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Abstract. In this note we characterize, within the framework of the the-
ory of finite set, those categories of graphs that are algebraic universal in
the sense that every concrete category fully embeds in them. The proof of
the characterization is based on the sparse–dense dichotomy and its model
theoretic equivalent.

1. Introduction

A category K is algebraic universal if every concrete category embeds in
it. (In this paper, embeddings are understood as full and faithful functors)
The name comes from examples: algebraic universal categories include simple
algebraic structures as well as the class of all graphs (sets with one binary
relation). Algebraic universal categories have been the subject of intensive
studies [1, 26]. Particularly, many subcategories of the category of graphs
were shown to be algebraic universal, too [2, 5, 13, 26].

The aim of this note is to provide a characterization of those subcategories
of the category of graphs that are universal. Unexpectedly this is related to
(and in fact coincides with) the characterization of somewhere dense classes of
graphs. All these notions will be introduced in Section 2.

At this place let us remark that we deal only with finite graphs and categories
induced by them, so this paper is in fact written in the theory of finite sets
(so N is a proper class here), see Section 4.

The main result of this note is the following: Denote by Gra the category

of all finite undirected graphs, and by
−−→
Gra the category of all finite oriented

graphs. Recall that an oriented graph is a directed graph in which at most one
arc exists between any two vertices.

Theorem 1. For a monotone subcategory K of Gra the following three state-
ments are equivalent:
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(1) There exists a subcategory K of
−−→
Gra, each member of which is an

orientation of a member of K, which embeds the category
−−→
Gra.

(2) There exists a subcategory K of
−−→
Gra, each member of which is an

orientation of a member of K, which embeds the simplicial category ∆.
(3) K is somewhere dense.

In other words, some class of orientations of graphs from K is universal (in
the theory of finite sets) if and only if the class K is somewhere dense.

This in turn leads to a new, high level, algebraic characterization of some-
where dense classes. Yet another one in the already long list, see [24, 25].

The paper is organised as follows: In Section 2 we recall all the relevant
notions and put the universality question in the context of category theory
related to concreteness and representation of posets. In Section 3 we prove
the main result by a combination of model theory and combinatorial methods.
In Section 4 we recast the problem of universality in the context of the classifi-
cation of sparse classes of graphs, and display a perhaps surprising gap in the
descriptive complexity of classes representing groups, monoids, and categories.

2. Preliminaries

First we recall several notions of category theory.
A category is concrete if it is isomorphic to a subcategory of the category

Set of sets and mappings. A necessary condition for a category to be concrete
is Isbell condition [17]. This condition was proved to be sufficient by Freyd
[10] and, through the explicit construction of a faithful functor to Set, by
Vinárek [29] . Vinárek’s construction has, moreover, the following property:
for countable categories with finite sets of morphisms between fixed objects,
the functor has finite values. Thus Freyds’ theorem holds also in the theory
of finite sets. Precisely, if the considered class is countable and the set of
homomorphisms between any two objects is finite, then the class is isomorphic
to a subcategory of the category of finite sets if and only if Isbell’s condition
holds. See [14] for a concise description of these results.

In this context, another interesting result is Kučera’s theorem [18], which
asserts that every category is a factorization of a concrete one (like classes of
homotopy equivalent maps, which was the original motivation of [10]). Also
this theorem holds in its version for the theory of finite sets.

As a culmination of researches by Prague category group in the sixties, it
has been proved that the category Gra of all graphs (finite or infinite) with
homomorphisms between them is algebraic universal for all concrete categories.
Explicitly, for every concrete category K there is an embedding of K into Gra.

These results led to an intensive research, and various subcategories of Gra
were shown to be algebraic universal.
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The basic techniques used in these proofs was model-theoretical first-order
interpretation, then called š́ıp, indicator, or replacement construction.

