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Abstract

We prove the Ramsey property of classes of ordered structures
with closures and given local properties. This generalises earlier re-
sults: the Nešetřil-Rödl Theorem, the Ramsey property of partial or-
ders and metric spaces as well as the author’s Ramsey lift of bowtie-
free graphs. We use this framework to give new examples of Ram-
sey classes. Among others, we show (and characterise) the Ramsey
property of convexly ordered S-metric spaces and prove the Ramsey
Theorem for Finite Models (i.e. structures with both functions and
relations) thus providing the ultimate generalisation of Structural the
Ramsey Theorem. We also show the Ramsey Theorem for structures
with linear ordering on relations (“totally ordered structures”). All of
these results are natural, easy to state, yet proofs involve most of the
theory developed here.

We characterise classes of structures defined by forbidden homo-
morphisms having a Ramsey lift and extend this to special cases of
classes with closures. We apply this to prove the Ramsey property of
many Cherlin-Shelah-Shi classes.

In several instances our results are the best possible and confirm
the meta-conjecture that Ramsey classes are “close” to lifted universal
classes.
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1 Introduction

Extending classical early results, structural Ramsey theory originated at the
beginning of 70’s in a series of papers [28, 27, 54, 30, 1, 49], see [66] for ref-
erences. Proper foundation was given by introducing the notions of Ramsey
class, an A-Ramsey property and an ordering property [47, 54]. However the
list of Ramsey classes, which may be seen as top of the line of Ramsey prop-
erties, was somewhat limited and this was also encouraged by the connection
to ultrahomogeneous structures [50]: all Ramsey classes of undirected graphs
were known earlier [55] (and this has been also verified recently for oriented
graphs [40]). This connection led to the classification programme for Ram-
sey classes [52] and, in an important new twist, to the connection to the
topological dynamics and ergodic theory [41].

This development also led to rethinking of some of fundamentals of Ram-
sey theory. This paper is a contribution to this development. We present
in this paper the far reaching generalisations which started from authors
solution of the bowtie-free problem [35].

Let us start with the key definition of this paper. Let K be a class
of structures endowed with embeddings between its members. For objects
A,B ∈ K denote by

(
B
A

)
the set of all sub-objects of B, which are isomorphic

to A. (By a sub-object we mean that the inclusion is an embedding.) Using
this notation the definition of a Ramsey class gets the following form:

A class C is a Ramsey class if for every two objects A and B in C and for
every positive integer k there exists an object C in C such that the following
holds: For every partition

(
C
A

)
into k classes there exists an B̃ ∈

(
C
B

)
such

that
(
B̃
A

)
belongs to one class of the partition. It is usual to shorten the last

part of the definition to C −→ (B)Ak .
Which classes are Ramsey? In other words: which structures allow such

an ultimate generalisation of the Ramsey theorem?
These questions may be less illusive than it seems on the first glance as we

can use the above-mentioned connection of Ramsey classes and ultrahomo-
geneous structures. The Ramsey Classification Programme was symbolised
in [52] by the following diagram:

Ramsey
classes

amalgamation
classes

special structures
ultrahomogeneous

structures
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Here is the Ramsey Classification Programme in words: Under mild
assumptions every Ramsey class leads to an amalgamation class (by [50],
and in full generality [52, 41]) and amalgamation classes in turn lead to
(infinite) ultrahomogeneous structures (Fräıssé limits). This is the source
of (Lachlan,Cherlin) Classification Programme of Ultrahomogeneous Struc-
tures [46, 6, 4]. Not every ultrahomogeneous structure leads to a Ramsey
class. We need to make the structure even more uniform often adding some
additional information (like ordering). For such special ultrahomogeneous
structure we can then hope to prove the last implication.

Recently this programme took a more concrete form [3, 70, 48] asking
whether every ω-categorical ultrahomogeneous structure A has a finite (or
precompact) expansion (called here lift) so that the corresponding class of
all finite substructures (i.e. its age) is Ramsey. (Such a lift is obtained by a
homogenising procedure and we treat it in Section 3 in full detail.)

If such (more concrete) approach would be true then the lack of symme-
try (expressed by ultrahomogeneity) and lack of rigidity (expressed by special
lifts) would be only obstacles for Ramseyness and the Ramsey Classification
Programme. However, recently Evans [22] found examples of ultrahomoge-
neous structures (of Hrushovski type) which have no precompact Ramsey
lift. His result relates to the most important case when the lifted class is
defined by finitely many additional relations of every arity. This indicates
that the answer to the Classification Programme may be more complicated
then originally thought. (See [23] for refinement of [22] using the main result
of this paper.)

Yet amalgamation is a central necessary condition for Ramsey classes.
The main result (Theorem 2.2) gives a necessary structural condition on the
class of ordered structures which implies the Ramsey property. The condition
can be seen as a variant of a well established notion of the Fräıssé’s amal-
gamation classes (and we call it an (R,U)-multiamalgamation class) with
an explicit closure description U and additional assumptions about the local
finiteness of the completions relative to a given Ramsey classR. Theorem 2.2
is inspired by our recent result for bowtie-free graphs.

However we also isolate the more easily formulated Theorem 2.1 which,
somewhat surprisingly, gives sufficient conditions for a Ramsey subclass of
a Ramsey class: local finiteness and strong amalgamation are enough. The
combination of these two theorems makes this approach flexible and easy to
apply.

The structural Ramsey theory uses the Partite Construction as its main
proof technique. It was developed by Nešetřil-Rödl in a series of papers [54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 53]. We use the Partite Construction in
the form with unary closures as stated in our earlier paper [35] extending it

6



to non-unary closures and further generalising the Iterated Partition Con-
struction [53] to a local amalgamation argument. In a way our paper is
further evidence for the surprising effectivity of the Partite Construction in
the structural Ramsey Theory. This paper presents the most general for-
mulation of the Partite Construction. Of course one could formulate this in
the categorical terms (as opposed to the finite model-theoretic language as
presented here) but it remains to be seen if such translation would produce
any new interesting Ramsey classes. Nevertheless our general Theorems 2.1
and 2.2 present an unified approach to many ad-hoc applications of the Par-
tite Construction.

Many examples of amalgamation classes are multiamalgamation classes.
This allows us to give in Section 4 multiple examples of applications of the
main result. Our starting point is the Nešetřil-Rödl Theorem [54]. Our ex-
amples of Ramsey classes include known examples such as (finite) acyclic
graphs and partially ordered sets with linear extension [60], ordered metric
spaces [53] or convexly orderedH-colourable graphs. Many new examples fol-
low. Particularly we fully characterise the Ramsey property of metric spaces
with a given set of distances (in Section 4.3.3, Theorem 4.29) thus solving one
problem in [68] and contribute to problem in [41]. We also consider classes
with function symbols and give the first examples of classes defining partial
orders not only on vertices, but also on n-tuples and neighbourhoods. These
examples as well provide better understanding of the nature of Theorems 2.1
and 2.2. As a consequence we are able to prove the Ramsey Theorem for
Finite Models (Theorem 4.26) and the Ramsey Theorem for Totally Ordered
Structures (Theorem 4.32). These results may be viewed as new structural
generalisations of the Ramsey Theorem. Both of these results are easy to
state yet combine most of the techniques developed in this paper.

In Section 3 we are interested in classes of structures with a (possibly in-
finite) set of forbidden homomorphisms (or, more precisely, homomorphism-
embeddings). Such classes were studied earlier (e.g. in [43, 42, 11]). In
order to reach the level of the description needed for Ramsey constructions
(particularly for the Partite Construction) we have to describe our classes
more explicitely. This leads to notions of pieces and witnesses defined in
our earlier papers [37, 38]. These notions are elaborated here in a greater
detail (and generality) to follow Ramsey constructions. The whole process
can be described as homogenisation (the term coined in [18]) and it amounts
to describe the class by special rooted subgraphs.

As a particular case we develop a way to give an explicit Ramsey lift for
classes defined by forbidden homomorphism-embeddings (a more restricted
notion of homomorphism which is an embedding on irreducible structures)
together with a restricted form of (irreducibly rooted) closure. Generalis-
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ing the Ramsey lift of classes defined by forbidden homomorphisms from a
finite set [65] and bowtie-free graphs [35] we give both satisfactory condi-
tion for Ramsey properties of classes defined by forbidden homomorphisms
from an infinite set. This leads to a complete characterisation of Ramsey
classes defined by means of forbidden homomorphisms (Theorem 3.7). A bit
surprisingly classes with Ramsey lifts are exactly those which ω-categorical
universal structures (see Corollary 3.8 for details). For classes defined by
forbidden monomorphisms the situation is much more complex (even on the
side of universality where algorithm undecidability is conjectured) and we es-
sentially prove that the Ramsey property in many instances does not present
any new restriction, see Theorem 4.37.

As it is well known from the beginning of the structural Ramsey theory,
the orderings of the structures play a special rôle. In fact, Ramsey classes
always fix a linear order [41, 2]. We can not escape this here. In Section 2
our results take the form of implications and we do not have to speak about
ordering at all. It is implicit and will be mentioned in examples illustrating
general results. In Section 3 we incorporate the ordering in the language. In
Section 4 we relate this to the more traditional approach of structures with
additional ordering of vertices by considering Ramsey lifts which adds the
order.

Some of the results of this paper were outlined in our conference pa-
per [36].

All in all Ramsey classes are not isolated examples. The rich spectrum
of our examples should perhaps convince the interested reader about this.

1.1 Preliminaries

Most of our examples are relational structures. In fact later (in Section 2)
we find it convenient to treat finite models (including functions) as relational
structures (this is specified Section 4.3.2). We follow standard notations.

A language L is a set of relational symbols R ∈ L, each associated with
natural number a(R) called arity. A (relational) L-structure A is a pair
(A, (RA;R ∈ L)) where RA ⊆ Aa(R) (i.e. RA is a a(R)-ary relation on A).
The set A is called the vertex set or the domain of A and elements of A are
vertices. The language is usually fixed and understood from the context (and
it is in most cases denoted by L). If set A is finite we call A finite structure.
We consider only structures with countably many vertices. The class of all
(countable) relational L-structures will be denoted by Rel(L).

A homomorphism f : A→ B = (B, (RB;R ∈ L)) is a mapping f : A→
B satisfying for every R ∈ L the implication (x1, x2, . . . , xa(R)) ∈ RA =⇒
(f(x1), f(x2), . . . , f(xa(R))) ∈ RB. (For a subset A′ ⊆ A we denote by f(A′)
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A

B1

C

B2

α1

α2

β1

β2

Figure 1: An amalgamation of B1 and B2 over A.

the set {f(x);x ∈ A′} and by f(A) the homomorphic image of a structure.)
If f is injective, then f is called a monomorphism. A monomorphism is called
embedding if the above implication is equivalence, i.e. if for every R ∈ L we
have (x1, x2, . . . , xa(R)) ∈ RA ⇐⇒ (f(x1), f(x2), . . . , f(xa(R))) ∈ RB. If f is
an embedding which is an inclusion then A is a substructure (or subobject)
of B. For an embedding f : A → B we say that A is isomorphic to f(A)
and f(A) is also called a copy of A in B. Thus

(
A
B

)
is defined as the set of

all copies of A in B.
We now review some more standard model-theoretic notions (see e.g. [33]).
Let A, B1 and B2 be relational structures and α1 an embedding of A into

B1, α2 an embedding of A into B2, then every structure C with embeddings
β1 : B1 → C and β2 : B2 → C such that β1 ◦ α1 = β2 ◦ α2 is called an
amalgamation of B1 and B2 over A with respect to α1 and α2. See Figure 1.
We will call C simply an amalgamation of B1 and B2 over A (as in the most
cases α1 and α2 can be chosen to be inclusion embeddings).

We say that an amalgamation is strong when β1(x1) = β2(x2) if and only
if x1 ∈ α1(A) and x2 ∈ α2(A). Less formally, a strong amalgamation glues
together B1 and B2 with an overlap no greater than the copy of A itself.
A strong amalgamation is free if there are no tuples in any relations of C
spanning both vertices of β1(B1 \ α1(A)) and β2(B2 \ α2(A)).

An amalgamation class is a class K of finite structures satisfying the
following three conditions:

1. Hereditary property: For every A ∈ K and a substructure B of A
we have B ∈ K;

2. Joint embedding property: For every A,B ∈ K there exists C ∈ K
such that C contains both A and B as substructures;
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A

B

C

Figure 2: Construction of a Ramsey object by multiamalgamation.

3. Amalgamation property: For A,B1,B2 ∈ K and α1 embedding of
A into B1, α2 embedding of A into B2, there is C ∈ K which is an
amalgamation of B1 and B2 over A with respect to α1 and α2.

We will refine amalgamation classes in Definition 2.8. The full role of
amalgamation classes will be discussed in Section 3.

2 Construction of Ramsey classes

The main results of this paper will be introduced here. Several old and new
concepts have to be recalled and introduced in this section.

2.1 Statement of the results

First, we develop a generalised notion of amalgamation which will serve as
useful tool for the construction of Ramsey objects. As schematically depicted
in Figure 2, Ramsey objects are a result of amalgamation of multiple copies of
a given structure which are all performed at once. In a non-trivial class this
leads to many problems. Instead of working with complicated amalgamation
diagrams we split the amalgamation into two steps — the construction of
(up to isomorphism unique) free amalgamation (which yields an incomplete
or “partial” structure) followed then by a completion. Formally this will be
done as follows:

Definition 2.1. An L-structure A is irreducible if for every pair of distinct
vertices u, v there is tuple ~t ∈ RA (of some relation R ∈ L) such that ~t
contains both u and v.

10



Thus the irreducibility is meant with respect to the free amalgamation.
The irreducible structures are our building blocks. Moreover in structural
Ramsey theory we are fortunate that most structures are (or may be inter-
preted as) irreducible (for example thanks to a linear ordering).

We introduce the following stronger notion of homomorphism.

Definition 2.2. A homomorphism f : A→ B is homomorphism-embedding
if f restricted to any irreducible substructure of A is an embedding to B.

While for (undirected) graphs the homomorphism and homomorphism-
embedding coincide, for relational structures they differ.

Definition 2.3. Let C be a structure. An irreducible structure C′ is a
completion of C if there exists homomorphism-embedding C→ C′. If there
is a homomorphism-embedding C → C′ which is one-to-one, we call C′ a
strong completion.

In particular interest will be whether there exists a completion in a given
class K of structures. In this case we speak about K-completion.

Remark (on completion and holes). Completion may be seen as a gener-
alised form of amalgamation and strong completion as a generalised form of
strong amalgamation. To see that let K be a class of irreducible structures.
The (strong) amalgamation property of K can be equivalently formulated as
follows: For A, B1, B2 ∈ K and α1 embedding of A into B1, α2 embedding
of A into B2, there is C ∈ K which is a (strong) completion of the free amal-
gamation (which itself is not necessarily in K) of B1 and B2 over A with
respect to α1 and α2.

Free amalgamation may result in a reducible structure. The pairs of
vertices where one vertex belong to B1 \ α1(A) and the other to B2 \ α2(A)
are never both contained in a single tuple of any relation. Such pairs can be
thought of as holes and a completion is then a process of filling in the holes to
obtain irreducible structures while preserving all embeddings of irreducible
structures.

The following is the key definition. It defines main property for obtaining
the Ramsey classes.

Definition 2.4. Let R be a class of finite irreducible structures and K a
subclass of R. We say that the class K is locally finite subclass of R if for
every C0 ∈ R there is finite integer n = n(C0) such that every structure C
has strong K-completion (i.e. there exists C′ ∈ K that is a strong completion
of C) providing that it satisfies the following:
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1. there is a homomorphism-embedding from C to C0 (in other words,
C0 is a, not necessarily strong, R-completion of C), and,

2. every substructure of C with at most n vertices has a strong K-comple-
tion.

True meaning of Definition 2.4 will be manifested in the examples bellow
and in Section 4.2.

Example. Our running examples will be provided by metric spaces. Con-
sider a language L containing binary relations R1, R2, R3, and R4 which we
interpret as distances. Let R be the class of all irreducible finite structures
where all four relations are symmetric, irreflexive and every pair of distinct
vertices is in precisely one of relations R1, R2, R3, or R4 (R may be viewed a
class of 4-edge-coloured complete graphs). Let K be a subclass of R of those
structures satisfying the triangle inequality (K is the class of finite metric
spaces with distances 1, 2, 3, and 4). Every structure C which has a comple-
tion to some C0 ∈ R (and thus all relations are symmetric and irreflexive and
every pair of distinct vertices is in at most one relation) can be completed
to a metric space if and only if it contains no non-metric triangles (i.e. a
triangle with distances 1–1–3, 1–1–4 or 1–2–4) and no 4-cycle with distances
1–1–1–4. It follows that K is a locally finite subclass of R and for every
C0 ∈ R we can put n(C0) = 4.

Now consider the subclass K1,3 of all metric spaces which use only dis-
tances one and three. It is easy to see that K1,3 is not a locally finite subclass
of R. Denote by T ∈ R the triangle with distances 1–1–3. Now consider
cycle of length n with one edge of distance three and the others of distance
one. Such cycle has completion T however there is no strong K1,3-completion,
while every proper substructure (path consisting of at most one edge with dis-
tance three and other with distance one) does have a K1,3-strong completion.
It follows that there is no n(T) and thus K1,3 is not locally finite subclass of
R. We will further discuss metric spaces in Sections 4.2.2 and 4.3.3.

Our first result gives a surprisingly compact sufficient condition for Ram-
sey classes:

Theorem 2.1. Let R be a Ramsey class of irreducible finite structures and
let K be a hereditary locally finite subclass of R with strong amalgamation.
Then K is Ramsey.

Explicitly: For every pair of structures A,B in K there exists structure
C ∈ K such that

C −→ (B)A2 .

12



Note that this theorem has the form of an implication: If R is a Ramsey
class then also (a more special subclass) K is Ramsey.

Remark (on irreducibility). The condition on R to be a class of irreducible
structures may seem too weak. It is however trivially satisfied in all applica-
tions we discuss. Why? The irreducibility is usually guaranteed by orderings.
It is a non-trivial fact that for every Ramsey class (which is an age of ho-
mogeneous structure) fixes a linear order on vertices [41, 2]. In such cases
(see remarks on interpretations in Section 4.2.3) we can assume that every
structure in every Ramsey class has a binary relation representing the order.
This order makes the structure irreducible in the sense of Definition 2.1.

Numerous concrete examples of Ramsey classes are implied by Theo-
rem 2.1, particularly those related to classes of relational structures defined
by means of forbidden homomorphisms and forbidden homomorphism em-
beddings. We summarise these applications in Section 4.

However Theorem 2.1 is not the end of the story. In this paper we are
able to deal with classes of structures with both relations and functions (or
operations) — i.e. with finite models. We find it convenient to deal with
functions implicitly by not making them part of our language. Instead we
control “functionality” of relations by a degree condition. Because our con-
structions are based on strong amalgamation classes we will at several places
take an advantage of the fact that we can interpret given symbol as both a
function and a relation. Note that the closure description will be denoted
by U . (By the lack of other letters U , may stand for “uzávěr”—Czech word
for closure. Also a special rôle will be played by unary closures. So you may
think about it in this way.)

Definition 2.5. A closure description U is a (possibly infinite) set of pairs
(RU ,R) where RU is a relational symbol of arity n and R is a non-empty
irreducible structure on vertices {1, 2, . . . ,m}, m ≤ n. We will refer to
relations RU as to closure relations to tuples in relations RU as the closure
tuples and to structures R as the roots of the closures.

Given a structure A the closure description can be understood as follows.
Every pair (RU ,R) ∈ U declares that the relation RU

A of arity n is a function
that assigns to every embedding of R→ A an (n− |R|)-tuple of vertices of
A. We always assume that for every ~t ∈ RU

A the first |R| vertices denote the
copy of R and the remaining (n − |R|) the vertices assigned to the copy of
R. This interpretation leads to:

Definition 2.6. Given a structure A with relation RA of arity n, the RA-out-
degree of a k-tuple (v1, v2, . . . , vk) is the number of (n−k)-tuples (vk+1, vk+2,-
. . . , vn) such that (v1, v2, . . . , vn) ∈ RA.

13



Let U be a closure description. We say that a structure A is U-closed if
for every pair (RU ,R) ∈ U it holds that the RU

A-out-degree of an |R|-tuple ~t
(of vertices of A) is one if and only if the tuple ~t represents an embedding of
R to A and zero otherwise.

Let A be an U -closed structure and B ⊆ A. The U-closure of B in A,
denote by ClUA(B), is the minimal U -closed substructure of A containing B.

Observe that because roots are non-empty, the empty structure is always
U -closed. Special cases that are important to us deserve special names: If
every root has only one vertex, we speak about the unary closure. For a unary
closure descriptions the closure of a subset is always a union of closures of
individual vertices.

Remark. For amalgamation classes of irreducible ordered structures our
definition of closure is equivalent with the model-theoretic definition of the
algebraic closure (see Definition 4.11) considered in the Fräıssé limit of the
class. This follows from the fact that the closure relations are definable in
the structure and thus their equivalent need to be already present in the
language. The advantage of our definition here is that the degree condition
here is easier to control than the abstract closure one.

Remark. Notice that the roots of closures are irreducible substructures. For
U -closed structures containing holes, the completion to an U -closed structure
will turn reducible substructures irreducible and may thus involve a need to
introduce new vertices and new relations to add closures. Note also that
here closures do not satisfy further properties. For classes of structures with
closures which in addition satisfy some axioms completion may be a difficult
task. Iterated and simultaneous amalgamations may produce many holes
and completing this (to a structure in K) is the key problem.

