
Computational complexity of distance edge labeling✩

Dušan Knopa,b,1, Tomáš Masař́ıka,b,∗

aDepartment of Applied Mathematics of the Faculty of Mathematics and Physics at the Charles

University in Prague, Malostranské náměst́ı 25, Praha 1, 118 00, Czech Republic.
bComputer Science Institute of Charles University, Faculty of Mathematics and Physics, Charles

University in Prague, Malostranské náměst́ı 25, Praha 1, 118 00, Czech Republic.

Abstract

The problem of Distance Edge Labeling is a variant of Distance Vertex

Labeling (also known as L2,1 labeling) that has been studied for more than twenty
years and has many applications, such as frequency assignment.

The Distance Edge Labeling problem asks whether the edges of a given
graph can be labeled such that the labels of adjacent edges differ by at least two
and the labels of edges at distance two differ by at least one. Labels are chosen from
the set {0, 1, . . . , λ} for λ fixed.

We present a full classification of its computational complexity—a dichotomy
between the polynomial-time solvable cases and the remaining cases which are NP-
complete. We characterize graphs with λ ≤ 4 which leads to a polynomial-time
algorithm recognizing the class and we show NP-completeness for λ ≥ 5 by several
reductions from Monotone Not All Equal 3-SAT.

Moreover, there is an absolute constant c > 0 such that there is no 2cn-time
algorithm deciding the Distance Edge Labeling problem unless the exponential
time hypothesis fails.

Keywords: Computational complexity, distance labeling, line-graphs, exponential
time hypothesis.

✩The results presented in this paper are an extension of a result presented at the conference
IWOCA 2015 [1]. Research was supported by the project SVV-2015-260223 and by the project
CE-ITI P202/12/G061 of GAČR.

∗Corresponding author
Email addresses: knop@kam.mff.cuni.cz (Dušan Knop), masarik@kam.mff.cuni.cz

(Tomáš Masař́ık)
1Author was supported by the project GAUK 1784214.

January 28, 2016

1. Introduction

We study the computational complexity of the distance edge-labeling problem.
This problem belongs to a wider class of problems that generalize the graph coloring
problem. The task is to assign a set of colors to each vertex, such that whenever
two vertices are adjacent, their colors differ from each other. For a survey about
this famous graph problem and related algorithms, see a survey by Formanowicz
and Tanaś [2].

We are interested in the so-called distance labeling. In this generalization of
the former problem the condition enforcing different colors is extended and takes
into account also the second neighborhood of a vertex (or an edge). The second
neighborhood is the set of vertices (or edges) at distance at most 2. For a survey
about distance labelings, we refer to the article by Tiziana Calamoneri [3], as well
as her updated online survey [4].

Graph distance labeling has been first studied by Griggs and Yeh [5, 6] in 1992.
The problem has many applications, the most important one being frequency as-
signment [7]. The complexity of L2,1 labeling for a fixed parameter λ has been
established by Fiala et al. [8]. They show a dichotomy between polynomial cases
for λ ≤ 3 and NP-complete cases for λ ≥ 4.

Moreover, for the usual graph coloring problem there is a theorem of Vizing [9],
which states that for the edge-coloring number χ′(G) it holds that ∆ ≤ χ′ ≤ ∆+1,
where ∆ is the maximum degree of the graph. For L2,1 labeling there is a general
bound due to Havet et al. [10], namely λ ≤ ∆2, for ∆ ≥ 79.

Before we proceed to the formal definition of the corresponding decision problem,
we give several definitions of a labeling mapping of a graph and of the minimal
distance edge-labeling number. Note that the distance edge-labeling is equivalent
to the distance vertex-labeling of the associated line-graphs. A line-graph L(G) is a
graph derived from another graph G such that vertices of L(G) are edges of G and
two vertices a, b of L(G) are connected by an edge whenever a, b (as edges of G) are
adjacent. We define the distance between edges of a graph as their distance in the
corresponding line-graph.

Definition 1 (Edge-labeling mapping). Let G(V,E) be a graph. A mapping
f ′
2,1:E → N is an edge-labeling, if it satisfies:

• |f ′
2,1(e)− f ′

2,1(e
′)| ≥ 2 for neighboring edges (i.e. those in the distance one),

• |f ′
2,1(e)− f ′

2,1(e
′)| ≥ 1 for edges at distance two.

As usual, we are interested in a labeling that minimizes the number of labels
used by a feasible labeling.

Definition 2 (Minimum distance edge-labeling). Let G be a graph and f ′
2,1

an edge-labeling mapping, we define the graph parameter λ′
2,1 as:

λ′
2,1(G) := min

f ′

2,1

max
e∈E

f ′
2,1(e).

2

The size of the range of a (not necessarily optimal) edge-labeling mapping f ′
2,1

is called the span.

Definition 3 (Distance Edge Labeling problem (also known as L′
2,1)).

Input: A graph G.
Parameter: λ ∈ N.
Question: Is λ′

2,1(G) ≤ λ?

1.1. Our results
Our main result is the following theorem about the dichotomy of the Distance

Edge Labeling problem.

Theorem 1 (Dichotomy of distance edge-labeling). The problem L′
2,1 is

polynomial-time solvable if and only if λ ≤ 4. Otherwise it is NP-complete.

We derive Theorem 1 as a combination of Theorem 3 that describes all graphs
with λ′

2,1 ≤ 4 and Theorem 8 presenting the NP-completeness result. Note that
Theorem 8 also extends to the following inapproximability result:

Corollary 1. The Distance Edge Labeling problem cannot be approximated
within a factor of 6/5− ε, unless P = NP.

Moreover, according to [11], the proof implies that the Distance Edge La-

beling is paraNP-hard while parameterized by its span.
Using the well-established exponential time hypothesis it is possible to prove an

exponential lower bound for a fixed span greater than 5.

Corollary 2 (An exponential lower bound for distance-edge labeling).
For every fixed span λ ≥ 5 of Distance Edge Labeling problem there is a
positive real s such that Distance Edge Labeling parametrized its size n cannot
be solved in time 2cnnO(1) unless ETH fails.

We prove it in Section 4 of the paper.

1.2. Preliminaries
We state several basic and well-known observations with the connection to Defi-

nition 3, as well as some notation used in this paper. For further standard notation
in graph theory, we refer to the monograph of Diestel [12]. Without loss of generality
we deal with connected simple undirected graphs.

The first observation gives a trivial lower-bound on λ′
2,1(G).

Observation 1 (Max-degree lower-bound). Let G be a graph and let ∆ be its
maximum degree. Then λ′

2,1(G) ≥ 2(∆− 1).

