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Preface

Charles University in Prague and particularly Department of Applied
Mathematics (KAM), Computer Science Institute of Charles University
(IUUK) and its international centre DIMATIA, are very proud that they
are hosting one of the very few International REU programmes which are
funded jointly by NSF and the Ministry of Education of Czech Republic
(under the framework of Kontakt programmes ME 521, ME 886 and ME
09074). This programme is a star programme at both ends and it exists for
more than a decade since 1999. Repeatedly, it has been awarded for its ac-
complishments and educational excellence. The program of Kontakt on the
Czech side was not renewed for year 2014 and 2015 and thus the programme
was financed jointly by Section Informatics of MFF and our grants CE-ITI
P202/12/G061, ERCCZ LL1201 and SVV 202-09/260332 (Discrete Models
and Algorithms) as well as Department of Applied Mathematics (KAM)
and Computer science Institute of Charles University (IUUK). We thank
all the contributors and hope that the future will bring us a more stable
support. Nevrtheless all our institutions are proud sponsors of this unique
activity.

This booklet reports just the programme in 2015. I thank to Tomáš
Masař́ık, the Czech mentor of this year, for a very good work both during
the programme itself and after.

Prague, October 25, 2015
Jaroslav Nešetřil

DIMACS/DIMATIA Research Experiences for Undergraduates (REU)
is a joint program of the DIMATIA center, Charles University in Prague,
The Czech Republic and DIMACS center, Rutgers University, The State
University of New Jersey, NJ, USA. This year’s participants from Charles
University were students Adam Juraszek, Jitka Novotná, Martin Töpfer,
Tomáš Toufar, Jan Voborńık and Peter Zeman. I (Tomáš Masař́ık) was
their graduate coordinator. I participated in the scientific work as well as I
took care of organizing the DIMATIA’s part of the program both at Rutgers
and in Prague.

We spent our time in Piscataway plesantly together with more than
thirty students from universities all over the United States. We partici-
pated in the first part of the program at Rutgers University from May 31th
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to July 19th. This part of the program mainly consists of open mathemat-
ical problems being solved by students and led by their mentors. Students
attended several lectures, workshops and tutorials. By the end they also
participated in a Field Trip to Rutgers Cancer Institute of New Jersey.

In addition to the scientific program, an important part of the REU is
an intercultural experience. At the beginning, a whole day was dedicated
to presentations of the Czech Republic, its customs and culture as well as
to demonstrations of different cultures of the American students. Moreover,
the students together participated in many sport activities, several hiking
and sightseeing trips.

Six American students were selected to join, together with their graduate
coordinator, the Czech students in the second part of the REU which took
place at Charles University in Prague from July 20st to August 1st. The US
students were Hadley Black, Linda Cook, Asa Goodwillie, Rayanne Luke,
Kevin Sun and Andrew Wells. Their graduate coordinator was Matt Charn-
ley. In Prague, the students attended a series of lectures given by professors
mainly from the Department of Applied Mathematics and the Computer
Science Institute of Charles University. They also had the opportunity to
attend the Midsummer Combinatorial Workshop XXI held from July 27th
to July 31st.

All the students got an important experience with research and life
abroad. For some of them, the program will certainly be an important
milestone in their future scientific career. Many results and thoughts from
the last summer are still being improved and some of them are going to be
submitted to international conferences.

This booklet presents the results of the Czech students stemming from
the REU programme and reports of the American students about their
lectures at Prague.

For me it was a perfect experience and I am glad that I could have been
a part of this program.

At the end, I would like to thank all the participating students, people
at DIMACS and other organizers. They all were absolutely perfect. Also an
important role played people from the both our departments at Prague. I
thank them for many helpful comments, encouraging advices and an overal
support.

Prague, Winter 2015
Tomáš Masař́ık,

Charles University in Prague
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The DIMACS/DIMATIA Exchange program has been going on for many
years and is a valuable experience for all involved. This year, our DIMA-
TIA Program group consisted of Hadley Black (UC-Santa Cruz), Linda
Cook (Rutgers), Asa Goodwillie (Amherst College), Rayanne Luke (SUNY-
Geneseo), Kevin Sun (Rutgers), and Andrew Wells (Catholic University). I
was the graduate coordinator from Rutgers this year, and it was a pleasure
to help them with the program at Rutgers, as well as the trip to Charles
University. Not only did they have a great time on the trip to Prague, they
also learned a lot of interesting mathematics.

During the first week, we attended lectures from faculty and visitors of
Charles University. These lectures were given by Jirka Fiala, John Gimbel,
and Andrew Goodall. The American students have written up summaries
and discussions about each of these talks, which can be seen on the fol-
lowing pages. These workshops were meant to cover interesting topics in
discrete math and combinatorics and help prepare the students for the Mid-
summer Combinatorial Workshop the following week. I found the lectures
very interesting, and feel like the students got a lot out of them as well.

The second week of the Prague trip consisted of the Midsummer Combi-
natorial Workshop. Even though most of the material was very advanced, I
know it was a great experience for the participants. Having the opportunity
to attend a professional math conference, especially as an undergraduate, is
something that does not happen very often. With the caliber of guests and
presenters at this conference, this really was a once-in-a-lifetime experience
for all of us. Even though I am not looking to study combinatorics in my
math career, it was a great experience for me as well.

Thanks are in order for all of the people who made this possible. On
the Rutgers end, the entire DIMACS staff worked tirelessly to make this
trip happen. Gene Fiorini, the head of the REU Program, has been doing
this for many years, and always keeps things running like they should, so
they all deserve our thanks for that. At Charles University, the KAM MFF
faculty and staff gave us all the assistance we needed for our stay in Prague.
We would especially like to thank Jaroslav Nešetřil, Tomáš Masař́ık, and all
of the other Czech REU students for being our welcoming committee and
guides for our two weeks in Prague. Thank you very much. None of this
would have been possible without all of your help and guidance.

Personally, I would also like to thank our REU participants from Rut-
gers. You all were a pleasure to work with for the 7 weeks in New Jersey
as well as the two weeks in Prague. I hope you got as much out of the
experience as I did, both mathematically and from the other activities of
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the weeks. Best of luck with everything.

Matt Charnley
Rutgers University

List of sponsors
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The participants of the Internation REU programme at Rutgers University.



The participants of the Prague part of the programme.



Midsummer Combinatorial Workshop XXI—conference group photos.
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Parameterized complexity of fair

deletion problems.

Tomáš Masař́ık, Tomáš Toufar

Abstract

Edge deletion problems are those where given a graph G and a
graph property π, the goal is to find a subset of edges such that
after its removal the graph G will satisfy the property π. Typically,
we want to minimize the number of edges removed. In fair deletion
problem we change the objective: we minimize the maximum number
of edges incident to a single vertex.

We study the parameterized complexity of fair deletion problems
with respect to the structural parameters of the tree-width, the path-
width, the size of a minimum feedback vertex set, the neighborhood
diversity, and the size of minimum vertex cover of graph G.

We prove the W[1]-hardness of the fair MSO edge-deletion with
respect to the first three parameters combined. Moreover, we show
that there is no algorithm for fair MSO edge-deletion running in time

no(
√
k), where n is the size of the graph and k is the sum of the

first three mentioned parameters, provided that the Exponential Time
Hypothesis holds.

On the other hand, we provide an FPT algorithm for the fair MSO
edge-deletion parameterized by the size of minimum vertex cover and
an FPT algorithm for the fair MSO vertex-deletion parameterized by
the neighborhood diversity.

1 Introduction

We study the computational complexity of fair deletion problems. Deletion
problems are a standard reformulation of some classical problems in combi-
natorial optimization examined by Yannakakis [18]. For a graph property
π we can formulate an edge deletion problem. That means, given a graph
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G = (V,E), find the minimum set of edges F that need to be deleted for
graph G′ = (V,E \ F ) to satisfy property π. A similar notion holds for the
vertex deletion problem.

Many classical problems can be formulated in this way such as minimal
vertex cover, maximum matching, maximal edge cut or minimal
feedback arc set. For example minimal vertex cover is formulated
as a vertex deletion problem since we aim to find a minimum set of vertices
such that the rest of the graph forms an independent set. An example of
an edge deletion problem is perfect matching: we would like to find a
minimum edge set such that resulting graph has all vertices being of degree
at most one. Many of such problems are NP-complete [17, 1, 12].

Fair deletion problems are such modifications where the cost of the so-
lution should be split as evenly as possible between all participants. More
formally, the fair edge deletion problem for a given graph G = (V,E)
and a property π finds a set F which minimizes the maximum degree of
graph G∗ = (V, F ) where graph G′ = (V,E \ F ) satisfies the property π.

We focus on fair deletion problems with properties definable in monadic
second order (MSO) logic. Our work extends the result of Kolman et al. [11].
They showed an XP algorithm for slightly different version of fair deletion
problems definable by MSO2 formula on graphs of bounded tree-width. The
difference is that the formula should be satisfied for the removed set F , not
only for resulting graph G′. We give formal definitions of problems.

Definition 1.1 (Fair MSO edge-deletion).

Input: An undirected graph G, an MSO formula ψ with
one free edge-set variable, and a positive integer
k.

Question: Is there a set F ⊆ E(G) such that G |= ψ(F )
and for every vertex v of G, the number of edges
in F incident with v is at most k?

This problem was introduced by Lin and Sahni in [14]. Similarly, fair
vertex deletion problem finds, for a given graph G = (V,E) and a
property π, the solution, which is the minimum of maximum degree of
graph G∗ = (W,E) where graph G = (V \W,E) satisfy property π. Those
problems are usually NP-complete as well [14].
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Definition 1.2 (Fair MSO vertex-deletion).

Input: An undirected graph G, an MSO formula ψ with
one free vertex-set variable, and a positive inte-
ger k.

Question: Is there a set W ⊆ V (G) such that G |= ψ(W )
and for every vertex v of G, it holds that |N(v)∩
W | ≤ k?

Courcelle and Mosbah [5] introduced a semiring homomorphism frame-
work that can be used to minimize various functions over all sets satisfying
a given MSO formula. A natural question is whether this framework can be
used to minimize the fair objective function. The answer is no, as we ex-
clude the possibility of FPT algorithm under reasonable assumption. Note
that there are semirings that capture the fair objective function, but their
size is of order ntwG, so this approach will not lead to an FPT algorithm.

1.1 Our results

We prove that the XP algorithm given by Kolman et al. [11] is almost
optimal under exponential time hypothesis (ETH) for both edge and vertex
version.

Theorem 1.3. If there is an FPT algorithm for Fair MSO edge-dele-
tion parameterized by the size of the formula ψ, the pathwidth of G, and
the size of smallest feedback vertex set of G combined, then FPT = W[1].
Moreover, let k denote pw(G) + fvs(G). If there is an algorithm for Fair

MSO edge-deletion with running time f(|ψ|, k)no(
√
k), then Exponential

Time Hypothesis fails.

Theorem 1.4. If there is an FPT algorithm for Fair MSO vertex-
deletion parameterized by the size of the formula ψ, the pathwidth of G,
and the size of smallest feedback vertex set of G combined, then FPT = W[1].
Moreover, let k denote pw(G) + fvs(G). If there is an algorithm for Fair

MSO edge-deletion with running time f(|ψ|, k)no(
√
k), then Exponential

Time Hypothesis fails.

On the other hand we show some positive algorithmic results.

Theorem 1.5. Fair MSO1 vertex-deletion is in FPT with respect to
the neighborhood diversity nd(G).
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Figure I.1: Hierarchy of graph pa-
rameters. An arrow indicates that
a graph parameter upper-bounds the
other. So, hardness results are im-
plied in direction of arrows and FPT
algorithms are implied in the reverse
direction.