To make the verification of the existence of a completion easier, we further
refine it to the following (which suffices for our Ramsey applications):

Definition 2.7. Let C be a structure and let B be irreducible substructure
of C. We say that irreducible structure C′ is a completion of C with respect
to copies of B if there exists function f : C → C ′ such that for every B̃ ∈

(
C
B

)

function f restricted to B̃ is an embedding of B̃ to C′.
If C′ belong to a given class K, then C′ is called K-completion of C with

respect to copies of B.

This is the weakest notion of completion which preserve the Ramsey prop-
erty for a given structures A and B. Note that f does not need to be
homomorphism-embedding (and even homomorphism).

We now state all necessary conditions for our second main result:

14



Definition 2.8. Let L be a language, R be a Ramsey class of finite ir-
reducible L-structures and U be a closure description (in the language L).
We say that a subclass K of R is an (R,U)-multiamalgamation class if the
following conditions are satisfied:

1. U-closed structures: K consists of finite U -closed L-structures.

2. Hereditary property for U-closed substructures: For every A ∈
K and an U -closed substructure B of A we have B ∈ K.

3. Strong amalgamation property: For A,B1,B2 ∈ K and α1 embed-
ding of A into B1, α2 embedding of A into B2, there is C ∈ K which
contains a strong amalgamation of B1 and B2 over A with respect to
α1 and α2 as a substructure.

4. Locally finite completion property: Let B ∈ K and C0 ∈ R. Then
there exists n = n(B,C0) such that if U -closed L-structure C satisfies
the following:

(a) there is a homomorphism-embedding from C to C0 (in other
words, C0 is a completion of C), and,

(b) every substructure of C with at most n vertices has aK-completion.

Then there exists C′ ∈ K that is a completion of C with respect to
copies of B.

Remark. We shall see that this seemingly elaborated definition is in fact
very flexible and easy to apply. For an amalgamation class K of irreducible
structures it is up to interpretation always possible to construct a closure de-
scription U such that K satisfies the first three conditions in Definition 2.8.
(Only exception are amalgamation classes which give a Fräıssé limit contain-
ing a closure of empty set. Those can be always corrected by appropriate
interpretation.) Also as in our definition the empty set is always U -closed we
get strong joint embedding property: For every A,B ∈ K there exists C ∈ K
such that C contains both A and B as (vertex) disjoint substructures.

It is the locally finite completion property which is the crucial condition
for K to be a Ramsey class. Notice the difference between Definitions 2.8
and 2.4. In the case of strong amalgamation classes we use strong comple-
tions (in Definition 2.4) while in Definition 2.8 we use just completions. In
the second case the bound on number of vertices is significantly less useful
given the fact that the completions may identify vertices and reduce size
of a substructure. In many applications it is however possible to show the
existence of strong completions.
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We can now state our main result as:

Theorem 2.2. Every (R,U)-multiamalgamation class K is Ramsey.

In Section 4 we give many examples illustrating usefulness of this result.
Presently it covers most of the examples of Ramsey classes of structures.
The strong amalgamation assumption will be achieved by a convenient lift
(expansion). This is the subject of Section 4.

2.2 Proof structure of Theorems 2.1 and 2.2

The overall structure of proof of Theorems 2.1 and 2.2 is depicted in Fig-
ure 2.1. We give an explicit construction of Ramsey objects. For given struc-
tures A and B we first apply the Nešetřil-Rödl Theorem to obtain Ramsey
C0 −→ (B)A2 and subsequently we use three variants of the Partite Con-
struction to obtain Ramsey structure C with desired properties.

In Sections 2.3 and 2.4 we give a new Partite Construction for classes with
closures (generalising our techniques introduced in [35] and strengthening
them to non-unary closures). In Section 2.5 we introduce the Iterated Partite
Construction for strong amalgamation classes (extending results of [53, 65])
and finally we combine both to obtain our main results in Section 2.6.

To construct U -closed structures (see Definition 2.6) we proceed in sev-
eral steps. The following notions capture two “weaker” notions of closed
structures and substructures which will be used in our constructions.

Definition 2.9. Let U be a closure description and A a substructure of B.
We say that A is U-substructure of B if for every pair (RU ,R) ∈ U and every
tuple ~t ∈ RB

U such that all root vertices are in A it follows that all vertices
of ~t are in A.

In other words there is no vertex v ∈ B \ A with pair (RU ,R) ∈ U and
tuple ~s ∈ RB

U containing v such that first |R| elements of ~s are in A.

The main property of U -substructure is captured by the following easy
lemma.

Lemma 2.3. For every closure description U the following holds:

1. Let A be a substructure of an U-closed structure B. Then A is an
U-substructure if and only if A is U-closed.

2. Let B1 and B2 be U-closed structures and A an U-closed substructure
of both B1 and B2. Then the free amalgamation of B1 and B2 over A
is an U-closed structure.
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Figure 3: The structure of proofs of the main results.
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Proof. Proof is easy. In 2. we use the fact that roots in U are irreducible
structures.

While constructing U -closed structures it is also useful to consider the
following partial notion:

Definition 2.10. Let U be a closure description. We say that A is U-semi-
closed if for every pair (RU ,R) ∈ U it holds that the RU

A-out-degree of a
|R|-tuple ~t of vertices of A is at most one if there is an embedding from R
to to ~t, and, zero otherwise.

The following concept of size will be the basic parameter for our induction
in the Iterated Partite Construction:

Definition 2.11. The U-size of structure B is the number of vertices of the
smallest substructure A of B such that the U -closure of A in B is B.

Observe that for every substructure B0 of U -closed structure B the U -size
of B0 is the same as the U -size of the U -closure of B0 in B.

2.3 Partite Lemma with closures

The basic part of our construction of Ramsey objects with a given closure
is the closure refinement of the Partite Lemma [62] which deals with the
following objects.

Definition 2.12 (A-partite system). Let L be a language and A be a L-
structure. Assume A = {1, 2, . . . , a}. An A-partite L-system is a tuple
(A,XB,B) where B is an L-structure and XB = {X1

B, X
2
B, . . . , X

a
B} is a

partition of the vertex set of B into a classes (X i
B are called parts of B) such

that

1. mapping π which maps every x ∈ X i
B to i, i = 1, 2, . . . , a, is a homo-

morphism-embedding B→ A (π is called the projection);

2. every tuple in every relation of B meets every class X i
B in at most one

element (i.e. these tuples are called transversal with respect to the
partition).

Remark. Our definition differs from the definition used in [62]. We do
not treat the linear order explicitely and also assume the existence of a
homomorphism-embedding B → A (which yields to a simpler construction
in the proof of the Partite Lemma). However this formulation of the partite
system does not lead directly to proof of the Nešetřil-Rödl Theorem itself.
We aim for simplicity here.
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The isomorphisms and embeddings of A-partite systems, say of B1 into
B2, are defined as the isomorphisms and embeddings of structures together
with the condition that all parts are being preserved (the part X i

B1
is mapped

to X i
B2

for every i = 1, 2, . . . , a). In other words the following diagram
commutes:

B1 B2

A

π1 π2

Lemma 2.4 (Partite Lemma with closures). Let L be a language, U be a
closure description in the language L, A be a finite U-closed L-structure,
and, B be a finite U-semi-closed A-partite L-system. Then there exists a
finite U-semi-closed A-partite L-system C such that

C −→ (B)A2 .

Moreover there exists a family B of copies of B in C such that:

1. For every 2-colouring of all substructures of C which are isomorphic
to A there exists B̃ ∈ B such at all the substructures of B̃ which are
isomorphic to A are monochromatic (thus B is a Ramsey system of
copies of B in C).

2. Every B̃ ∈ B is an U-substructure of C.

Finally if B is U-closed then C is U-closed, too.

Remark. Our proof is based on the proof of the Partite Lemma in [62] by the
application of the Hales-Jewett theorem [29, 51]. We give an easy description
of C as a product. This simplification follows from the assumption that B is
an A-partite-system and have a homomorphism-embedding projection to A.
This easier description of C allows us to verify the additional properties of
C needed to carry our proof: the existence of a homomorphism-embedding,
U -closedness and the additional requirement on the Ramsey system of copies
B being all U -substructures. The key observation of our earlier paper [35]
is that the unary closures (i.e. closures of vertices) can be preserved by the
Partite Construction. We show this in a full generality (by a different tech-
nique which use nested Partite Construction instead of free amalgamation)
in Section 2.4.

For completeness, we briefly recall the Hales-Jewett Theorem [29]: Con-
sider a family of functions f : {1, 2, . . . , N} → Σ for some finite alphabet Σ.
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A combinatorial line L is a pair (ω, h) where ∅ 6= ω ⊆ {1, 2, . . . , N} and h is
a function from {1, 2, . . . , N} \ ω to Σ. The combinatorial line L describes a
family of all those functions f : {1, 2, . . . , N} → Σ that are constant on ω and
f(i) = h(i) otherwise. The Hales-Jewett theorem guarantees, for sufficiently
large N , that for every 2-colouring of functions f : {1, 2, . . . , N} → Σ there
exists a monochromatic combinatorial line.

Proof of Lemma 2.4. Assume without loss of generality A = {1, 2, . . . , a}
and denote by XB = {X1

B, X
2
B, . . . , X

a
B} the parts of B. We take N suf-

ficiently large (that will be specified later) and construct an A-partite L-
system C with parts XC = {X1

C, X
2
C, . . . , X

a
C} as follows:

1. For every 1 ≤ i ≤ a let X i
C be the set of all functions

f : {1, 2, . . . , N} → X i
B.

2. For every relation R ∈ L, put

(f1, f2, . . . , fa(R)) ∈ RC

if and only if for every 1 ≤ i ≤ N it holds that

(f1(i), f2(i), . . . , fa(R)(i)) ∈ RB.

This completes the construction of C.

We shall check that indeed C is an U -semi-closed A-partite L-system
with parts XC = {X1

C, X
2
C, . . . , X

a
C}. Most of this follows immediately from

the definition. We only verify that C is U -semi-closed. For the contrary
assume the existence of pair (RU ,R) ∈ U , an embedding f : R → C, |R|-
tuple of (r1, r2, . . . , r|R|) of vertices of f(R) such that the RU

C-out-degree of
(r1, r2, . . . , r|R|) is more than one. Denote by m the number of vertices of R
and n the arity of RU . Because the RU

A-out-degree of is more than one we
have (n−m)-tuples (fm+1, fm+2, . . . , fn) 6= (f ′m+1, f

′
m+2, . . . , f

′
n) such that:

(r1, r2, . . . , rm, fm+1, fm+2, . . . , fn) ∈ RU
C, and,

(r1, r2, . . . , rm, f
′
m+1, f

′
m+2, . . . , f

′
n) ∈ RU

C.

By the construction of C we know that for every 1 ≤ j ≤ N :

(r1(j), r2(j), . . . , rm(j), fm+1(j), fm+2(j), . . . , fn(j)) ∈ RU
B, and,

(r1(j), r2(j), . . . , rm(j), f ′m+1(j), f
′
m+2(j), . . . , f

′
n(j)) ∈ RU

B.
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Since RU
A-out-degree is at most one in B we know that fk(j) = f ′k(j) for

every m < k ≤ n and 1 ≤ j ≤ N , a contradiction. The second part of
definition of U -semi-closed structure is trivially satisfied by the existence of
the projection.

By a similar argument it follows that if B is U -closed then also C is
U -closed.

Now we describe the Ramsey family B of copies of B. Let Ã1, Ã2, . . . , Ãt

be the enumeration of all substructures of B which are isomorphic to A. Put
Σ = {1, 2, . . . , t} which we consider as an alphabet. Each combinatorial line
L = (ω, h) in ΣN corresponds to an embedding eL : B→ C which assigns to
every vertex v ∈ Xp

B a function eL(v) : {1, 2, . . . , N} → Xp
B (i.e. a vertex of

Xp
C) such that:

eL(v)(i) =

{
v for i ∈ ω, and,

the unique vertex in Ãh(i) ∩Xp
B otherwise.

It follows from the construction of C and from the fact that B has a projection
A that the eL is an embedding.

Let the family B consist from all copies eL(B) for some combinatorial line
L. We first check that every copy in B is U -substructure of C (condition 2

above). Assume, to the contrary, that there is B̃ ∈ B which corresponds to a
combinatorial line L = (ω, h), pair (RU ,R) ∈ U and ~t = (f1, f2, . . . , fa(RU )) ∈
RU

C such that {f1, f2, . . . , f|R|} ⊆ B̃ and there is a closure vertex f in ~t such

that f ∈ C \ B̃. Because C is U -semi-closed, (f1, f2, . . . , f|R|) can not be a

root of a closure tuple within B̃ (because C is U -semi-closed this would imply

that f ∈ B̃). By construction of C it follows that (f1(i), f2(i), . . . , f|Ri|(i))
do not form a root of a closure tuple for some i ∈ ω. On the other hand,
by construction of C and because ~t ∈ RU

C, it follows (f1(i), f2(i), . . . , f|Ri|(i))
must form a root of closure tuple for every 1 ≤ i ≤ N , a contradiction.

It remains to check the property 1. (i.e. that B is a Ramsey system of
copies of B). Let N be the Hales-Jewett number guaranteeing a monochro-
matic line in any 2-colouring of the N -dimensional cube over an alphabet
Σ. Now assume that A1,A2 is a 2-colouring of all copies of A in C. Us-
ing the construction of C we see that among copies of A are copies induced
by an N -tuple (Ãu(1), Ãu(2), . . . , Ãu(N)) of copies of A for every function
u : {1, 2, . . . , N} → {1, 2, . . . , t}. However such copies are coded by the
elements of the cube {1, 2, . . . , t}N and thus there is a monochromatic com-
binatorial line L. The monochromatic copy of B is then eL(B) which belongs
to B.
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2.4 Partite Construction with closures

The main result of this section is the following Lemma which reflects the title
of this section.

Lemma 2.5. Let L be a language, U be a closure description, A, B be a
finite U-closed L-structures and C0 a finite L-structure such that:

C0 −→ (B)A2 .

Then there exists finite U-closed L-structure C with a homomorphism-embed-
ding C→ C0 such that:

C −→ (B)A2 .

We first prove a weaker variant of Lemma 2.5 (the weakening consists in
an additional assumption on C0):

Lemma 2.6. Let L be a language, U be a closure description, A, B be a
finite U-closed L-structures and C0 a finite L-structure such that:

C0 −→ (B)A2 .

Further assume that every copy of A in C0 is U-substructure of C0. Then
there exists finite U-closed L-structure C with a homomorphism-embedding
C→ C0 such that:

C −→ (B)A2 .

Proof (an adaptation of [62]). Without loss of generality we can assume that

C0 = {1, 2, . . . , c}. Enumerate all copies of A in C0 as {Ã1, Ã2, . . . , Ãb}. We
shall define C0-partite U -closed structures P0,P1, . . . ,Pb with the property
that for every 2-colouring of copies of A in Pk there is a copy of Pk−1 in Pk

such that all copies of A with projection to Ãk are monochromatic. As usual
in Partite Construction the systems Pk are called pictures. Put explicitly
XPk

= {X1
k , X

2
k , . . . , X

c
k}. Pictures will be constructed by induction on k.

1. The picture P0 is constructed as a disjoint union of copies of B: for
every copy B̃ of B in C0 we consider a new isomorphic and disjoint copy
B̃′ in P0 which intersects the part X l

0 if and only if B̃ intersects and

that the projection of B̃′ is B̃ (see Figure 4). This is indeed U -closed
as no tuples in any relations between copies are added.

2. Let the picture Pk be already constructed. Let Bk be the substructure
of Pk induced by Pk on vertices which projects to Ãk+1. By the as-
sumption that Ãk+1 is an U -substructure of C0 we also know that Bk

is U -substructure of Pk.
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C0 P0

B̃
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B̃

B̃
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B̃

Figure 4: The construction of P0.

C0

Ãk+1

C0

Pk+1

Pk Pk PkPk

Bk BkBkBk Dk+1Ãk+1

Figure 5: The construction of Picture Pk+1 from Picture Pk.

In this situation we use Partite Lemma 2.4 to obtain an U -closed Ãk+1-
partite system Dk+1 and a Ramsey system Bk+1 of copies of Bk which
are U -substructures of Dk+1. Now consider all copies in Bk+1 and ex-
tend each of these structures to a copy of Pk by a free amalgamation.
These copies are disjoint outside Dk+1 and preserve the parts of all
the copies. The result of this multiple amalgamation is Pk+1. The con-
struction is depicted in Figure 5. By repeated application of Lemma 2.3
we know that Pk+1 is U -closed because it is a result of a sequence of
free amalgamations of U -closed structures over U -substructures.

Put C = Pb. It follows easily that C −→ (B)A2 : by a backward induction

on k one proves that in any 2-colouring of
(
C
A

)
there exists a copy P̃0 of P0

such that the colour of a copy of A in P0 depends only on its projection. As
this in turn induces colouring of copies of A in C, we obtain a monochromatic
copy of B in P̃0.

Proof of Lemma 2.5. We apply again the Partite Construction as in the proof
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of Lemma 2.6. However we repeatedly use Lemma 2.6 as the crucial step in
the “picture induction”.

Assume that C0 = {1, 2, . . . , c}. Enumerate all copies of A in C0 as

{Ã1, Ã2, . . . , Ãb}. We shall define C0-partite U -closed structures (pictures)
P0,P1, . . . ,Pb with the property that for every 2-colouring of copies of A in
Pk there is a copy of Pk−1 in Pk such that all copies of A with projection to
Ãk are monochromatic. Again we proceed by the induction on k.

1. The picture P0 is again constructed as a disjoint union of copies of B:
for every copy B̃ of B in C0 we consider a new isomorphic and disjoint
copy B̃′ in P0 which intersects the part X l

0 if and only if B̃ intersects

and that the projection of B̃′ is B̃. Clearly P0 is U -closed.

2. Let the picture Pk be already constructed. Let Bk+1 be the U -semi-
closed substructure of Pk induced by Pk on vertices which projects to
Ãk+1. Observe that in this setting Bk+1 is not necessarily U -closed
because Ãk+1 may not be an U -substructure of C0.

In this situation we use Partite Lemma 2.4 to obtain an U -semi-closed
Ãk+1-partite system Dk+1 and a Ramsey system Bk+1 of copies of Bk

which are all U -substructures of Dk+1. Now consider all copies in Bk+1

and extend each of these structures to a copy of Pk. These copies
are disjoint outside Dk+1 and preserve the parts of all the copies. The
result of this multiple amalgamation is denoted by Ok+1. (O stands for
Czech “obrázek” — a little picture. At this moment we further refine
the Partite Construction. In the construction of Picture Pk+1 from Pk

we sendwich Ok+1 which itself is a result of the Partite Construction.)
Note that because Bk is not necessarily an U -substructure of Pk also
Ok+1 is not necessarily U-semi-closed.

Denote by Ak+1 the set of all copies of A in Ok+1 with projection to
Ãk+1. We show that for every pair (RU ,R) ∈ U and |R|-tuple ~t of
vertices of Ok+1 such that RU

Ok+1
-out-degree of ~t is more than one it

holds that ~t is never contained in a copy of A in Ak+1. This follows
from the fact that the higher degrees can only be created by means of
free amalgamations used to construct Ok+1. All copies of Bk+1 in Bk+1

are U -substructures of Dk+1 and both Dk+1 and Pk are U -closed. The
amalgamation thus never introduce closure tuple out of the copy of A
in Ak+1.

To apply Lemma 2.6 we turn the C0-partite system Ok+1 to a relational
structure O+

k+1 in an extended language L+ to represent parts by means
of unary relations. Explicitely, we put L+ = L∪ {RXi ; i ∈ C0} and the
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arity of all new relations is one. The L+-structure O+
k+1 is constructed

as follows:

(a) O+
k+1 = Ok+1 (i.e. O+

k+1 has same vertices as Ok+1),

(b) for every relation R ∈ L put R
O+

k+1

= ROk+1
(i.e. O+

k+1 has same

original relations as Ok+1),

(c) (v) ∈ RXi

O+
k+1

if and only if i = π(v).

(This can be seen as a special case of lift which will be in greater
generality discussed in Section 3.) Analogously we turn C0-partite L-

system Pk to L+-structure P+
k . Next we turn the L-structure Ãk+1 to

an L+-structure A+ by putting A+ = Ãk+1, RA+ = R
Ãk+1

for every

R ∈ L, and (v) ∈ RXv

A+ for every v ∈ A+. Finally construct an closure
description (in language L+) U+ consiting of all pairs (RU ,S+) where
RU ∈ L, S+ is L+-structure such that there exists an (RU ,S) ∈ U and
S = S+, RS = RS+ , for every R ∈ L (that is U+ extends every root of
U by the unary relations in every possible way and thus represent the
same closures regardless the new unary relations).

We verify premises of Lemma 2.6 for these L+-structures. Because the
projection is explicitely represented by the unary relations in L+, it
follows that O+

k+1 −→ (P+
k )A

+

2 . This holds as all copies of A+ in O+
k+1

corresponds to copies of Ak+1 in Ak+1 and the Ramsey property for
those copies is given by Lemma 2.4. We also verified that all such copies
are U -substructures of Ok+1 and consequently all copies of A+ in O+

k+1

are U+-substructures. It follows, by the application of Lemma 2.6, that
there exists U+-closed L+-structure P+

k+1 such that P+
k+1 −→ (P+

k )A
+

2

with a homomorphism-embedding to O+
k+1.