Note that this observation gives also an upper bound on the max-degree of a
graph G with λ′

2,1(G) ≤ λ for a given λ ∈ N.

Observation 2 (The symmetry of distance labeling). Let G be a graph, a
mapping f :E → N be a (not necessarily optimal) labeling with span λ. Then also
the mapping f ′(e) := λ− f(e) is a valid labeling with the same span.

We call such a derived labeling of the edges of a graph a λ-inversion.

3

1.2.1. On the Exponential Time Hypothesis

In this subsection we survey the Exponential Time Hypothesis (ETH for short)—
a complexity theoretic assumption introduced by Impagliazzo, Paturi and Zane [13]
an assumption for proving lower bounds for NP-hard combinatorial problems. We
follow a survey on this topic by Lokshtanov et al. [14], which we also recommend as
it contains more details on this topic.

A formal definition of a parameterized problem is taken according to Flumm and
Grohe [11]:

Definition 4 (Parameterized problem). Let Σ be a finite alphabet. A
parametrization of Σ∗ (set of all words over the alphabet Σ) is a polynomial-time
computable mapping κ : Σ∗ → N. A parameterized problem is a pair (L, κ) ∈ Σ∗×N,
where κ is a parametrization.

The hypothesis states that there is no subexponential time algorithm for a 3-

SAT if we measure the time complexity by the number of variables in the input
formula—denoted by n.

Exponential Time Hypothesis [13] There is a positive real s such that
3-SAT with parameter n cannot be solved in time 2sn(n +m)O(1).

Due to a famous Sparsification Lemma of Calabro et al. [15] the Exponential
Time Hypothesis has an equivalent form—but parameterized by the number of
clauses m in a 3-CNF formula (instead of the number of variables).

Exponential Time Hypothesis—clause form There is a positive real s′

such that 3-SAT with parameterm cannot be solved in time 2s
′m(n+m)O(1).

We will use this version of ETH for our lower bound result.
In a connection to ETH there is also a stronger version of the hypothesis—

namely the Strong Exponential Time Hypothesis (SETH for short). The SETH
gives a hypothesis on the lower bound on the running time of a more complex
algorithm for solving a general SAT (without a bound on the number of variables
in a clause).

Assuming ETH holds, it is possible to analyze a sequence of real constants {sk}
for every k ≥ 3, where sk is defined as

sk = inf{δ: there is an O∗(2δn) algorithm for k-SAT with n variables}.

We further define the limit of this sequence as s∞.

Theorem 2 ([16], [13]). Assuming ETH, the sequence {sk}k≥3 is increasing in-
finitely often. Furthermore, sk ≤ s∞(1− d

k
) for some constant d > 0.

Strong Exponential Time Hypothesis (SETH) s∞ = 1

It is still an important open problem in this area, whether a ”clause version” of
SETH can be formulated bases on the SETH. But a Strong version of the Sparsifi-
cation Lemma cannot be proved, as was shown by Santhanam and Srinivasan [17].

4

It the theory of parameterized algorithms and exact exponential algorithms, both
ETH and SETH became a standard tools to derive lower bounds on the running
time of (both kinds of) algorithms. Even though there is a specialized type of reduc-
tion between problems preserving the lower bound—namely the (Turing) SERF-T
reduction—usually it is sufficient when the parameter dependence is linear in the
parameterized reduction.

For the sake of completeness, we give a full definition of the SERF-T reduction,
which we give in a parameterized setting:

Definition 5 (SERF-T reduction). A SERF-T reduction from parameterized
problem (A, κ) to a parameterized problem (B, λ) is a Turing reduction M from
A to B that has the following properties:

1. Given ε > 0 and an instance x of the problem A the Turing machine M runs
in time O(2εκ(x)) · |xO(1)|, where |x| is the bit-size of the input x.

2. For any query M running on the input x makes to the problem B with the
input y it holds that |y| = |x|O(1) and λ(y) = ακ(x), where the constant α
may depend on ε while the constant hidden in the O(·) notation may not.

2. Polynomial cases

In this section we give a full description of graphs admitting a labeling with a
small number of labels, in particular graphs G with λ′

2,1(G) ≤ 4. Moreover, these
graphs can be recognized in polynomial time. This leads to Theorem 3, which is the
main result of this section.

For the ease of presentation we split the proof and statement of the Theorem 3
into several lemmas, each for a particular value of λ′

2,1(G).

Theorem 3 (Polynomial cases of distance edge-labeling). For any graph G
and for λ = 0, 1, 2, 3, 4 the Distance Edge Labeling problem λ′

2,1(G) = λ (or
λ′
2,1(G) ≤ λ) can be solved in polynomial time. Moreover, it is possible to compute

such a labeling in polynomial time.

The proof is implied by following lemmas.
First observe, that for λ < 4 the graph cannot contain a vertex of degree 3. We

use Pi as a symbol for the path on i vertices.

Lemma 4 (Graphs with λ′
2,1(G) ≤ 3).

• The only graphs with λ′
2,1(G) = 0 are P1 or P2.

• There is no graph with λ′
2,1(G) = 1.

• The only graph with λ′
2,1(G) = 2 is P3.

• Finally, graphs with λ′
2,1(G) = 3 are P4 and P5.

5

When λ = 4, the graph may contain vertices of degree 3. We call a vertex hairy
if it is of degree 3 and at least one of its neighbors is of degree 1. We call this degree
one vertex, together with the connecting edge, pendant. Note that any vertex of
degree 3 in a graph G satisfying λ(G) = 4 cannot have all its neighbors of degree
2 or greater. It is easy to see that there is no labeling of span 4 of such a graph.
We say that two hairy vertices are consecutive, if there is no other hairy vertex on a
path between them or if there is the only hairy vertex on a cycle. In this particular
case the vertex is consecutive to itself.

For the purpose of the following lemmas, we say that a graph is a generalized
cycle if it is a cycle with several (possibly 0) pendant edges. We say that a graph
is a generalized path if it is a path with several (possibly 0) pendant edges. All
observations made in the last paragraphs imply the following lemma:

Lemma 5. Let G be a graph satisfying λ′
2,1(G) ≤ 4, then G is either a generalized

path or a generalized cycle.

On the contrary not every generalized cycle or path has λ′
2,1 ≤ 4. The following

lemmas state all the conditions for a generalized cycle or path to satisfy λ′
2,1 ≤ 4.