It is perhaps surprising that in this paper we can provide a characterization
of monotone subcategories of Gra that are algebraic universal. Here mono-
tone means that the class (of graphs) is closed under taking (non necessarily
induced) subgraphs.

As this paper deals with finite models we restrict from now in the setting of
theory of finite sets, thus to finite graphs and to embedding into the category
of finite graphs.

In order to formulate our main results we have to recall the basics of the
nowhere dense–somewhere dense dichotomy. For a comprehensive treatment,
see e.g. [24] or [25].

Somewhere dense classes of graphs were introduced by the authors in [22,
23]. Recall that a directed graph is a relational structure with a single binary
(non-necessarily symmetric) adjacency relation, whose elements are called arcs.
The domain of a directed graph is its vertex set. An undirected graph (resp.
an oriented graph) is a directed graph such that the adjacency relation is
symmetric (resp. anti-symmetric). In an undirected graph, we speak about
edges rather than arcs, the set {u, v} being an edge if the vertices u and v are
adjacent. When not specified, graphs are assumed to be undirected.

For n ∈ N the complete graph Kn is the graph with n vertices, where every
two distinct vertices are adjacent. A path of length n is a graph with n vertices
v1, . . . , vn such that vi is adjacent to vi+1 (and to no vj for j > i+ 1) for each
1 ≤ i < n. For a graph G and an integer p, the p-th subdivision of G, denoted
Subp(G) is the graph obtained from G by replacing each edge by a path of
length p+ 1 (see Fig. 1).

Figure 1. The complete graph K4 (left) and its 3-subdivision
Sub3(K4) (right).

A class of graphs C is nowhere dense if, for every integer p there exists an
integer N(p) such that the p-th subdivision Subp(KN(p)) of KN(p) is a subgraph
of no graph in C, and the class C is somewhere dense, otherwise. So, a monotone
class C is nowhere dense if an only if there exists N : N → N such that for
every p ∈ N it holds Subp(KN(p)) /∈ C. Nowhere dense classes found various
applications in designing fast (almost linear) algorithms [21, 12, 8]. Particular
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cases of nowhere dense classes are classes with bounded expansion [20]. These
are characterized by the property that for every integer p there exists an integer
N(p) such that no p-th subdivision of a graph with minimum degree at least
N(p) is a subgraph of a graph in C. Such classes have strong structural and
algorithmic properties [24].

Let C be a class of structures of a fixed signature. A first-order formula
φ(x,y) is said to have the order property with respect to C if it has the n-order
property for all n, i.e. if for every n there exist a structure M ∈ C and tuples
a0, . . . , an−1, b0, . . . ,bn−1 of elements of M such that M |= φ(ai,bj) holds if
and only if i < j. A class C of structures is called stable if there is no such
formula with respect to C. It is easy to see that C is stable if and only if there is
no formula ψ(u,v) with |u| = |v|, such that for every n there exist a structure
M ∈ C and tuples c0, . . . , cn−1 of elements of M such that M |= ψ(ci, cj) holds
if and only if i < j, i.e. ψ orders the tuples linearly. Stability and the (n-)order
property come from stability theory [28, 9], where they are defined for the class
of models of a complete first-order theory. In [3], Adler and Adler prove the
following theorem (see also [25]) (which we state here in the particular case
we are interested in).

Theorem 2. Let C be a monotone class of directed graphs, and let C be the
class of the underlying undirected graphs. The following conditions are equiv-
alent.

(1) C is nowhere dense;
(2) C is stable;

This interplay of model theoretic and combinatorial notions is the key to
our main result.

3. Characterization

In view of the context of our main result (outlined in Section 1) it suffices
to prove the following two results.

Lemma 3. Let D be a monotone somewhere dense class of undirected graphs.
Then there exists a class C of oriented graphs, each member of which is an

orientation of a graph in D, which embeds the category
−−→
Gra of oriented graphs.