The U -closed C0-partite L-system Pk+1 is then constructed by re-
interpreting P+

k+1 as partite system: vertices of Pk+1 are same as ver-
tices of P+

k+1, all tuples in all relations in the language L are also the

same. The parts are determined by unary relations RXi
(for every

i ∈ C0 and v ∈ P+
k+1 it holds that v ∈ X i

k+1 if and only if (v) ∈ RXi

Pk+1
).

Put C = Pb. Again, analogously to proof of Lemma 2.6, by the backward
induction, it follows that C −→ (B)A2 .

2.5 Iterated Partite Construction

Next, in the course of developing the proof of Theorem 2.1 and 2.2 we gen-
eralise the Iterated Partite Construction introduced in [53]. This is the main
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tool for obtaining Ramsey objects where substructures of a given size have
completion in a given strong amalgamation class.

Lemma 2.7 (j completion imlies j + 1 completion). Let L be a language, U
be a closure description in the language L, K a class of finite irreducible U-
closed L-structures which is hereditary for U-closed substructures and which
has strong amalgamation and j ≥ 0. Let A,B ∈ K and C0 be a finite
U-closed L-structure such that

C0 −→ (B)A2 .

Further assume that either j = 0 or j > 0 and every substructure of C0

with U-size at most j has a K-completion. Then there exists an U-closed
L-structure C with a homomorphism-embedding C→ C0 such that

C −→ (B)A2

and every substructure of C of U-size at most j + 1 has K-completion.

Proof. For the fourth (and last) time we apply the Partite Construction.
We proceed analogously to the proofs of Lemmas 2.5 and 2.6. Again, we
enumerate all copies of A in C0 as {Ã1, Ã2, . . . , Ãb}. We then define U -
closed C0-partite systems P0,P1, . . . ,Pb such that:

(i) every substructure of Pk, 0 ≤ k ≤ b, of U -size at most j + 1 has a
K-completion, and,

(ii) in any 2-colouring of
(
Pk

A

)
, 1 ≤ k ≤ b, there exists a copy P̃k−1 such

that all copies of A with a projection to Ãk are monochromatic.

As before we know that putting C = Pb we have the desired Ramsey property
C −→ (B)A2 . It remains to prove (i) and (ii).

Put explicitly XPk
= {X1

k , X
2
k , . . . , X

c
k}. We proceed by an induction on

k.

1. The Picture P0 is constructed the same way as in the proof of Lemma 2.6
as a disjoint union of copies of B: for every copy B̃ of B in C0 we con-
sider a new isomorphic and disjoint copy B̃′ in P0 which intersects
the part X l

0 if and only if B̃ intersects (so the projection of B̃′ is B̃).
Clearly P0 has a K-completion that can be constructed by a series of
strong amalgamations over empty set giving property (i).
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Figure 6: The completion of F by a strong amalgamation over an U -closed
irreducible substructure.

2. Let the Picture Pk be already constructed. Let Bk be the U -substructure
of Pk induced by Pk on vertices which projects to Ãk+1. Pk+1 is con-
structed the same way as in the proof of Lemma 2.6: We use Partite
Lemma 2.4 to obtain an U -closed Ãk+1-partite system Dk+1 and the
Ramsey system Bk+1. Now consider all copies in Bk+1 and extend each
of these structures to a copy of Pk (using free amalgamation). These
copies are disjoint outside Dk+1. In this extension we preserve the
parts of all the copies. The result of this multiple amalgamation is

Pk+1. Because Dk+1 −→ (Bk)
Ãk+1

2 we know that Pk+1 satisfies (ii).

Because Pk+1 is created by a series of free amalgamations of U -closed
structures over U -substructures it follows that Pk is U -closed.

We show (i) for Pk+1. Assume the contrary and denote by F substruc-
ture of U -size at most j + 1 with no K-completion and choose F with
smallest U -size (see schematic Figure 6). Because K is has the strong
amalgamation over empty set this implies that F is connected.

Consider the projection π from F to C0 (which is a homomorphism-
embedding). Clearly the U -size of F is greater or equal to U -size of
π(F). First assume that U -size of π(F) is at most j. In this case,
by the assumptions on C0, there exists a structure F′ ∈ K which is a
completion of π(F). It follows that F′ ∈ K is also a completion of F.
In the following we thus assume that U -size of π(F) and U -size of F is
j + 1.

Because in Dk+1 is Ãk+1-partite system and thus it has a projection to
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Ãk+1 we also know that A ∈ K is a completion of Dk+1. It follows that
F contains some vertices not in Dk+1. All other vertices were added by
the means of free amalgamation of copies of Pk. By (i) it follows that
that F contains vertices belonging to more than one copy of Pk and
also that j ≥ 1. Denote by P̃k a copy of Pk which contain a vertex of
F with no projection to Ãk+1. Denote by FB the set P̃k ∩ F ∩ Dk+1.
Because F is connected, we know that the vertices of FB forms a vertex
cut of F. The case that FB is not vertex cut correspond to the case
where FB contains a relation of Pk+1 which fails to be a relation of P̃k
which is impossible as we consider embeddings only.

Denote by F0 a connected component of F with cut FB. Denote by F1

the structure induced by F on vertices F0 ∪ FB and F2 the structure
induced by F on vertices F \ F0. Clearly F is a free amalgamation of
F1 and F2 over FB. Denote by F′1 the U -closure of π(F1) in C0 and
by F′2 the U -closure of π(F2) in C0. Because the structure induced by
F on FB is U -closed in F, the U -size of F1 and F2 is at most j. By
the assumptions on completions in C0 it follows that there is F′′1 ∈ K
which is a completion of F′1 and F′′2 ∈ K which is a completion of F′2.
The strong amalgamation of F′′1 and F′′2 over the U -closure of π(FB) in

C0 (which is a substructure of Ãk+1 and because Ãk+1 is irreducible, it
must remain unchanged in both F′′1 and F′′2) is then the completion of
F in K. A contradiction with F having no K-completion. This finishes
the proof of (i).

Lemma 2.8. Let L be a language, U be a closure description in the language
L, K be a class of finite irreducible U-closed L-structures which is hereditary
for U-closed substructures and which has strong amalgamation. Let A,B ∈
K, n ≥ 1, and C0 be a finite U-closed L-structure such that

C0 −→ (B)A2 .

Then there exists a finite U-closed L-structure C with a homomorphism-
embedding C→ C0 such that

C −→ (B)A2

and moreover every substructure of C with at most n vertices has a K-
completion.

Proof. By the repeated application of Lemma 2.7 we construct a sequence of
U -closed L-structures C1,C2,C3, . . . ,Cn such that:
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(i) Cj −→ (B)A2 for every 1 ≤ j ≤ n,

(ii) there is a homomorphism-embedding Cj → Cj−1 for every 1 < j ≤ n,
and,

(iii) every substructure of Cj (for every 1 ≤ j ≤ n) of U -size at most j has
a K-completion.

It remains to verify that C1 satisfies (i), (ii) and (iii): Without loss of gen-
erality we can assume that every vertex (and thus also every closure of a
vertex) in C1 is part of a copy of B. It follows that every substructure of C1

of U -size at most one has a K-completion.
The statement of Lemma 2.8 then follows by putting C = Cn.

2.6 Conclussion of the proofs

We start with a simple (interesting, possibly folkloristic) model-theoretic
lemma which justifies the reason why Theorem 2.1 works with strong com-
pletions as opposed to Theorem 2.2.

Let K be a class of structures (in a given language L). Define the class K0

of structures with strong K-completion as the class of all finite L-structures
A such that there is A′ ∈ K which is a strong completion of A. The class
K0 is the complementary class of all finite L-structures which have no strong
K-completion.

Lemma 2.9. Let K be a hereditary class with strong amalgamation, K0 the
class of structures with strong K-completion and K0 the class of structures
with no strong K-completion. Then K0 is the class of all finite structures in
Forbhe(K0).

Consequently if structure A has K-completion if and only if it has a strong
K-completion.

Proof. Assume to the contrary that there is F ∈ K0, A ∈ K0 and a homo-
morphism-embedding h : F→ A. Among all such examples take F with the
minimal number of vertices. Without loss of generality we can assume that
h identifies only two vertices u and v.

Let A′ ∈ K be the completion of A. Now use the hereditarity and the
strong amalgamation property K to produce an amalgamation C ∈ K of A′

and A′ over A′\f(u). It follows that C is the completion of F a contradiction
with A′ ∈ K0.

After all the prepareations we are ready to complete the proofs of Theo-
rems 2.1 and 2.2. Combining the results of previous sectoins this takes the
following easy form.
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Proof of Theorem 2.1. Given A,B ∈ K we use the Ramsey property of R
(K ⊆ R) to obtain C0 ∈ R such that:

C0 −→ (B)A2 .

Now we apply Lemma 2.8 (putting U = ∅, C′0 = C0 and n = n(C0)) to
obtain C satisfying

C −→ (B)A2

and having a strong K-completion.

Proof of Theorem 2.2. Given A,B ∈ K we use the Ramsey property of R
(K ⊆ R) to obtain C0 ∈ R such that:

C0 −→ (B)A2 .

Now obtain n = n(C0,B). Next apply Lemma 2.5 to obtain U -closed C1,

C1 −→ (B)A2 ,

with a homomorphism-embedding to C0. Finally apply Lemma 2.8 to obtain
C,

C −→ (B)A2 ,

with a homomorphism-embedding to C1 where every substructure of C on at
most n vertices has a K-completion. We have verified the assumptions of the
local completetion property (Definition 2.8) for C. It follows that there is
C′ ∈ K which is a completion of C with respect to copies of B. We obtained
C′ such that:

C′ −→ (B)A2 .

3 Construction of Ramsey lifts

At least at the first glance Ramsey classes seem to be very special. In this
section we focus on techniques of turning a class into a class with strong
amalgamation where we can apply Theorem 2.1 by means of lifted language.

3.1 Ramsey classes and ultrahomogeneous structures

LetK be a class of structures. We say that structure U is embedding-universal
(or shortly universal) for K if for every structure in K there is an embedding
to U. We say that a class K contains an universal structure if there exists
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structure U ∈ K which is universal for K. It is well known that universal
objects may be constructed by an iterated amalgamation (Fräıssé limit) of
finite objects. This leads to a stronger notion of a K-generic object : For a
class K we say that an object H is K-generic if it is both universal for K and
it is ultrahomogeneous. The later notion means the following: Every isomor-
phism ϕ between two finite substructures A and B of H may be extended
to an automorphism of H. The notion of ultrahomogeneous structure is one
of the key notions of modern model theory and it is the source of the well
known Classification Programme of Ultrahomogeneous Structures [46, 6, 4].

The ultrahomogeneous structures are characterised by the properties of
finite substructures. For a structure A denote by Age(A) the class of all
finite structures isomorphic to substructures of A. For a class K of relational
structures, we denote by Age(K) the class

⋃
A∈KAge(A). The following is

one of the cornerstones of model theory.

Theorem 3.1 (Fräıssé [24, 33]). Let K be a class of finite structures with
only countably many non-isomorphic structures.

(a) Class K is the age of a countable ultrahomogeneous structure H if and
only if K is an amalgamation class.

(b) If the conditions of (a) are satisfied then the structure H is unique up
to isomorphism.

Recall that a structure A is ω-categorical if the automorphism group of
A has only finitely many orbits on n-tuples, for every n. The ultrahomo-
geneous and ω-categorical classes are closely related to classes with Ramsey
lifts as shown by the following easy proposition which exemplifies the Ramsey
relevance of these model-theoretic notions.

Proposition 3.2 ([50]). Let K be a hereditary Ramsey class with joint em-
bedding property. Then K is an amalgamation class.

This (by now) easy observation provided a link of combinatorics of Ram-
sey classes and their model-theoretic properties. It was discovered in order
to characterise Ramsey classes of graphs. The link provided to be vital and a
decade later it led to the characterisation programme for Ramsey classes [52]
and to an important connection with topological dynamics [41].

3.2 Ramsey lifts and the Ramsey Classification Pro-
gramme

Ages of most ultrahomogeneous structures are not Ramsey for trivial reasons
(most frequently simply because they are not rigid enough). It is however
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often possible to extend the language by the order and produce a Ramsey
lift. This we define now.

Let L+ be a language containing language L. By this we mean L ⊆ L+

and the arities of the relations both in L and L+ are the same. Then every
structure X = (X, (RX;R ∈ L+)) ∈ Rel(L+) may be viewed as a structure
A = (X, (RX;R ∈ L)) ∈ Rel(L) together with some additional relations RX

for R ∈ L+ \ L. We call X a lift of A and A is called the shadow of X.
In this sense the class Rel(L+) is the class of all lifts of Rel(L). Conversely,
Rel(L) is the class of all shadows of Rel(L+). Note that a lift is also in the
model-theoretic setting called expansion and a shadow is often called reduct.
(Our terminology is motivated by a computer science context, see [44], and
for our purposes we find it both intuitive and natural.) For the lift X we
denote by Sh(X) its shadow. (Sh is also called a forgetful functor.) Similarly,
for a class K+ of lifted objects we denote by Sh(K+) the class of all shadows
of structures in K+ (assuming the language L+ of lifts is specified). On the
other hand for a class K of structures we often denote by K+ the class of
lifted structures.

Given the large list of known ultrahomogeneous and ω-categorical struc-
tures (identified by the Classification Programme of ultrahomogeneous struc-
tures) it possible to ask if all those structures have Ramsey lifts.

The Ramsey Classification Programme [52, 34] has been completed for
all ultrahomogeneous graphs [50] and digraphs [40]. Motivated by this line
of research, Cherlin also recently extended the Classification Programme of
Ultrahomogeneous Structures by the list of all ordered graphs [4] which, in
turn, also all leads to Ramsey lifts. This paper can be seen as a contribution
to the Ramsey Classification Programme.

It is easy to see that every class K has a Ramsey lift. (For example,
we may extend the language by infinitely many unary relations and assign
every vertex of every structure in K an unique unary relation. Such lift triv-
ially prevents any embeddings and the Ramsey statement becomes vacuously
true.) This is why we focus on Ramsey lifts using finitely many additional
relations (where possible) or, more generally, on precompact lifts. This leads
to the following definitions (see [69]).

Definition 3.1. Let a class K+ be a lift of K. We say that K+ is a precompact
lift of K if for every structure A ∈ K there are only finitely many structures
A+ ∈ K+ such that A+ is an lift of A (i.e. Sh(A+) is isomorphic to A).

In a Ramsey setting the following is natural property (called in [69] ex-
pansion property).
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Definition 3.2. Let a class K+ be a lift of K. For A,B ∈ K we say that B
has lift property for A if for every lift B+ ∈ K+ of B there is an embedding
of every lift A+ ∈ K+ of A in B+.
K+ has the lift property with respect to K if for every A ∈ K there is

B ∈ K with the lift property for A.

In the special case where the lift adds only the order the lift property is
also called the ordering property (which is one of the classical Ramsey theory
definitions [47, 54]).

Lifts with the lift property are used to compute Ramsey degrees and
universal minimal flows [41]. Moreover it can be shown that every class has
at most one Ramsey lift up to bi-definability. Ramsey lifts with the lift
property can thus be considered to be the minimal lifts (see e.g. [69]).

In a Ramsey setting it is natural to work with classes that are not strong
amalgamation classes of ordered structures themselves but can be turned
into one by mean of a precompact lift. A good candidate for a class with
a precompact Ramsey lift is the age of an ω-categorical structure: every ω-
categorical structure can be turned to homogenous one by an appropriate
precompact lift. This process is called the standard homogenisation [18] and
the lift which turns a class to amalgamation class is the homogenising lift.

Given an age K of an ω-categorical structure U the homogenising lift K+

can always be constructed by, for every n ≥ 1, considering the automorphism
group of U and adding lifted relations of arity n denoting the individual
orbits of n-tuples. The lift K+ is then the age of the ultrahomogeneous
structure U+ created this way. Such a general description is rarely useful
to obtain Ramsey property. We will focus on classes defined by forbidden
homomorphism-embeddings because these, when homogenised, turns into
strong amalgamation classes which are in heart of our Ramsey argument.
First we give an explicit homogenisation of these classes. This is done in
a fully constructive way which leads to an explicit description of Ramsey
lifts and therefore also to a way to compute Ramsey degrees and universal
minimal flows.

3.3 Lifts of Forbhe(F) with strong amalgamation

Let F be a family of finite structures. By Forbhe(F) we denote the class
of all finite or countable structures A such that there is no homomorphism-
embedding from any F ∈ F to A. Analogously, by Forbh(F), Forbe(F) and
Forbm(F) we shall denote the class of all finite or countable structures A
such that there is no homomorphism, embedding and monomorphism from
any F ∈ F to A respectively.
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Generalising [37, 38] we give a way to turn every class Forbhe(F) into
a lifted class LF which has strong amalgamation (and thus leads to a ho-
mogenisation of Forbhe(F) and in turn to a Ramsey class).

3.3.1 Pieces of structures

For a structure A the Gaifman graph (in combinatorics often called 2-section)
is the graph GA with vertices A and all those edges which are a subset of a
tuple of a relation of A: GA = (V,E) where {x, y} ∈ E if and only if x 6= y
and there exists tuple ~t ∈ RA, R ∈ L such that x, y ∈ ~t. Structure A is
connected if the Gaifman graph of A is a connected graph. A subset R of A
is a (vertex) cut of A if GA is disconnected by removing set R.

Given a structure A with cut R and two substructures A1 and A2, we
say that R separates A1 and A2 if there are components A′1 6= A′2 of A with
cut R such that A1 ⊆ A′1 and A2 ⊆ A′2.

Given structure A and set of its vertices S ⊆ A, the neighbourhood of S
in A, denoted by NA(S), is the set of all vertices in N \ S connected to a
vertex S by an edge in the Gaifman graph of A.

Definition 3.3. Let R be a cut in a structure A. Let A1 6= A2 be two
components of A with cut R. We call R minimal separating cut for A1 and
A2 in A if R = NA(A1) = NA(A2).

For brevity, we can omit one or both components when speaking about a
minimal separating cut: We also call a cut R minimal separating for A1 in
A if there exists another structure B such that R is minimal separating for
A1 and B in A. A cut R is minimal separating in A if there exists structures
B1 and B2 such that R is minimal separating for B1 and B2 in A.

Example. Observe that every inclusion minimal cut is also minimal sepa-
rating, but not vice versa. An example of minimal separating cut that is not
inclusion minimal vertex cut is given in Figure 7.

Every minimal separating cut R′ ⊂ R that separates A1 and A2 is how-
ever also inclusion minimal cut that separates A1 and A2. One can say that
this fine distinction is the core of our argument.

If R is a set of vertices then
−→
R will denote a tuple (of length |R|) formed

by all the elements of R. Alternatively,
−→
R is an arbitrary linear ordering of

R. A rooted structure P is a pair (P,
−→
R ) where P is a relational structure

and
−→
R is a tuple consisting of distinct vertices of P.

−→
R is called the root of

P.
The following is our basic notion.
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Figure 7: A minimal separating cut that is not inclusion minimal vertex cut.

Figure 8: Pieces of the Petersen graph up to isomorphisms (and up to a
permutations of roots) with white vertices denoting the roots.

Definition 3.4 ([37, 38]). Let A be a connected relational structure and R
a minimal separating cut for component A1 in A. A piece of a relational

structure A is then a rooted structure P = (P,
−→
R ), where the tuple

−→
R

consists of the vertices of the cut R in a (fixed) linear order and P is a
structure induced by A on A1 ∪R. |R| is called the width of P.

Note that every piece connected structure.
All pieces are considered as rooted structures: a piece P is a struc-

ture P rooted at
−→
R . Accordingly, we say that pieces P1 = (P1,

−→
R 1) and

P2 = (P2,
−→
R 2) are isomorphic if there is a function ϕ : P1 → P2 that is iso-

morphism of structures P1 and P2 and ϕ restricted to
−→
R 1 is the monotone

bijection between
−→
R 1 and

−→
R 2 (we denote this ϕ(

−→
R 1) =

−→
R 2).

Example. Observe that for relational trees, pieces are equivalent to rooted
branches. Figure 8 shows all isomorphism types of pieces of the Petersen
graph (up to a permutation of roots).

3.3.2 Regular families of structures

Let F be a finite set of connected finite relational structures of (finite) lan-
guage L. For construction of an universal structure we use special lifts, called
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F -lifts.
Given rooted structures (P,

−→
R ) and (P′,

−→
R ′) such that |R| = |R′|, de-

note by (P,
−→
R ) ⊕ (P′,

−→
R ′) the (possibly rooted) structure created as a free

amalgamation of P and P′ with corresponding roots being identified (in the

order of
−→
R and

−→
R ′). Note that (P,

−→
R )⊕(P′,

−→
R ′) is defined only if the rooted

structure induced by P on
−→
R is isomorphic to the rooted structure induced

by P′ on
−→
R ′.

Definition 3.5. A piece P = (P,
−→
R ) is incompatible with a rooted structure

A if P ⊕ A is defined and there exists F ∈ F that is isomorphic to P ⊕ A.
(In other words, there exists F′ isomorphic to some F′′ ∈ F , such that P is
a piece of F′ and A is a structure induced on F ′ \ (P \ R) by F′ rooted by−→
R .)

Assign to each piece P a set IP of all rooted structures that are incom-
patible with P. For two pieces P1 and P2 put P1∼F P2 if and only if
IP1 = IP2 . (∼F is called the piece equivalence.) Observe that every equiv-
alence class of ∼F contains pieces of the same width n. We also call n the
width of an equivalence class of ∼F .