Notation in the proofs. Both proofs are done by a case analysis. We use sequences
of numbers representing labels on edges. Note that it follows from Observation 1
that only numbers 0, 2, 4 can occur around a hairy vertex and any pendant edge
must get label 2. For labelings we use sequences of numbers describing labels of
consecutive edges and a symbol ”|” for a hairy vertex—so there is a pendant edge
on that vertex with label 2. This gives us immediately the following observation.

v

4

2

0

There could not be

any other

consecutive edge

31

The only way how to label these edges

3 1 40

This is the

first time we

can make a

choice. Use

4 or 2.

This is the

first time we

can make a

choice. Use

0 or 2.

e

Observation 3 (The labeling of a hairy vertex and its neighborhood).
The neighborhood of a hairy vertex can be labeled only by a sequence 0314|0314 or
its λ-inversion 4130|4130.

Lemma 6. Let G = (V,E) be a generalized path. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W their
distance d = dG(u, v) is either 4, or at least 8.

Proof. We need to show that each sequence can be correctly labeled or that it is
impossible to label it at all.

The easier fact is the existence of correct labelings. The following sequences
can be extended by a sequence 0314 at the beginning to get sequences of length at
least 8:

6

• |0314|(d = 4),

• |031420314|(d = 9),

• |0314204130|(d = 10),

• |03140240314|(d = 11).

Now we have to show that there are no valid sequences of length 1, 2, 3, 5, 6, 7.
Observation 3 banns immediately sequences of length 1, 2, 3. Furthermore, the same
observation also implies that there is no chance to overlap two sequences which is
necessary to get lengths 5, 6 or 7. �

Lemma 7. Let G = (V,E) be a generalized cycle. Let W be the set of all hairy
vertices. Then λ′

2,1(G) ≤ 4 if and only if for every consecutive pair u, v ∈ W their
distance d = dG(u, v) fulfills one of the following:

• d = 4, 8, 9 or d ≥ 11,

• if there exists a consecutive pair with d = 10, then there is even number of
such consecutive pairs, or there exists a consecutive pair with d = 13, 14, 16 or
greater.

Proof. Firstly it is easy to observe that cycles of any length without a hairy vertex
can be labeled correctly.

For the proof we use all the facts already proved in the proof of Lemma 6. The
difference between a generalized path and a cycle is that the generalized cycle is
closed, and so we have to care about used labeling.

For all lengths of sequences presented so far, the sequence starts with the label 0
and ends with the label 4. Recall that the sequence of length 10 was |0314204130|.
This sequence starts and ends with the same label—and this cause the incorrectness
of labeling.

First we present a new sequence |03140240240314|(d = 14)—this sequence
proves, that the only sequence that has to start and end with the same label is
the one with length 10. Now it is clear that if there is even number of pairs with
d = 10 then the constructed labeling is correct, which finishes the proof of the first
part.

For the second part of the lemma, we have to show that for d = 13, 14 or d ≥ 16,
there is also a sequence that starts and ends with the label 0 and the impossibility
of such a labeling for all other d. As usually, we begin with the desired sequences:

• |4130240240314|(d = 13),

• |41302403140314|(d = 14),

• |413041302403140314|(d= 18).

7

In all these sequences the subsequence 024 can be repeated arbitrarily.
For the rest we already know, that all the sequences that starts and ends with

0 have to start with the subsequence |0314 and end with the subsequence 4130|. As
these subsequences cannot be glued together, we have to glue them through another
subsequence, which we call a connector. Note that the connector subsequence cannot
be of length 1, because the starting and ending subsequences starts and ends with
the same label. This already forbids all d ≤ 10.

The connector can be the sequence 20 or 02. The resulting sequence is the se-
quence 0314204130, which we are already familiar with. Again it is impossible to
prolong the sequence by a subsequence of length one, two or five. It is easy to see
that the only possibilities are to put:

• 0314 to the beginning,

• 4130 to the end,

• 420 right after the connector.

This forbids the sequences of length 11, 12, 15 and finishes the proof. �

3. NP-complete cases

Theorem 8. The problem Distance Edge Labeling is NP-complete for every
fixed λ ≥ 5.

The proof of the hardness result is done for every λ ≥ 5. However as there is
a natural difference between odd and even λ, the proof is divided according to the
parity of λ to two basic general cases. The proof of the even (odd) part is contained
in Subsection 3.2 and 3.3 respectively.

Furthermore, as the gadgets developed to carry the labeling does not work for
small cases, we have to exclude the borderline values λ = 5, 6, 7 from the general
proof. Their correctness is proven in Subsection 3.4.

Our basic reduction tool is the Monotone Not All Equal 3-SAT problem
which all cases are reduced from. We say a formula ϕ is a 3-MCNF (monotone
conjunctive normal form) if it is a conjunction of clauses with exactly 3 logical
variables without negations.

Definition 6 (Monotone Not All Equal 3-SAT problem).

Input: A 3-MCNF formula ϕ.
Question: Is it possible to find an assignment such that each clause has

at least one literal set to true and at least one literal set to
false?

The above problem is also known as MNAE-3-SAT. It is a specialized version
of NAE-3-SAT, which was shown to be NP-complete by Schaefer [18] by a more
general argument about CSP’s. We can find MNAE-3-SAT in the list of NP-
complete problems in the monograph of Garey and Johnson [19].

8

The reduction procedure. For a 3-MCNF formula ϕ and positive integer λ ≥ 5 we
show how to build a graph Gλ

ϕ. We will ensure that λ′
2,1(G

λ
ϕ) ≤ λ if and only if

the answer to the question of MNAE-3-SAT problem is ”YES”. In our proofs the
main focus is to prove the correspondence between a satisfying assignment to the
variables of ϕ and the λ-labeling of the graph Gλ

ϕ. We call this the correctness of a
gadget.

Definition 7 (Odd and Even sets). For any λ ∈ N we define two subsets of
the set {0, . . . , λ}. The odd subset O = {l ∈ N: l ≤ λ, l odd} and the even subset
E = {l ∈ N: l ≤ λ, l even}.

Example 1. Take λ = 10 (even). Now according to Observation 1, the maximum
possible degree of a vertex in a graph admitting a distance labeling with λ labels is
6. Moreover, only labels from the set E can appear on edges incident with such a
vertex.

3.1. Basic lemmas

We state some auxiliary lemmas that are used in our reductions.

Lemma 9 (Labeling of edges incident to a maximum degree vertex). Let
λ ∈ N, let G be a graph with λ′

2,1(G) ≤ λ and its maximum degree vertex v.
Then:

even λ: If deg(v) = λ
2
+1 then vertex v has its incident edges labeled by labels from

the set E.

odd λ: If deg(v) = λ+1
2

then vertex v has its incident edges labeled by labels from
the one of the sets: O, O \ {1} ∪ {0}, E or E \ {λ− 1} ∪ {λ}.

