on 
diagnosis through surveillance of patients at risk 
of HCC, relatively to the previous cohort of 
randomly diagnosed patients (16), we did the 
same testing of the normality of the Tmass 
distribution and found it significantly non 
Gaussian as was found previously for US patients. 
This in clinical sense means that through 
applying Fisher information formalism, we are 
using in our analysis the information about 
tumorigenesis factors, which made the histogram 
of the tumor masses non-Gaussian to estimate the 
first component of Tonset.  

We have previously shown by mathematical 
argument that requiring the equality between the 
information about the tumor contained in the MRI 
scan and the information about the various 
internal, biological processes determining the 
tumorigenesis leads to power-law of tumor 
growth. Having this power-law formula permits 
us to trace the tumor mass growth back in time 
from the moment of clinical screening to the 
disease onset. We can therefore apply a simple 

test if the tumor masses, actually observed for the 
patients in any cohort, are growing according to 
the law, derived by this approach. The 
mathematical form of the growth law predicts 
that the log of normalized histogram intensities is 
linearly related to the log of the observed tumor 
mass. This linear relationship was indeed found 
in the previous paper (16) as well as for the 
current cohort (Fig. 2).  

Moreover, the current (validation) and 
previous (original) patient cohort exhibit 
quantitatively similar log-linear relationships 
between the tumor mass and histogram 
intensities for most of the patient cohort. The only 
difference between the previously published and 
current cohort is the presence of a minor group 
of patients in the former cohort, with very large, 
slower-growing tumors, that are dependent on 
more complex tumor-generating processes. 
Possibly, this relates to the clinical randomness of 

Fig.2 . Explanation of extracting the information about 

HCC-specific parameters of Tonset  from tumor growth 

law, which indicated that log-log transformed Tmass 

histogram should be represented by linear functions. The 

line was least-square fitted, resulting in the numerical 

value for Ej and j as is shown. 

Fig.3 Plot of the dependence of Tonset on Ai, as derived 

from Fisher information method. We show by example 

that a patient with the integrated area of 0.3 in the Fig. 1 

have the Tonset in the 20% of the total range observed. 
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diagnosis in the previous cohort, whereas a large 
percent of the current patients were diagnosed 
through screening.  

Fig. 3 shows the plot of the tumor mass 
related parameter from each patient, defined by 
the personal integrated area, shown by example 
in Fig. 1, in relationship to the time to disease 
onset in relative units.  

This relationship is qualitatively and 
quantitatively identical to the previously 
published cohort, excepting the absence of the 
small component, characterizing patients with 
very large and slower growing tumor masses that 
was previously noted. 

Fig 4 describes the optimization-based 
determination of the last parameter in the tumor-
growth law, which was done as described in 
details in ref. 16. The result of the optimization 

procedure demonstrates existence of a single 
common constant, converting the time to disease 
onset from relative units to actual days. This 
result again confirms the existence and 
uniqueness of the characteristic optimal value of 
this constant, found in the previously published 
cohort.  

We have also previously shown (16) that the 
tumor growth rates are related to the personal 

clinical patterns of individual HCC patients. We 
use k-partite graphs to capture quantitatively 
these patient-unique contributions of clinical 
parameter values and the pattern of relationships 
between the values as they were simultaneously 
found for a patient, within the framework of a 
Network Phenotyping Method (NPS) (15).. For 
personal characterization of the clinical status 
pattern in NPS we quantify the differences 
between patient composite clinical profiles. This 
quantification of the differences between the 
individual patterns was done systematically, in 
terms of (Pi,HL1) values, which resulted from 
comparing patient’s composite clinical profiles Pi 
to a common profile HL1 that represented the 
best possible prognosis based upon all the 
considered parameters being normal and 
counting the differences between them. The Fig 
5 shows that there is a linear relationship 

Fig.4 Plot of the residual standard deviations of OVSC – 

(Pi,HL1) fits for systematically varied values of Tmax. The 

optimal value is in the minimum of this curve. 

Fig.5 Linear relationship between the clinical profile 

differences and mean values <Tonset> computed as 

average of individual values of Tonset  for each patient 

HCC subgroup.   
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between Tonset and these personal composite 
pattern differences (Pi,HL1) as we previously 
described (16). This validates our previous 
finding (16) that tumor mass alone does not 
provide full prognosis of the survival and needs to 
be considered in the full context of patient 
individual clinical profile. 

 

 
Fig. 6 clarifies this general relationship for a 

simpler example of 10 different patients who have 
an identical tumor mass of 25 (Fig. 6a). It is clear 
from this figure that tumor mass alone cannot 
predict the observed 2 log differences in the 
survivals amongst these 10 patients.  