Definition 3.6. A family of finite structures F is regular if the equivalence
∼F has only finitely many equivalence classes of width n, for every n ≥ 1.

Remark. The notion of regular family of structures is a generalisation of
that of a regular family of trees, introduced in [21] and it is motivated by the
similarity to characterisation of regular languages by Myhill-Nerode Theo-
rem. Definition 3.6 is a strengthening of the definition used in [37] for classes
without a bound on the size of the cut.

3.3.3 Maximal F-lifts

Now we are ready to explain the homogenising lift of the class Forbhe(F).
We denote the language of the structures by L. In this section we define the
lifted language L+.

We fix the enumeration P1
F ,P2

F , . . . of all equivalence classes of all pieces
with respect to equivalence ∼F corresponding to pieces of structures in F . If
there are only finitely many equivalence classes in ∼F , put I = {1, 2, . . . , N},
where N denote the number of equivalence classes of ∼F . Otherwise put
I = {1, 2, . . .}.

The language L+ extends language L by new relation Li, i ∈ I. The arity
of Li corresponds to the width of P iF . (To make the distinction between
languages more explicit, we use Li to denote lifted relations instead of Ri.)
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An F-lift X of a structure A ∈ Rel(L) is a structure X ∈ Rel(L+) and will
be written as:

X = (A, (RA;R ∈ L), (LiX; i ∈ I)).

and, by an abuse of notation, briefly as:

X = (A, (LiX; i ∈ I)).

For a relational structure A, we define the canonical F-lift of A as follows:

LF(A) = (A, (LiLF (A); i ∈ I))

by putting (v1, v2, . . . , vl) ∈ LiLF (A) if and only if there is a piece P =

(P,
−→
R ) ∈ P iF and a homomorphism-embedding f : P→ A such that:

1. f(
−→
R ) = (v1, v2, . . . , vl) and

2. f is injective on vertices of
−→
R .

We will use the following notion of maximal F -lifts:

Definition 3.7. The canonical F -lift LF(A) of A is maximal on B ⊆ A if
for every C ∈ Forbhe(F) such that C contains A as substructure, the F -lift
induced on B by LF(A) is the same as the F -lift induced on B by LF(C).
We say that an F -lift X is maximal if there exists A ∈ Forbhe(F) such that
X is induced on X by LF(A) and the canonical F -lift LF(A) of A is maximal
on X.

Intuitively a maximal F -lift contains all possible relations from all ex-
tensions. Because the extensions are not always compatible with each other,
a maximal F -lift is not unique. Maximal F -lifts form the homogenization
we seek for. Before stating the main result of this section we recall several
notions.

Recall that a structure A ∈ K is existentially complete in K if for every
structure B ∈ K such that the identity mapping (of A) is an embedding
A → B, every existential statement ψ which is defined in A and true in B
is also true in A.

We say that a homomorphism-embedding f from L-structure A to L-
structure B is surjective if f(A) = {f(x);x ∈ A} = B. Homomorphism-
embedding f is tuple-surjective if for every R ∈ L and every ~u ∈ RB there
exists ~v = (v1, v2, . . . , vn) ∈ RA such that f(~v) = (f(v1), f(v2), . . . , f(vn)) =
~u.

We say that a class F is closed on homomorphism-embedding images
if for every F ∈ F , and every tuple-surjective homomorphism-embedding
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f : F → F′, there exists a substructure F′′ of F′ such that F′′ ∈ F . We
shall prove the following result about the existence of homomogenization of
classes Forbhe(F):

Theorem 3.3. let F be a family of finite connected relational L-structures
which is closed for homomorphism-embedding images. Denote by LF the
class of all finite maximal F-lifts. Then Age(LF) is an amalgamation class
with strong amalgamations whose shadows are free amalgamations. If F is a
regular family, then the F-lift adds only finitely many new relations of every
arity and therefore it is precompact.

If LF is countable, denote by U′ the Fräıssé limit of Age(LF). If F is
regular and L is finite language, then the shadow U = Sh(U′) ∈ Forbhe(F)
is the ω-categorical existentially complete structure universal for Forbhe(F).

We can also show that the construction is tight. Family F is upwards
closed if for every F ∈ F we also have F′ ∈ F providing that F′ is connected
and there is a homomorphism-embedding F→ F′.

Theorem 3.4. Let L be a finite language. Let F be a upwards closed family
of finite connected relational L-structures. Then the following conditions are
equivalent:

(a) F is a regular family of connected structures.

(b) There is an ultrahomogeneous lift U+ which extends L only by finitely
many relations of any given arity. The shadow Sh(U+) ∈ Forbhe(F) is
universal for Forbhe(F).

(c) Forbhe(F) contains an ω-categorical universal structure.

Theorems 3.3 and 3.4 are proved in Sections 3.5 and 3.6 of this paper.

3.4 The existence of precompact Ramsey lifts

In this section we give an strenghtening of the following classical result:

Theorem 3.5 (Nešetřil-Rödl Theorem [67]). Let A and B be ordered hyper-
graphs, then there exists an ordered hypergraph C such that C −→ (B)A2 .

Moreover, if A and B do not contain an irreducible hypergraph F (as an
non-induced sub-hypergraph) then C may be chosen with the same property.

In this original formulation (see [62]) the theorem speaks of hypergraphs
(or set systems) with additional linear order on vertices. This linear order
has no further constrains and is treated specially thorough the proof. In
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other words, the theorem states that for every family E of finite irreducible
hypergraphs the lift of the class of all finite hypergraphs in Forbm(E) adding
a free linear order on vertices is a Ramsey class.

We first give a re-formulation of this theorem in the language of relational
structures with a small strengthening. This is stated as Theorem 3.6 bellow.
Then we proceed by the main result of this section (Theorem 3.7) which
strenghten the Nešetřil-Rödl Theorem for classes with forbidden homomor-
phisms and closures.

In this section every Ramsey class K will always contain a binary relation
R≤ which will (in every structure in K) represent a linear order. We will also
work with structures where R≤ is not a linear order and thus we say that
structure A is ordered if the relation R≤ forms a linear order on A. If there
is no restriction on R≤ then it is called free ordering.

We say that L-structure F is is irreducible without order if for every pair
of distinct vertices u, v ∈ F there exists a relation R ∈ L other than R≤

and a tuple in RF containing both u and v (in other words, the shadow of F
removing the relation R≤F is irreducible). Structure F is ordered irreducible
structure if it is both ordered and irreducible without order.

Now we are ready to formulate Theorem 3.5 in our language:

Theorem 3.6 (Nešetřil-Rödl Theorem for relational structures). Let L be a
language containing binary relation R≤ and E be a (possibly infinite) family of
ordered irreducible L-structures. Then the class of all finite ordered structures
in Forbe(E) is a Ramsey class.

There are two differences compared to the original formulation. First
forbidden substructures in class E are ordered (we thus do not speak of a
lift of the class adding a free order, but rather constrained relation R≤).
This allows to use Theorem 3.6 to show, for example, the Ramsey property
of acyclic graphs as shown in [60] (see Corollary 4.8). Second we speak of
forbidden embeddings (and thus substructures). Both these strenghtenings
follows by the same proof as presented in [62].

The linear order will continue to be special in our results, too. The
following notion captures the properties of structures that can be forbidden
as homomorphic images:

Definition 3.8. Let L be a language containing binary relation R≤. An
L-structure F is weakly ordered if

1. R≤F can be completed to linear order (in other words it forms a reflexive
acyclic digraph), and,
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2. for every pair of distinct vertices a, b ∈ F , either (a, b) ∈ R≤F or (b, a) ∈
R≤F if and only if there exists a relation R ∈ L other than R≤ and a
tuple in RF containing both u and w.

(In other words R≤F is an acyclic orientation of the Gaifman graph of shadow
of F after removing the relation R≤F .)

Note that R≤A is neither a partial order and nor a linear order. Weakly
ordered structures typically arrise as a free amalgamation of ordered struc-
tures. In weakly a ordered structure R≤A is a linear order if and only if A is
irreducible without order.

In order to keep our clasees closed for free amalgamations in the shadow
we restrict the closures. We say that closure description U is a closure with
ordered irreducible roots if for every (RU ,R) ∈ U the structure R is an
ordered irreducible structure.

The sufficient conditions for the existence of a precompact Ramsey lift
can now be formulated as follows.

Theorem 3.7. Let

1. L be a language containing binary relation R≤,

2. F be a (possibly infinite) regular family of finite connected weakly or-
dered L-structures closed for homomorphism-embedding images,

3. U be a closure description in the language L with an ordered irreducible
roots, and,

4. E be a (possibly infinite) family of U-closed L-structures such that ev-
ery F ∈ E contains an ordered irreducible substructure F′ such that
ClUF(F ′) = F.

Further assume that the class of all finite ordered structures in Forbhe(F) is
a locally finite subclass of the classs of all finite ordered L-structures. Then
the class K of all finite ordered U-closed structures in Forbhe(F) ∩ Forbe(E)
has a precompact Ramsey lift.

More specifically: The class KF of all maximal F-lifts of structures in K
is a Ramsey class and for every pair of structures A,B in KF there exists a
structure C ∈ KF such that

C −→ (B)A2 .

If U is empty, then the lift KF has the lift property with respect to K.
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Remark. The condition on the class of ordered structures in Forbhe(F)
being locally finite subclass of the class of all ordered structures can be re-
formulated as follows: For every structure C0 there exists n(C0) such that
for every structure C /∈ Forbhe(F) with a homomorphism-embedding to C0

there is F ∈ F with at most n(C0) vertices and a homomorphism-embedding
F→ C0.

Remark. The closure with ordered irreducible roots makes it possible to
complete order in a structure without introducing new roots of closures.

Theorem 3.7 may seem significantly more special than Theorem 2.2 as it
gives, together with Theorem 3.3 an explicite description of Ramsey lift. For
special case of empty closure description we arrive to the following charac-
terisation:

Corollary 3.8 (Characterisation of Ramsey Classes with Forbidden Homo-
morphism-embeddings). Let L be a finite language containing binary relation
R≤ and F be a family of finite connected L-structures. The following condi-
tions are equivalent:

1. Age(Forbhe(F)) has the precompact Ramsey lift with the lift property,

2. Forbhe(F) contains an ω-categorical universal structure,

3. there exists a regular family F ′ such that Forbhe(F) = Forbhe(F ′).

Proof. By Proposition 3.2 every precompact Ramsey Lift of Age(Forbhe(F))
forms an amalgamation class and thus there exists the generic structure for
this lifted class. Because the lift is precompact, the shadow of this structure
is an ω-categorical universal structure and thus 1 =⇒ 2. 2 =⇒ 3 by
Theorem 3.4. 3 =⇒ 1 by Theorem 3.7.

3.5 Proof of Theorem 3.3

In this section we prove (essentially model-theoretic) Theorem 3.3 which gives
a description of the homogenisation of classes Forbhe(F). This extends the
construction in [37] for the case of regular infinite families F and particu-
larly for families without an upper bound on the size of minimal separating
cuts (completing our techniques to all classes with a precompact homogeni-
sation). Note also that we use homomorphism-embeddings, instead of ho-
momorphisms. By the use of the maximal lifts (introduced in [38]) we not
only simplify the argument of [37], but more importantly, obtain the exis-
tentially complete homogenising lift. This, in turn, gives a lift property of
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Figure 9: The construction of a minimal separating cut R′ separating A1

and A2 in A.

the resulting Ramsey lift. All in all this part may be seen as an elaboration
of [38, 37, 31].

We will make use and find it useful to single out the following simple (geo-
metrical) observation about the neighbourhood and components in relational
structures.

Observation 3.9. Let A1 be a component of a connected structure A with
cut R. Then the neighbourhood NA(A1) is a subset of R. Moreover NA(A1)
is a cut and A1 is one of the components of A with cut NA(A1).

Proof. Obvious.

The name of minimal separating cut is justified by the following (probably
folkloristic) proposition.

Proposition 3.10. Let A be a connected relational structure, R a cut in A
and let A1 and A2 be connected substructures of A separated by R. Then
there exists a minimal separating cut R′ ⊆ R that separates A1 and A2 in
A. Moreover if NA(A1) ⊆ R (or, equivalently, A1 is a component of A with
cut R), then R′ ⊆ NA(A1).

Proof. We will construct a series of cuts and components as depicted in
Figure 9.

Denote by A′1 the component of A with cut R containing A1 (and thus
not containing A2). By Observation 3.9, NA(A′1) ⊆ R is cut that separates
A′1 and A2 (because A′1 is also a component of A with cut NA(A′1) and A′1
do not contain A2).

Now consider the component A′2 of A with cut NA(A′1) containing A2.
Put R′ = NA(A′2). By Observation 3.9, R′ ⊆ NA(A′1) ⊆ R is cut and A′2
(not containing A1) is one of its components.
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Figure 10: An amalgamation of maximal F -lifts.

Denote by A′′1 the component of A with cut R′ containing A1. It follows
that R′ separates A′′1 (that contains A1) and A′2 (that contains A2).

To see that R′ is minimal a separating cut for A′′1 and A′2 it remains
to show that every vertex in R′ = NA(A′2) is also in NA(A′′1). This is true
because every vertex of R′ is in NA(A′1) and A′1 is substructure of A′′1.

For a canonical lift X ∈ LF we denote by W (X) a structure A ∈
Forbhe(F) such that X is induced on X by LF(A) and LF(A) is maximal on
X. W (X) is called a witness of the fact that X belongs to LF .

Given a piece P = (P,
−→
R ) of structure F, we call P′ = (P′,

−→
R ′) a sub-

piece of P if P′ is piece of F, P ′ ⊂ P .
The key technical part of our construction (and of proof of Theorem 3.3)

is expressed by the following:

Lemma 3.11. Let F be a family of connected structures closed for homo-
morphism-embedding images. Let A and B be both witnesses of F-lift X.
Then the free amalgamation of A and B over the structure induced on X by
both A and B is also a witness of X.

Proof. Denote by D the free amalgamation of A and B over X. From the
maximality of X in both A and B we know that D is a witness of X if
D ∈ Forbhe(F). Assume, to the contrary, that D /∈ Forbhe(F) and thus
there is is an F ∈ F and a homomorphism-embedding f from F to D.
Because F is closed for homomorphic images, we can also assume f to be
injective. Mapping f partitions the vertex set of F into three sets defined
as follows: FX are vertices with image in X, FA are vertices with image in
A \X and FB are vertices with image in B \X. Without loss of generality
we can assume that F and f was chosen in a way so |FA| is minimal, clearly
|FA| ≥ 1. The situation is depicted in Figure 10.

Observe that FX is a cut of F separating FA and FB. Denote by P =

(P,
−→
R ) a piece with root contained in FX containing a vertex of FA (such
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Figure 11: The flip operation.

piece can be obtained by Proposition 3.10). Denote by i the index such that P

belongs to the equivalence class P iF of ∼F (see Section 3.3.3). If f(
−→
R ) ∈ LiX

(and thus also f(
−→
R ) ∈ LiLF (A) and f(

−→
R ) ∈ LiLF (B)) then there exists a piece

P2 = (P2,
−→
R 2) ∼F P and a homomorphism-embedding f ′ : P2 → B such

that f ′(
−→
R ) = f(

−→
R ). Consider F′ ∈ F created from F by replacing P by P2

and a function f ′′ : F ′ → D defined as follows:

f ′′(x) =

{
f ′(x) for x ∈ P2,

f(x) otherwise.

f ′′ is a homomorphism-embedding F′ → D that uses fewer vertices of FA
and possibly more vertices of FX ∪ FB. We call this flip operation (and we
shall use it in the proof later again). When a piece has its root in FX , flip
operation moves the image of the piece from one part of the amalgamation
to the other. This is schematically depicted by Figure 11.

By the minimality of FA it thus follows that f(
−→
R ) /∈ LiX. If P ⊆ A,

then by the definition of the canonical F -lift we have f(
−→
R ) ∈ LiLF (A) a

contradiction. We thus conclude that every piece with root in FX containing
a vertex of FA must also contain a vertex of FB.

Choose P′ = (P′,
−→
R ′) ∈ PjF to be a piece containing both vertices of FA

and FB with the minimal number of non-root vertices among pieces with this
property. If P′ contains a sub-pieces with root in FX contained in FX ∪ FB,
we can perform the flip operation, this time replacing vertices with images in
FB by vertices with image in FX∪FA. If this procedure eliminates all vertices

of P ′∩FB we get a homomorphism-embedding f ′ : P′ → A, f ′(
−→
R ′) = f(

−→
R ′),

and therefore f(
−→
R ′) ∈ LjLF (A) that contradicts the minimality of |FA|.

Denote by A′ a component of F with cut FX contained in P′ consisting
of vertices of FA and by B′ a component of F with cut FX contained in
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P′ consisting of vertices of FB that can not be eliminated from P′ by the
flip operations. Denote by F ′ the set vertices of any connected component of
F\P ′ such that R′ ⊆ NF(F ′) (such component exists because R′ is a minimal
separating cut). By the application of Proposition 3.10 on cut FX ∩ P ′ with
F ′ and B′, one gets that R′ ⊆ NF(B′). Otherwise one would obtain a sub-
piece that would contradict the minimality of P′ or an assumption that B′

can not be eliminated (and thus it is not a contained in a piece consisting
only of vertices FX ∪FB). The symmetric argument gives R′ ⊆ NF(A′). Now
again by the application of Proposition 3.10 with cut FX and components A′

and B′ we obtain a minimal separating cut C. Clearly R′ ⊆ C because R′ ⊆
NF(A′)∩NF(B′). C must contain some additional vertices of FX ∪ (P ′ \R′)
because P′\R′ is connected and FX separates A′ and B′. The pieces obtained
are thus a proper sub-pieces of P′ that either contain both vertices of FA and
FB or they can be used for the flip operations. In all these cases this yields
a contradiction.

Proof of Theorem 3.3. The class LF of all maximal F -lifts is clearly hered-
itary, isomorphism closed and has the joint embedding property. Thus to
show that LF is an amalgamation class it remains to verify that LF has the
amalgamation property.

Consider X,Y,Z ∈ LF . Assume that structure Z is substructure induced
by both X and Y on Z and without loss of generality assume that X∩Y = Z.

Put

A = W (X),

B = W (Y),

C = Sh(Z).

Now consider D, the free amalgamation of A and B over C. As shown
by Lemma 3.11, D is a witness of Z and also a witness of A and B. Now find
E ∈ Forbhe(F) containing D as a substructure such that LF(E) is maximal on
D. It follows that the structure induced on D on LF(E) is the amalgamation
of X and Y over Z.

By the maximality condition it also follows that the Fräıssé limit con-
structed is existentially complete in the class of all structures in Forbhe(F).

3.6 Proof of Theorem 3.4

Theorem 3.4 gives a characterisation of those families F such that Forbhe(F)
contains an ω-categorical universal structure. This is related to (and gen-
eralises) forbidden homomorphism theorem of [11]. This is also in contrast
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with forbidden monomorphisms where the corresponding characterisation is
a well known problem conjectured to be undecidable [7].

For a family of relational structures F denote by F the (complementary)
class of all connected relational structures (over the same language) not iso-
morphic to some structure in F . First we show that regular families are
closed for complements:

Lemma 3.12. F is regular if and only if F is regular.

Proof. Clearly it suffices to show only one implication. Assume that F is
regular. Now consider P, a piece of some F ∈ F . Denote by IP to be

the set of all rooted structures incompatible with P with respect to F (see
Definition 3.5). There are two cases:

1. P is not isomorphic to any piece P of any structure F ∈ F . In this case
for every rooted structure A such that A ⊕P is defined we have that
A⊕P is not isomorphic to any structure in F , consequently A⊕P ∈ F
and thus A ∈ IP.

2. P is isomorphic to some piece P of some F ∈ F . In this case for every
rooted structure A such that A⊕P is defined we have A⊕P isomorphic
to some structure in F if and only if A ⊕P is not isomorphic to any
structure in F . It follows that A ∈ IP if and only if A /∈ IP.

We have shown sets IP are, in a certain sense, complements of sets IP and

thus by the regularity of F there are finitely many different sets of IP on

pieces of F with any given width n ≥ 1. It follows that F is regular.

Proof of Theorem 3.4. (a) =⇒ (b) follows from Theorem 3.3 for the class
F .

(b) =⇒ (c) is immediate. The shadow of every ultrahomogeneous
structure with finitely many relations of a given arity is ω-categorical.

To see that (c) =⇒ (a) we first observe that for every ω-categorical
structure U the family of relational structures C consisting of all connected
structures in Age(U) is a regular family. Fix n ≥ 1 and consider two pieces

P = (P,
−→
R ) and P′ = (P,

−→
R ). Denote by OP the set of all orbits of n-tuples

of the automorphism group of U such that there exits a homomorphism-

embedding f : P → U with tuple f(
−→
R ) being in the orbit. It is easy to see

that OP = OP′ implies P ∼F P′. This gives the regularity of F .
Consider upwards closed family F and such that Forbhe(F) contains an

ω-categorical universal structure U. It is easy to see that F is precisely
the family of all connected structures in Age(U). Because the family F is
regular, the family F is regular by Lemma 3.12.
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Theorem 3.4 clarifies the rôle of the necessity of the assumption of the
regularity in Definition 2.8 and Theorem 3.7.

3.7 Proof of Theorem 3.7

By now this is an easy application of our lift construction together with the
proof of Theorem 2.2.