Lemma 10 (Adjacent vertices with maximum degree, even span version).
Let λ ∈ N, λ even and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ. Take two

neighboring vertices u, v ∈ V such that deg(u) = λ
2
+ 1, deg(v) = λ

2
and {u, v} ∈ E.

Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E \ {0} and finally all the edges incident to v are labeled
by the elements from the set O \ {1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by the
elements from the set E\ {λ} and finally all the edges incident to v are labeled
by the elements from the set O \ {λ− 1}.

0 or λ

max max-1

max =
λ

2
+ 1

E \ {0} or E \ {λ} O \ {1} or O \ {λ− 1}

Even λ

0 or λ

max max

max =
λ+1

2

E \ {0} or E \ {λ− 1} O \ {1} or O \ {λ}

Odd λ max =
λ+1

2

u v uu

9

Lemma 11 (Adjacent vertices with maximum degree, odd span version).
Let λ ∈ N, λ odd and let G = (V,E) be a graph with λ′

2,1(G) ≤ λ. Take two

neighboring vertices u, v ∈ V such that deg(u) = deg(v) = λ+1
2
.

Then there are only two possibilities:

• The edge {u, v} is labeled by 0, all the edges incident to u are labeled by the
elements from the set E \ {0} and finally all the edges incident to v are labeled
by the elements from the set O \ {1}.

• The edge {u, v} is labeled by λ, all the edges incident to u are labeled by the
elements from the set E \ {λ − 1} and finally all the edges incident to v are
labeled by the elements from the set O \ {λ}.

A proof of both lemmas above is an easy application of Lemma 9.

Notation in gadgets. We further use max as the number for the maximum degree
in graph G with λ′

2,1(G) ≤ λ. We also use directed edges in gadget graphs. An
outgoing edge represents an output, while an ingoing edge represents an input to the
gadget. We build all the gadgets so that the labels on output edges can take only
several values.

u v

Rest of G
Rest of G

Subgraph H

If this edge exist it gets la-

bel 1.

In one case this edge gets

some even label 6= 0

⊆ O ⊆ E

w

0, 2, 4

e1 e2

0, 3, 5

Lemma 12 (A correct labeling of joint even and odd part). Let λ ∈ N, G
be a graph with λ′

2,1(G) ≤ λ and H be its subgraph represented by the complete
bipartite graph K2,max−1 such that:

• The only two edges connecting G \ H to H are e1 and e2, where u ∈ e1 and
v ∈ e2.

• The graph H contains vertices u 6= v, degG(u) = degG(v) ≥ 4 and their
common neighbors, call them N . Vertices from N are not adjacent, but exactly
one of them w may have zero, one or two other neighbors outside H.

10

• Moreover, each edge {u, z}, z ∈ N can be labeled only by odd labels (O) and
each edge {v, z}, z ∈ N can be labeled only by even labels (E) and has no other
condition on them from the rest of G. (It’s essential that they can be labeled
by arbitrary label of appropriate set except the labels of edges e1 and e2.)

There are four cases depending on labels of e1 and e2, on the degree of u and v and
on the number of neighbors of w. If one of the following cases happen:

I. Both e1, e2 have label 0, degG(u) = degG(v) = max and the vertex w has one
output edge. (for λ odd)

II. Both e1, e2 have label 0, degG(u) = degG(v) = max−1 and vertex w has two
output edges. (for λ even)

III. The edge e1 has label 2 and edge e2 has label 3 and degG(v) = degG(u) =
max−1. (for λ odd)

IV. The edge e1 has label 4 and edge e2 has label 5 and degG(v) = degG(u) =
max−1. (for λ odd)

Then all edges incident to vertices of N can be labeled correctly.

I. The output edge incident to w has to have a label 1.

II. The edges incident to w has to be labeled by 1 and some s 6= 0 even.

The idea of the proof is to construct an auxiliary bipartite graph. Each edge of
H is labeled by some label from the correct set and it is represented by a vertex.
Two vertices are connected whenever they be incident in graph H without breaking
condition of a correct labeling. It can be shown that such graph is almost r-regular
for some r. Moreover we can delete some edges from that graph and then it becomes
r-regular. Then we can found perfect matching using Hall marriage theorem [20].

Then it is easy to show that the labeling of the output edge have to use label
1 because it is the only unused label and it cannot be placed anywhere else. The
other edge incident to the vertex w has an arbitrary nonzero even label and we have
exactly one left for this purpose.

Proof. We start by a construction of an auxiliary 2-regular bipartite graph HA.
We use the graph HA to represent the incompatibility relation between the set E

and the set O. Set k := degG(u) = degG(v). The left partite represents k − 1 odd
labels, by which we can label the H-neighborhood of the vertex u. While the right
partite represents k − 1 even labels, by which we can label the H-neighborhood of
the vertex v. Of course by this we do not use the labels of edges e1 and e2.

Vertices are connected by an edge, whenever corresponding edges in graph H
cannot be incident.

Note that every vertex in graph HA has degree at most 2, as we would like HA

to be 2-regular, we have to add several edges to HA, which we do as follows (see
Figure 1):

11

I. In this case the left partite represents labels in the set O \ {1}, while the right
partite represents labels in the set E \ {0}. The only vertices with degree one
are: λ and 2. It is possible to add edge {2, λ}.

II. The left partite represents labels in the set O \ {1}, while the right partite
represents labels in the set E \ {0, λ}. The only vertices with degree one are:
λ− 1 and 2. Then we can add edge {2, λ− 1}.

III. The left partite represents labels in the set O \ {1, 3}, while the right partite
represents labels in the set E \ {2, 4}. Vertices with degree less than two
represents the following labels: 0 (degree zero), 5 and λ (both degree one).
Then we can add two edges: {0, 5} and {0, λ}.

IV. The left partite represents labels in the set O \ {3, 5}, while the right partite
represents labels in the set E \ {4, 6}. Vertices with degree one represents the
following labels: 0, 2, 7 and λ. Then we can add two edges: {2, 7} and {0, λ}.

Now we create the graph complement HA of the auxiliary graph HA. We can
see HA is (k− 3)-regular bipartite graph and then it has perfect matching by Hall’s
marriage theorem and so this perfect matching describes a correct labeling of the
graph H .

It remains to show that in cases I. and II. it is possible to extend the labeling to
the output edges incident to the vertex w. By inner edges incident to w we mean
the edges {u, w}, {v, w}.

I. In this case the only label left for the output edge is label 1. That label is
incompatible only with label 2 but there are at least two edges in the matching
not containing label 2. So it is possible to set labels of the inner edges incident
to the vertex w correctly.