 
However, there is a direct proportionality 

between the patient’s clinical pattern profile 
difference from normal pattern HL1 and an 
individual patient survival (Fig. 6b). When this 
clinical profile based ordering is taken into 
consideration for each of the 10 different patients 

with identical Tmass, Fig. 6c and 6d show that 
after correction, the time of disease duration 
(TDD) is the same for all patients. This conclusion 
of a commonality of TDD for HCC patients is valid 
for all tumor masses (Fig. 7).  

 

Thus, differences in individual patient 
prognosis relate to differences in Tonset i.e. the 
time in the course after tumor initiation in the 
natural history at which the HCC is diagnosed. It 
was considered as intractable, but we have shown 
that firstly, after the tumor-mass and NPS-based 
correction, there is a common overall duration of 
the disease, or TDD; secondly, that we can 
estimate time to onset (or Tonset) from the 
information in the tumor mass and the composite 
clinical pattern, using standard clinical 
parameters and thirdly, from these results we can 
estimate the actual clinical overall survival (OVS) 
from the difference between the common clinical 
duration and the personal time to disease onset 
or Tonset (till diagnosis from disease onset): OVS 
= TDD - Tonset. 

Fig.7 )  Relationships between (Pi,HL1), OVS (black 

points) and OVSC (blue circles). The lines are least-square 

fits of the relationships by cubic model. 15 groups of 

patients with matching differences (PiK,HL1)of their 

personal clinical relationship profiles form the vertical 

groups of points.   

Fig.6 a) Example of survival variability for patients with 

the same Tmass. b) 3D plot of the dependence of OVS for 

patients with the same Tmass on the (Pi,HL1), showing 
the linear relationship. c) After the correction of OVS  
for Tonset, all patients exhibit the same TDD.  d) 3D plot 

of the identity in TDD after the (Pi,HL1)-dependent 
correction of OVS  by  Tonset,  into TDD.   
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DISCUSSION 
 
Knowledge of the time from initiation of a tumor 
till its diagnosis (time to onset) appears to be a 
problem, because, at the time of patient’s initial 
visit, it is seemingly random. Thus, it has been 
assumed that to estimate this Tonset, one needs 
to know the size of the tumor at 2 or more 
different time points, to determine the growth 
law together with the rate of growth and then 
back calculate the time when the tumor mass was 
zero. We have shown that, using the Fisher 
information approach (16), there is an alternative 
way to this calculation, which uses the shape of 
the non-random distribution of the actual tumor 
masses and then determine the tumor growth law 
from the requirement of equality between 
information about the biological tumorigenesis 
factors and information collected by tumor 
imaging. For the results to be practical for 
translational clinical application, it would be best 
if there is a common (typical) time of patient 
disease duration (TDD). We therefore formulated 
this restriction on TDD as our initial hypothesis 
and validated it by the full compliance of the 
results which we obtained with the derived tumor 
growth law properties. This alternative approach 
substitutes the determination of tumor growth 
law from longitudinal observations by using the 
fact that in this cohort, patients provided 1980 
time of growth points for this analysis, i.e. every 
patient in the cohort represents a different time 
of tumor growth, when presenting at initial 
clinical diagnosis. This allowed us to estimate the 
parameters of the tumor growth model, derived 
to satisfy the maximal compliance between the 
tumor growth factors and the tumor pathology at 
baseline. This then allowed us to calculate 
Tonset. The result of this computation not only 
provided a Tonset for each patient, but also 
showed that the mathematical formulation of the 
tumor growth law is fully compatible with the 
imaging data that are reflected in Tmass (Fig. 2), 
and thus validated also the initial assumption of a 
common time of total disease duration for every 

HCC patient (Fig. 7). 
However, knowledge of Tmass-based Tonset is 

only one important factor here. Other patient 
characteristics, such as gender (hormonal 
influences), age and microenvironmental factors 
such as inflammation, are also important factors 
that impact tumor growth (18, 19). We found here 
and previously that to quantify the impact of 
these additional factors upon the clinical 
behavior of the HCC, we needed more than just 
their clinical values. The clinical characterization 
of these factors was found to be related to the 
composite pattern of the standard screening 
clinical characteristics, observed simultaneously 
for every patient. We also needed the quantitative 
descriptor of the inter-patient differences 
(Pi,HL1)  in these patterns, which is to be used 
as input for diagnostic and prognostic decisions. 
We quantified these differences simply in terms 
of the number of differences in the pattern 
relationships, when a patient’s clinical pattern is 
compared to a baseline reference pattern HL1 
(16).  