Proof of Theorem 3.7. By Theorem 3.3 we obtain class LF which is a lift of
Forbhe(F) with strong amalgamation. The class KF is then then a subclass
of LF containing all maximal lifts of structures in K.

Given A,B ∈ KF denote by B a maximal lift of a witness of B (which is
finite, because F is regular) and by Theorem 3.6 we obtain C′0 such that

C′0 −→ (B)A2 .

By the application of Lemma 2.5 obtain an U -closed ordered C0 such that

C0 −→ (B)A2

and moreover we have a homomorphism-embedding C0 → C′0.
Now by the regularity of F there exists a finite F0 such that every struc-

ture A ∈ Forbhe(F0) with a homomorphism-embedding to C′0 is also in
Forbhe(F). Denote by n the size of the largest structure in F0 and con-
struct C1,C2, . . . ,Cn by the repeated application of Lemma 2.7 such that
for every 1 ≤ j ≤ n the following holds:

1. Cj is an U -closed L-structure,

2. Cj ∈ Forbe(E),

3. Cj −→ (B)A2 ,

4. Cj has a homomorphism-embedding to C′0,

5. every substructure of Cj with at most j vertices has a completion in
LF .

We obtain U -closed Cn where shadow of every substructure with at most
n vertices has a completion in Forbhe(F). We conclude that the shadow of
Cn is in Forbhe(F0) and because there is also a homomorphism-embedding
from Cn to C′0 we know that the shadow of Cn is in Forbhe(F).

Let C be a maximal lift of the shadow of Cn with R≤C completed to linear
order. Because F is a family of weakly ordered structures we know that the
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shadow of C is in Forbhe(F). By the maximality of B in B it follows that
every copy of B which is maximal in a copy of B in Cn is preserved in C. It
follows that

C −→ (B)A2 .

The lift property ofKF follows from the maximality of lifts: given A ∈ KF
we construct B as the disjoint union of witnesses of all maximal lifts of A
and apply the above proof.

Remark. The second part of the proof (after the lift is constructed) is essen-
tially the same as the proof of Theorem 2.2. It is however more convenient
to give the proof by means of Lemma 2.5 and 2.7 because we do not need to
go into a further analysis of the homogenising lift.

4 Examples of Ramsey classes

We believe Theorem 2.2 generalise most proofs of the Ramsey property of
classes which are based on the Partite Construction. It is however often not
obvious that a given class is a multiamalgamation class. We start by recalling
some classical corollaries of the Nešetřil-Rödl Theorem (in Section 4.1) and
then we show the Ramsey property of several classes (old and new) and thus
illustrate multivariate use of Theorem 2.1 (in Section 4.2), Theorem 2.2 (in
Section 4.3) and Theorem 3.7 (in Section 4.4).

Unless explicitely stated, all our examples of lifts are precompact and
have the lift property.

4.1 Ramsey lifts of free amalgamation classes

By the Nešetřil-Rödl Theorem (Theorem 3.6) every hereditary class of or-
dered structures with amalgamation which is free in all relations except for
R≤ defines a Ramsey class:

Definition 4.1. Let L be a language containing the order R≤. We say that
a class K of ordered structures has ordered free amalgamation if for every
A,B1,B2 ∈ K every ordered structure C created as a free amalgamation of
B1 and B2 over A with R≤C completed arbitrarily to a linear order is in K.

Corollary 4.1 (of Theorem 3.6). Let L be a language containing binary
relation R≤ and K be an amalgamation class of ordered L-structures with
ordered free amalgamation. Then K is a Ramsey class.
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Proof. Let K be an amalgamation class of ordered L-structures with ordered
free amalgamation. Denote by E the class of ordered all L-structures F such
that F /∈ K and every proper substructure of F is in K (i.e. the family
of minimal obstacles). We claim that E is a family of ordered irreducible
structures. This follows from the fact that every other structure can be
constructed by means of an ordered free amalgamation. Consequently the
Ramsey property follows by Theorem 3.6

As a warmup for many examples bellow let us give several special cases
of Theorem 3.6 which also show two techniques to overcome its limitations
by a suitable lift.

The easiest class we discuss is the class of directed graphs (digraphs) D
and its lift

−→D adding a linear order on vertices. More precisely D consists
of structures in the language containing single binary relation RE with no

restrictions.
−→D extends the language by binary relation R≤ and consists of

all structures A in a way that the relation R≤A represents a linear order on
A. The class G of all (undirected) graphs may be viewed as a subclass of D
of those structures A where RE

A is symmetric and irreflexive.
−→G is a lift of

G adding a free order on vertices. We immediately obtain:

Corollary 4.2. The class
−→D of all finite directed graphs with free ordering

of vertices is a Ramsey class. The class
−→G of all finite (simple) graphs with

free ordering of vertices is a Ramsey class.

Proof. Follows from Corollary 4.1 as both
−→D and

−→G are amalgamation classes
with ordered free amalgamation.

Remark. The same technique can be also used for the class of digraphs
omitting a given set of tournaments (Henson graphs) or the class of graphs
omitting Kn for a fixed n. Up to complementation this exhausts all ultraho-
mogeneous undirected graphs where the lift adding a free order on vertices
forms a Ramsey class [50].

Equivalently we can say that
−→D is a Ramsey lift of class D and

−→G is a
Ramsey lift of class G.

It is a classical result that the lift
−→G has the lift property (Definition 3.2).

Lift
−→D however does not: we can order directed graphs such that vertices

with loops come before vertices without loops.

Consider class
−→D 0 of all directed graphs ordered in a way that vertices

with loops are before vertices without loops. It is easy to see that
−→D 0 is

also a Ramsey class. Given pairs of ordered directed graphs A,B ∈ −→D 0
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and an ordered directed graph C′ ∈ −→D such that C′ −→ (B)A2 (given by

Corollary 4.2) we can construct C ∈ −→D 0 such that C −→ (B)A2 by reordering
vertices of C′ so all vertices with loops come first without breaking any of
the embeddings of B.

Clearly both
−→D and

−→D 0 are Ramsey lifts of D. One could claim that−→D 0 is better because there are fewer ways to lift a given directed graph and
moreover it can be shown that D0 has the lift property with respect to D.

We generalise this observation by the following concept of admissible
ordering:

Definition 4.2. Let L be a language containing binary relation R≤. Denote
by OL the class of all isomorphism types of L-structures with one vertex and
let ≤L denote a fixed linear order on OL. Given an ordered L-structure A
we say that its order is ≤L-admissible if for every pair of distinct vertices
u, v ∈ A it holds that whenever Ou <L Ov then (u, v) ∈ R≤A. Here Ou and
Ov are the structures in Ol isomorphic to structure inducted by A on {u}
and {v} respectively.

The order ≤L will be usually understood from the context and thus we
will just speak of an admissible order of the structure.

Proposition 4.3. Let L be a language and K, be a class of L-structures,

and ≤L be a linear order of OL. If the lift
−→K of K adding a free order on

vertices is a Ramsey class then the lift
−→K 0 of K adding ≤L-admissible order

on vertices is also a Ramsey class.

Proof. Let A,B be structures in
−→K 0 and C ∈ −→K such that C′ −→ (B)A2 The

≤L-admissibly ordered structure C −→ (B)A2 is constructed by re-ordering
the vertices of C′ without breaking any of the desired embeddings of B (which
is always possible).

The phenomenon of admissible orderings is observed already in [50] and [41]
in the context of bipartite graphs adding an unary relation RL which denote
one of the two bipartitions (here L comes from “left”). This representation
of bipartite graphs forms a free amalgamation class and thus the lift adding
a free order on vertices is Ramsey (by Corollary 4.1). Again this lift does not
have the lift property which can be obtained by means of Proposition 4.3.
Here the admissible ordering can be chosen in a way that all vertices in the
unary relation RL are before the remaining vertices. Such order, which re-
spects the bipartition, is also sometimes called a convex ordering [41]. These
observations can be further generalised.
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Corollary 4.4. Let H be a finite ordered structure. Denote by CSP(H)
the class of all structures with a homomorphism to H. Then the class all
finite ordered structures in CSP(H) has a Ramsey lift adding only |H| unary
relations.

Proof. Given H we lift the language by unary relations Rv, v ∈ H. For a
finite ordered structure A ∈ CSP(H) we construct lift A+ by choosing a
homomorphism c : A → H arbitrarily and putting (v) ∈ Ri

A if and only if
c(v) = i. (Our lifts explicitely fix the homomorphism to H.) It is easy to see
that the lifted class is a free amalgamation class and the Ramsey property
follows by Corollary 4.1.

It is easy to check that the described lift has the lift property with respect
admissible orderings whenever there is no proper homomorphism H→ H (i.e.
H is a core [32]).

In special cases it is possible, for a given F , construct a finite structure
H such that Forbh(F) = CSP(H). In such situation H is called the homo-
morphism dual of F . All homomorphism dualities have been characterised
in [64] and [21], see also [44]. In the context of universal structures, this
can be further generalised to the notion of monadic lifts (i.e. homogenising
lifts which add only finitely many unary relations). Classes Forbh(F) with
monadic lift are discussed in [38]: even if there is no homomorphism dual
every monadic homogenising lift (see Section 3.5) is an amalgamation class
of ordered structures with amalgamation which is free in all relations except
for R≤ and thus Theorem 3.6 can still be applied.

Corollary 4.5. Let F be a regular family of finite connected weakly ordered
structures such that all minimal separating cuts consists of one vertex. Then
there exists a Ramsey lift of Forbh(F) adding only finitely many unary rela-
tions.

Proof. This follows as a combination of Corollary 4.4 with [38] (as indicated
above).

Analogous proofs also give the corollaries for homomorphism-embeddings:

Corollary 4.6. Let H be a finite ordered structure. Denote by CSPhe(H) the
class of all finite ordered structures with a homomorphism-embedding to H.
Then the class CSPhe(H) has a Ramsey lift adding only |H| unary relations.

Again it is easy to show that the lift fixing a homomorphism embedding
to H leads to a free amalgamation class. We omit the details. The following
corollary represents the special (and easy) case of Theorem 3.7:
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Corollary 4.7. Let F be a regular family of finite connected weakly ordered
structures such that all minimal separating cuts consists of one vertex. Then
there exists a Ramsey lift of Forbhe(F) adding only finitely many unary re-
lations.

Proof. This follows as a combination of Corollary 4.1 with Theorem 3.3.

Structures with minimal separating cuts (see Definition 3.3) of size one
generalise graph trees [64]: every such structure can be constructed from a
graph tree by replacing edges by arbitrary ordered irreducible structures (or,
in other words, every two-connected component of its Gaifman graph is a
complete graph). We know by Theorem 3.4 the regularity (Definition 3.6) is
a necessary condition for the the existence of ω-categorical universal structure
in Forbhe(F) and is trivially satisfied for every finite family.

It may seem that by considering monadic lifts we exhausted all possible
applications of Theorem 3.6. There is another case: [60] gives an example
of an application of Theorem 3.6 which use order to give a Ramsey lift of
the class of acyclic graphs. Because cycles are not irreducible structures it is
necessary to use other means to describe the acyclicity. Instead of forbidding
directed cycles we (dually) use the fact that every acyclic graph has linear
extension. Finite acyclic graphs with linear extensions form a class with
ordered free amalgamation and we immediately obtain:

Corollary 4.8 ([60]). The class
−→A of all finite acyclic graphs with linear

extension is a Ramsey class.

One can verify the lift property and show that every Ramsey lift of the
class of acyclic graphs always fix a linear extension. This shows that this
technically looking trick (of adding a linear extension) is, in fact, necessary.
The infinite linear order may be seen as an infinite dual of the class of all
acyclic graphs.

4.2 Ramsey classes with strong amalgamation

In this section we focus on (more general) strong amalgamation classes that
can be shown Ramsey by the application of Theorem 2.1. Recall that Theo-
rem 2.1 states that the local finiteness is essentially the only condition which
prevents us from showing the Ramsey property of every strong amalgamation
class of ordered structures.
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4.2.1 Partial orders with linear extension

We start with a classical example of a Ramsey class with non-trivial local
finiteness. We interpret partial orders with linear extensions as structures
in a language LP containing two binary relations R≤ and R� where R� is a
partial order and R≤ its linear extension.

In general to show that given class is locally finite subclass of a known
Ramsey class, it is necessary to understand the minimal obstacles in the
structures with no strong completion to the given class. It is easy to see
that every LP -structure C with completion to an ordered structure can be
completed to a partial order with linear extension if and only if:

1. C contains no substructure with at most two vertices with no strong
completion to a partial order with linear extension (for example, a
substructure where R� is not asymmetric, or not reflexive)

2. C contains no quasi-cycle as not necessarily induced substructure.

Here a quasi-cycle is a structure on vertices u1, u2, . . . , un such that

1. (u1, un) ∈ R≤A and (u1, un) /∈ R�A.

2. (ui, ui+1) ∈ R≤A and (ui, ui+1) ∈ R�A, for every 1 ≤ i < n.

We use this fact to show the Ramsey property by the application of Theo-
rem 2.1:

Theorem 4.9 ([60, 71]). The class
−→P of all finite partial orders with linear

extension is Ramsey.

Proof. By Corollary 4.8 we know that the class of all
−→AP of acyclic graphs

(in our language with binary relations R≤ and R�) is Ramsey. The class of

all partial orders is a hereditary subclass of
−→AP with strong amalgamation

(defined as the transitive closure of the free amalgamation).

We verify that
−→P is a locally finite subclass of

−→AP : For acyclic graph C0 ∈−→AP put n(C0) = |C0|. Let C be arbitrary structure with a homomorphism-
embedding to C0. If C has no completion to partial order with linear exten-
sion we know that it contains a quasi-cycle F as a not necessarily induced sub-
structure. Now because C0 is acyclic and because there is a homomorphism-
embedding F→ C0 we know that |F | is no greater than the length of longest
monotonous path in C0 and thus |F | ≤ n(C0).

By the application of Theorem 2.1 we get that
−→P is the Ramsey class.
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Remark. By the same argument one can also observe that
−→P is a locally

finite subclass of
−→G and thus it is not necessary to use Corollary 4.8. We can

proceed directly from Theorem 3.6.

Remark. Note that for the local finiteness it is critical to use the linear
extension. The class of all finite partial orders with free linear order is not

Ramsey and moreover it is possible to verify the lift property of
−→P and show

that the linear extension is actually necessary.

4.2.2 S-metric spaces with no jumps

In this section we strengthen results of [53] giving the Ramsey property the
class of ordered finite rational metric spaces with free ordering of vertices,
and, [20] giving the Ramsey property of the class of finite ordered graphs
with free ordering of vertices and with respect to metric embeddings. Using
the results of Sauer [72] we characterise, in a surprisingly simple way, (in
Theorems 4.29 and Corollary 4.30) Ramsey classes of ordered metric spaces
which are defined by a set S of possible distances.

We start by recalling the basic properties of S-metric spaces. It appears
that it is useful to consider two main types of a distance set S: without
jumps (Defined in Definition 4.6 and treated in this section) and with jumps
(treated in Section 4.3.3 by means of closures).

Definition 4.3. Given S ⊆ R>0 (that is, the set of positive reals) an S-
metric space A is a pair (A, dA) where A is the vertex set and d is a binary
function dA : A2 → S ∪ {0} (the distance function) such that:

1. dA(u, v) = 0 if and only if u = v,

2. dA(u, v) = dA(v, u), and,

3. dA(u,w) ≤ dA(u, v) + dA(v, w) (the triangle inequality).

We interpret an S-metric space as a relational structure A in the language
LS with (possibly infinitely many) binary relations Rs, s ∈ S, where we put,
for every u 6= v ∈ A, (u, v) ∈ Rl

A if and only if d(u, v) = l. We do not
explicitly represent that d(u, u) = 0 (i.e. no loops are added).

Definition 4.4. Every LS-structure where all relations are symmetric and
irreflexive and every pair of vertices is in at most one relation is S-graph
which we define as a graph with edges coloured by S. Every non-induced
substructure of an S-metric space is S-metric graph (S-metric graphs are
structures with have a strong completion to S-metric space in the sense of
Definition 2.3). Every S-graph that is not S-metric graph is non-S-metric
graph.
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Figure 12: {1, 2, 3, 5}-metric spaces do not have the amalgamation property.
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Figure 13: The 4-values condition.

Denote byMS the class of all finite S-metric spaces. The universal ultra-
homogeneous metric space was constructed by Urysohn [77] (by a Fräıssé type
construction thus anticipating Fräıssé by more than 20 years). Generalising
this result, whenMS forms an amalgamation class, we call this Fräıssé limit
an Urysohn S-metric space. Not every choice of S leads an amalgamation
classMS (see Figure 12). The related concept is the following restriction on
set S:

Definition 4.5 ([19]). A subset S ⊆ R>0 satisfies 4-values condition, if for
every a, b, c, d ∈ S if there is some x ∈ S such that triangles with distances
a–b–x and c–d–x satisfies the triangle inequality there is also y ∈ S such that
that triangles with distances a–c–y and b–d–y satisfies the triangle inequality.

The 4-values condition describes the strong amalgamation of two 3-point
metric spaces over a common 2-point subspace, see Figure 13. It follows that
this is a sufficient and necessary condition for the amalgamation property
of MS. Because sets S may be uncountable (and Theorem 3.1 can not be
directly applied), the existence of an Urysohn S-metric space require S to be
closed and have 0 as a limit:

Theorem 4.10 ([72]). Let S ⊆ R>0 be a set with 0 as a limit of S ∪ {0}.
Then there exists an Urysohn S-metric space if and only if S∪{0} is a closed
subset of R satisfying the 4-values condition.

Let S ⊆ R>0 which does not have 0 as a limit of S ∪ {0}. Then there
exists an Urysohn S-metric space if and only if S is a countable subset of R
satisfying the 4-value condition.
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Any two Urysohn metric spaces having the same set of distance S are
isometric.

We state the observations about the strong amalgamation as follows (and
we include an easy proof):

Corollary 4.11 ([72]). Let S ⊆ R>0 be a subset of positive reals. S satisfies
the 4-values condition if and only if MS has the strong amalgamation.

Proof. We show that for every S satisfying the 4-values condition the class
MS has strong amalgamation. Let A,B1,B2 ∈MS such that identity is an
embedding of A to B1 and B2. We will construct the strong amalgamation
of B1 and B2 over A. BecauseMS is hereditary without loss of generality we
can assume that B1 \A = {u} and B2 \A = {v}. Let w ∈ A be a vertex such
that a = dB1(u,w) + dB2(w, v) is minimised and let w′ ∈ A be a vertex such
that b = |dB1(u,w

′)− dB2(w
′, v)| is maximised. By the triangle-inequality a

is the upper bound on the distance of u and v while b is the lower bound.
If w 6= w′ we have the distance of u and v by 4-values condition. In case
w = w′ we put the distance as max{dB1(u,w), dB2(w, v)} ∈ S.

The opposite implication follows analogously.

The 4-values condition can be expressed in the following neat algebraic
way due to Sauer [73]. For a, b ∈ S denote by a⊕S b = sup{x ∈ S;x ≤ a+b}.
The algebraic characterisation of sets with the 4-values condition allows us
to easily complete S-metric graphs to S-metric spaces.

Theorem 4.12. A subset S of the positive reals satisfies the 4-values condi-
tion if and only if the operation ⊕S is associative.

Let G be a S-metric graph and ~w = (w1, w2, . . . , wn) a set of vertices
forming a walk in G (that is, for every 1 ≤ i < n we have wi 6= wi+1 and the
distance is defined in G; i.e. (wi, wi+1) ∈ Rl

G for some l ∈ S). The S-length
of walk ~w is dG(w1, w2)⊕S dG(w2, w3)⊕S . . .⊕S dG(wn−1, wn).

The following corollary summarise the results of [72] and [73] which are
important for our construction. For the completeness we include a proof.

Corollary 4.13. Let S ⊆ R>0 be a subset of positive reals that satisfies the
4-values condition.

1. Let G be a finite S-metric graph. Denote by d′(u, v) the minimal S-

length of a walk from u to v and by
−→
W (u, v) the corresponding walk.

Then G can be completed to an S-metric space A by putting for every
pair u 6= v ∈ G, dA(u, v) = d′(u, v).
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2. An S-graph G is a S-metric graph if and only if all of its cycles are
S-metric.

Proof. Both statements can be seen as an easy consequences of the associa-
tivity of ⊕S:

1. First assume that G is S-metric. We show that the completion described
will give S-metric space. We verify that d′ satisfies the triangle inequality.
Assume, to the contrary, the existence of vertices u, v, w such that d′(u, v) >

d′(u,w) + d′(w, v). Combine the walks
−→
W (u,w) and

−→
W (w, v) to the walk ~p.

By the associativity of ⊕S the S-length of ~p is d′(u,w)⊕S d′(w, v) ≥ d′(u, v).
It follows that d′(u, v) ≤ d′(u,w)⊕S d′(w, v) ≤ d′(u,w) + d′(w, v) which is a
contradiction.

We have shown that d′ forms an S-metric space on vertices of G. We
still need to check that dG(u, v) = d′(u, v) whenever dG(u, v) is defined. We
show a stronger claim: let B be a completion of G to an S-metric space then
dB(u, v) ≤ d′(u, v) for every u 6= v ∈ G.

We proceed by the induction on n which is the length of definition S-
walk. For n = 3 this follows from the triangle inequality. For n > 3 denote

by (p1, p2, . . . , pn−1, pn) the walk
−→
W (u, v). By the induction hypothesis we

know that dB(u, pn−1) ≤ d′(u, pn−1). The inequality then follows from the
associativity of ⊕S and the triangle inequality. This finishes the proof of
statement 1.