Theorem 1.6. Fair MSO2 edge-deletion is in FPT with respect to the
minimum size of vertex cover vc(G).

2 Preliminaries

Throughout the paper we deal with simple undirected graphs. For further
standard notation in graph theory, we refer to Diestel [6]. For terminol-
ogy in parameterized computational complexity we refer to Downey and
Fellows [7].

2.1 Graph parameters

We define several graph parameters being used throughout the paper. We
start by definition of vertex cover being a set of vertices such that their
neighborhood is an independent set. By vc (G) we denote the size of small-
est such set. This is the strongest of considered parameters and it is not
bounded for any natural graph class.

A feedback vertex set is a set of vertices whose removal leaves an acyclic
graph. Again, by fvs (G) we denote the size of smallest such set.

Another famous graph parameter is tree-width introduced by Bertelé
and Brioshi in [3].

Definition 2.1 (Tree decomposition). A tree decomposition of a graph G
is a pair (T,X), where T = (I, F ) is a tree, and X = {Xi | i ∈ I} is a family
of subsets of V (G) such that:

• the union of all Xi, i ∈ I equals V ,

• for all edges {v, w} ∈ E, there exists i ∈ I, such that v, w ∈ Xi and
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• for all v ∈ V the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition is max(|Xi| − 1). The tree-width of
a graph tw (G) is the minimum width over all possible tree decompositions
of the graph G. The parameter of path-width (analogically pw (G)) is almost
the same except the decomposition need to form a path instead of a general
tree.

A less known graph parameter is the neighborhood diversity introduced
by Lampis [13].

Definition 2.2 (Neighborhood diversity). The neighborhood diversity of a
graph G is denoted by nd (G) and it is the minimum size of a partition of
vertices into classes such that all vertices in the same class have the same
neighborhood, i.e. N(v) \ {v′} = N(v′) \ {v}, whenever v, v′ are in the same
class.

It can be easily verified that every class of neighborhood diversity is
either a clique or an independent set. Moreover, for every two distinct
classes C,C ′, either every vertex in C is adjacent to every vertex in C ′, or
there is no edge between C and C ′. If classes C and C ′ are connected by
edges, we refer to such classes as adjacent.

2.2 Parameterized problem and Exponential Time Hy-
pothesis

Definition 2.3 (Parameterized problem). Let Σ be a finite alphabet. A pa-
rameterization of Σ∗ (set of all words over the alphabet Σ) is a polynomial-
time computable mapping κ : Σ∗ → N. A parameterized language is a set
of pairs (x, κ(x)) where x is a word and κ is its parameterization.

We now briefly introduce the Exponential Time Hypothesis (ETH for
short). It is a complexity theoretic assumption introduced by Impagliazzo,
Paturi and Zane [10]. It is useful for proving lower bounds on NP-hard
combinatorial problems. We follow a survey on this topic by Fellows et
al. [9], which contains more details on this topic.

The hypothesis states that there is no subexponential time algorithm for
3-SAT if we measure the time complexity by the number of variables in the
input formula, denoted by n.

Exponential Time Hypothesis [10] There is a positive real s
such that 3-SAT with parameter n cannot be solved in time 2sn(n+
m)O(1).
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Definition 2.4 (Standard parameterized reduction). We say that param-
eterized language L reduces to parameterized language L′ by the standard
parameterized reduction if there are functions f : N→ N, g : N→ N and
h : Σ∗ × N→ Σ∗ such that:

• function h is computable in time g(k)|x|c for a constant c,

• (x, k) ∈ L if and only if (h(x, k), f(k)) ∈ L′.

For preserving bounds obtained from the ETH, the asymptotic growth
of the function f need to be as slow as possible.

2.3 Logic systems

We will heavily use graph properties that can be expressed in certain types
of logical systems. In the paper it is Monadic second-order logic (MSO)
where monadic means that we allow quantification only over sets not over
functions as it is in full second order logic.

We distinguish MSO2 and MSO1. In MSO1 quantification only over sets
of vertices is allowed and we can use the predicate of adjacency adj(u, v)
returning true whenever there is an edge between vertices u and v. In MSO2

we can additionally quantify over sets of edges and we can use the predicate
of incidence inc(v, e) returning true whenever a vertex v belongs to an edge
e.

2.4 Courcelle’s theorem

The famous Courcelle’s metatheorem [4] proves that there is an FPT al-
gorithm deciding any property definable in MSO2 on graphs of bounded
tree-width.

Theorem 2.5 (Courcelle with free variables [2]). For any MSO language
formula φ with free set variables A1, A2, . . . , Ap and for any k > 0 there
exists an FPT algorithm that given a graph G with tw (G) ≤ k find sets
A1, A2, . . . , Ap such that G |= φ(A1, A2, . . . , Ap).

3 Hardness results

To prove the hardness of fair deletion problems, we provide a reduction
from a variant of MSO partitioning. The classical MSO partitioning was
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introduced by Rao [16]. In our variant, we study equitable partitions instead
of arbitrary partitions. We say that a partition is equitable if the sizes of any
two classes differ by at most one. The equitable version of MSO partitioning
is as follows:

Definition 3.1 (Equitable MSO partition).

Input: A graph G, an MSO formula φ with a free vertex-
set variable, and a positive integer r ≥ 2.

Question: Is there an equitable partition of vertices into r
sets such that each class of the partition satisfies
φ?

Equitable MSO partition generalizes several problems already stud-
ied before. For example, if the formula φ(X) is “X is independent”, then
we get an instance of Equitable coloring [9]. If we set φ(X) to “X is
connected”, then we get an instance of Equitable connected partition
[8].

We first prove the hardness of Equitable MSO partition with re-
spect to |φ|,pw (G), fvs (G), and r combined using the result of Enciso et
al. [8]. We then construct a parameterized reduction from Equitable
MSO partition to Fair MSO edge-deletion to complete the proof of
Theorem 1.3.

Theorem 3.2. Equitable MSO partition is W[1]-hard with respect to
|φ|, pw(G), fvs(G), and r (the number of partitions) combined. Moreover,
let k be r + pw(G) + fvs(G). If there exist an algorithm running in time

f(|φ|, k)no(
√
k), then the Exponential Time Hypothesis fails.

Proof. Since Equitable connected partition is just a special case of
Equitable MSO partition, the first part follow directly from the result
of Enciso et al. [8]. The second part, though not mentioned explicitly also
follows from [8]. The proof is based on the reduction of Multicolored
clique of size ` to Equitable connected partition with fvs,pw, r of or-
der O(`2). Therefore, an algorithm for Equitable connected partition

with running time f(k)no(
√
k) would lead to an algorithm for Multicol-

ored clique of size k with running time f(k)no(k). It was proven by
Lokshtanov, Marx, and Saurabh [15] that Multicolored clique of size
k cannot be solved in time f(k)no(k) unless ETH fails.

We now sketch the reduction from Equitable MSO partition to Fair
MSO edge-deletion. Let us denote by n the number of vertices of G and
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for simplicity assume that r divides n. We add r new vertices s1, . . . , sr
called selector vertices, each corresponding to one class of partition. We
connect each of these vertices with each vertex of G. Note that this can
increase the path-width or the size of minimum feedback vertex set by at
most r. The partition will be determined by deleted edges from s1, . . . , sr to
V . If a vertex v ∈ V (G) is incident with a deleted edge {v, si}, then v will
belong to the class i. The formula needs to ensure several things; formal
description will be shown later:

• no edges from the original graph are deleted,

• each vertex v of G is incident with exactly one deleted edge, and

• every class of the partition satisfies φ.

The equitability of the partition will be handled by the fair objective
function. Note that we always delete n edges. Those n edges are incident
with r vertices, so the best possible fair cost is n/r. A solution with fair
cost n/r corresponds to an equitable partition.

However, we need to deal with two problems. First, we need to dis-
tinguish the added vertices from the vertices of the original graph. To
accomplish that, we add more vertices than just s1, . . . , sr. Next, we need
to handle the case when r does not divide n, as the condition that solution
has fair cost dn/re does not work. For example, partitioning the vertex
set of size 7 into 3 sets of sizes 3, 3, 1 has the fair cost 3 = d7/3e, but the
partition is not equitable.

Let us now describe the reduction formally.

of Theorem 1.3. Let G = (V,E) be a graph with |V | ≥ 2, let r be the
desired number of classes in the partition, and finally let φ be the formula
with one free vertex-set variable. Denote by n the number of vertices of G,
and let r′ be the smallest nonnegative integer such that r divides n+ r′.

We add r vertices called selector vertices and connect each one of them
to each vertex of G. Then, to every selector vertex we attach a vertex called
a marker vertex. Finally, we choose r′ selector vertices and subdivide the
edges between those selector vertices and the marker vertex adjacent to it.
The new vertices created in this way are called padding vertices. Denote the
new graph by G′.

If an edge connects a selector vertex to a padding vertex, it is called
padding edge. Edges between selector vertices and vertices of the original
graph are called selector edges (see Fig. I.2).
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Figure I.2: Reduction

Consider a set F ⊆ E(G′) satisfying the following conditions:

(i) no edge other than a padding edge or a selector edge is in F ,

(ii) all padding edges are in F , and

(iii) every vertex of G is incident to exactly one edge of F .

Such a set is called a selector set. Every selector set encodes a parti-
tion of V (G) into r classes in the following way: if F is a selector set
and vi is a selector vertex, then a class induced by this vertex is the set
{v ∈ V (G) | {v, vi} ∈ F}. It follows from condition (iii) that the set of all
such classes forms a partition of V (G). We can also construct a selector set
given a partition V (G). Note that a selector set is uniquely determined by
a partition up to a permutation of selector vertices.

In order to specify a φ-partition, we need to add the following condition:

(iv) every class induced by F satisfies φ.

We now describe a formula partφ(F ) with one free vertex set such that
G′ |= partφ(F ) if and only if F satisfies (i)-(iv). The building blocks for the
formula partφ(F ) are as follows:

marker(v) ≡ (deg(v) = 1)
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padding(v) ≡ (∃w)
(
marker(w) ∧ adj(v, w) ∧ (deg(v) = 2)

)
selector(v) ≡ (∃w)(marker(w) ∧ adj(v, w) ∧ ¬padding(v))

∨ (∃w)(padding(w) ∧ adj(v, w) ∧ ¬marker(v))

orig(v) ≡ ¬marker(v) ∧ ¬padding(v) ∧ ¬selector(v)

padding edge(e) ≡ (∃v, w)(inc(e, v) ∧ inc(e, w) ∧ padding(v)∧
selector(w))

selector edge(e) ≡ (inc(e, v) ∧ inc(e, w) ∧ selector(v) ∧ orig(w))

selector set(F ) ≡ (∀e ∈ F )(padding edge(e) ∨ selector edge(e))

∧ (∀e)(padding edge(e)→ e ∈ F )

∧ (∀v)(orig(v)→ (∃=1e ∈ F )(inc(e, v))

is in class(w, u, F ) ≡ (selector(u) ∧ orig(w)) ∧ (∃e ∈ F )(inc(u, e)∧
inc(w, e))

class(W,u, F ) ≡ (∀w ∈W )(is in class(w, u, F ))

∧ (∀v)(is in class(v, u, F )→ v ∈W )

partφ(F ) ≡ selector set(F )

∧ (∀v,W )(selector(v) ∧ class(W, v, F )→ φ(W ))

Marker vertices are the only vertices of degree one: padding vertices and
selector vertices have degree at least two, and all vertices in the original
graph are adjacent to r ≥ 2 selector vertices. If a vertex is adjacent to a
marker vertex and has degree two, it is a padding vertex: Since we assumed
|V | ≥ 2, selector vertices have degree at least three. A vertex with degree
two adjacent to a marker vertex is necessarily a padding vertex. A selector
can be adjacent either to a marker vertex (the first part of the disjunction
in the selector formula), or to a padding vertex (the second part of the
disjunction in the formula). Clearly, all remaining vertices are vertices of the
original graph. The fact that formulae for padding edges and selector edges
match their definition is immediate. The formula selector set(F ) describes
exactly conditions (i), (ii), and (iii) that define a selector set. The formula
is in class(w, u, F ) is true if and only if the vertex w ∈ V (G) is in the class
induced by the vertex u in the partition determined by F . The formula
class(W,u, F ) is true if and only if W is a class induced by the vertex u
in the partition determined by F . Finally, the correctness of partφ is clear
from the previous observations.