Proof. Let d be such that C contains the d-subdivision of every complete graph
Kn (here we use the assumption that C is monotone). Let (I, a, b) be the circuit
of length 3(d + 1), where vertices a, b are linked by a directed path (from a

to b) of length d + 1. For a given oriented graph ~G, denote by ~G ∗ (I, a, b)

the directed graph which arises from ~G by replacing every arc (u, v) of ~G
by a copy of (I, a, b) in such a way that a is identified to u and b to v (all
other vertices in distinct copies being distinct). It is easy to check that the

underlying undirected graph of ~G ∗ (I, a, b) belongs to C.
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The only circuits of G ∗ (I, a, b) with length at most 3(d+ 1) occur as copies

of (I, a, b). It follows that any homomorphism f : ~G ∗ (I, a, b)→ ~H ∗ (I, ab) is

induced in a unique way by a homomorphism g : ~G→ ~H. �

Lemma 4. If a class of directed graphs embeds the simplicial category ∆, then
it is somewhere dense.

Proof. Let C be a class of directed graphs that represents the the category ∆.
For sake of simplicity, we assume that every directed graph ~G we consider has
vertex set 0, 1, 2, . . . , |~G|− 1, and we denote by E(x, y) the relation expressing
the existence of an arc from x to y.

Then there is a functor Φ, mapping each ordinal [n] = {0, 1, . . . , n} to a
directed graph Φ([n]) ∈ C, and bijectively mapping order preserving maps
f : [i] → [j] into homomorphisms Φ(f) : Φ([i]) → Φ([j]) in such a way that
Φ(f ◦ g) = Φ(f) ◦ Φ(g).

Let ~Gn = Φ([n]), let a = |~G0| − 1 and b = |~G1| − 1. We define the formula

ν(x0, . . . , xa) :=
∧

~G0|=E(i,j)

E(xi, xj),

which asserts that i 7→ xi is a homomorphism from ~G0.
There are exactly two order preserving maps from [0] to [1], namely fs : 0 7→

0, and ft : 0 7→ 1. Let φs = Φ(fs) and φt = Φ(ft).
Then we define

η(x0, . . . , xa, y0, . . . , ya) :=

(∃z0 . . . zb)
[ a∧
i=0

(xi = zφs(i)) ∧
a∧
i=0

(yi = zφt(i)) ∧
∧

~G1|=E(i,j)

E(zi, zj)
]

The meaning of formula η is as follows: ~G |= η(x0, . . . , xa, y0, . . . , ya) ex-

presses that there exist a homomorphism h : ~G1 → ~G and homomorphisms
gs, gt : ~G0 → ~G, such that gs(i) = xi, gt(i) = yi, gs = h ◦ φs, and gt = h ◦ φt.
In other words, naming zi = h(i), there exist z0, . . . , zb such that i 7→ zi is a

homomorphism ~G1 → ~G, xi = zφs(i), and yi = zφt(i). (Note that φs and φt are
known to be homomorphisms.)

Let n be an ordinal. There are exactly n+1 order preserving maps gi : [0]→
[n], that are naturally ordered in such a way that for every i, j ∈ [n] it holds
i < j if and only if gi(0) < gj(0). In other words, for every two order preserving
maps gi, gj : [0] → [n] there exists an order preserving map h : [1] → [n] such
that gi = h◦fs and gj = h◦ft if and only if i < j. It follows that for every two

homomorphisms ĝ, ĝ′ : ~G0 → ~Gn there exists an homomorphism ĥ : ~G1 → ~Gn

such that ĝ = ĥ ◦ φs and ĝ = ĥ ◦ φt if and only if the (uniquely determined)
integers i, j such that ĝ = Φ(gi) and ĝ′ = Φ(gj) are such that i < j.
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Define the n + 1 tuples xi = (xi0, . . . , x
i
a) by xji = Φ(gj)(i). In other words,

let i 7→ xji be the homomorphism Φ(gj). Then the above properties rewrites
as

~Gn |= η(xi, xj) ⇐⇒ i < j.