2. Assume that G is non-S-metric. In this case we have a pair of vertices
u and v with the distance defined such that d′(u, v) < dA(u, v). Because ⊕S
is monotonous, it is easy to see that the walk

−→
W (u, v) can be turned into

a path. A non-metric cycle is induced on vertices of this path. This is a
contradiction.

In Section 2.1 we shown that {1, 3}-metric space is not locally finite in
the class of all {1, 3}-graphs. This is an important example. It indicates
that “large gaps” in the distance set S have to be treated with care. In the
rest of this section we consider only those sets S where such scenario does
not happen and a ⊕S b > max(a, b). (Sets with graphs will be treated in
Section 4.3.3.) Such sets are characterised by the absence of jump numbers:

Definition 4.6. Given S ⊆ R>0 and a ∈ S we say that a is jump number if
a is not maximal element of S and 2a ≤ minb∈S (b > a).

We obtain a locally finite characterisation ofMS by means of the follow-
ing structural observation about jumps in S.
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Lemma 4.14 ([72]). Let S ⊆ R>0 be a finite set satisfying the 4-values
condition and has no jump numbers. Then for every a ∈ S, a 6= max(S),
there is b ∈ S such that a < b ≤ a+ min(S).

Lemma 4.14 gives the desired bound on size of obstacles in S-graphs (i.e.
the local finiteness):

Lemma 4.15. Let S ⊆ R>0 be a finite set satisfying the 4-values condition
and has no jump numbers. Then there every non-S-metric cycle has at most
|S|+ 1 vertices.

Proof. Assume, to the contrary, that there is a non-S-metric cycle C with
n > |S| + 1 vertices. By Corollary 4.13 we know that C contains a pair
of vertices whose distance is longer than the S-length of a path connecting
them. We can thus order vertices of S as v1, v2, . . . , vn, such that dC(v1, vn) >
v1 ⊕S v2 ⊕S . . .⊕S vn. Denote by

lj = v1 ⊕S v2 ⊕S . . .⊕S vj

the S-length of the walk formed by the initial segment on j vertices. By
Lemma 4.14 we know that lj < lj+1 for every 1 < j ≤ n. We thus obtain a
sequence of n−1 different values in |S|. A contradiction with n > |S|+1.

Corollary 4.16. Let S ⊆ R>0 be a finite set satisfying the 4-values condition
and has no jump numbers. Then the class of all finite S-metric spaces with

free, i.e. arbitrary, ordering of vertices,
−→MS, is a Ramsey class.

Proof. By Corollary 4.13 the weakly ordered structure has a strong comple-

tion in
−→MS if and only if all its cycles are S-metric. By Lemma 4.15 the

set of non-S-metric cycles is finite and and the statement follow by Theo-
rem 2.1.

Corollary 4.17. Let S be a subset of the positive reals satisfying the 4-values
condition and has no jump number. Then the class of all finite S-metric

spaces with free ordering of vertices,
−→MS, is a Ramsey class.

Proof. Fix A,B ∈ −→MS. Denote by S0 the set of distances used in B (which
is finite, because B is finite). Extend S0 to a finite set S ′0 ⊂ S, that has
no jump number. Define S1 to consist of all values l, l ≤ max(S0), that
can be obtained sequences of values of S ′0 summed by ⊕S operation. By
Theorem 4.12 S satisfies the 4-value condition.

Having finite set S1 satisfying the 4-values condition without jump num-
bers, and, both A and B are S1-metric spaces we apply Corollary 4.16.
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Note that each of these corollaries implies [53] and [20]. Before extending
our construction to sets S with jump numbers (which we will give in Sec-
tion 4.3.3) we first discuss in a greater detail why Theorem 2.1 can not be
applied directly in this case.

4.2.3 Ramsey classes with a locally finite interpretation

One of key elements of proof of Theorems 2.1 and 2.2 is the Iterated Partite
Construction (Lemma 2.8) where the local finiteness condition yields a finite
bound on the number of iterations. How to achieve local finiteness? In many
cases it follows form the class of structures considered. There is also a more
systematic way by means of a suitable interpretation. Examples of it we
have seen already above (in Section 4.1) where we interpreted a given class
as either CSP or Forbhe class. This was related to addition of unary relations
(i.e. monadic lifts). Here we generalise it to higher arities by means of the
following standard (model-theoretic) way to treat such examples using the
notion of the elimination of imaginaries [33, 74].

Let A be a relational structure. An equivalence formula is a first order
formula φ(~x, ~y) that is symmetric and transitive on the set of all n-tuples ~a
of vertices of A where φ(~a,~a) holds (set of such n-tuples is called the domain
of equivalence formula φ). An imaginary element ~a/φ of A is an equivalence
formula φ together with a representative ~a of some equivalence class of φ. So
these are tuples φ-equivalent to ~a.

Structure A eliminate imaginary ~a/φ if there is first order formula Φ(~x, ~y)

such that there is unique tuple ~b such that the equivalence class of ~a consists
of all tuples ~x, Φ(~x,~b). ~b is thus a representative of the equivalence class ~a/φ.

Example. In the Urysohn {1,3}-metric space U{1,3} there is an equivalence
formula φ(x, y) which is satisfied for pair of vertices if and only if their dis-
tance is one. The imaginary element a/φ is then the set of all vertices of
distance one from a. There is no way to eliminate these imaginaries. Ob-
serve that the same formula φ is not an equivalence formula in the Urysohn
{1,2,3}-metric space.

For a given ordered structure U we say that φ is an equivalence formula
on copies of A if and only if φ is an equivalence formula and moreover φ(~a,~a)
holds if and only if the structure induced by U on ~a is isomorphic to A and
moreover order of vertices in ~a agrees with order R≤U.

Proposition 4.18. Let K be a hereditary Ramsey class of ordered structures,
U its Fräıssé limit, A be a finite substructure of U and φ an equivalence
formula on copies of A. Then φ has either one or infinitely many equivalence
classes.
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Proof. Assume to the contrary that φ is an equivalence formula on copies
of A which define k equivalence classes, k > 1. It is well known that from
ultrahomogeneity we can assume that φ is quantifier free. Consequently there
is a finite substructure B ∈ K that contain a structure induced by two such
copies of A that belongs to different equivalence classes of φ. We then claim
that there is no C ∈ K such that C −→ (B)Ak because copies of A in C can
be coloured according to the equivalence classes of K.

Remark. Recall that tuples ~a and~b have the same strong type if φ(~a,~b) holds
for every equivalence formula φ with finitely many equivalence classes. By
the above observation it follows that the automorphism group of the Fräıssé
limit of a Ramsey class must also fix strong types (such automorphisms are
considered, for example, in [39]).

For a given equivalence formula φ with finitely many equivalence classes
it is possible to lift the language by explicit relations representing the individ-
ual equivalence classes. This will be demonstrated on two examples in this
section. More generally, when given subclass K defines more equivalences
than the class R it is contained in, Theorem 2.1 can not be applied directly.
This holds also for the cases of equivalence formulas with infinitely many
equivalence classes. In such cases we will add an artificial elements, closure
relations and apply Theorem 2.2 as shown in Section 4.3.

Our first example is a simple class with perhaps surprising Ramsey lift.
Consider structures with single quaternary relation RE. We say that a struc-
ture A is a fat bipartite graph if there exists a bipartite graph G = (V,E)
with vertex set formed by all 2-element subsets of A and:

(a, b, c, d) ∈ RE
A if and only if a 6= b, c 6= d, and {{a, b}, {c, d}} ∈ E.

(Thus each (a, b, c, d) ∈ RE has symmetries defined by partitions {a, b} and
{c, d}.) One can see that class of all fat bipartite graphs is not a locally finite
subclass of the class of all finite structures with single quaternary relation
RE. It is easy to see that an ω-categorical universal fat bipartite graph UFB
can be constructed by assigning pairs to bipartitions at random and pro-
ducing random bipartite graph spanning these partitions. There is also an
equivalence defined on unordered pairs of vertices of UFB defined as follows:
{u, v} ∼ {u′, v′} if they are connected by a fat path of length two. By Propo-
sition 4.18 we know that every Ramsey lift will thus have a binary relation
denoting the bipartition. Consequently we can introduce binary relation RL

(denoting the class of bipartition) explicitely into our lifted language which
yields the following:
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Theorem 4.19. The class FB of all finite fat bipartite graph has the follow-
ing precompact Ramsey lift FB+ with the lift property:

The language L+
FB is extended by two binary relations R≤ and RL. The

order R≤ is arbitrary. Relation RL denote one of the two bipartitions.

Proof. The class FB+ is locally finite subclass of all finite ordered L+
FB-

structures: if structure A has no FB+-completion then it either contains a
tuple with duplicated vertices in RL or RE

A or a tuple (a, b, c, d) ∈ RE
A such

that either (a, b) /∈ RL
A or (c, d) ∈ RL

A.

In fact Theorem 2.1 is not necessary here the Ramsey property also follows
by application of Theorem 3.6. What is interesting about this lift? If one
considers the shadow of UFB in the language containing only the relation
RL it will form the Rado graph. This shows that the precompact lifts with
the lift property may give rise to rich structures and not only to orders and
unary relations (as in most cases mentioned so far). It is easy to generalise
this example further (giving fat analogies to Corollary 4.4, by forbidding a
homomorphism from graph in the language RL, or by introducing fat linear
order as in Theorem 4.32).

As our second example, consider structures with a single ternary relation
RE. We say that structure A is a neighbourhood bipartite graph if for every
vertex v ∈ RE the digraph Gv is bipartite graph. Here the graph Gv is defined
on the vertex set A \ {v} where (a, b) ∈ RE

Gv
if and only if (v, a, b) ∈ RE

A.
The class of all neighbourhood bipartite graphs is not a locally finite

subclass of the class of all relational structures with single ternary relation
RE. There is a definable equivalence on 2-tuples of vertices of the generic
neighbourhood graph: (u, v) ∼ (u, v′) if v and v′ are connected by a path of
length two in Gu. This time however the number of equivalence classes is
not finite and we can not apply Proposition 4.18 directly.

Let UNB be the ω-categorical universal neighbourhood graph. It is easy to
observe that every Ramsey lift of UNB remains Ramsey even if one of vertices
is denoted by a special unary relation (i.e. the automorphism group of UNB
is forced to fix the vertex) [2]. Then the equivalences become definable in
a sense of Proposition 4.18. Consequently every Ramsey lift of UNB must
already represent this equivalence class (in the model-theoretic setting this
correspond to the elimination of equivalences a parameter). We can eliminate
these equivalences by means of a binary relation:

Theorem 4.20. The class NB of all finite neighbourhood bipartite graph has

the following precompact Ramsey lift
−−→NB with the lift property:

The language is extended by two binary relations R≤ and RL. The order
R≤ is free. Relation RL has the property that for every vertex v the set of
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vertices connected to v by RL denote one of bipartitions of the graph Gv.

This time the shadow of the Ramsey lift of the generic neighbourhood
bipartite graph produce the generic digraph. We further develop the neigh-
bourhood structures in Section 4.3.4. For this we however need to deal with
the notion of closures.

4.3 Ramsey classes with closures

Essential part of more complex Ramsey classes is handling structures with
equivalences defined on vertices (and even tuples of vertices). Such an equiv-
alence may be present latently (as for example in S-metric spaces with jump
numbers [72] or bowtie-free graphs [35] which we shall handle in Section 4.3.3
and 4.4.2). It is an important fact that such equivalence may have unbound-
edly many equivalence classes and thus one cannot assign labels to them and
use Theorem 2.1.

In fact the equivalences with unboundedly many classes have to be inter-
preted so they can be viewed as relational structures over a finite language.
This is a place where closure operations may be used effectively. We can
proceed as follows:

Let ∼ be an equivalence on set X. To every equivalence class E of
∼ we assign a vertex vE of E and a mapping LE : E → E which maps
every vertex of E to vE: LE(v) = vE for every v ∈ E. What we obtain is
the relational structure A(∼) in the language LPE consisting from a binary
relational symbol RU and unary symbol RS. The class of all structures A(∼)
is denoted by PE . Explicitly, class PE contains all finite LPE -structures A
where for every pair (u, v) ∈ RU

A it holds that (u) /∈ RS
A and (v) ∈ RS

A and
moreover every non-special vertex u is in precisely one pair (u, v) ∈ RU

A.
PE stands for pointed equivalences: in every equivalence class we selected

a special vertex (thus obtaining a “pointed set”). Clearly embeddings of
pointed equivalences A(∼1) to A(∼2) corresponds to embeddings of ∼1 into
∼2 (as relation) with the additional property that special vertices are mapped
to special vertices. Thus we have an interpretation of the class of equivalences
and their embeddings. Combining this with Theorem 2.2 we obtain:

Theorem 4.21. The lift
−→PE of PE which adds a free order to vertices is a

Ramsey class.

Proof. In the setting of Theorem 2.2
−→PE forms a multiamalgamation class

(Definition 2.8 where R is the class of all ordered structures in the language

of
−→PE and the closure description U contains a single pair (R, RU) where R

is a structure containing single non-special vertex.
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The Ramsey property of
−→PE then follows by Theorem 2.2.

To obtain the lift with the lift property it is necessary to order vertices
in a convex way where every equivalence class forms an interval and in each
of the interval the special vertex must be the first one.

Theorem 4.21 is top of an iceberg and it is important that we can gen-
eralise it in combination with other structures. For example we have the
following result whose proof is a similar consequence of Theorem 2.2 as in
the above proof of Theorem 4.21.

Theorem 4.22. Let L be a finite relational language. Let L+ denote the lan-
guage L∪LPE . Let PE Rel(L) be the class of all L-structures together with a
pointed equivalence. The embeddings of these structures preserve embeddings
of both Rel(L) and PE. Then the class PE Rel(L) has a Ramsey lift adding
a free order to vertices.

We do not know an easy proof of this result even for the simplest case of
one binary relation. It seems that the closure description (and thus Theo-
rem 2.2) is capturing the complexity of Theorem 4.22. However equivalences
(interpreted as unary functions) presents an interesting interplay with other
structures and this is the contents of the next section. This turns our atten-
tion to unary and m-ary functions.

4.3.1 Unary functions (only) are easy

We first consider unary functions (of which Theorem 4.21 is a particular
example). Despite the seeming complexity (as exemplified by [75]) the basic
result is deceptively easy and can be formulated as follows.

Consider a structure A with (unary) function symbols, A = (A, f 1
A, f

2
A,

. . . , fmA ), where each fi is a function A → A. Such structures represents
the most natural example of a class with a closure. For example, given a
structure B = ({u, v}, f 1

B) where f 1
B(u) = v and f 1

B(v) = v, the closure of
vertex v in B is B: there is no structure induced by B on {u} because the
function f 1

B wold become partial.
Denote by Fm1 the the class of all finite structures with m unary functions.

The ordered structure with unary functions adds binary relation R≤A repre-
senting the linear order of vertices as usual. The class of all finite ordered

structures with m unary functions will be denoted by
−→F m

1 .
Given vertex v of structure A, its vertex closure is the smallest substruc-

ture of A containing v.

The Ramsey property of class
−→F m

1 follows by a simple direct argument:
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Theorem 4.23. Let A be a finite ordered (closed) structure with m unary
functions and B a finite or countably infinite ordered structure with m unary
functions, then there exists an ordered structure with m unary functions C
such that C −→ (B)A2 .

Moreover if B is finite, then C is finite, too. If all vertex closures of
vertices of B are finite, then C is countable.

Proof. Fix closed ordered structures with m unary functions A and B. With-
out loss of generality assume that B = {1, 2, . . . , b} or B = N and is ordered

naturally by R≤B. Obtain N −→ (b)
|A|
2 by the Ramsey Theorem. Consider

lifted a language adding unary relations Ri for every 1 ≤ i ≤ N .
Now construct a structure P as follows: For each b-tuple ~v = (v1, v2, . . . vb)

of elements of {1, 2, . . . , N} such that v1 < v2 < . . . < vb add a disjoint copy
B~v of B to P and for every n, 1 ≤ n ≤ b, put n-th vertex vn of B~v into Rvn

P .
Order vertices of P in a way that for 1 ≤ i < j ≤ N every vertex v ∈ Ri

P is
before every vertex v′ ∈ Rj

P. (Note that this is essentially the Picture zero
of the Partite Construction cf. Section 2.4.)

Construct structure by identifying every pair of vertices of P with iso-
morphic vertex closures (both by the unary functions the unary relations).
Finally remove the unary relations and call the resulting structure C. (C
is an ordered structure with m unary functions.) There is a homomorphism
from Sh(P) to C that is an embedding on every Sh(B~v).

It is easy to verify that C → (B)A2 . Colouring of copies of A in C gives
a colouring of |A|-tuples of {1, 2, . . . N} (note that there is only one copy of
A for every |A|-tuple of elements of {1, 2, . . . , N}) and the Ramsey Theorem
gives a monochromatic b-tuple witch corresponds to a copy of B in P and
thus also to a copy of B in C.

As a consequence we obtain the Ramsey property of Fm1 .

Corollary 4.24 ([75]).
−→F m

1 is a Ramsey lift of Fm1
Remark. Note that

−→F m
1 does not have lift property with respect to Fm1 . If

one interprets structures in F1
1 as oriented graphs (with edges are pointing

from v to f 1(v)), then these graphs form a forest of “graph trees” oriented
towards a root where the rood may be an oriented cycle. To obtain the
lift property the order needs to be convex with respect to the individual
connected components, it needs to order the cycles of a given size in a unique
way and the vertices of trees needs to be ordered convexly level wise with
children of a vertex forming a linear interval. See [75] for details. The
lift property becomes even more involved for classes Fm1 , m > 1. Precise
description of this order will appear in [23].
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Remark. The unary functions can be seen as a generalisation of structures
with unary relations: every unary relation R can be represented by an unary
function f and two artificial vertices 0, 1 by putting f (v) = 1 if (v) ∈ R
and f(v) = 0 otherwise. This gives an intuition why the Ramsey property
of classes with unary functions follows by a simple argument and why this
argument can not be easily generalised to non-unary functions. Still the proof
of Theorem 4.23 can be seen as a basic case of the Partite Construction where
the Partite Lemma is replaced by identification of all copies of A with a given
projection to one.

In a way structures with unary functions are a misleading example. The
easy proof of Theorem 4.23 should be contrasted with situation of function
symbols with higher arities where we need our main theorem. That is subject
of the next section.

4.3.2 The general case of n-ary functions and finite models

We now turn our attention structures with general functions and relations
and to finite models. For brevity we now restrict our attention to structures
with one function symbol assigning every n-tuple of vertices without repeated
entries a single vertex. The general case of structures with multiple function
symbols from n-tuples to k-tuples follows analogously.

Consider structures with one function symbol f of arity n. Denote by F1
n

the class of all finite structures A = (A, fA) where fA is an n-ary function
from n-tuples of vertices A without repeated vertices to A.

Proposition 4.25. The class
−→F 1

n of freely ordered structures in F1
n is Ram-

sey for every n ≥ 1.

Proof. We interpret structures A ∈ F1
n as relational structures in the lan-

guage LF1
n

with (n+ 1)-ary relation RU , where (a1, a2, . . . , an, b) ∈ RU
A if and

only if fA(a1, a2, . . . an) = b. Denote by F ′n the class of all such interpre-

tations of finite structures in F1
n. To show that the class

−→F ′n of all ordered
structures in F1

n is a Ramsey class we appl Theorem 3.7. The closure descrip-
tion UF1

n
contains single pair (RU ,R) where R is a structure on n vertices

and no tuples in any relation. By the application of Theorem 3.6 we obtain
Ramsey class RF1

n
of structures in language LF1

n
with no further constrains.

It is easy to see that
−→F ′n is (RB,UB)-multiamalgamation class. For n = 1 the

completion property follows trivially, because every vertex is C is contained
in a copy of B and thus properly closed. For n ≥ 1 it is necessary to complete
the structure in an arbitrary way.
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Remark. Every structure with an n-ary relation R, n > 1, which contains
only n-tuples without repeated vertices can be interpreted as a structure
with an n-ary function f in F1

n: put f(v1, v2, . . . , vn) = v1 if (v1, v2, . . . , vn) ∈
R and f(v1, v2, . . . , vn) = vn if (v1, v2, . . . , vn) /∈ R. By means of this re-

interpretation one can also show that class
−→F 1

n has the lift property for n > 1.
If one however consider functions from n-tuples with repeated vertices, the
order of such class needs to extend the order described for unary functions:
n-ary function from tuples with repeated vertices can be seen as a family of
functions from tuples without repeated vertices of arities 1, 2, . . . , n.

The above results generalise to finite models (that is structures with both
relational and function symbols) leading Theorem 4.26. Let us invoke it in
the following general result. Recall a formal definition of a structure involving
both relations and functions (compare with the Section 2.1). Let L = LR∪LF
be a language involving relations R ∈ LR and function symbols f ∈ LF
(each coming with corresponding arities denoted by a(R) and d(f), r(f)).
A finite model A is a structure with functions fA : Ad(f) → Ar(f), f ∈
LF and relations R ⊆ Aa(R), R ∈ LR. Embeddings, homomorphisms (and
homomorphism-embeddings) can be defined in the expected manner. The
class of all finite models in the language L is denoted by Mod(L).