The described reduction will map an instance (G,φ, r) of Equitable
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MSO partition to instance (G′,partφ, dn/re) of Fair MSO edge-dele-
tion (where G′, partφ, and n are defined as above).

We now prove that described reduction is indeed a valid parameterized
reduction from Equitable MSO partition to Fair MSO edge-dele-
tion. Given an equitable partition such that each class satisfies φ, we set
F as a selector set that induces the given partition – we need to match
the smaller classes with selector vertices adjacent to padding vertices. It
is straightforward to check that F satisfies partφ and the fair cost of F is
dn/re.

For the other direction, let F be a set satisfying partφ with fair cost
dn/re. The number of deleted edges is always n + r′, since we have r′

padding edges that have to be deleted, plus we have to delete exactly one
edge incident to every original vertex. All those edges are incident to r
selector vertices, the best achievable fair cost is therefore (n+r′)/r = dn/re.
In an optimal solution, every selector has exactly dn/re incident edges. This
means that every selector vertex adjacent to a padding vertex induces a class
with dn/re − 1 vertices and every other selector vertex induces a class with
dn/re vertices. Hence, the partition is equitable. By the construction of
partφ, every class in the partition has to satisfy φ.

Let us now discuss the parameters. If G has a feedback vertex set S
of size k, then the union of S with all selector vertices of G′ is a feedback
vertex set of G′. Therefore, fvs(G′) ≤ fvs(G) + r. Since we add at most
3r − 1 vertices, we have pw(G′) ≤ pw(G) + 3r − 1. Finally, the size of the
formula partφ can be bounded in terms of size of the formula φ. The whole
construction can be clearly carried out in polynomial time.

As we have tw(G) ≤ pw(G) and tw(G) ≤ fvs(G) + 1 for every graph G,
we immediately get the following corollary:

Corollary 3.3. If there is an FPT algorithm for Fair MSO edge-dele-
tion parameterized by the size of the formula ψ and the tree-width of G
combined, then FPT = W[1]. Furthermore, if there is an algorithm for Fair

MSO edge-deletion with running time f(|ψ|, tw(G))no(
√

tw(G)), then the
Exponential Time Hypothesis fails.

We now sketch the proof of Theorem 1.4:

of Theorem 1.4. The idea of reduction is essentially the same. Now we need
to encode the partition by deleting vertices. We subdivide every padding
edge and every selector edge (note that this does not increase the size of
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smallest feedback vertex set and can increase the path-width by at most
one) Then, instead of deleting padding or selector edges, we delete the
corresponding subdividing vertices. To achieve this, we need to update the
formula accordingly; the details are left to the reader.

As before, we obtain the following corollary for parameterization by
tree-width.

Corollary 3.4. If there is an FPT algorithm for Fair MSO vertex-
deletion parameterized by the size of the formula ψ and the tree-width
of G combined, then FPT = W[1]. Furthermore, if there is an algorithm for

Fair MSO vertex-deletion with running time f(|ψ|, tw(G))no(
√

tw(G)),
then the Exponential Time Hypothesis fails.

4 FPT algorithms

We now turn our attention to FPT algorithms for fair deletion problems.

4.1 FPT algorithm for parameterization by neighbor-
hood diversity

Definition 4.1. Let G = (V,E) be a graph of neighborhood diversity k
and let N1, . . . , Nk denote its classes of neighborhood diversity. A shape of
a set X ⊆ V in G is a k-tuple s = (s1, . . . , sk), where sk = |X ∩Ni|.

We denote by s the complementary shape to s, which is defined as the
shape of V \X, i.e. s = (|N1| − s1, . . . , |Nk| − sk).

Proposition 4.2. Let G = (V,E) be a graph, π a property of a set of
vertices, and let X,Y ⊆ V be two sets of the same shape in G. Then X
satisfies π if and only if Y satisfies π.

Proof. Clearly, we can construct an automorphism of G that maps X to
Y .

Definition 4.3. Let r be a non-negative integer and (s1, . . . , sk), (t1, . . . , tk)
be two shapes. Theuuu shapes are r-equivalent, if for every i:

• si = ti, or

• both si, ti are strictly greater than r,
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and the same condition hold for the complementary shapes s, t.

The following proposition gives a bound on the number of r-nonequiva-
lent shapes.

Proposition 4.4. For any graph G of neighborhood diversity k, the number
of r-nonequivalent shapes is at most (2r + 3)k.

Proof. We show that for every i, there are at most (2r + 3) choices of si.
This holds trivially if |Ni| ≤ 2r + 3. Otherwise we have following 2r + 3
choices:

• si = k and si > r for k = 0, 1, . . . , r, or

• both si, si > r, or

• si > r and si = k for k = 0, 1, . . . , r.

The next lemma states that the fair cost of a set can be computed from
its shape in a straightforward manner. Before we state it, let us introduce
some auxiliary notation.

If a graph G of neighborhood diversity k has classes of neighborhood di-
versity N1, N2, . . . , Nk, we write i ∼ j if the classes Ni and Nj are adjacent.
If the class Ni is a clique, we set i ∼ i. Moreover, we set ηi = 1 if the class
Ni is a clique and ηi = 0 if it is an independent set. The classes of size one
are treated as cliques for this purpose.

Lemma 4.5. Let G = (V,E) be a graph of neighborhood diversity k and let
Ni be its classes of neighborhood diversity. Moreover, let X ⊆ V be a set of
shape s. Then the fair vertex cost of X is

max
i

∑
j:i∼j

sj − ηi.

Proof. It is quite straightforward to check that vertex v ∈ Ni has exactly∑
j:i∼j sj − ηi neighbors in X.

Our main tool is a reformulation of Lemma 5 from [13]:
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Lemma 4.6. Let ψ be an MSO1 formula with one free edge-set variable,
qE vertex element quantifiers, and qS vertex set quantifiers. Let r = 2qSqE.
If G = (V,E) is a graph of neighborhood diversity k and X,Y ⊆ V are two
sets such that their shapes are r-equivalent, then G |= ψ(X) if and only if
G |= ψ(Y ).

The last result required is the MSO1 model checking for graphs of boun-
ded neighborhood diversity [13]:

Theorem 4.7. Let ψ be an MSO1 formula with one free vertex-set variable.
There exists an FPT algorithm that given a graph G = (V,E) of neighbor-
hood diversity k and a set X ⊆ V decides whether G |= ψ(X). The running
time of the algorithm is f(k, |ψ|)nO(1).

We now have all the tools required to prove Theorem 1.5.

of Theorem 1.5. Let ψ be an MSO1 formula in the input of Fair MSO1

vertex-deletion. Denote by qS the number of vertex-set quantifiers in
ψ, by qE the number of vertex-element quantifiers in ψ, and set r = 2qSqE .

By Proposition 4.2, the validity of ψ(X) depends only on the shape of
X. Let us abuse notation slightly and write G |= ψ(s) when “X has shape
s” implies G |= ψ(X). Similarly, Lemma 4.5 allows us to refer to the fair
cost of a shape s.

From Lemma 4.6 it follows that the validity of ψ(s) does not depend on
the choice of an r-equivalence class representative. The fair cost is not same
for all r-equivalent shapes, but since the fair cost is monotone in s, we can
easily find the representative of the minimal fair cost.

Suppose we have to decide if there is a set of a fair cost at most `. The
algorithm will proceed as follows: For each class of r-equivalent shapes, pick
a shape s of the minimal cost, if the fair cost is at most ` and G |= ψ(s),
output true, if no such shape is found throughout the run, output false.

By the previous claims, the algorithm is correct. Let us turn our atten-
tion to the running time. The number of shapes is at most (2r + 3)k by
Proposition 4.4, and so it is bounded by f(|ψ|, k) for some function f . The
MSO1 model checking runs in time f ′(|ψ|, k)nO(1) by Theorem 4.7, so the
total running time is f(|ψ|, k)f ′(|ψ|, k)nO(1), so the described algorithm is
in FPT.
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4.2 FPT algorithm for parameterization by vertex co-
ver

The FPT algorithm for parameterization by the size of minimum vertex
cover uses the same idea. We use the fact that every MSO2 formula can be
translated to MSO1 formula — roughly speaking, every edge-set variable is
replaced by vc (G) vertex-set variables.

We only sketch translation from MSO2 to MSO1, for the proof we refer
the reader to Lemma 6 in [13]. Let G = (V,E) be a graph with vertex
cover C = {v1, . . . , vk} and F ⊆ E a set of edges. We construct vertex
set U1, . . . , Uk in the following way: if w is a vertex such that an edge in
F connects w with vi, we put w into Vi. It is easy to see that the sets
U1, . . . , Uk together with the vertex cover v1, . . . , vk describe the set F .

The translation from set of edges into k sets of vertices is captured by
the following definition.

Definition 4.8. Let G = (V,E) be a graph with vertex cover v1, . . . , vk.
For a set F ⊆ E, we define the signature of F with respect to v1, . . . , vk as
the k-tuple U = (U1, . . . , Uk), where Ui = {w ∈ V | {w, vi} ∈ E}. If the
vertex cover is clear from the context, we refer to it as the signature of F
and denote it by S(F ).

In the original problem, we had an MSO2 formula ψ2 with one free edge-
set variable. By the translation, we obtain an MSO1 formula ψ with k free
vertex-set variables and k free vertex-element variables (the vertex-element
variables will describe the vertex cover; the formula need to have access to
a vertex cover and it will be useful to fix one throughout the whole run of
the algorithm).

We start by finding a vertex cover v1, . . . , vk (this can be done in FPT
[7]). Now, we want to find the sets U1, . . . , Uk such that:

G |= ψ(v1, . . . , vk, U1, . . . , Uk).

To find such k-tuple of sets, we need to extend the notion of shapes to
signatures.

Definition 4.9. Let G = (V,E) be a graph with vertex cover v1, . . . , vk,
and let U = (U1, . . . , Uk) be a collection of k subsets of V . Denote by
N1, . . . , N` the classes of neighborhood diversity of G. For j ∈ {1, . . . , `}
and I ⊆ {1 . . . k}, denote by I the set {1, . . . , k}\ I. Furthermore, we define
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SU (j, I) as

SU (j, I) =

∣∣∣∣∣∣Nj ∩
⋂
i∈I

Ui ∩
⋂
i∈I

(V \ Ui)

∣∣∣∣∣∣ .
The mapping SU is called the shape of a signature U .

The shapes defined in this way have properties similar to those defined
for neighborhood diversity; we only state those properties without proofs.