II. In this case we have to label two edges incident to the vertex w. Note that we
can use labels 1 and λ because all other labels are used in the close neighbor-
hood. Similarly to the previous case we have to exclude those labelings that
associate label λ− 1 or 2 with an inner edge incident to w. This is possible as
there are at least 3 edges in the perfect matching. �

The main reductions proof idea. We would like to give a reader the general idea
used in proofs of all cases. We will develop some gadgets to model the two parts
of the input of MNAE-3-SAT. Namely the logical variables and the formula itself,
which we model clause by clause. Moreover, in general-case reductions we need
some middle-pieces to glue them together.

To prove that the gadget for a variable works correctly we need to check that
there is no any other labeling of output edges in the variable gadget than the one
described in the image, or its λ-inversion. Note that the only possible labels on an
output edge are 0 (or 1) and λ (or λ− 1)—these will represent the logical value of
the variable. For now on, we mostly omit the λ-inversion case in the proof. Every

12

3

5

7

2

4

6

λ− 4

λ− 2

λ

λ− 5

λ− 3

λ− 1

O E

added edge

5

7

9

0

6

8

λ− 4

λ− 2

λ

λ− 5

λ− 3

λ− 1

O E

added edge

added edge
1

7

9

0

2

8

λ− 4

λ− 2

λ

λ− 5

λ− 3

λ− 1

O E

added edge

added edge

Case I. Case II.

Case III. Case IV.

3

5

7

2

4

6

λ− 5

λ− 3

λ− 1

λ− 6

λ− 4

λ− 2

O E

added edge

Figure 1: Four cases for bipartite graph perfect matching.

13

variable gadget contains a part with an output edge such that it is possible to repeat
it arbitrarily—we call this part repeatable.

For a clause, we use a gadget for a given span with exactly 3 input edges. This
clause gadget has to admit a labeling whenever at most two input edges represents
the same logical value. On the other hand it does not admit a labeling when all
input edges represents the same logical value.

3.2. Even λ ≥ 8

Lemma 13. The Distance Edge Labeling problem is NP-hard for every even
λ ≥ 8.

Proof. We divide the variable gadget into three logical parts. The initial part and
the final part are only technical support for achieving the unique correct labeling.
The main case analysis is done in the repeatable part.

0 e1 0 e2λ l λ e3 0 e4

Initial part Final part

E \ {0, λ}

E \ {0, λ}

O \ {(λ− 1), l}

O \ {1}

E \ {0, s}
O \ {1}

1s

Repeatable part

max
max-1

max-1

max-1

max
max-1

v

Variable gadget

w

ew2ew1

By Lemma 10 we set the label of e1 to 0. Now we have only two possible sets
how to label all the edges incident to the vertex v depending on whether label 1 is
used or not: E∪{1}\{0, 2} and E\{s ∈ E}. If we label edges incident to v from the
set E∪{1}\{0, 2} it is impossible to label both edges ew1

, ew2
incident to the vertex

w, because we need to use both 0, 2 labels on them. But the label 0 is already used
for the edge e1 which is at distance two. This implies that edge e2 must be labeled
by 0. Then we can prove that presented labeling is correct by Lemma 12 part II. So,
if we label these edges from the set E\{s ∈ E} then it is possible to label the output
edge by s or by 1. Later the middle-piece gadget further restricts the output, so that
the only possible label for the output edge is 1 because any s ∈ E is forbidden as
an input of the middle-piece gadget. Edges e3 and e4 need to have labels 0 or λ by
Lemma 10. As e3 is at distance two to edge e2 labeled by 0, it cannot have label 0.
This allows us to repeat Repeatable part with the first edge labeled by 0.

The middle-piece gadget gives us only two possible outputs: 2 or 0. This is
because Lemma 9. Moreover, this lemma implies that the only possible label of
input edges is 1.

14

The output of the middle-piece gadget is plugged into the clause gadget. Its
correctness is straightforward and it is shown in the following picture.

Variable 2

0 e1 2 e27

3 5

λ

0
2

λ− 2

Variable 3

Variable 1

E \ {0, 2}

0 or 2

2 or 0

E \ {0, 2}

E \ {0, 2}

max

max

max

e3

E \ {0, 2}

0 or 22 or 0

max

1 1 1 1 1 1 1 1 1

Clause gadgetMiddle-piece gadget

conected by middle-piece

conected by middle-piece

conected by middle-piece

�

3.3. Odd λ ≥ 9

Lemma 14. The Distance Edge Labeling problem is NP-hard for every odd
λ ≥ 9.

This case is more complicated than the previous one. A reason for this is in the
difference between Lemma 11 and Lemma 10. In either case there are only two
possible labelings but in Lemma 11 the degree of the vertex u equals to the degree
of the vertex v, while this is not true in Lemma 10. So, we were able to distinguish
them easily in the even case shown before.

Proof. We start with correctness of the variable gadget ; see Figure 2.
We prove that neighboring edges of vertex v are labeled by labels from O \

{1} ∪ {0}. We proceed by contradiction. Suppose that these edges are labeled by
E (according to Lemma 9 this is the only other option) then edges incident to the
vertex u has labels from O \ {1} ∪ {0}. Then exists the edge e = {v, z} that is
labeled by some odd l 6= λ. So the neighborhood of the vertex z can be labeled
either by a set E \ {0, 2, l− 1, l+1} ∪ {1} or by a set E \ {0, l− 1, l+1}. Neither of
them is sufficiently large to label all the edges. The correctness of the other labeling
is shown in the image.

Lemma 12 parts III. and IV. ensures that it is possible to repeat the repeatable
part of the gadget. Note that the repeatable part consists of two identical parts, but
it is possible to use only one of them as an output, because these parts are labeled
λ-symmetrically.

15

R
e
p
e
a
ta
b
le

p
a
r
t

0
λ

λ

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x
-
1

m
a
x

m
a
x

m
a
x

m
a
x

m
a
x

m
a
x

O
\
{
1}

E
\
{
λ
−
1
}

E
\
{
λ
−
1
}

E
\
{
l
1
−
1
,
l
1
+
1
}

l
1

l
2

l
3

5
3

E
\
{
l
2
−
1
,
l
2
+
1
}

E
\
{
l
3
−
1
,
l
3
+
1
}
O
\
{
s
1
−

1
,
s
1
+
1
}

O
\
{
s
2
−
1
,
s
2
+
1
}

O
\
{
s
3
−
1
,
s
3
+
1
}

E
\
{
l
1
−
1
,
l
1
+
1
}

E
\
{
l
2
−
1
,
l
2
+
1
}

E
\
{
l
3
−
1
,
l
3
+
1
}

2
4

5
3

E
\
{
4
,
6
}

E
\
{
2
,
4
}

O
\
{
1
,
3
}

O
\
{
3
,
5
}

E
\
{
4
,
6
}

E
\
{
2
,
4
}

z

e

V
a
r
ia
b
le

g
a
d
g
e
t

v

u

F
ig
u
re

2
:
T
h
e
va
ria

b
le

g
a
d
g
et

fo
r
o
d
d
g
en
era

l
λ
.