For L containing a binary relation R≤ we denote by
−−→
Mod(L) the class

of all finite models A ∈ Mod(L) where the set A is linearly ordered by the
relation R≤. We have the following result:

Theorem 4.26 (Ramsey Theorem for Finite Models). For every language
L involving both relations and functions and containing a binary relation R≤

the class
−−→
Mod(L) is a Ramsey class.

Proof. Put explicitly L = {R;R ∈ LR} ∪ {f ; f ∈ LF}. We know how to
handle {R;R ∈ LR} by the Nešetřil-Rödl Theorem 3.6 and we know how
to handle Lf by the above proof. However we have to consider the degree
condition of each closure relation interpreting function symbol f . Above (in
Proposition 4.25), this was done under assumption that f acts on tuples of
distinct vertices only. In general we can proceed as follows:

If f is an (d(f), r(f))-ary function symbol then we consider f as coded by
functions fπ : Aπ → Ar(f) where π is an equivalence on {1, 2, . . . , d(f)} and
fπ(v1, v2, . . . .vd(f)) is defined only on those tuples (v1, v2, . . . .vd(f)) satisfying
vn = vm if and only if π(n,m). In other words we split the domain Ad(f) into
blocks with prescribed repetition of coordinates. In this extended language
of fπ we can then proceed analogously as in the proof of Proposition 4.25.
All the assumptions of Theorem 2.2 are obviously satisfied and thus we get
the result.
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Remark. The proof of the Ramsey Theorem for Finite Models involves most
of the techniques introduced in this paper. Of course it can be generalised
further (for example, to forbidden homomorphisms and to total orderings)
but we decided to formulate it in this concise form. We believe it nicely com-
plements results for relational structures (Abramson-Harrington [1], Nešetřil-
Rödl [67]).

Remark. A Ramsey theorem for structures involving both relations and
functions is given in [76]. The notion of functions used in [76] is however
different from the standard model-theoretic sense and can be interpreted by
a combination of relations and unary closures. The Ramsey property proved
in [76] then follows by Theorem 2.2.

4.3.3 S-metric spaces

We are now ready to further develop results of Section 4.2.2 and complete
the classification of Ramsey properties of general S-metric spaces (i.e. even
for sets S containing jump numbers). This generalise results of [68] where
Ramsey property of S-metric spaces was shown for all sets S containing at
most 3 distances and confirms the hypothesis stated there about every S-
metric space, S finite, having a precompact Ramsey lift. Our analysis is
based on (and refines) [72] which gives a family of definable equivalences on
the S-metric spaces where S contains jump numbers:

Definition 4.7. [72] Let S ⊆ R>0 be a subset satisfying the 4-values con-
dition. A block B of S is any inclusion maximal subset of S satisfying the
4-values condition that has no jump number.

It is shown in [72] that for every S satisfying the 4-values condition can
be decomposed to mutually disjoint blocks and that for every block B ⊆ S
value of max(B) is either a jump number of S or max(S). More precisely,
this decomposition decomposition is based on the following notion:

Definition 4.8. [72] Let A be an S-metric space and B block of S. We
define a block equivalence ∼B on vertices of A by putting u ∼B v whenever
d(u, v) ≤ max(B).

It is easy to see that paths where every pair of vertices has distance at
most max(B) can only be completed by distances at most max(B) and thus
∼B is indeed an equivalence relation. By Proposition 4.18 it is thus necessary
to consider lift of MS which represent these classes explicitly.

The following definition and technical lemma is the key to obtaining a
locally finite description of MS (needed for Theorem 2.2):
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Figure 14: The family of unimportant paths in a non-{1, 3, 5}-metric cy-
cle (left), the non-{1, 3, 5}-metric cycle created after the concatenation of
unimportant paths (middle) and the corresponding forbidden substructure
in F{1,3,5} (right).

Definition 4.9. Let P be a S-metric path. Denote by B(P) the block of S
containing the maximal distance of an edge in P. Let P′ be any S-metric
path. We say that P′ �S P if all the distances in P′ are at most max(B(P)).

Lemma 4.27. Let S ⊆ R>0 be a finite set satisfying the 4-values condition
and let C be a non-S-metric cycle. Then there exists paths Pi, 1 ≤ i ≤ p,
of vertices of C such that the cycle created by identifying all vertices of each
path into a single vertex is non-S-metric cycle with at most 2|S| vertices,
and moreover every cycle created from C by replacing each of the paths Pi

by arbitrary path P′i, P′i �S Pi is non-S-metric.

We will call paths in the family Pi unimportant. An example is given in
Figure 14.

Proof. Let C be a non-S-metric cycle with n > |S| + 1 vertices. By Corol-
lary 4.13 we know that C contains a pair of vertices whose distance is longer
than the S-length of path connecting them. We can thus order vertices of S
as v1, v2, . . . , vn, such that dC(v1, vn) > v1 ⊕S v2 ⊕S . . .⊕S vn. Denote by

lj = v1 ⊕S v2 ⊕S . . .⊕S vj

the S-length of the walk formed by the initial segment on j vertices. We
know that lj ≤ lj+1 for every 1 < j ≤ n.

A path induced by C on vertices (vj, vj+1, . . . vk) is unimportant if lj = lk.
The paths Pi, 1 ≤ i ≤ p, will consist of all inclusion maximal unimportant
paths. As a special case, if is only one inclusion maximal unimportant path
on vertices v3, v4, . . . vn, put P1 to be the path on vertices v3, v4, . . . , vn−1 so
the result of identification is a triangle.
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Because there are only finitely many values in S, we know that there are
are at most |S| choices of j such that lj < lj+1. We thus know that there
are at most |S| pairs vj, vj+1 which are not part of an unimportant path.
It follows that the graph created by concatenating all unimportant paths
has at most 2|S| vertices (and, because of the special case, at least three
vertices). It is also easy to verify that the resulting graph is non-S-metric
cycle because the S-length of walk connecting v1 and vn was not affected by
such replacements: if path Pi is unimportant then every path P′i, P′i �S Pi

is also unimportant.

The following equivalences can be defined on S-metric spaces for S con-
taining jump numbers.

Definition 4.10 ([68]). Given S satisfying the 4-value condition, denote by
JS the set of all jump numbers and for every j ∈ JS denote by Bj the block
of S containing j. We say that an order R≤A of ordered S-metric space A is
convex with respect to block equivalences if every equivalence class of every
∼Bj

, j ∈ JS, is an interval of R≤A. An ordered S-metric space which order
is convex with respect to block equivalences is also called convexly ordered
S-metric space.

The following result is a direct analogy of Corollary 4.16 permitting jump
numbers. We represent equivalence classes by closure vertices.

Lemma 4.28. Let S ⊆ R>0 be a finite set satisfying the 4-values condition

and has finitely many blocks. Then the class
−→MS of all convexly ordered

S-metric spaces is a Ramsey class.

Proof. We lift the language LS to L+
S by adding the order R≤, unary relations

REj and binary relations RUj , j ∈ JS. For a given ordered metric space

A ∈ −→MS where the order is convex with respect to block equivalences denote
by L(A) the lift of A created by the following procedure:

1. For every j ∈ JS enumerate equivalence classes of ∼Bj
in A as E1

j , E
2
j ,

. . . , E
nj

j . Moreover order them in a way so for v ∈ Ei
j, v

′ ∈ Ei′
j we have

v <A v′ whenever 1 ≤ i < i′ ≤ nj.

2. For every j ∈ JS and 1 ≤ j ≤ nj add a new vertex vij and tuple (vij) to

R
Ej

L(A).

3. For every j ∈ JS, 1 ≤ i ≤ nj and v ∈ Ei
j add tuple (v, vij) to R

Uj

L(A).
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The linear order R≤L(A) extends the linear order of A by putting vertices vij
last in a way that vij <L(A) v

i′

j′ whenever j < j′ or j = j′ and i < i′.

The vertices in relations REi

L(A) represent individual equivalence classes

and every vertex of A has an unique vertex in each of relations REj , j ∈ JS
connected to it by the closure tuple. We will call vertices of A the original
vertices and vertices vij the closure vertices.

Denote by
−→M+

S the class of all structures L(A), A ∈ −→MS. Because for
every ordered S-metric subspace A of convexly ordered S-metric space B
we also know that L(A) is a substructure of L(B) the Ramsey property of−→M+

S implies the Ramsey property of
−→MS. We show that

−→M+
S is an (RS,US)-

multiamalgamation class where:

1. The class RS consists of all finite ordered L+
S structures. This class is

Ramsey by the application of Theorem 3.6.

2. The closure description US consists of pairs (RUj ,R), j ∈ JS, where R
is structure containing one vertex and no tuples.

It remains to verify the locally finite completion property (see Defini-
tion 2.8). We put n = 4|S|: Let B ∈ L(S) and C′ be an US-closed structure
with a homomorphism-embedding to C0 ∈ RS such that every n-element

substructure of C′ has a completion in
−→M+

S . Without loss of generality we
may further assume that every vertex as well as every tuple in every relation

of C′ is contained in B. We verify that C′ has a strong completion in
−→M+

S .
We proceed in three steps:

1. For every pair of original vertices u, v ∈ C′ and jump number j ∈ JS
such that there exists a walk from u to v where every distance is at
most j there is c such that (u, c), (v, c) ∈ RUj

C′ (that is, the u and v have

the same R
Uj

C′-closure):

Let u′ and w′ be two neighbouring vertices in the walk. Because

(u′, w′) ∈ R
d(u′,w′)
C′ and every tuple of C′ is part of a copy of B we

know that there is a copy B̃ in C′ containing both u′, w′. It follows
that the unique vertex connected by R

Uj

C′ to u′ must be the same as the

unique vertex connected by R
Uj

C′ to v′. Consequently all vertices of the

walk have the same R
Uj

C′-closure.

2. Denote by G the S-graph induced by C′ on the set of original vertices.
We show that there exists an S-metric space G′ which is a strong
completion of G (i.e. G is S-metric) and moreover every pair u and v
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of vertices of C′ which have the same R
Uj

C′-closure has distance in G′ at
most j.

To simplify the discussion we assume that every pair of vertices u and
v with same R

Uj

C′-closure is connected by a walk where every distance
is at most j. If that is not the case the distance of u and v in G can
be set to j.

To the contrary now assume that G is non-S-metric. By Corollary 4.13
there exists non S-metric cycle K in G. Consider the family of unim-
portant paths in K given by Lemma 4.27. Let P be an unimportant
path and j the smallest jump number of S such that all distances in P
are at most j. Then we know that there exists closure vertex c ∈ C ′
such that (u, c) ∈ RUj

C′ for every u ∈ P . We call c the common closure
of the path P.

Create K′ as the structure induced by C′ on the set of all vertices of
K which are not in unimportant paths, all initial and terminal vertices
of unimportant path and the common closures of unimportant paths.
By Lemma 4.27 there is no completion of K′.

3. Finally we complete the order of C′ in a way that G′ is ordered convexly.
This can be done by first fixing the order of vertices in R

Uj

C′ for j being
the largest jump number and then proceed by second largest keeping
the convex order and finally completing the order of original vertices.

It follows that C = L(G′) is the (strong) completion of C′ in
−→M′

S.

Now we are ready to characterise S-metric Ramsey classes (extending
Corollary 4.17):

Theorem 4.29 (Ramsey S-metric Spaces Theorem). Let S be a subset of
positive reals. Then the following conditions are equivalent:

1. S satisfies the 4-values condition,

2. MS has the strong amalgamation property,

3. MS has the amalgamation property, and,

4. the class
−→MS of all convexly ordered S-metric spaces is Ramsey.
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Proof. 1 ⇐⇒ 2 by Corollary 4.11. Clearly 2 =⇒ 3. To see that 3 =⇒ 2
consider S which fails to satisfy the 4-values condition for a, b, c, d and x.
Assume to the contrary thatMS has the amalgamation property. It follows
that the amalgamation of triangles with distances a–b–x and c–d–x over an
edge of distance x must identify vertices. To make this possible, it follows
that a = c and b = d. It follows that 4-values condition is then trivially
satisfied by putting y = min(a, b). A contradiction.

We show that 1 =⇒ 4: Fix A,B ∈ −→MS. Denote by S0 the set of
distances used in B (which is finite, because B is finite). Extend S to a finite
set S ′0 ⊂ S, such that JS′

0
⊆ JS ∪ {max(S0)}. Define S1 as set of all values l,

l ≤ max(S0) that can be obtained sequences of values of S ′0 summed by ⊕S
operation. By Theorem 4.12 S satisfies the 4-value condition.

Having finite set S1 satisfying the 4-values condition and both A and B
are ordered S1-metric spaces, we observe that because JS1 ⊆ JS ∪{max(S1)}
they are also convexly ordered S1-metric spaces and apply Lemma 4.28.

Finally we show 4 =⇒ 3. By Proposition 3.2 we know that
−→MS forms

an amalgamation class. Because the convex order is definable by quantifier-
free first order formula the same amalgamation procedure can be applied to
MS.

Applying Theorem 4.10 we can state the results compactly in terms of
Fräıssé limits:

Corollary 4.30. Let S be a set of positive reals such that there exists an
Urysohn S-metric space. Then the class of all convexly ordered S-metric
spaces is a Ramsey lift of the class of all S-metric spaces with the lift property.

4.3.4 Ramsey classes with multiple linear orders

In this section we focus more on the special rôle of the order in our construc-
tions.

Consider the class of structures with two linear orders R≤ and R� (or,
equivalently, the class of permutations: the order R≤ represent original order
and order R� the permutation). It is not obvious how to describe this class
as a multiamalgamation class (technique of Section 4.2.1 would apply only
for classes where R≤ agrees with R�). In the following proposition we show
a way of effectively splitting the order R≤ into multiple linear orders free to
each other. We proceed more generally.

Let K1, K2 be classes of finite structures in disjoint languages L1 and L2

respectively. Denote by L the language L1∪L2. The free interposition of K1

and K2 is the class K containing all structures A such that the L1-shadow of
A is in K1 and the L2-shadow of A is in K2.
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Proposition 4.31. Let L1 and L2 be disjoint languages containing order (the
order of L1 is standard order R≤ together with order of L2 denoted by R≤2).
let R1 be the class of finite ordered L1-structures, R2 be the class of finite
ordered L2-structures, and let K1 be an (R1,U1)-multiamalgamation class and
K2 be an (R2,U2)-multiamalgamation class. Then the free interposition K of
K1 and K2 is Ramsey.

Proof. We further extend our language L = L1 ∪ L2 to L+ by two unary
relations R1 and R2 and two binary closure relations RU1 and RU2 .

The basic idea of the proof is to split every structure of A ∈ K into its
L1-shadow A1 and L2-shadow A2. Then take a “disjoint union” of A1 and
A2 in the language L+ where vertices of A1 are coded by R1 and vertices of
A2 by R2 and use the closure relations to define a bijection between vertices
of A1 and vertices of A2. This construction preserves substructures and thus
the Ramsey property of such split structures implies the Ramsey property of
K.

The class of such split structures is described as an (R,U)-multiamal-
gamation class as follows:

1. R consist all ordered L+-structures. The Ramsey property of R follows
by Theorem 3.6.

2. Closure description U consist of all pairs (RUi ,R+
i ) such that (RUi ,Ri) ∈

U1 where R+
i is a lift of Ri adding every vertex to relation R1 and pairs

(RUj ,R+
j ) such that (RUj ,Rj) ∈ U2 where R+

j is a lift of Rj adding
every vertex to relation R2.

Moreover we extend the closure description to define a bijection be-
tween vertices in relation R1 and vertices in relation R2: every vertex
in R1 has a closure defined by RU1 and every vertex in R2 has a closure
defined by RU2 .

By combining the completion properties of K1 and K2 it easily follows that
the class described is an (R,U)-multiamalgamation class and thus by Theo-
rem 2.2 we get Proposition 4.31.

Remark. A variant of Proposition 4.31 was proved in [2] for strong amalga-
mation classes. For the first time we however show that even free interposi-
tion of classes with a closure is Ramsey.

4.3.5 Totally ordered structures via incidence closure

Let A be a relational structure in finite language L = {Ri; i ∈ I} with
order of its vertices ≤A (this order is not part of the language L). Here we

73



show how to handle the structures with each relation viewed as an ordered
set and embeddings of relational structures which moreover preserve these
embeddings.

Assume that each of the sets Ri
A, i ∈ I, is linearly ordered by ≤iA. For

the time being we call A together with orderings ≤A and ≤iA (for each i ∈ I)

totally ordered structure
−→
A. For two totally ordered structures

−→
A and

−→
B we

define an embedding f :
−→
A → −→B as an embedding f : A→ B which is also

an embedding of all orders ≤A and ≤iA, i ∈ I. Explicitely f : A → B is an
embedding provided:

1. For every i ∈ I it holds that

(u1, u2, . . . , ua(Ri)) ∈ Ri
A

if and only if
(f(u1), f(u2), . . . , f(ua(Ri))) ∈ Ri

B,

and
(u1, u2, . . . , ul) ≤iA (v1, v2, . . . , vl)

if and only if

(f(u1), f(u2), . . . , f(ul)) ≤iB (f(v1), f(v2), . . . , f(vl)),

2. u ≤A v if and only if f(u) ≤B f(v).

Totally ordered structures fail to be relational structures per se. However
such structures may be interpreted easily as ordered relational structures
and this interpretation paves the way to our approach:

For any relation Ri
A of arity a(Ri) of a totally ordered structure

−→
A we

may consider a relation R≤i

A of arity 2a(Ri) defined by:

(x1, x2, . . . , xl, y1, y2, . . . , xl) ∈ R≤i

A

if and only if
(x1, x2, . . . , xl) ≤iA (y1, y2, . . . , yl).

The order R≤A is the order ≤A. The language of such interpretations is L
together with relations R≤i

A for every i ∈ I. Call this relational structure

TO(
−→
A). Observe that f :

−→
A → −→B is an embedding

−→
A → −→B if and only if

f : TO(
−→
A)→ TO(

−→
B) is an embedding.

We can denote the extended language by L, 2L. Denote by TO(L) the
class of all structures TO(A) in the language L, 2L. We claim the following:
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Theorem 4.32 (Ramsey Theorem for Totally Ordered Structures). Let L
be a finite language, then TO(L) is a Ramsey class of relational structures.

Before the proof of Theorem 4.32 let us add the following remark.

Remark. It may seem on the first glance that the natural way to prove this is
to show that TO(L) is a locally finite subclass of the class of all finite ordered
L,2L-structures. This is however not the case. We proceed differently using
a particular closure operation.

Fix arbitrary order ≤L of L. Given a structure A ∈ TO(L) we denote
the following lift A+ which we call incidence closure:

1. The vertex set of A+ extends the vertex set of A by a new vertex for
every tuple in every relation. More precisely:

A+ = A ∪
⋃

i∈I

{i} ×Ri
A.

2. The order ≤+
A extends the order of ≤A as follows:

(a) For every i ∈ I we put

(i, u1, u2, . . . , ua(Ri)) ≤A+ (i, v1, v2, . . . , va(Ri))

if and only if

(u1, u2, . . . , ua(Ri)) ≤iA (v1, v2, . . . , va(Ri)).

(b) For every u ∈ A and v /∈ A we put u ≤A+ v.

(c) For every i, j ∈ I such that i <L j and every

(i, u1, u2, . . . , ua(Ri)), (j, v1, v2, . . . , va(Rj)) ∈ A+

we put

(i, u1, u2, . . . , ua(Ri)) ≤A+ (j, v1, v2, . . . , va(Rj)).

3. For every i ∈ I we add a relation RUi

A+ of arity a(Ri) and we put

(u1, u2, . . . , ua(Ri), (i, u1, u2, . . . , ua(Ri))) ∈ RUi

A+

if and only if
(u1, u2, . . . , ua(Ri)) ∈ Ri

A.
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4. In addition we have L unary relations RMi

A+ , i ∈ I and we put

((i, u1, u2, . . . , ua(Ri))) ∈ RMi

A+

for every (i, u1, u2, . . . , ua(Ri)) ∈ A+.

Proof. Denote class of such lifts (with the incidence closure) by TO+(L). One
sees that the relations RUi forms a closure. Now after this reformulation we
get that TO+(L) is a Ramsey lift by a routine application of Theorem 2.2.

This example may be summarised by saying that relational structures with all
relations ordered have a Ramsey lift. We do not know of a simple direct proof
of this fact. Like Theorem 4.26 it involves essential part of the Theorem 2.2.

Remark. The incidence closure can be used to give an order on n-tuples
in general. For example, the following class giving linear order to the neigh-
bourhood of every vertex can be shown to be Ramsey by essentially the same
argument:

Denote by QQ the class of finite structures A with one binary relation
R≤A and one ternary relation R≺A with the following properties:

1. the relation R≤A forms a linear order on A, and,

2. for every vertex a ∈ A the relation {(b, c) : (a, b, c) ∈ R≺A} forms a
linear oder on A \ {a} (that is independent to R≤A).

(QQ may be viewed as the class of all structures endowed with local order
on neighbourhoods.)

4.4 Ramsey lifts of ages of ω-categorical structures

We end this paper by considering particlar examples of homomorphism de-
fined classes which in fact provided the original motivation for this paper.
This section provides a rich spectrum of Ramsey classes defined by means of
forbidden substructures. We start with a detailed description of the Ramsey
lift of the class of finite graphs with a given odd girth and show how this
particular (but key) example fits both Theorem 2.1 and Theorem 3.7. These
results indicate that the case of forbidden homomorphism is well understood.
We then (in Section 4.4.2) turn our attention to classes defined by forbidden
monomorphisms (such as forbidden subgraphs). Here the situation is much
more complicated even on the model-theoretic side (see e.g.[7]) and this is
where (again) we have to use closures.
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4.4.1 Graphs omitting odd cycles of length at most l

Perhaps the simplest example of graphs defined by means of forbidden ho-
momorphism is the class of all (undirected) graphs G such that there is no
homomorphism Cl → G, where Cl is a graph cycle on l vertices. Of course
we assume l odd. Equivalently, we will consider this to be the class of all
graphs in the class Forbhe(Cl).