Definition 4.10. Two shapes S, S′ are called r-equivalent if for every
j ∈ {1, . . . , k}, I ⊆ {1, . . . , k} it holds that

• S(j, I) = S′(j, I), or

• both S(j, I), S′(j, I) are strictly greater than r.

As in the neighborhood diversity case, the number of r-nonequivalent
shapes is bounded by a function of r and k.

Proposition 4.11. Let G = (V,E) be a graph with vertex cover v1, . . . , vk
and denote by ` the neighborhood diversity of G. The number of r-nonequi-

valent shapes is at most (2r + 3)`2
k

.

We now state corresponding variants of Lemma 4.5 and Lemma 4.6.

Lemma 4.12. Let G = (V,E) be a graph with a vertex cover v1, . . . , vk and
let F be a subset of E.

The number of edges in F incident to vi is |Ui|. If w is a vertex different
from v1, . . . , vk, then the number of edges in F incident to w is |{i | w ∈ Ui}|.

Those quantities (and therefore the fair cost of F ) can be determined
from the shape of S(F ).

Lemma 4.13. Let G = (V,E) be a graph with a vertex cover v1, . . . , vk,
let ψ be an MSO1 formula with k free vertex-element variables and k free
vertex-set variables, and let U = (U1, . . . , Uk), W = (W1, . . . ,Wk) be two
signatures. If the shapes of U and W are r-equivalent, then:

G |= ψ(v1, . . . , vk, U1, . . . , Uk)

if and only if
G |= ψ(v1, . . . , vk,W1, . . . ,Wk).

of Theorem 1.6. The algorithm goes as follows:
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• we translate the MSO2 formula ψ2 with one free edge-set variable
to the MSO1 formula ψ with k vertex-set variables and k edge-set
variables.

• We find a vertex cover c1, . . . , ck.

• For each class of r-equivalent shapes, we pick the one achieving the
minimal fair cost, determine the signature U1, . . . , Uk and check whe-
ther G |= ψ(c1, . . . , ck, U1, . . . , Uk).

Similarly to Theorem 1.5, the algorithm is correct. Moreover, we do only
bounded number (Proposition 4.11) of MSO1 model checking, so the whole
algorithm runs in FPT time.

5 Open problems

The main open problem is whether the bound in Theorems 1.3 and 1.4 can
be improved to f(|ψ|, k)no(k/ log k) or even to f(|ψ|, k)no(k).

It could also be useful to have a similar bound or an FPT algorithm for
the classical version of fair deletion problems i.e. when an MSO formula is
checked only for a graph after the removal of edges.
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References

[1] Tadashi Ae, Toshimasa Watanabe, and Akira Nakamura. On the NP-
hardness of edge-deletion and -contraction problems. Discrete Applied
Mathematics, 6(1):63–78, 1983.

[2] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for
tree-decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.
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deletion problems, 2009.

[12] M. S. Krishnamoorthy and Narsingh Deo. Node-deletion np-complete
problems. SIAM Journal on Computing, 8(4):619–625, 1979.

[13] Michael Lampis. Algorithmic meta-theorems for restrictions of
treewidth. Algorithmica, 64(1):19–37, 2011.

28



[14] L. Lin and S. Sahni. Fair edge deletion problems. IEEE Trans. Com-
put., 38(5):756–761, May 1989.

[15] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds
based on the exponential time hypothesis. Bulletin of the EATCS,
105:41–72, 2011.
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Dominating Sets on Colored

Tournaments

Adam Juraszek, Jitka Novotná, Martin Töpfer

Our team decided to study the problem of dominating sets on colored
graph tournaments, which was offered to us by Hans Raj Tiwary. Although
related problems with various modifications, such as allowing non-transitive
colorings, were studied, we could find only one article on our topic ([1]). Its
author András Gyárfás conjectured that there always exists a dominating
set of size of at most three for three colors.

Our aim was either to prove his conjecture, or to reject it by finding
a counter-example. In order to do so, we were using techniques of con-
straint satisfaction and procedural programming for generating hypotheses
and proving them by methods of graph theory. Although we didn’t solve
the conjecture, we were able to create several programs and generate many
tournaments satisfying various properties.

1 Problem Description

Definition 1.1. A tournament is a complete graph with oriented edges.

Definition 1.2. A vertex v is dominated by vertex u if there is an edge uv.
Vertex u is then called the dominator of v. A dominating set is a set of
vertices such that every vertex of the graph is a dominator or is dominated
by at least one. A dominating set is said to be minimum if its size is the
smallest possible.

An example of a tournament and one of its minimum dominating sets is
shown on Figure II.1.
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(a) An example of a tournament
on 5 vertices

(b) A marked domination and a
dominating set thereof

Figure II.1: A tournament and its dominating set

Definition 1.3. A k-colored tournament is a tournament with each edge
having assigned one of k colors. A transitively k-colored tournament is a
k-colored tournament which satisfies an additional property on its edges
between every three vertices:

c = color(uv) = color(vw) =⇒ uw ∈ E(G) ∧ c = color(uw)

Conjecture 1.4. For every k, there exists p(k) such that every transitively
k-colored tournament contains a dominating set of size of at most p(k).

The conjecture holds trivially for k = 1 because transitively colored
tournaments form a linear order. In the case of k = 2, the tournament may
not contain an oriented cycle, therefore it also forms a linear order, resulting
in p(2) = 1.

We restrict ourselves to the problem of three colors, for which the con-
jecture is that p(k) = 3.

1.1 Example

The smallest possible transitively 3-colored tournament with minimum dom-
inating set of size three has 7 vertices. This graph is an example of a Paley
tournament. By using our constraint model we proved that there exists only
one such tournament, up to isomorphism. There is a noticeable symmetry
in the subgraphs induced by each color on Figure II.2.
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Figure II.2: A Paley tournament on 7 vertices with its transitive 3-colorings
and its color-induced subgraphs

2 Simple Arguments

As we were describing the problem as a constraint model, we made a few
observations.

Definition 2.1. A rainbow triangle is an oriented cycle of length three; we
also call it K3. A rainbow triangle must be colored by three distinct colors
in order to satisfy the condition of transitive coloring.

Observation 2.2. Every transitively 3-colored tournament is either iso-
morphic to a linear order, or it contains a rainbow triangle.

Observation 2.3. Every transitively 3-colored tournament with a mini-
mum dominating set of size of at least three has two edge-disjoint rainbow
triangles.

Using counting arguments we came up with the following lemma.

Lemma 2.4. A toumament must have at least 2D − 1 vertices in order to
support a minimum dominating set of size D.
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(d) Paley77=K3
with a marked

dominating set

Figure II.3: Substitution of K3 into Paley7

Proof. In every tournament on N vertices there exists a vertex which dom-
inates at least

⌈
N
2

⌉
vertices. A induced subgraph of a tournament is a

tournament.

3 Operations on Tournaments

While we were looking at the structure of tournaments, we described several
useful operations on them.

Definition 3.1. For the transitively k-colored tournaments G and H, a
substitution of H into G at vertex v ∈ G is a tournament Gv=H which
contains |H| copies of vertex v connected to the rest of the graph, while all
the copies of v form the graph isomorphic to H. The new graph Gv=H is

33



1

2

9

3

4

5

6

7

8

1 2

1 3

1 1

1 0

(a) A tournament on 13
vertices

1

2

9

3

4

5

6

7

8

1 2

1 3

1 1

1 0

(b) . . . with marked ver-
tices which are to be re-
moved

1

2

9

3

4

5

8

1 2

1 3

1 1

1 0

(c) The reduced tourna-
ment on 11 vertices

Figure II.4: Reduction of graph by removal of vertices

also a transitively k-colored tournament.

An example of substitution of K3 into Paley7 is shown on Figure II.3.
Substitution allows construction of larger graphs, but it cannot introduce

new dominators, except for trivial cases of substitution of K3 into K3. It
cannot be used for disproving the conjecture by finding a tournament with
a minimum dominating set of size four.

Definition 3.2. A reduction of a tournament is an operation which removes
some or all vertices which are not in any minimum dominating set.

Reduction does not change dominating sets in a way which we are in-
terested in. We used reduction to look for minimal transitively k-colored
tournaments with large minimum dominating sets. An example of reduction
is in Figure II.4.

Lemma 3.3. Every minimal transitively k-colored tournament is strongly
connected.

Proof. Every graph can be divided into strongly connected components
which form an acyclic graph. In the case of tournaments, this graph is
a path. All minimum dominating sets are in the first strongly connected
component.

Only strongly connected tournaments are interesting in our study. The
following observation was important for the performance of our constraint
model.
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Figure II.5: Illustration of inductive construction

Observation 3.4. A strongly connected tournament has a Hamiltonian
cycle.

4 Inductive Construction

Every tournament can be constructed by the introduction of a new vertex
and orientation/coloring of edges leading to all other vertices. The addition
of the new vertex can decrease the number of strongly connected compo-
nents and the size of the minimum dominating set arbitrarily and increase
them by one at most.

Lemma 4.1. The addition of vertex v increases the size of the minimum
dominating set if v dominates all vertices in the existing minimum domi-
nating sets and is dominated by a dominating set of the same size.

Proof. For construction of graphs with larger minimum dominating sets
(D + 1), it is sufficient to study edges incident to the first strongly con-
nected component. Vertex v must have both incoming and outgoing edges;
otherwise it would become a single dominator or would be dominated by
the existing dominating sets.

Following this idea we obtain the following: If v did not dominate a
vertex in some minimum dominating set S, then S would still be a minimum
dominating set of the graph.

The subtournament induced by vertices which were not in any minimum
dominating set must have a minimum dominating set of the size of at least
D. If it was smaller, then the minimum dominating set and vertex v would
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Figure II.6: An example of a 2-majority graph and its defining linear orders

dominate the whole tournament, forming a dominating set of size of at most
D.

The proof is illustrated in Figure II.5.

For the purposes of obtaining a tournament with a minimum dominating
set of size of at least 4, equality holds in the last part of the lemma.

5 k-majority Graphs

Definition 5.1. A k-majority graph is a graph induced by 2k − 1 linear
orders voting for orientations of edges.

An example illustrating the definition is shown on Figure II.6.

Lemma 5.2. 2-majority graphs have a minimum dominating set of size of
at most three. If they do not have a single dominator, then they have a
dominating set of size three on a rainbow triangle.

Proof can be found in [2].

Lemma 5.3. If all subgraphs induced by two of the three colors of a tour-
nament are acyclic, the tournament is a 2-majority graph.

Proof. An acyclic graph represents a partially ordered set which can be
extended into a linear order. Each edge of the tournament is in two of the
three subgraphs, therefore at least two subgraphs agree on the orientation
of the edge. The three linear orders derived from the subgraphs are those
needed by the definition of a 2-majority graph.

Examples of tournaments with a minimum dominating set of size three
which are or are not 2-majority graphs are in Figure II.7.
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Figure II.7: Examples of tournaments in respect to 2-majority
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6 Conclusion

We tried to exploit algorithmic generation of transitively 3-colored tour-
naments which helped us to reprove parts of [1] and to find examples of
graphs supporting our proofs. However, we didn’t prove nor disprove the
main conjecture.

There is more to study about generalizations of 2-majority graphs as
transitively 3-colored tournaments seem to be their approximation. It could
also be beneficial to describe other operations on tournaments and their
connection to dominating sets.
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On H-Topological Intersection

Representations of Graphs

Martin Töpfer, Jan Voborńık, Peter Zeman

Abstract

A lot is known about interval and chordal graphs. Chordal graph
generalize interval graphs since they can be represented as intersection
graphs of subtrees of some tree T . Many computational problems
turn out to be solvable in polynomial time on interval graphs, but
NP-complete on chordal graphs. For example, interval graphs can be
recognized in linear time, however it is NP-complete to decide whether
a graph can be represented as an intersection graph of subtrees of a
given tree. In this paper, we investigate what happens when we fix the
tree T . We show that the problem of recognition and the problem of
finding a minimum dominating set can be solved in polynomial time,
for T = Sd.