It follows that C has the order property hence, by Theorem 2, is somewhere
dense. �

Remark 5. From a model theoretic point of view, the previous lemma is not
surprising: As pointed out by a referee, since order indiscernibles in a sta-
ble class are always set indiscernibles (see e.g. [7]), the existence of a full
embedding of the simplicial category ∆ makes a class non-stable. The sim-
plicial category ∆ has several equivalent descriptions; the choice to describe
∆ as the category of non-empty finite ordinals as objects (thought of as finite
linear orders), and order preserving functions as morphisms, which displays
the connection to order indiscernibles (see [19]), allowed us to include an easy
elementary proof.

4. Comments

1. Let us add few remarks putting the results of this work in a broader con-
text. Representation of categories were first investigated in the special cases
of groups, monoids, and small categories. This line of research directly relates
to our main result.

For groups, the representation can be done by graphs [11], and even by 3-
regular graphs [27]. However this cannot be done by geometrically restricted
graphs, like planar graphs or, more generally, by any proper minor closed class
of graphs [4].

For monoids, the representation can be done by graphs with arbitrary girth
(this is also possible by the above construction) but not by 3-regular or even
k-regular graphs (for any fixed k). In fact Babai and Pultr [6] showed that any
class of graphs which represents all finite monoids has to contain a subdivision
of any complete graph. However, using large girth representations and using
characterization of classes with bounded expansion [20, 24], one can easily
see that finite monoids can be represented by graphs in a bounded expansion
class C0. In particular, one can put C0 to be the class of all graphs of the form
G ∗ (~C2n, a, b), where ~C2n is a circuit of length 2n, where n is the order of G.

Consider small categories (in the theory of finite sets, that is finite cate-
gories). Let us enumerate all non-isomorphic small categories of graphs as
K1,K2, . . . ,Kn, . . . .

Let Ki have objects Gi
1, . . . , G

i
t(i). The category Ki will be represented by

oriented graphs of the form Gi
j ∗ (~C2Ni

, a, b), where Ni ≥
∑t(i)

j=1 |V (Gi
j)| and

Ni < Nj whenever i < j. On sees easily that the class C1 of all such graphs Gi
j∗
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(~C2Ni
, a, b) has bounded expansion: for any fixed integer d and any graph H, if

the d-th subdivision of H is a subgraph of a graph in C1 then H is 2-degenerate
with possibly finitely many exceptions (derived from graphs Gi

j ∗ (~C2Ni
, a, b)

for small i). The class C1 represents all the small categories K1,K2, . . . ,Kn, . . .
by an application of Cayley-MacLane representation.

However to represent arbitrary categories (in the theory of finite sets) we
have to jump over nowhere dense classes, right to somewhere dense classes.
This descriptive complexity gap is surprising.

It would be interesting to find a more direct combinatorial proof of the fact
that representing special categories leads to bounded subdivisions of arbitrarily
large complete graphs. Such examples of groups and monoids were found in
[4, 6].
2. In this context one should note that the representation of posets and thin
categories can be achieved by oriented paths, trees, or outerplanar graphs
[15, 16].

Let us summarize these facts in a schematic table.

+ −
Posets oriented trees, cycles,

or paths
undirected bipartite

Groups bounded degree proper minor closed

Monoids bounded expansion proper topological mi-
nor closed

Small categories bounded expansion proper topological mi-
nor closed

Concrete categories somewhere dense nowhere dense

3. We restricted ourselves to the theory of finite sets (i.e. to finite graphs).
The situation for infinite graphs and categories is less clear. On the other hand
most examples of special algebraic universal categories are obtained from some
basic examples (like the category of graphs) by first-order interpretation (like
replacement operation in the above proof of Lemma 4). As the basic examples
contain complete graphs of any size this leads then to p-subdivisions of large
complete graphs. The main result of this paper shows that this is necessarily
so.
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