16

E \ {0, 2}

0 or 2

max-1

max max max max

1 1 1 1

0 0 0 0

O \ {1, li} O \ {1, lk} O \ {1, ll}O \ {1, lj}

li lj lk ll

On each of bottom inputs is label 1 coming

from variable through auxiliary gadget. Each

of left inputs is derectly from variable gadget.

Auxiliary

Variable

v

max

max

0

0

1

O \ {1}

E \ {0}

Middlepiece

Variable

The correctness of the auxiliary gadget is described in Lemma 12 part I. The
purpose of this gadget is to create an edge with label 1.

Themiddle-piece gadget has two kinds of inputs. Both kinds of inputs correspond
to the variable gadget, but one of them is connected to the middle-piece through the
auxiliary gadget.

The edges incident to the vertex v can by labeled only by labels from the set E.
This is ensured by the variable inputs, because they contains each label from the
set O\{1} and also by auxiliary inputs containing label 1. Note, that we can create
as many such inputs as it is needed. Moreover, the label 1 forbids labels 0 and 2
anywhere besides the output edge.

Each output from the middle-piece gadget is plugged into the clause gadget in
the following way. Its correctness is again straightforward and it is shown in the
image which completes the proof.

17

Variable 2

0 2

λ

Variable 3

Variable 1

E \ {0, 2}

0 or 2

E \ {0, 2}

E \ {0, 2}

max-1

max-1

max-1

O \ {λ, λ− 2}

Clause gadget

connected by middle-piece connected by middle-piece

connected by middle-piece

�

3.4. Exceptional cases λ ∈ {5, 6, 7}

We prove exceptional cases separately for each λ. We were unable to find or
change the general reductions to fit these small cases.

Case analysis are mostly in tables for now on. There is shown every possible
labeling of the edges highlighted in gadget starting by an edge e0.

NP-hardness for λ = 5

Lemma 15. The Distance Edge Labeling problem is NP-hard for λ = 5.

Proof. A variable is represented by the following variable gadget :

0 e0

4 e1 1 e2 5 e3 0 e4

3 5

2 e′
1 3 e5

5 e′
6

4 e7 0 e8

2 0

1 e6

3 e′
3 3 e′

9
2 e′

8
2 e′

4

5 e′
2

5 e9 2 e10 0 e′′′
3

3 e′′
3

Repeatable part

Arbitrary

repetitions

of the

Repeatable

part.

Cycle

Variable gadget

18

The correctness is implied by the following table. There is shown every pos-
sible labeling that can occur. Lemma 11 is heavily used to reduce the number of
admissible labels on edges e0, e

′
5, e3 and e8.

The analysis starts assuming e0 as an output edge get is labeled by 0. Then the
labels of other edges are force according to Table 1. That gives us the first value of
the variable. The λ-inversion gives us the other value representing the negation.

By repeating the repeatable part while keeping the value on the output edges
we can accomplish an arbitrary number of outputs of the variable.

The case analysis shows two possibilities of a correct labeling. The first starts
by placing labels 4, 2 on edges e′1, e1. Then the only correct way how to repeat the
repeatable part is to use labels from Case IV. While for closing the cycle we need to
label the last repeatable part according to Case V.

The second place those labels on edges e′1, e1 in the reverse order. Again, the
only correct way how to repeat again the repeatable part is labeling as in Case VIII.
While for closing the cycle we can use either Case VIII. or case IX. to label the last
repeatable part.

The outputs of the variable gadgets are plugged into the following clause gadget ;
see Figure 3 and Table 2.

As the only input to the clause gadget can be either from a set {3, 5} or from a
set {0, 2}, which represent the truth assignment of the appropriate variable. From
the labels in the gadget, we can see (up to λ-symmetry) that it is impossible to label
the clause if there are three inputs from the set {3, 5} and it is possible to label the
clause if there is at least one input from the other set as it is shown in the image
above. �

Third variable

0 e0

0

0

5 e1

5

5

3

3

5

3 e5

5 0 3

2
0

Second variable

First variable

v

3 e′
1

2 e2 4 e3

0 e′
3

1 e4

3 e′
4

5 e′′
4

2 4

0

3 5

1

2 4

0

3 5

11

5

02

4

Clause gadget

no label

possible

Figure 3: The clause gadget for λ = 5.

19

I.

0 e0

3 e1 1 e2

e3, e
′

3
is impossible to

label with 4 and 5.

2 and 4

5 e′
1

e
′

3

2 e′
2

e
′′

3
and e

′′′

3

4 and 0

e3

II.

0 e0

5 e1 2 e2

e
′′

3
, e

′′′′

3
is impossible

to label with 4 and 5.

2 and 4

3 e′
1

e
′

3

1 e′
2

e
′′

3
and e

′′′

3 4 and 0

e3

III.

0 e0

2 e1 5 e2 0 e3 2 e4

5 and 3

4 e′
1 5 e5

3 e
′

3

1 e′
2

e
′′

3
and e

′′′

3

3 and 5 4 e′
4 0

Impossible to

label both by

4 and 5.

3 e6 1 e7

2 and 4

IV.

0 e0

2 e1 5 e2 0 e3 4 e4

5 and 3

4 e′
1 1 e5

5

0 e7 53 e6

3 e
′

3
32

λ-inversion of the first

part. It is used for

combining with an-

other repeatable part.

1 e′
2 1 4

e
′′

3
and e

′′′

3

3 and 5

2 and 0

2 e′
4

V.

0 e0

2 e1 5 e2 0 e3 4 e4

5 and 3

4 e′
1 1 e5

5

0 e7 53 e6

3 e
′

3
12

λ-inversion of the
first part (case
III). It is used for
closing the cycle.

1 e′
2 3 0

e
′′

3
and e

′′′

3

3 and 5

2 and 0

2 e′
4

VI.

0 e0

4 e1 1 e2

3 and 5

2 e′
1

3 e′
3

5 e′
2

5 e3

Impossible
to label both
without 2.