1 Introduction

The study of geometric representations of graphs is motivated by finding
ways to visualize some given data efficiently. Graph drawing and visualiza-
tion are important topics in graph theory. One of the most famous problems
in this area is to draw a graph in the plane while minimizing the number of
edge crossings.

In this paper, we study intersection representations of graphs. An in-
tersection representation of a graph assigns a set to each vertex and in-
tersections of those sets encode its edges. More formally, an intersection
representation R of a graph G is a collection of sets {Rv : v ∈ V (G)} such
that Ru ∩ Rv 6= ∅ if and only if uv ∈ E(G). Many important classes of
graphs are obtained by restricting the sets Rv to some specific geometrical
objects.
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Figure III.1: (a) An interval graph and its interval representation. (b) A
chordal graph and its representation as an intersection graph of subtrees of
a tree.

Interval Graphs. The most studied are interval graphs, defined by Ha-
jós [9]. In an interval representation of a graph, each set Rv is a closed
interval of the real line. A graph is an interval graph if it has an interval
representation; see Fig. III.1a. The set of all interval graphs will be denoted
by INT.

Interval graphs have various interesting mathematical characterizations
and many important computational turn out to be solvable in polynomial
time on interval graphs. The recognition of interval graphs in linear time was
a long-standing open problem solved by Booth and Lueker using PQ-trees [2]
which can be used to describe the structure of all possible representations of
an interval graph. Moreover, other important problems are solvable in linear
time on intervla graphs. These include, for example, the problem of finding
a minimum dominating set [4], and the graph isomorphism problem [11].

Circular-Arc Graphs. These are a natural generalization of interval
graphs. Here, each set Rv corresponds to an arc of a circle; Fig III.1c.
They are denoted by CARC.

Chordal Graphs. There are many equivalent definitions of chordal graphs.
The most known states that a chordal graph is graph with no induced cycles
of length at least 4. For our purposes we use another definition which is
due to Gavril [7]. It states that a graph is chordal if and only if it is an
intersection graph of subtrees of some tree T ; see Fig III.1c. The set of all
chordal graphs will be deoted by CHOR.

Compared to interval graphs, some computational problems seem to be
much harder on chordal graphs. The recognition problem can be solved eas-
ily in linear time for chordal graphs using perfect elimination scheme. How-
ever, the problem of deciding, given a graph G and a tree T , whether G can
be represented as an intersection graph of subtrees of T is NP-complete [10].
Finding a minimum dominating set is NP-complete [3] on chordal graphs.
The graph isomorphism problem is GI-complete on chordal graphs [11], i.e.,
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it is as hard as the general graph isomorphism problem.

H-graphs. In [1] Biró et al. introduced the concept of an H-graph. Let
H be fixed graph. A graph G is an intersection graph of H if it is an
interection graph of connected subgraphs of H, i.e., for u, v ∈ V (G), the
assigned subgraphs Hv and Hu of H share a vertex if and only if u and v
are adjacent.

A subdivision H ′ of H is obtained by replacing each edge in H by a
path of length at least one. A graph G is a topological intersection graph of
a graph H if G is an intersection graph of some subdivision of H. We say
that G is an H-graph. We denote the set of all H-graphs by H-GRAPH.

Notice that we have the following relations:

INT = K2-GRAPH, CARC = K3-GRAPH, and CHOR =
⋃

Tree T

T -GRAPH.

An open question asked by Biró et al. [1] is the complexity of the recognition
problem for H-graphs.

An Infinite Hierarchy. Clearly, we have INT ( CHOR. For a tree T , we
have T -GRAPH ( CHOR. Therefore, we have an infinite hierarchy of graph
classes between interval and chordal graphs. Since many computational
problems are polynomial on interval graphs and hard on chordal graphs, an
interseting question is the complexity of those on T -graphs, for a fixed tree
T .

Our Results. A lot is known about interval and chordal graphs. As men-
tioned earlier, many important computational problems that are polynomial
on interval graphs turn out to be harder on chordal graphs. On the other
hand, not much is known about the classes T -GRAPH. In this paper, we
investigate the parametrized complexity of recognition, representation ex-
tension, graph isomorphism, and domination on T -GRAPH with respect to
the size of the tree T , denoted by ‖T‖.

We show that the recognition of T -GRAPH, for T = Sd, can be solved
in polynomial time, depending only on n, where n is the number of vertices
of the input graph.

Theorem 1.1. The problem Recognition(Sd-GRAPH) can be solved in
O(n4).

Generalizing our approach for T = Sd, we can get an O(n‖T‖) recogni-
tion algorithm, for a general T .
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Chaplick and Stacho [5] showed that for chordal graphs of leafage at
most `, the representation can be constructed in time nO(`). The leafage of a
chordal graph G is the smallest number k such that there is a representation
of G in which every subtree of G has at most k leaves.

Further, we give an FPT-time algorithm for the problem of finding a
minimum dominating set on Sd-GRAPH.

Theorem 1.2. For G ∈ Sd-GRAPH, the minimum dominating set of G can
be found in O(n · f(d)).

2 Recognition and Helly H-graphs

In this section, we partially answer the question asked by Biró et al. [1],
i.e., the complexity of recognition of H-graphs. We show that Sd-graphs
can be recognized in polynomial time, where Sd is the star of degree d, i.e.,
the complete bipartite graph K1,d. Notice that Sd-graphs are generalized
split-graphs.

A graph G is called a Helly H-graph when G is a topological intersection
graph of H, and the collection S = {V (Hv) : v ∈ V (G)} satisfies the Helly
property, i.e., for each sub-collection of S whose sets pairwise intersect, their
common intersection is non-empty.

Suppose that G is a T -graph and let T ′ a subdivision of T such that G
is an intersection graph of T ′. Then every vertex of T ′ that corresponds to
some vertex in T is a branching vertex. Let P[x,y] be the path from x to y.
Further, we define the path P(x,y] = P[x,y] − x. Paths P[x,y) and P(x,y) are
defined analogously.

The following lemma states that there exists a representation of G such
that every branching point is contained in some maximal clique of G.

Lemma 2.1. Let G be a T -graph, where T is a general tree. Every repre-
sentation of G can be modified such that every branching point is contained
in an intersection of the form

⋂
v∈C V (Tv), for a maximal clique C of G.

Proof. Let b be a branching point, let Vb = {u ∈ V (G) : b ∈ V (Tu)}, and
suppose that Vb is not a maximal clique. Let C be a maximal clique of G
such that Vb ⊆ C and the distance between b and the set TC =

⋂{V (Tv) :
v ∈ C} is minimal. Notice that TC is non-empty since the Helly property
is satisfied. Since the distance between b and TC is minimal, no vertex of a
path from b to TC is contained in TC′ , for some other maximal clique C ′.
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Therefore, every Tv, for v ∈ C \ Vb, can be extended by the shortest path
from b to TC , thus obtaining a correct representation of G with b ∈ TC . We
repeat this process until there exists a branching point that is not contained
in a maximal clique.

2.1 Recognition of Sd-graphs

In this section, we deal with the case when H = Sd. We describe a
polynomial-time algorithm for recognition of Sd-graphs.

Suppose that G is an Sd-graph and let that S′d be a sufficiently large
subdivision of Sd such that G is an intersection graph of Sd. Later, we
show that subdivision that is linear in |V (G)| suffices. Let b be the central
branching vertex of S′d, i.e., the only vertex that has degree d. Let b1, . . . , bd
denote the remaining leaf branching vertices.

It is a well-known fact that chordal graphs, and therefore also Sd-graphs,
have at most n maximal cliques and that they can be found in linear time.
The idea of the recognition algorithm for Sd-graphs is to test, for every
maximal clique C of G, if there is a representation of G with b ∈ ⋂{Tv : v ∈
C}. According to Lemma 2.1, if G is an Sd-graph, then such representation
exists.

Suppose now that G has a representation such that b ∈ ⋂{Tv : v ∈ C},
then the connected components of G−C are interval graphs and each con-
nected component can be represented on one of the paths P(b,bi], called
branches; see Fig. III.2a and III.2c. Our algorithm first finds interval rep-
resentations of the connected components of G−C, then every component
is placed on a some branch, and finally the representations of the vertices
in C are found.

Not every two components H and H ′ of G − C can be placed on the
same branch P(b,bi]. To see this, suppose that we want find a representation
of the induced subgraph G[C, V (H), V (H ′)]. We define

NC(H) = {x ∈ C : xu ∈ E(G) for some u ∈ V (H)}

to be the set of neighbors of H in C. Clearly, the necessary condition for H
and H ′ to be placed on the same branch, with H closer to b, is that every
vertex x ∈ NC(H ′) is adjacent to every vertex of H; see Fig. III.2. We use
this necessary condition to define a relation R on connected components of
G− C:

(H,H ′) ∈ R ⇐⇒ ∀x ∈ NC(H ′) ∀v ∈ V (H) : x ∈ N(v). (1)
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The goal is to define a partial ordering . on the connected components of
G−C such that H .H ′ if and only if H and H ′ can be placed on the same
branch, with H closer the branching vertex b.

Let H and H ′ be two components such that NC(H) = NC(H ′) and for
every v ∈ V (H) and u ∈ V (H ′), we have NC(v) = NC(H) = NC(H ′) =
NC(u). Then (H,H ′) ∈ R and also (H ′, H) ∈ R. Therefore, the relation R
is not necessarily a partial ordering. Such components are equivalent with
respect to C and we werite H ∼ H ′. Clearly, the relation ∼ is an equivalence
relation.

We factorize the set of all connected components of G − C by ∼ and
obtain a set of non-equivalent connected components of G−C, denoted by
H. Now we use the condition (1) to define a partial ordering . on H.

The set H contains a representative from every equivalence class of ∼.
First, we find a correct placement for every component H ∈ H. Notice that
the whole equivalence class [H] ∈ ∼ can be placed on the same branch next
to H since they are all equivalent with respect to C.

Lemma 2.2. The relation . is a strict partial ordering on H.

Proof. Suppose that H . H ′ and H ′ . H. Then for every x ∈ NC(H ′) and
v ∈ V (H) we have x ∈ NC(v). Therefore, NC(H ′) ⊆ NC(v) ⊆ NC(H).
Similarly, for every y ∈ NC(H) and u ∈ V (H ′) we have NC(H) ⊆ NC(u) ⊆
NC(H ′). We get that NC(H) = NC(H ′) and also that NC(v) = NC(H)
and NC(u) = NC(H ′). Thus, H = H ′ and . is antisymmetric. Clearly,
H .H ′ and H ′ . H ′′ implies H .H ′′, so . is also transitive.

The next lemma shows in what conditions we can place some connected
components in H on one branch.

Lemma 2.3. Let H1, . . . ,Hk ∈ H. Then the graph G[C, V (H1), . . . , V (Hk)]
can be represented on a branch P(b,bi] if and only if H1, . . . ,Hk form a
chain in . and each G[C,Hi] has an interval representation with C being
the leftmost clique.