The need for considering not only the tumor 
mass, but also the pattern, reflecting the patient’s 
actual clinical status, is exemplified in Fig. 6, 
which shows 10 different patients, who had 
identical tumor masses, but had quite different 
survival from each other, because they had 10 
different patterns of their total parameters. The 
most important result of our new analytical 
paradigm applied to HCC is that there is a 
definite proportionality between the survival and 
the inter-patient differences of their composite 
characteristic clinical patterns at baseline 
diagnosis. Our overall results have shown (see 
Fig. 7) that this (linear) relationship between 
survival and pattern differences are found for all 
tumor masses observed in the two cohorts, but 
was not observed when only the actual clinical 
values of any considered parameter such as AFP 
or bilirubin were tested for this relationship. 
Rather, it is the total pattern of all the parameter 
values and the differences in the relationships 
between these total patterns and the reference 
pattern that, together with Tmass, best reflects 
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the patient prognosis at baseline. This seems to 
us to indicate that all the parameters that we 
routinely measure in clinical practice are not 
stand-alone in their significance, but appear to 
interact through the internal functional disease-
related process with all the other parameters. In 
addition, we believe our results show that it is 
important to consider these interaction patterns 
in a strictly personalized way for each patient, 
because without this relationship pattern of 
parameters that are unique for each patient, we 
cannot obtain this clear relationship to survival.  

Together, the clinical prognosis at the time of 
baseline patient evaluation is then calculable as 
OVS = TDD - Tonset (total disease duration minus 
the time from disease onset to diagnosis). The 
Excel worksheet implementation of the 
computational algorithm, obtained as result of 
our work, can be found and downloaded as 
Supplementary Material to Ref 16. In that tool, 
the user enters the raw clinical data and the 
worksheet automatically computes the prognosis.  

The final point to emphasize is the 
identification of the source of the new 
information, which led to our findings. 
Conventional clinical analysis typically considers 
a limited number of parameters in relation to an 
end-point such as tumor size or patient survival. 
This is typically done using standard statistical 
techniques, which consider each parameter 
individually and independently. This means that 
patient’s information is considered via separate 
parts of the total clinical picture. If interacting 
parameters have to be considered, incorporating 
them fully into the calculations lead to prohibitive 
complexity and need for large number of patients 
in a study to maintain sufficient power. Thus, the 
interaction considerations have frequently been 
restricted to a few parameters such as platelets, 
where the thrombocytopenia that reflects the 
fibrotic process of cirrhosis, was recently shown 
to be related to small size of HCC (20) and by 
contrast, massive size HCCs often have normal 
platelet counts or even thrombocytosis (21). 

The standard analytic approach thus destroys 
information about the total coherence of the 

clinical parameter values, which in turn 
characterizes the personal uniqueness of the 
clinical pattern for each patient. By contrast, the 
Network Phenotyping Strategy approach 
presented here, describes quantitatively and in 
directly clinically interpretable form a total 
interacting system that reflects both parameter 
values, relationships between values and their 
individual coherence for every patient.  

The NPS-based approach described here led 
us to identify 15 different composite HCC 
subtypes, each clinically characterized by 
increasing difference of the patient pattern from 
normal pattern. The major finding was the 
linearity of relationship of these quantitative 
clinical pattern characteristics to Tonset and OVS 
for the patients with their personal clinical 
statuses in between extremes of normal versus 
maximally different baseline clinical patterns 
(Fig. 5). This ordering of the clinical statuses of 
patients provides a predictable correction of the 
OVS, leading to the commonality of the total 
disease duration (TDD) of all patients in all 15 
groups (see horizontal line in Fig. 7). These 
results also highlight the nearly identical TDD in 
all patients, which must therefore be a 
characteristic of the HCC disease in people, as 
opposed to the variable quantity of Tonset, which 
is impacted by multiple macro- and micro-
environmental factors.  

Throughout the time of disease onset, this 
common TDD is “spanned” by spectrum of slowly 
growing to aggressive tumors.  We understand a 
slowly growing tumor as one in which there is 
small or no growth of the tumor size on the scan 
at 2 different time intervals. By contrast, 
aggressive tumors are considered to be those 
which increase in size within the same time, often 
associated with constitutional symptoms and 
worsening liver function parameters, which 
reflect the increased liver damage associated 
with an enlarging tumor.  Our results show 
(Fig.7) that there is a continuum of tumor states 
between these two extremes (benign is at 
(Pi,HL1)=0, aggressive at (Pi,HL1)=-15). Thus, 
each individual patient has his/her characteristic, 
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variable Tonset, which in its value integrates 
contributions from both Tmass and from the 
individual pattern of clinical characteristics. 
When this characterization of the personal 
variability of the disease progression, which in 
turn describes the degree of aggressiveness of 
the individual patient’s tumor, is combined with 
the finding that there is a constant TDD, then OVS 
can be then more reliably estimated. 
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