0 e′
4

2 e4 4 e5

3 and
(1 or 0)

(by Lemma 11)

VII

0 e0

4 e1 1 e2

3 and 5

2 e′
1

3 e′
3

5 e′
2

5 e3

Impossible
to label both
without 0.

2 e′
4

0 e4 4 e5

3 and
(1 or 0)

VIII.

0 e0

4 e1 1 e2

3 and 5

2 e′
1

3 e′
3

5 e′
2

5 e3

2 e′
4

0 e4 3 e5

5

1 e6

2 and 0

3 and
(1 or 0)

4 e7 0 5 2

2 3

λ-inversion of the
first part. It is
used for combin-
ing with another
repeatable part.

IX.

0 e0

4 e1 1 e2

3 and 5

2 e′
1

3 e′
3

5 e′
2

5 e3

2 e′
4

0 e4 3 e5

5

1 e6

2 and 0

3 and
(1 or 0)

4 e7 0 5(3) 1

2 3(5)

λ-inversion of the
first part (case
VI, VII). It is
used for closing
the cycle.

Table 1: Case analysis of for the variable gadget for λ = 5.

20

I.
0 e0 3 e1

v
5 e

′

1

1 e2 e3 cannot be

labeled.

e
′

3
cannot be labeled.

II.
0 e0 5 e1

v
3 e

′

1

1 e2 e3 cannot be

labeled.

e
′

3
cannot be labeled.

III.
0 e0 5 e1

v
3 e

′

1

2 e2 0 e3

4 e
′

3

e
′

4
or e

′′

4
cannot

be labeled.

IV.
0 e0 5 e1 3 e5

v
3 e

′

1

2 e2 4 e3

0 e
′

3

1 e4

3 e
′

4
5 e

′′

4

or 5

Table 2: Four cases for the clause gadget for λ = 5.

NP-hardness for λ = 6

Lemma 16. The Distance Edge Labeling problem is NP-hard for λ = 6.

Proof. A variable is represented by the following variable gadget :

3 e2

6 e1

1 e
′

2

4 e
′

1

0 e
′

0 2 e0

5

3

6

1

4

0 2

3

6

1

4

0 2 5 5

{2, 4, 6} {2, 4, 6} {2, 4, 6}

Repeatable part Initial partInitial part

0 e3 00

v w

Variable gadget

Cycle

And the case analysis is in the following table.
It starts using Lemma 9 on the vertex v. We do not need to analyse cases that

are symmetric along the cycle. So, without loss of generality e′0 is labeled by a
smaller label than e0 and as usually we omit cases that are λ-inversions.

21

I.

2 e
′

0

4 e0

0 e
′

1

6 e1

Impossible to

label the cycle.

II.

2 and 4

0 e
′

0

6 e0

e
′

1

e1

The cycle

It is impos-

sible to la-

bel e′
2
.

III.

2 and 6

0 e
′

0

4 e0

e
′

1

e1

The cycle

It is impos-

sible to la-

bel e′
2
.

IV.

0 e
′

0

2 e0

6 e
′

1

4 e1

The cycle 1 e
′

2

It is impossible

to label e2.

V.

0 e3

1 e2

2 e
′

0

4 e0

{2, 4, 6}

3 e
′

2

0 e
′

1

6 e1

The cycle

We should notice how the only possible labeling on the cycle is forced. According
to the following table the only admissible labelings around main vertices (e.g. v, w)
are consecutive pairs of labels (0, 2), (2, 0), (2, 4), (4, 2) and λ-inversions (6, 4), (4, 6).
Notice that any edge connecting main vertices can be labeled only by an odd label
(1, 3, 5). Observe that there cannot be close edges of two consecutive main vertices
labeled by the same label. Then we do a small case analyse according to the label
used on a connecting edge:

1 used There has to be (6, 4) (respectively (4, 6)) the same on every main vertex
from both side and that forms the correct λ-inverse labeling. If not then (2, 4)
was used somewhere. But after that there is the only choice (6, 4) and then
we cannot use anything else and so we cannot reach (2, 4) again.

3 used There has to be (4, 6) from one side and (0, 2) from the other. But next to
2 there can only be 5 and then there has to be again (0, 2) so we can never
ever reach (4, 6).

5 used There has to be (0, 2) (respectively (2, 0)) the same from both side and that
forms the correct labeling. If not then (4, 2) was used somewhere. But after
that there is the only choice (6, 4) and then we cannot use anything else and
so we cannot reach (4, 2) again.

And the clause is represented by the clause gadget :

22

First variable

0 e0

0

0

6 e1

6

6

3 e
′

2

1 e2

3

1

1

3

0

0

4 e3

6 0

5

3

6

Second variable

Third variable

4 e
′

1

2 e
′′

1

4

2

4

2

2

Clause gadget

v

I.
0 e0 2 e1

e2 e
′

2
does not

have two odd

neigbours.4 e′
1

6 e′′
1

v

II.
0 e0 4 e1

e2 e
′

2
does not

have two odd

neigbours.2 e′
1

6 e′′
1

v

III.
0 e0 6 e1

3 e
′

2

1 e2 4 e3

4 e
′

1

2 e
′′

1

vor 5

IV.
0 e0 6 e1

1 e
′

2

3 e2 0 e3

4 e
′

1

2 e
′′

1

vor 5

The correctness is implied by a similar case analysis as before given in the table.
�

NP-hardness variable gadget for λ = 7

Lemma 17. The Distance Edge Labeling problem is NP-hard for λ = 7.

Proof. For the case λ = 7, we show only the variable gadget because in this case
it is possible to reuse all the other gadgets from the general case where λ ≥ 9.

Repeatable part

0 00

2 4 7 2 4 7 2 47

5

3 1

1

7

5

3
7

5

3 7

5

3

5 6 1 5 6

3 1 3 1

1

7

6

Variable gadget

The correctness of the repeatable part is done by the same argument as it is
done in the proof of the general case for λ ≥ 9. Then it is straightforward to show
that the only possible labeling of connection of repeatable parts is the one shown in
the image above. �

23

3-SAT

n variables, m clauses

4-NAE-SAT

n+ 1 variables, m clauses

3-NAE-SAT

n+m+ 1 variables, 2m clauses

3-MNAE-SAT

2n+ 2m+ 5 variables, 3n+ 5m+ 4 clauses

(x ∨ y ∨ z)

new global variable g

(x ∨ y ∨ z ∨ g)

for a clause (a ∨ b ∨ c ∨ d)

((a ∨ b ∨ f) ∧ (f̄ ∨ c ∨ d))

new variables g1, g2, g3

(x ∨ ¬x ∨ g1)

(x ∨ ¬x ∨ g2)

(x ∨ ¬x ∨ g3)

4. Algorithmic hardness based on ETH

In this section we prove Corollary 2.
The proof is divided into two relatively independent parts. In the first part

we show a version of the ETH for the MNAE-3-SAT problem using well-known
reduction techniques. We present this part just for an analysis of the ETH-based
lower bounds. The second part is a conclusion of the NP reductions we have shown
in the previous section.