Proof. Since Hi are connected components of G− C, their representations
have to be placed on non-overlapping parts of P(b,bi]. Suppose that we have a
representation of G[C, V (H1), . . . , V (Hk)] on P(b,bi]. Assume that the com-
ponents H1, . . . ,Hk are ordered such that i < j if and only if Hi is closer to
b than Hj . For vertex in x ∈ NC(Hi), the representation of v has to overlap
at least a part of the representation of Hi, and therefore, it is adjacent to
all vertices in Hj , for all j < i. Therefore, the components H1, . . . ,Hk form
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Figure III.2: An example of a construction of a representation.

a chain in .. Clearly, every G[C,Hi] has an interval representation with C
being the leftmost clique.

For the converse, assume that H1, . . . ,Hk form a chain in . and every
G[C,Hi] has an interval representation with C being the leftmost clique.
Since Hj .Hi, for j < i, all vertices in NC(Hi) are adjacent to every vertex
in Hj . To obtain a representation of G[C, V (H1), . . . , V (Hk)], we first place
the represenations of all Hi on P(b,bi] according to ., with H1 being closest
to b. All G[C, V (Hi)] have an interval representation. We first place the
representations of the vertices in NC(Hk). From the definition of . we have
that all those vertices are adjecent to all vertices in H1, . . . ,Hk−1. For
i = k − 1, . . . , 1, we place the representations of the vertices in NC(Hi) \
NC(Hi+1)∪· · ·∪NC(Hk). Again, from the definition of . we have that those
vertices are adjacent to all vertices in H1, . . . ,Hi−1. Finally, we obtain a
correct representation of G[C, V (H1), . . . , V (Hk)].

The following theorem generalizes the characterization of interval graphs
which is due to Fulkerson and Gross [6].

Theorem 2.4. Let C a maximal clique of G, and let H be the set of con-
nected components of G−C that are non-equivalent with respect to C. Then
G is an Sd-graph with b ∈ ⋂{Tv : v ∈ C} if and only if the following hold:

(i) For every H ∈ H, the induced subgraph G[C,H] has an interval rep-
resentation with C being the leftmost clique.
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(ii) The partial order . on H has a chain cover of size d.

Proof. Suppose that G is an Sd-graph such that b ∈ ⋂{Tv : v ∈ C}. The
representation of a connected component H ∈ H can not pass through
the branching point b since otherwise C would not be a maximal clique.
Clearly, the condition (i) is satisfied. Moreover, the representations of every
two components in H have to be placed on non-overlapping parts of Sd. By
Lemma 2.3 we have that the components placed on some branch of Sd form
a chain in .. Therefore, the partial order . has a chain cover of size d and
the condition (ii) is satisfied; see Fig. III.2b.

For the converse, suppose that the conditions (i) and (ii) are satisfied.
We place the components in H on the P(b,b1], . . . , P(b,bd] according to the
chain cover of . which has size d. By Lemma 2.3, for every chain H1, . . . ,Hk

in ., we can find an interval representation of the graph G[C, V (H1), . . . ,
V (Hk)]. We combine the representations of the d chains. Further, the con-
nected components that are equivalent with respect to C, i.e., belong to the
same equivalence class in ∼, can be easily placed next to its representative
by subdividing the branches. Thus, we obtain an representation of G.

Based on the previous discussion, we give an algorithm for recognizing
Sd-graphs; see Algorithm 1. It remains to show that its running time is
polynomial and that it does not depend on the parameter d.

Algorithm 1: Recognition(Sd-GRAPH)

Input: A graph G and a tree T .
Output: An intersection representation of G on a subdivision of T if it

exists.
1: Find all maximal cliques C of G.
2: If G is an Sd-graph, then by Lemma 2.1 there exists a representation R

of G with b ∈ ⋂{Rv : v ∈ C}, for some C ∈ C.
3: for a maximal clique C ∈ C do
4: Try to find a representation with C in the branching point:
5: Find the equivalence classes of ∼ and pick a representative for each

equivalence class. Let H be the set of these representatives.
6: for a connected component H ∈ H do
7: Find an interval representation of G[C,H].
8: If there is a chain cover of . of size at most d, then construct a

representation as desribed in the proof of Theorem 2.4.
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Theorem 1.1. Every chordal graph has at most n maximal cliques, where
n is the number of vertices. All maximal cliques of a chordal graph can
be found in linear time. For every clique, our algorithm tries to find an
Sd-representation with this clique placed on the central branching point.
Construction of such representation takes O(n3) steps since interval graph
recognition can be done in linear time and clique-cover can be found in
O(n3) time for comparability graphs [8]. Therefore, the overall complexity
is O(n4).

The following proposition justifies our approach for recognizing Sd-gra-
phs. It says that every partially ordered set with chain cover of size d can be
encoded in an Sd-graph. Therefore, to recognize Sd-graphs, one somehow
needs to solve the problem of finding a chain cover of a given size in a
partially ordered set. Here, we omit the proof.

Proposition 2.5. For every partially ordered set (X,≤) that has a chain
cover of size d there exists an Sd-graph G and a maximal clique C of G such
that the partial order . defined on the components of G\C is isomorphic to
≤.

3 Dominating Set

In this section, we discuss the problem of finding minimum dominating set.
First, we recall the algorithm for finding a minimum dominating set in an
interval graph. Then we give an FPT-time algorithm for finding a minimum
dominating set in an Sd-graph.

3.1 Minimum Dominating Set for Interval Graphs

Suppose that we have an interval representation of a graph G and let
C1, . . . , Ck be the left-to-right ordering of the maximal cliques. For ev-
ery vertex v ∈ C1 there exists ` such that v ∈ C`, but v /∈ C`+1 We pick the
vertex v ∈ C1 such that ` is maximal. We add v to the dominating set and
continue smilarly for C`+1; see Algorithm 2.

Lemma 3.1. The described algorithm finds a minimum dominating set of
an interval graph G.
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Algorithm 2: DominatingSet(INT)

Input: An interval representation R of a graph G.
Output: A minimum dominating set of G.
1: D ← ∅, i← 1.
2: Let C1, . . . , Ck be the left-to-right ordering of the maximal cliques in R.

3: while i ≤ k do
4: Choose v ∈ Ci with maximal ` such that v ∈ C`, but v /∈ C`+1.
5: D ← D ∪ {v}, i← `+ 1.
6: return D

Proof. Suppose that at some step of the algorithm we choose v ∈ Ci with
maximal ` such that v ∈ C`, but v /∈ C`+1. Let D′ be a minimum domi-
nating set for the induced subgraph G[C`+1, . . . , Ck]. The set D′ does not
dominate the maximal clique Ci since then ` would not be maximal and
this would contradict the choice of v. Therefore, the minimum dominating
set of G[Ci, . . . , Ck] has size at least |D′| + 1. It follows that D′ ∪ {v} is
a minimum dominating set of G[Ci, . . . , Ck] with size |D′| + 1. We have
shown that for an arbitrary minimum dominating set of G[C`+1, . . . , Ck],
the vertex v is an optimal choice.

Lemma 3.2. The problem DominatingSet(INT) can be solved in linear
time.

Proof. An interval representation of an interval graph can be found in linear
time [2]. The number of maximal cliques in an interval graph is at most
n. In the procedure, described in Algorithm 2, every maximal clique in
the left-to-right ordering C1, . . . , Ck is checked at most constant number of
times.

3.2 Minimum Dominating Set for Sd-graphs

Here, we prove Theorem 1.2. First, we prove the following lemma.

Lemma 3.3. Let G = (V,E) be an interval graph and let C1, . . . , Ck be the
left-to-right ordering of the maximal cliques in an interval representation of
G. For every x ∈ C1, a minimum dominating set of G containing x can be
found in linear time.

48



Proof. We construct a new graph G′ = (V ′, E′) where V ′ = V ∪ {u} and
E′ = E ∪ {u, x}. Clearly, G′ is an interval graph and there is an interval
representation with {u, x} = C0, C1, . . . , Ck being the left-to-right ordering
of the maximamal cliques in this representation. The procedure in Algo-
rithm 2 always picks the vertex x ∈ C0 and finds a minimum dominating
set D of G′. The set D is a minimum dominating set of G containing the
vertex x.

Theorem 1.2. Let G be an Sd-graph and let S be a subdivision of the star
Sd such that G is an intersection graph of S. Let b be the central branching
vertex of S and let b1, . . . , bd be the remaining branching vertices. Suppose
that we have an intersection representation R of G on S such that b ∈⋂{Rv : v ∈ C}, for some maximal clique C of G (by Lemma 2.1 we know
such representation exists). Let Ci,1, . . . , Ci,ki be the maximal cliques of G
as they appear on the branch P(b,bi], for i = 1, . . . , d.

For every Gi = G[C,Ci,1, . . . , Ci,ki ], we use the procedure described in
Algorithm 2 to find the size di of the minimum dominating set in Gi. Let
Bi be the set of vertices of C that can appear in a minimum dominating
set of Gi. By Lemma 3.3, a minimum dominating set Dx

i containing a
vertex x ∈ C can be found in linear time. We have x ∈ Bi if and only
if |Dx

i | = di. Therefore, every Bi can be found in polynomial time. Let
B = {B1, . . . , Bd}.

If Bi is empty, then every minimum dominating set of Gi does not
contain a vertex from C. For Gi, we can choose an arbitrary dominating
set Di and this choice is optimal. If every Bi is empty, then the minimum
dominating set of G is the union D1∪· · ·∪Dd∪{x}, for an arbitrary x ∈ C.

Let us assume now that the Bi’s are nonempty (every branch with an
empty Bi can be simply ingored). Let H be a subset of C such that H ∩Bi
is not empty, for every i = 1, . . . , d, and |H| is smallest possible. For every
branch P(b,bi], we pick a minimum dominating set Di of Gi containing an
arbitrary vertex xi ∈ H ∩ Bi. The minimum dominating of G is then the
union D1 ∪ · · · ∪Dd. It remains to prove that we can find the set H in time
that only depends on the parameter d.

For every x ∈ C, there are at most 2d possibilities to which sets from B
it can belong. We consider a subset A of

⋃B ⊆ C such that |A| ≤ 2d and
no two vertices in A belong to exactly the same Bi’s. The set A, can be
clearly found in polynomial time. To find H, it suffices to check for every
subset of A whether it intersects the Bi’s and pick the smallest one. The

number of subsets of A is at most 22
d

.
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Packing chromatic numbers

Transcribed by Hadley Black and Asa Goodwillie
from a lecture by Dr. Jirka Fiala

1 Introduction

The notions of coloring and of the chromatic number are well studied graph-
theoretic concepts. The definition of packing coloring (and the associated
packing chromatic number of a graph) extend these concepts by modifying
the label restrictions to depend on the specific label used. Packing color-
ings arose originally through applications to television broadcast networks,
where broadcast locations for different frequencies must be chosen to avoid
interference.

2 Definitions

Definition 2.1. A coloring or labeling of a graph G = (V,E) is a function
f : V → S for some finite set S.

A coloring is called a proper coloring if it satisfies the following restric-
tion: (u, v) ∈ E =⇒ f(u) 6= f(v). This is equivalent to the following:
for distinct vertices u and v, f(u) = f(v) =⇒ dist(u, v) > 1, where
dist : V ×V → N is the usual notion of graph distance, denoting the length
of the shortest path between two vertices. We define a slightly more restric-
tive version of this second formulation as follows.

Definition 2.2. A packing coloring is a coloring f : V → S for some finite
subset S ⊂ N such that for distinct vertices u and v, f(u) = f(v) = i
implies dist(u, v) > i. The packing chromatic number of a graph G, χp(G),
is the minimal number of colors needed for a packing coloring of G (i.e., the
smallest possible value of |S|).
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We want to find an upper bound on the packing chromatic numbers for
various classes of graphs.