By Proposition 3.2 we know that the Ramsey lift must have the amalga-
mation property. It is easy to see that the class of all graphs in Forbhe(Cl) is
not an amalgamation class for any odd l ≥ 5 so a convenient lift is needed.
We illustrate this by means of the smallest non-trivial example l = 5. There
is no amalgamation of a path of length two and a path of length three over
the endpoints. It follows that every non-trivial graph omitting 5-cycle has
(at least) two types of pairs of independent vertices — vertices connected by
a path of length two and vertices connected by a path of length three. The
Ramsey lift thus needs to distinguish those pairs.

An explicite homogenising (and also Ramsey) lift can be described as
follows: Fix an odd l. The language of graphs is extended to language Ll
by a linear order R≤ and binary relations R2, R3, . . . , R(l−1)/2. Given finite
graph G ∈ Forbhe(Cl) we define its lift G+ as follows:

1. R≤G+ is (arbitrary) linear order of G.

2. u, v ∈ Ri
G+ if and only if the graph distance of u and v is i, for every

1 < i ≤ l−1
2

. (The distance one is already represented by relation RE
G.)

We call this lift the distance lift of the graph G.
The lifted class KCl

then consist of all possible substructures of all above
lifts of finite graphs in Forbhe(Cl).

Remark. The homogenisation of the class of all graphs in Forbhe(Cl) was
first given by Komjáth, Mekler and Pach [43] (corrected proof appears in [42]).
This, in fact, presented an early example of universal graphs defined by for-
bidden homomorphisms (this result was generalised in [11]; see also [8, 14]
for negative results). Alternative homogenisation (in the form of even-odd
metric spaces) is given in [38]. Homogenisation presented here appears in
the catalogue of metrically ultrahomogeneous graphs [5] and is the only one
(up to bi-definability) leading to the homogenisation of existentially complete
ω-categorical universal graph for the class of all graphs in Forbhe(Cl).

Theorem 4.33. The class KCl
is a Ramsey class. Every lift A ∈ KCl

can
be viewed as a metric space with distances truncated by l+1

2
. More precisely
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the following function dA : A× A→ {0, 1, 2, . . . l+1
2
} is metric:

dA(u, v) =





0 if u = v,

1 if (u, v) ∈ RE
A,

d if (u, v) ∈ Rd
A, 2 ≤ d ≤ d−1

2
, and,

(l+1)
2

otherwise.

As a further illustration of our technique we give two proofs of Theo-
rem 4.33.

Proof (by the application of Theorem 2.1). We give a strong amalgamation
procedure for KCl

. Let B1,B2 ∈ KCl
. Without loss of generality we can

assume that both B1,B2 ∈ KCl
are both distance lifts of graphs in Forbhe(Cl)

and A is a structure induced by both B1 and B2 on A = B1∩B2. Construct
a graph G as the free amalgamation of Sh(B1) and Sh(B2) over Sh(A).
That is G = B1 ∪ B2 and (u, v) ∈ RE

G if and only if either (u, v) ∈ RE
B1

or (u, v) ∈ RE
B2

. Denote by C the distance lift of G. We claim that C
is a strong amalgamation of B1 and B2 over A. Because for every pair of
vertices u, v ∈ A we have lB1(u, v) = lB2(u, v) = dA(u, v) it is easy to see
that identities are embeddings from B1 and B2 to C. It remains to verify
that G does not contain any odd cycles of length at most l.

Assume, to the contrary, that there exists a cycle C̃k, k ≤ l odd, that is
a subgraph of G. Among all choices of C̃k pick one such that k is minimal.
Because both B1 and B2 have no homomorphic images of Cl we know that
C̃k contains some vertices of B1 \ A and some of B2 \ A. Because G is a

free amalgamation and C̃k connected, there are also some vertices in A∩ C̃k
which forms a vertex cut of C̃k.

Now consider a path in C̃k on vertices v1, v2, . . . , vn, such that n ≤ k−1
2

,
v1, vn ∈ A and v2, v3, . . . , vn−1 /∈ A. Without loss of generality assume that
the whole path is contained in B1. We show that dC(v1, vn) = n in A:

1. Clearly lB1(v1, vn) = lB2(v1, vn) = dA(v1, vn) ≤ n.

2. Assume dA(v1, vn) < n. In this case create C̃′ from C̃k by replacing

vertices v1, v2, . . . , vn of C̃k with the path of length dC(v1, vn) in G. C̃′

is a homomorphic image of a cycle of length k′ = k − n + d(v1, vn)
in G. Because k is minimal we know that k′ is even. It follows that
n + d(v1, vn) is odd and vertices v1 and vn are connected in B1 both
by a path of length n and a path of length d(v1, vn). Combining these
paths together leads to a homomorphic image of odd cycle in B1 of
length d(v1, vn) + n ≤ k a contradiction with B1 ∈ Forbhe(Cl).
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It follows that for every two vertices v1, vn ∈ C̃l ∩C such that the distance k
within C̃k is most k−1

2
there is a path of length l in both B1 and B2.

Because there is no copy of C̃k in B1 or B2 we conclude that there is a
path w1, w2, . . . , wm, such that m > k−1

2
, w1, wm ∈ A, w2, w3, . . . wm−1 /∈ A.

Again without a loss of generality assume this path is in B1. Because there
is only one such long path in C̃k we obtain a homomorphic copy of C̃k in B1,
a contradiction with B1 ∈ Forbhe(Cl). This finishes the proof that C is the
strong amalgamation of B1 and B2 over A.

To apply Theorem 2.1 we observe that KCl
is locally finite subclass of the

class of all ordered structures in the language Ll.

Now we show how the same lift can be shown Ramsey by the application
of Theorem 3.7.

Proof (by the application of Theorem 3.7). Denote by Cl the family of all pos-
sible weak orderings of Cl along with a structure containing one vertex with
loop and two structures containing two vertices and a directed edge (in both
possible orderings). Those additional structures describe the class of all un-
oriented graphs.

It immediately follows that the class of all finite ordered structures in
Forbhe(Cl) is the class of all ordered graphs with no homomorphic image of
Cl and the existence of precompact Ramsey lift is given by Theorem 3.7.
However this result claims more in that it derives a particular lift in the form
of maximal F -lifts as given by Definition 3.7. It remains to check that this
homogenisation is equivalent to one described by statement of Theorem 3.7.

The pieces of Cl (see Definition 3.4) are all paths of lengths 2, 3, . . . , l−2
rooted in the endpoints. The homomorphism-embeddings from a path of
length k rooted in the endpoints then describe a walk of length k. The pieces
of structures in Cl are weakly ordered paths, but because we consider all
possible weak orders, we know that all weakly ordered paths of the same
length are ∼-equivalent. In the following we can thus speak only of a pieces
formed by paths of given length.

Because the construction of homogenising lift adds relations describing in-
dividual pieces and tuples in these relations describe roots of homomorphism-
embeddings, at first glance it seems that the lift constructed is thus more
expressive than one we ask for: we measure the distance of walks of length
up to l − 2 (instead of l+1

2
) and in addition every pair of vertices (u, v) can

be in many binary relations. Here we need to use the maximality (as defined
in Definition 3.7).

To see this we proceed as follows. Given a pair of vertices (u, v) of a
maximal lift A+ and its witness W, we verify that the set of relations (i.e. the
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set of lengths of permitted walks between u and v in A) is fully determined

by the graph distance lW(u, v) in W and that lW(u, v) ≤ (l+1)
2

:

1. If the distance lW(u, v) = k is even, the existence of walks of all even
distances greater than k follows trivially; there is always a homomor-
phism from the path of length k+2 to the path of length k mapping an
endpoint to an endpoint. By the maximality there are also all odd walks
of distances greater or equal to l−k+2. If such walk would be missing,
it would be possible to extend W by a path of length l − k + 2 con-
necting u and v without obtaining a homomorphism-embedding copy
of Cl. This would contradict the maximality of A+. We also know
that there are no shorter odd walks because every combination of two
walks between u and v of length l and l− k produce a homomorphism-
embedding copy of Cl.

It follows that (for given even distance k) there is only one possible set
of relations in between vertices u and v in the maximal lift.

2. The case of odd distance follows in full analogy.

3. There are no pairs of vertices of A+ with distance greater than (l+1)
2

in
W: for any pair of vertices in a greater distance one can add a path of
length (l+1)

2
without introducing a short cycle again contradicting the

maximality of A.

Remark. While in this simple case both proofs appears similarly complex, in
less trivial scenarios it is often a lot easier to analyse the structure of pieces
rather than give an explicit homogenisation and amalgamation procedure.
Consider, for example, the class of graphs having no homomorphic image of
the Petersen graph. The pieces of this graph are given in Figure 8.

4.4.2 Forbidden monomorphisms (Cherlin-Shelah-Shi classes)

The classes defined by forbidden homomorphism-embeddings (i.e. classes
Forbhe(F) used in Section 3) can be seen as a special case of classes defined
by forbidden monomorphisms (or, equivalently, by forbidden non-induced
substructures). In this section we treat those monomorphism defined classes
which can be handled by application of Theorem 3.7. (Recall: a monomor-
phisms indicates weak (not necessarily induced) substructures).

Recall that we denote by Forbm(M) the class of all finite or countable
structures A such that there is no monomorphism from some M ∈ M to
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Figure 15: The bowtie graph.

A. The question of the existence of an ω-categorical universal structure in
Forbm(M) is considered by Cherlin, Shelah and Shi [11]. A sufficient and
necessary condition is given in the form of local finiteness of the algebraic
closure stated below as Theorem 4.34. While the existence of an universal
structure in monomorphism defined classes was intensively studied in the
series of papers [43, 8, 14, 16, 26, 17, 9, 13, 15, 7, 10] it even remains open
if the problem of the existence of an universal structure in the class of all
graphs in Forbm(M) is decidable for family M consisting of single finite
graph. On the positive side [11] proves that for every finite family M of
finite connected structures which is closed for homomorphic images the class
of all graphs in Forbm(M) contains an universal structure. Theorem 3.4
generalises this result for infinite families.

It was the analysis of the bowtie-free graphs [35] (a bowtie is the graph
depicted in Figure 15) which led to the notion of a closure description (Def-
inition 2.6). Here we use it to obtain a Ramsey lifts of classes defined by
forbidden monomorphisms in a greater generality. This extends the family
of known Ramsey classes by non-trivial new examples, such as forbidden 2-
bouquets [17], paths [43, 11], complete graphs adjacent to a path [43, 11],
bowties adjacent to a path [11] and all known cases in the work in progress
catalogue [12]. Some of these classes are really exotic ones. For example,
the class of all graph omitting the graph depicted in Figure 16 contains ω-
categorical universal graph and this is a singular example: it is not possible
to change size of one clique in the picture and obtain class containing an uni-
versal graph again! While in the case of the bowtie-free graphs it is possible
to manually analyse the structure of graphs in the class (and this analysis is
a core of [35]), it is hard to imagine to perform such analysis in the case of
graph in Figure 16.

It is only fitting that we end this paper by reviewing the relevance of
Ramsey classes described here and of perhaps the most successful result
for the existence of ω-categorical objects provided by [11]. In fact this fits
together very well. First we briefly review the terminology of [11].

Definition 4.11. Let A be an L-relational structure and S a finite subset
of A. The algebraic closure of S in A, denoted by AclA(S), is the set all
vertices v ∈ A for which there is a formula φ in the language L with |S|+ 1
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Figure 16: An example of forbidden subgraph (by monomorphism).

variables such that φ(~S, v) is true and there is only finitely many vertices

v′ ∈ A such that φ(~S, v′) is also true. (Here ~S is an arbitrary ordering of
vertices of S.)

The algebraic closure when applied to structures involving orderings is
closely related to our notion of a closure description (Definition 2.5) and
thus in our setting both these approaches are equivalent.

We say that structure A is algebraically closed in U if for every embedding
e : A → U, AclU(e(A)) = e(A). (e(A) = {e(x);X ∈ A}.) Algebraic
closure in A is locally finite if there exists a function f : N → N such that
|AclA(S)| ≤ f(|S|).

Theorem 4.34 (Cherlin, Shelah, Shi [11]). LetM be a finite family of finite
connected relational structures. There is an ω-categorical universal structure
in Forbm(M) if and only if the algebraic closure in existentially complete
structures in Forbm(M) is locally finite.

We will make use of two observations about the amalgamation in classes
Age(Forbm(M)).

Lemma 4.35. Let M be a finite family of finite connected structures. If
there is a strong amalgamation of B and B′ over A in Age(Forbm(M)) then
there is also a free amalgamation of B and B′ over A in Age(Forbm(M)).

Proof. This follows immediately from the fact that Forbm(M) is defined
by forbidden monomorphisms and thus is closed for removal of tuples from
relation (or, putting otherwise, Forbm(M) is a monotone class).

The following model-theoretic lemma lies in the background of efficiency
of Theorem 3.7 formulated bellow as Theorem 4.37.

Lemma 4.36. Let M be a class of finite connected structures such that
Forbm(M) contains an ω-categorical universal structure U. Let A,B1,B2 ∈
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Age(Forbm(M)) with inclusion embeddings α1 : A → B1, α2 : A → B2.
Further assume that A is algebraically closed in U. Moreover let us assume
that there is an amalgamation of B1 and B2 over A in Age(Forbm(M)). The
there is also a free amalgamation of B1 and B2 over A in Age(Forbm(M)).

Proof. Fix A,B1,B2, and, U. Denote by C ∈ Forbm(M) an (not necessarily
free) amalgamation of B1 and B2 over A. Let e1 be an embedding of C
to U (which is known to exist by universality of U). To obtain a strong
amalgamation, we find an embedding e2 : B2 → U such that e1(A) = e2(A)
and e2(B2) ∩ e1(B1 \ A) = ∅.

Assume (for simplicity) that |B2 \ A| = 1. Because A is algebraically
closed, there are infinitely many embeddings from B2 → U that agrees on
with e1 on A. Because B1 is finite, we can chose embedding where the image
of the additional vertex of B2 is not contained in e1(B1).

Now consider case where |B2 \A| = 2. Denote by u and v the vertices of
B2 \ A. By the same argument as before, there are infinitely many possible
images of u. If v is not in the algebraic closure of B2 \ {v} for each of this
image we have infinitely many images of v. This makes it possible to chose
e2. We thus consider the case where v is in the algebraic closure of B2 \ {v}
and for each possible choice of image of u, the possible choices of images of
v lie in e1(B1). Because e1(B1) is finite and because it is possible to write
a formula describing all such u taking vertices of A as parameters, we know
that all vertices in e1(B1 \ A) are in AclU(e1(A)). A contradiction with an
assumption that A is closed.

The case of |B2 \ A| > 2 follows in a complete analogy.
The structure induced on vertices of e1(B1)∪ e2(B2)) is a strong amalga-

mation of B1 and B2 over A. Using Lemma 4.35 it is also a free amalgama-
tion.

Theorem 4.37. Let M be a set of finite connected structures such that
Forbm(M) contains an ω-categorical universal structure U. Further assume
that for every M ∈M at least one of the conditions holds:

1. there is no homomorphism-embedding of M to U, or,

2. M can be constructed from irreducible structures by a series of free
amalgamations over irreducible substructures.

Then the class of finite algebraically closed substructures of U has precompact
Ramsey lift. (By the standard homogenisation argument it also follows that
Age(Forbm(M)) has precompact Ramsey lift.)
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Proof. We first expand language L by an order. Let
−→
U be the generically

linearly ordered U. We further extend language L by necessary relations to
represent the algebraic closure of every finite ordered irreducible substructure

of
−→
U. Denote by L+ the resulting language and by UM the resulting closure

description (which exists and is finite by Theorem 4.34). Denote by
−→
U+ the

lift of
−→
U adding the newly introduced relations representing closures and

relations describing an isomorphism type of a closure of every k-tuple. Thus

L+ is the language of
−→
U+. By the local finiteness of the algebraic closure we

know we introduced only finitely many relations of a given arity.
Denote by n the size of the largest structure in M and by N the bound

on size of algebraic closure of a structure on n vertices. Let FM denote the
class of all structures with at most N vertices whose all homomorphism-

embeddings are forbidden in
−→
U+ and EM denote the class of all structures

A /∈ Age(
−→
U+) containing irreducible substructure A′ ∈ Age(

−→
U+) such

that ClUA(A′) = A. Now apply Theorem 3.7 to obtain precompact Ram-
sey lift K+

M of the class KM of all finite ordered UM-closed structures in
Forbhe(FM) ∩ Forbe(EM). We claim that KM is the class of all UM-closed

structures in Age(
−→
U+) and consequently K+

M is the precompact Ramsey lift
of Age(Forbm(M)).

Let C ∈ KM and assume, to the contrary, the existence of M ∈ M
such that there is a monomorphism m from M to shadow Sh(C). Because
Sh(C) ∈ Forbhe(FM) there is a monomorphic image M in Forbm(M) and
thus denote by M1,M2, . . . ,Mn the irreducible structures used to build M.
Denote by M′

1,M
′
2, . . . ,M

′
n the closures of m(M1),m(M2), . . . ,m(Mn) in C.

Because the structures are irreducible we know that M′
1,M

′
2, . . . ,M

′
n ∈ KM:

if M′
i /∈ KM we also get M ∈ FM or M′

i ∈ EM (because Mi is irreducible
in KM). It follows that, by Lemma 4.36, we can use the same series of free
amalgamations over structures M′

1,M
′
2, . . . ,M

′
n to build a structure in KM

containing a monomorphic copy of M. A contradiction.

Remark. The order needs to be handled carefully in the proof. It may seem
more natural to first homogenise U and then add the order. This however
often leads to more complex structure. If the order is introduced first and
assuming that the language L contains no relations of arity greater than k,
the isomorphism type of closure of a substructure can be uniquely determined
by the isomorphism type of its substructures of size at most k [35].

In addition, lifting by the free order will not give a lift with the lift
property for classes with non-trivial closure. Such lifts needs more detailed
analysis of the structure of this closure. The special case of the bowtie-free
graphs is analysed in [35].
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Remark. It is conjectured in [10, 7] that every graph G such that there exists
an ω-categorical universal graph for the class of all graphs in Forbm({G})
has all 2-connected components irreducible. If this conjecture is true, then
Theorem 4.37 shows the existence of a precompact Ramsey lift for every class
of graphs Forbm({G}) with an ω-categorical universal graph. So it seems this
is as far as we can go: the existence of Ramsey lift is here equivalent to ω-
categoricity of universal graph.

Remark. IfM consists only of structures constructed from irreducible struc-
tures by a series of free amalgamations over an irreducible substructures the
existence of ω-categorical universal structure is actually necessary in Theo-
rem 4.37 only to establish the precompactness of the lift. Even in the cases
where algebraical closure is not locally finite, the same technique as above
can be used for the class of homogenising lifts of the structures (which is
not precompact and the resulting Fräıssé limit will not be universal, only
universal for finite structures of the age). The resulting Ramsey lift will be
precompact lift of this homogenising lift.

On the other hand consider class Forbm(C4). This class has a binary
closure: for every pair of vertices there is at most one vertex connected to
both of them. It is easy to consider a lift by adding binary relation RC which
denote every pair of vertices for which there exists a vertex connected to
both and ternary relation RU representing the closure (note that the closure
is not locally finite [25] and there is no ω-categorical universal graph for
Forbm(C4)). This class has however a strong amalgamation over the closed
structures. It seem to fail to have locally finite completion property and the
existence of Ramsey lift of this class is an open (and well known) problem
(see e.g. [51]).

Remark. The condition of Theorem 4.37 given on the family M can be
strengthened. Cherlin [7] give an example of class Forbm(M) with non-
unary algebraic closure. It is easy to show that the techniques used in proof
of Theorem 4.37 apply for this class, too.
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[19] Christian Delhommé, Claude Laflamme, Maurice Pouzet, and Nor-
bert W. Sauer. Divisibility of countable metric spaces. European Journal
of Combinatorics, 28(6):1746–1769, 2007.

[20] Domingos Dellamonica and Vojtěch Rödl. Distance preserving Ram-
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[26] Zoltan Füredi and Péter Komjáth. On the existence of countable uni-
versal graphs. Journal of Graph Theory, 25(1):53–58, 1997.

[27] Ronald L. Graham, Klaus Leeb, and Bruce L. Rothschild. Ramsey’s
theorem for a class of categories. Advances in Mathematics, 8(3):417–
433, 1972.

[28] Ronald L. Graham and Bruce L. Rothschild. Ramsey’s theorem for
n-parameter sets. Transactions of the American Mathematical Society,
159:257–292, 1971.

[29] Alfred W. Hales and Robert I. Jewett. Regularity and positional games.
Transactions of the American Mathematical Society, 106:222–229, 1963.
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[34] Jan Hubička and Jaroslav Nešetřil. Finite presentation of homogeneous
graphs, posets and Ramsey classes. Israel Journal of Mathematics,
149(1):21–44, 2005.
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[54] Jaroslav Nešetřil and Vojtěch Rödl. The Ramsey property for graphs
with forbidden complete subgraphs. Journal of Combinatorial Theory,
Series B, 20(3):243–249, 1976.
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