4.1. An ETH for MNAE-3-SAT

For ease of the presentation follow the overview schema of the size preserving
reduction.

Proof. We begin with a classical clause version for 3-SAT as it was mentioned in
Section 1.2.1. The input instance contains n variables and m clauses. We add a
new global variable g and we add it into every clause. So we have an instance of
4-NAE-SAT. If it is satisfiable then we can set g to false and thus we satisfied 3-
SAT version. If it is not then there is a clause that cannot be not-all-equal-satisfied.
Thanks to the symmetry of not-all-equalness we can set g to false and thus we know
that the clause is not satisfiable because all the other literals must be false as well.
We extend the number of variables by 1 and preserve the number of clauses.

24

From 4-NAE-SAT we proceed to 3-NAE-SAT just by adding an auxiliary variable
f for each clause which we evenly split into two. One of them containing f and the
other the negation f̄ . Again, if the modification is satisfied then the original form is
easily satisfied as well because either f or f̄ cannot be true. The other implication
is of the same principle. We thus doubled the number of clauses and extended the
number of variables by m.

From 3-NAE-SAT to 3-MNAE-SAT we add new variables representing negations
of the former variables. Finally, we add clauses containing the positive and the
negative form of the same variable and one of new global variables g1, g2, g3. We
finish the reduction by adding a clause (g1∨g2∨g3). This reduction again equivalently
preserves satisfiability since every former variable have to get opposite value than
its negation.

In total we extended the number of clauses to 3n + 5m + 4 and the number of
variables to 2n+2m+5. This is still sufficient because the reduction is linear in the
parameter and that satisfies the definition of the SERF-T reduction 5. The previous
holds because the number of variables is smaller than the number of clauses and so
it depends only on the number of clauses and that is the reason why we have begun
with the clause 3-SAT variant of the ETH. �

4.2. An ETH for distance edge-labeling

Proof. It is straightforward to check that for a fixed λ ≥ 5 the size of gadgets is
linear in the number of clauses and that according to the definition of the SERF-T
reduction 5 is sufficient together with the NP-hardness reduction we have shown in
Section 3. This finishes the proof of Corollary 2 �

5. Conclusions

It would be interesting to know whether it is possible to find simpler reduction
as well as to find the characterization for generalised version of Distance edge

labeling problem, where the labels of neighbouring edges must differ by at least
p and the labels of edges in distance two must differ by at least q.

6. Acknowledgements

We would like to thank Juho Lauri for an idea to use an ETH as well as our
supervisor Jǐŕı Fiala for fruitful discussions, proofreading and helpful comments.

7. References

References

[1] D. Knop, T. Masař́ık, Computational complexity of distance edge labeling, in: Combinatorial
Algorithms - 26th International Workshop, IWOCA 2015, Verona, Italy, October 5–7, 2015,
Revised Selected Papers.

[2] P. Formanowicz, K. Tanaś, A survey of graph coloring - its types, methods and ap-
plications, Foundations of Computing and Decision Sciences 37 (3) (2012) 223 – 238.
doi:10.2478/v10209-011-0012-y.

25

[3] T. Calamoneri, The L(h, k)–labelling problem: An updated survey and annotated bibliogra-
phy, The Computer Journal 54(8) (2011) 1344–1371.

[4] T. Calamoneri, The L(h,k)–labelling problem (online updated survey) (2013).
URL http://wwwusers.di.uniroma1.it/~calamo/survey.html

[5] J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete
Math. 5 (4) (1992) 586–595.

[6] R. K. Yeh, Labeling graphs with a condition of distance two, Ph.D. thesis, University of South
Carolina (1990).

[7] W. K. Hale, Frequency assignment: theory and applications 68 (1980) 1497–1514.
[8] J. Fiala, T. Kloks, J. Kratochv́ıl, Fixed-parameter complexity of λ-labelings, Discrete Applied

Mathematics 113 (1) (2001) 59 – 72, selected Papers: 12thWorkshop on Graph-Theoretic Con-
cepts in Computer Science. doi:http://dx.doi.org/10.1016/S0166-218X(00)00387-5.
URL http://www.sciencedirect.com/science/article/pii/S0166218X00003875

[9] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz No. 3 (1964)
25–30.

[10] F. Havet, B. Reed, J.-S. Sereni, Griggs and yeh’s conjecture and l(p, 1)-labellings, SIAM Jour-
nal on Discrete Mathematics 26 (1) (2012) 145–168.
URL http://dx.doi.org/10.1137/090763998

[11] J. Flum, M. Grohe, Parameterized Complexity Theory (Texts in Theoretical Computer Sci-
ence. An EATCS Series), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[12] R. Diestel, Graph Theory, Electronic library of mathematics, Springer, 2006.
URL http://books.google.cz/books?id=aR2TMYQr2CMC

[13] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential complexity?,
Journal Comput. Syst. Sci. 63 (4) (2001) 512–530.

[14] D. Lokshtanov, D. Marx, S. Saurabh, Lower bounds based on the exponential time hypothesis,
Bulletin of the EATCS 105 (2011) 41–72.

[15] C. Calabro, R. Impagliazzo, R. Paturi, A duality between clause width and clause density for
SAT, in: 21st Annual IEEE Conference on Computational Complexity (CCC) 2006, 16-20
July 2006, Prague, Czech Republic, 2006, pp. 252–260. doi:10.1109/CCC.2006.6.

[16] C. Calabro, R. Impagliazzo, R. Paturi, The complexity of satisfiability of small depth circuits,
in: Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, 2009, pp. 75–85.
doi:10.1007/978-3-642-11269-0_6.
URL http://dx.doi.org/10.1007/978-3-642-11269-0_6

[17] R. Santhanam, S. Srinivasan, On the limits of sparsification, in: Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part I, 2012, pp. 774–785.

[18] T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, STOC ’78, ACM, New York, NY, USA, 1978,
pp. 216–226. doi:10.1145/800133.804350.
URL http://doi.acm.org/10.1145/800133.804350

[19] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[20] P. Hall, On representatives of subsets, Journal of the London Mathematical Society s1-10 (1)
(1935) 26–30. doi:10.1112/jlms/s1-10.37.26.

26