3 Some simple proofs

Proposition 3.1. Every path admits a packing coloring using three colors.

Proof. A repeating labeling (1, 2, 1, 3) suffices, since the vertices labeled 1
are separated by the others, and the vertices labeled 2 (resp. 3) are four
vertices from each other.

It is clear that for every path of length at least four, two colors are not
sufficient, so the packing chromatic number of a path of length at least four
is exactly three.

Proposition 3.2. Every cycle admits a packing coloring using four colors.

Proof. Let G = (V,E) be an n-cycle (i.e, let V = {1, . . . , n} and let E =
{(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}). Let n = |V |. We have four cases,
depending on the remainder of n modulo 4.

• If n ≡ 0 (mod 4), then we may simply use the path coloring

f(v) =


1 if v ≡ 0 (mod 2)

2 if v ≡ 1 (mod 4)

3 if v ≡ 3 (mod 4).

• If n ≡ 1 (mod 4), then we use the same coloring as above for all
vertices but the last (nth) vertex, and set f(n) = 4.

• If n ≡ 2 (mod 4), we use the above (repeating) coloring except for the
last two vertices, and set f(n− 1) = 1 and f(n) = 4.

• Finally, if n ≡ 3 (mod 4), we use the above coloring for all vertices
but the last three, and set f(n− 2) = 1, f(n− 1) = 2, and f(n) = 4.

It is clear that for cycles of lengths congruent to 0 modulo 4, three
colors are both necessary and sufficient. For a cycle of length n ≡ 1, 2, or 3
(mod 4), four colors are necessary as long as n is greater than four.
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4 Known results

The following result on the chromatic numbers of 4-regular trees – that
is, infinite trees in which every vertex has degree exactly four – is due to
Christian Sloper.

Theorem 4.1. There is no upper bound on the packing chromatic numbers
of 4-regular trees.

The next result was obtained with the aid of computer search by Danilo
Korže and Aleksander Vesel.

Theorem 4.2. Every hexagonal grid graph has a packing chromatic number
of no more than 7.

Theorem 4.3. The set of packing chromatic numbers of triangular grid
graphs is unbounded.

The proof of this last result is by a density argument, i.e, by considering
upper bounds on the densities of nodes labeled 1, 2, etc., in the graph. The
proof is complicated, so we will not attempt to reproduce it here. Similarly
intricate density arguments also provide a lower bound of 10 on the upper
bound of the set of packing chromatic numbers of square grid graphs. For
square grid graphs, an upper bound of 25 is also known. More recently,
further computer-aided results have reduced this gap to 15 and 17.

5 Open questions

It is unknown whether or not the packing chromatic numbers of planar
graphs of maximum degree 3 are bounded. This is an important open
question in the study of packing colorings.

Definition 5.1. A graph G = (V,E) is called outer planar if it is possible
to embed G in the plane such that all vertices of G are incident on the outer
(unbounded) face.

A two-connected outer planar graph is simply a cycle with some chords.
In general, an outer planar graph is essentially a tree-like structure where
each “node” of the tree is a two-connected outer planar graph. Dr. Fiala
gave us the following problem as a potentially interesting and viable open
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question: Are the packing chromatic numbers of two-connected outer planar
graphs of maximum degree 3 bounded?

A two-connected outer planar graph is a cycle with some chords, so a
two-connected outer planar graph of maximum degree 3 is just a cycle with
chords where no two chords share an endpoint. Since we have already know
that the chromatic number of a cycle (without chords) is at most 4, we
decided to begin by considering the “next case up”, i.e., a cycle with a
single chord. It turns out that four colors suffice here as well, although the
proof is somewhat longer (though not fundamentally any more difficult).

Theorem 5.2. A cycle with a single chord has packing chromatic number
less than or equal to 4.

Proof. Let u and v be the vertices of the cycle connected by the chord.
Consider the two paths P and Q along the cycle from u to v. Let n1 be the
number of vertices on one of them, and let n2 be the number of vertices on
the other. We have ten cases (up to switching P and Q and consequently n1
and n2), depending on the remainders of n1 and n2 modulo 4. The packing
colorings for these ten cases are illustrated at the end of this report. Note
that in every case the entirety of the cycle is colored with the repeating
(1, 2, 1, 3) pattern, with the exception of a small neighborhood around v.

Case 1: If n1 ≡ n2 ≡ 0 (mod 4), we set f(u) = 1 and f(v) = 4; along
P , we repeat the sequence of labels (3, 1, 2, 1); and along Q, we repeat the
sequence of labels (2, 1, 3, 1).

Case 2: If n1 ≡ n2 ≡ 1 (mod 4), we set f(u) = 2 and f(v) = 4, and
along both P and Q, we repeat the sequence of labels (1, 3, 1, 2), followed
by a trailing 1.

Case 3: If n1 ≡ n2 ≡ 2 (mod 4), we set f(u) = 1 and f(v) = 4; along P ,
we repeat the sequence of labels (3, 1, 2, 1), followed by a trailing (3, 1); and
along Q, we repeat the sequence of labels (2, 1, 3, 1), followed by a trailing
(2, 1).

Case 4: If n1 ≡ n2 ≡ 3 (mod 4), we set f(u) = 3 and f(v) = 4, and
along both P and Q, we repeat the sequence of labels (1, 2, 1, 3), followed
by a trailing (1, 2, 1).

Case 5: If n1 ≡ 1 and n2 ≡ 2 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (2, 1, 3, 1), followed by a trailing
2; and along Q, we repeat the sequence of labels (3, 1, 2, 1), followed by a
trailing (3, 1).

Case 6: If n1 ≡ 1 and n2 ≡ 3 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (2, 1, 3, 1), followed by a trailing
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2; and along Q, we repeat the sequence of labels (3, 1, 2, 1), followed by a
trailing (3, 2, 1).

Case 7: If n1 ≡ 1 and n2 ≡ 0 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (2, 1, 3, 1), followed by a trailing
2; and along Q, we repeat the sequence of labels (3, 1, 2, 1).

Case 8: If n1 ≡ 2 and n2 ≡ 3 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (2, 1, 3, 1), followed by a trailing
(2, 1); and along Q, we repeat the sequence of labels (3, 1, 2, 1), followed by
a trailing (3, 2, 1).

Case 9: If n1 ≡ 2 and n2 ≡ 0 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (3, 1, 2, 1), followed by a trailing
(3, 1); and along Q, we repeat the sequence of labels (2, 1, 3, 1).

Case 10: If n1 ≡ 3 and n2 ≡ 0 (mod 4), we set f(u) = 1 and f(v) = 4;
along P , we repeat the sequence of labels (3, 1, 2, 1); and along Q, we repeat
the sequence of labels (2, 1, 3, 1).

Note that, though we do not give the details here, it is possible to extend
this to a four packing coloring on a cycle with any number of non-intersecting
chords, provided the endpoints of any two chords are sufficiently far apart.
Next, one might wonder about the chromatic number of outer planar, max
degree 3 graphs with higher density. One such example is a ladder graph
Ln.

Theorem 5.3. χp(Ln) ≤ 5.

Proof. It is sufficient to label the top path with the repeating pattern
(1, 2, 1, 3, 1, 5) and the bottom with (3, 1, 4, 1, 2, 1).

The ladder graph has a large number of edges compared to other outer
planar, maximum degree 3 graphs. Thus Theorem 5 gives some direction
towards a tight upper bound on the packing chromatic number of this family
of graphs.
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Two Examples of Combinatorial

Reciprocity

Transcribed by Kevin Sun and Andrew Wells
from a lecture by Dr. Andrew Goodall

1 Introduction

The theory of combinatorial reciprocity refers to the study of the relation-
ship between combinatorial classes that share a counting function. In this
article, we describe two illustrative examples of combinatorial reciprocity
and provide some known results.

The two counting functions considered in this paper are those associated
with the binomial coefficients, and the chromatic polynomial of graphs. At
first glance, each of these functions seems to be only defined for nonnegative
integers, but we shall see that evaluating these functions on negative integers
yields interesting, meaningful results.

2 Binomial Coefficients

2.1 The Standard Interpretation

The binomial coefficient
(
n
k

)
is usually defined as the number of ways to

select k objects from a collection of n objects without order and without
repetition. Therefore, the inputs n and k are typically positive integers,
with k ≤ n. We may compute various terms of the sequence by using the
following well-known recurrence relation, known as Pascal’s rule:(

n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.
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Furthermore, we know that(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
,

so we may also interpret
(
n
k

)
as a polynomial in n of degree k. From this

perspective, n no longer seems to be restricted to the positive integers. A
quick computation allows us to see that(−n

k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!

=
(−1)kn(n+ 1) · · · (n+ k − 1)

k!
.

However, confusion can arise when one considers the definition given above.
How can 2 elements be selected from a set of size −5, as seen in

(−5
2

)
?

2.2 Choosing from a Set with Negative Size

Without an abundance of motivation, we examine the formula for counting
the number of multisets of size k from a set of size n, that is, subsets
of the original set, with repetition permitted. We denote this number by((
n
k

))
. Using the classical “stars and bars” argument, we can conclude that((

n
k

))
=
(
n+k−1

k

)
. Surprisingly, this is equal to

(−n
k

)
, up to a difference

in sign. Therefore, up to a difference in sign,
(−n
k

)
counts the number of

multisets of size k that can be made from a set of size n.

3 The Chromatic Polynomial

3.1 The Standard Interpretation

We now continue with our second example, which concerns the chromatic
polynomial of graphs. Before we give a definition of the chromatic polyno-
mial, we must define a k-coloring of a graph.

Definition 3.1. A (proper) k-coloring of a graph G is a function f :
V (G)→ {1, 2, . . . , k} such that for each edge {u, v} of G, f(u) 6= f(v).

Definition 3.2. For a graph G and an integer k, the chromatic polynomial
P (G, k) counts the number of proper k-colorings of G.
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It is not too difficult to show that the chromatic polynomial of a graph
is indeed a polynomial.

From its definition, the chromatic polynomial P (G, k) of a graph G for
some integer k seems to permit only nonnegative integers k. We recall that(−n
k

)
counts the number of multisets of size k from a set of size n. So

naturally, we might ask what P (G,−k) counts. However, before we begin,
we shall introduce the method of deletion-contraction.

3.2 The Method of Deletion-Contraction

Definition 3.3. The deletion of an edge e in a graph G produces the graph
G′ with the same vertex set as G and edge set E(G)\{e}. In this case, we
write G′ = G\e.

Definition 3.4. The contraction of an edge {u, v} in a graph G produces
the graph G′′ with vertex set V (G)\{u, v} along with a new vertex w, which
is adjacent to all the vertices of G adjacent to either u or v (or both). In
this case, we write G′′ = G/e.

An important recurrence relation, analogous to Pascal’s rule, is the fol-
lowing:

P (G, k) = P (G\e, k)− P (G/e, k),

which holds for any edge e of the graph G. This can be seen by considering
all proper k-colorings of, for a given graph G, the graph G\e for some edge
e = {u, v} of G. A proper coloring of G\e that assigns u and v to different
colors is also a proper coloring for G. However, if u and v are assigned the
same color in G\e, then we would not have a proper coloring for G; as a
result, we identify u and v as one vertex, forming G/e, and subtract the
number of proper k-colorings of G/e from P (G\e, k).

Using this recurrence relation to compute the chromatic polynomial of
a graph is known as the method of deletion-contraction. At this point, we
can consider the resulting polynomial when a negative value of k is plugged
into P (G, k) for some graph G.

3.3 Coloring with a Negative Number of Colors

Let Pn denote the graph that is a path on n vertices and Cn denote the
graph that is a cycle on n vertices.
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The chromatic polynomial of Pn and Cn can be computed using the
deletion-contraction method, result in the following:

P (Pn, k) = k(k − 1)n−1

and
P (Cn, k) = (k − 1)n + (−1)n(k − 1).

Letting k = −1 yields

P (Pn,−1) = (−1)(−2)n−1

= (−1)n2n

and

P (Cn,−1) = (−2)n + (−1)n(−2)

= (−1)n(2n − 2).

Ignoring the sign (as we did for binomial coefficients), the obvious interpre-
tation of this result is that it counts the number of acyclic orientations of
the edges. A path has no cycles, so any one of the 2n orientations is valid.
A cycle has exactly one cycle, which can be traversed 2 ways: clockwise or
counter-clockwise, and hence the subtraction of 2 from 2n.

Before we generalize this observation, we define what it means for an
orientation ρ and a k-coloring c of G to be compatible.

Definition 3.5. The pair (ρ, c) is a compatible coloring if and only if for
every directed edge u→ v in G, we have c(u) ≥ c(v).

Now we can provide the following theorem:

Theorem 3.6. Let G be a finite graph on n nodes and P (G, k) be its chro-
matic polynomial. Then (−1)nP (G,−k) equals the number of compatible
pairs (ρ, c) where c is a k-coloring and ρ is an acyclic orientation. In par-
ticular, (−1)nP (G,−1) equals the number of acylic orientations of G.1

4 Conclusion

The theory of combinatorial reciprocity enables us to extend functions be-
yond their initially-conceivable domain. Our two examples show that this
can yield interesting and combinatorially interpretable results.

1Matthias Beck and Raman Sanyal. Combinatorial Reciprocity Theorems:
An Invitation to Enumerative Geometric Combinatorics. July 12, 2015.
math.sfsu.edu/beck/crt.html. pg. 6
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Graph Coloring

Transcribed by Linda Cook and Rayanne Luke
from a lecture by prof. John Gimbel

1 Graph Coloring

Colorings are defined on graphs in various ways to break a vertex set up so
that each subset is simple and easy to grasp. Although there are many other
possible ways of coloring, we often examine a traditional coloring where no
adjacent vertices are assigned the same color. Thus, each color class induces
an empty graph. More generally, a coloring is a partition of the vertex set.

Definition 1.1. The chromatic number of a graph G is the smallest
number of colors needed to assign every adjacent vertex a different color.
The chromatic number of G is denoted by χ(G).

The chromatic number of a complete graph with n vertices is χ(Kn) = n.
Unless otherwise stated, graphs are assumed to be simple.

Example 1.2. The Hadwiger-Nelson Problem (1950, unsolved).
Consider an infinite graph G where the vertices are all the points in the
Cartesian plane and two vertices are considered adjacent if their distance is
exactly one. What is the chromatic number of this graph?

Theorem 1.3. The chromatic number in the Hadwiger-Nelson Problem is
between 4 and 7 inclusive.

Proof. We will show that the graph cannot be colored with 3 or less colors.
The upper bound of 7 was demonstrated through the discovery of a number
of possible colorings using only 7 colors.

We provide a counter example to a coloring of the Hadwidger-Nelson
problem with three colors (Figure VI.1). Let ABC and BCD be equilateral
triangles with sides of length 1. Clearly A, B, and C must be pairwise
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Figure VI.1: Counter example for a coloring of the Hadwidger-Nelson prob-
lem with 3 colors. All edges are of length 1.

Figure VI.2: In this example of a Mycielskian construction the Grötzsch
graph is created from a 5-cycle.1

different colors and B, C, D must be different as well. So A and D must be
the same color if we can only use 3 colors. Now let AB’C’ and B’C’D be a
copy of the original figure that shares vertex A. By the same argument as
before A and D’ must be the same color, so D and D’ are the same color.
Now rotate the copied figure until D and D’ are at distance 1 and we have
a contradiction.

Chromatic Number of Triangle-Free Graphs

Theorem 1.4. For all n ∈ N, there exists a triangle-free graph G that has
chromatic number n.

Proof. The chromatic number of a triangle-free graph G can be made to be
arbitrarily large. Given a triangle free graph G = (V,E) with chromatic

1D. Eppstein. Grötzsch graph as a Mycielskian. Self-made; originally uploaded as
en:Image:Groetzsch-as-Mycielski.png to English Wikipedia. Licensed under Public Do-
main via Wikimedia Commons.
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number n, we can create a triangle-free graph G′ with chromatic number
n + 1 through a Mycielskian construction (Figure VI.2). The process is as
follows: Copy V to create U and add edges between every u ∈ U and the
neighbors of the corresponding vertex v ∈ V . Finally add a vertex w and
connect it to every vertex in U [5].

It is easy to see that if G was triangle-free the new graph G′ will also be
triangle-free. We can color the graph G′ with n + 1 colors by copying the
coloring of V to U and adding a new color for vertex w. To prove that we
need n+ 1 colors to color G′, we will assume, for the sake of contradiction,
that we can use n colors.

Suppose vertex w is colored with color n. Then, U may only be colored
by the colors {1, . . . , n − 1} since each vertex in U is connected to w. Our
goal now is to create a new proper coloring of G′ such that the vertices in
V contain no color n. We will then have a coloring of V , the same as G,
with n− 1 colors, which will produce a contradiction.

Copy the coloring of those vertices in V that correspond to a v ∈ V
that are not colored with color n to their corresponding twins in U . By
construction, this gives another proper coloring of the graphG′. Now recolor
every vertex in V that is colored n with the color of the corresponding vertex
in U . Again, this is a proper coloring of G′.

Consider a v ∈ V that was colored n. Let K be the neighborhood of v
in the set V and K ′ be the set of corresponding vertices to K. Note the
neighborhood of v in G′ is K ∪K ′ none of which are colored n. By our first
recoloring, the corresponding vertices in K and K ′ have the same colors.
The vertex u in U that corresponds to v has K ∪ {w} as its neighborhood.
Since the colors used for the vertices in K are the same as those used for K ′,
any color that does not appear in K ∪ {w} does not appear in K ∪K ′. So,
we may color v with u’s color while preserving proper coloring. Therefore
this step creates a new proper coloring of G′. This coloring uses n colors
but the color n only appears at vertex w. Therefore V which is the original
graph G is only colored with n−1 colors, which by definition can be colored
with no less than n colors. →←

Thus, the chromatic number of G′ is n + 1, and thus the Mycielskian
process can create graphs of arbitrarily large chromatic number.

Theorem 1.5. (Robertson, Sanders, Seymour, Thomas.) Four Color
Theorem. For a planar graph G, χ(G) ≤ 4.

In 1879, Alfred Kempe provided a proof for the Four Color Theorem that
was later shown to be incorrect. In 1976, Appel and Haken [1] announced a
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proof verifying the theorem with the aid of a computer, but it was broken
up into over 1900 cases and had many holes that needed to be filled. A
systematic, computerized, and more concise proof emerged in 1997 by a
team of mathematicians consisting of Neil Robertson, Daniel P. Sanders,
Paul Seymour, and Robin Thomas [6]. Martin Loebl at Charles University
however has shown that the chromatic number of all planar triangulations
is 4 without the use of a computer and has provided a polynomial time
algorithm to find such a coloring [4].

Ramsey Theory

Questions in the study of Ramsey Theory often ask for the number of ele-
ments necessary for a certain condition to emerge. We look specifically at
Ramsey numbers for a certain coloring in this section.

Definition 1.6. The Ramsey number, denoted R(n,m), is the smallest
integer N such that any graph on N vertices contains either an independent
set of n vertices or a clique of m vertices.

1.1 Bounds on Ramsey Numbers

The Ramsey number exists for any n,m ∈ N, and a bound on the Ramsey
number is given by

R(n,m) ≤ 2n+m,

from which it follows that

R(n, n) ≤ 4n.

We will show that a lower bound also exists, making the inequality

√
2
n ≤ R(n, n) ≤ 4n.

Definition 1.7. The random graph on n vertices, sometimes denoted
Rn, is defined as follows. For every two vertices, flip a coin and if the coin
is heads, create an edge between the two vertices.
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We now prove the lower bound for R(k, k) using the definition of a
random graph.

Theorem 1.8. A lower bound for R(k, k) is
√

2
k
.

Proof. Let k ∈ N and set n = b
√

2
kc. Let X(G) count the number of

independent sets on k vertices of a graph G.
We want to find the expected value of X where G varies over all random

graphs on n vertices. Given k vertices, we can find the probability they are
an independent set. There are

(
k
2

)
possible edges and the probability of an

edge existing is 1
2 . So the probability is (1/2)(

k
2) and so E(X) =

(
n
k

) (
1
2

)(k
2).

We can show that for large values, E(X) < 1
2 . We prove this inequality

by first using an upper bound on
(
n
k

)
, and the rest follows from algebraic

manipulation.

E(X) =

(
n

k

)(
1

2

)(k
2)

≤
(ne
k

)k ( 1

2(k−1)/2

)k
≤
(

2k/2e

k

)k (
1

2(k−1)/2

)k
=

(
21/2e

k

)k
<

1

2
,

for k sufficiently large.
This computation can be repeated for cliques. If Y (G) counts the

number of cliques of size k, we can use the exact same calculation to
see that E(Y ) < 1

2 for k sufficiently large. Thus, the expected value
of a random graph containing either an independent set or a clique is
E(X) + E(Y ) < 1

2 + 1
2 = 1.

Thus, there exists a graph for which there is no independent set or clique
on m vertices.

Thus, R(k, k) >
√

2
k
.
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2 Other Colorings

Traditional coloring is only one of many ways to color. A number are de-
scribed in Graph Coloring Problems by Jensen and Toft [3]. Some examples
will be discussed below.

Definition 2.1. A k-defective coloring of a graph allows each vertex to
have at most k neighbors of the same color. Note that traditional coloring
is 0-defective coloring.

One could also define a coloring by only allowing partitions where each
part induces either a complete or an empty subgraph. The cardinality of the
smallest such partition is called the cochromatic number and is denoted
as Z(G).

2.0.1 Some Properties of Cochromatic Numbers

Theorem 2.2. For all m ∈ N, there exists a graph G that has cochromatic
number m.

Proof. For some m, let G = Km ∪Km ∪Km . . . ∪Km so that there are m
copies. The cochromatic number of G is trivially at most m. The chromatic
number must be greater than m− 1 via the pigeonhole principle. We know
that G has m2 vertices, so if Z(G) ≤ m − 1 we would need at least one

either independent set or clique of size at least m2

m−1 . By construction G

only has independent sets or cliques of size m < m2

m−1 , but thus Z(G) needs
to be at least m.

Theorem 2.3. Given a graph G on n vertices, the cochromatic number will
be at most

√
n+ n

1
2 log4 n

.

Proof. Since n >
√
n, then by the previous Ramsey result there is a clique

or an independent set of at least size log4

√
n. Take out such a set and and

assign it a color. Repeat this process until the number of remaining vertices
is no longer bigger than

√
n. Color the remaining vertices all different colors.

Since each independent set or clique was at least of size log4

√
n by the

Ramsey result, we used at most n
1
2 log4 n

colors in the first step. There are

at most
√
n vertices left over afterwards. Thus

√
n + n

1
2 log4 n

is an upper

bound on the cochromatic number.
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The participants on the trip to Harriman State Park.
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