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ABSTRACT. The cluster analysis of very large objects is an important problem,
which spans several theoretical as well as applied branches of mathematics and com-
puter science. Here we suggest a novel approach: under assumption of local con-
vergence of a sequence of finite structures we derive an asymptotic clustering. This
is achieved by a blend of analytic and geometric techniques, and particularly by a
new interpretation of the authors’ representation theorem for limits of local conver-
gent sequences, which serves as a guidance for the whole process. Our study may
be seen as an effort to describe connectivity structure at the limit (without having
a defined explicit limit structure) and to pull this connectivity structure back to the
finite structures in the sequence in a continuous way.
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1. INTRODUCTION

Cluster analysis (being an established part of statistics, computer science and math-
ematics) is a core method for database mining. It initiated in the thirties in social
sciences, particularly in anthropology and psychology. While the abstract notion of
a cluster is somehow vague, some canonical types of cluster models have been con-
sidered, which allow to construct meaningful partitions of large data sets. Among
these models, let us mention two principal extreme models: density models — where
clusters correspond to connected dense regions, and distribution models — where
clusters are defined by means of statistical distributions. For a comprehensive review
of cluster analysis, we refer the reader to [9].

In this paper — which extends and precise some ideas introduced by the authors
in [20] to study structural limits of trees — we propose a novel approach based on
an interplay of these two models: knowing a limit statistical distribution associated
to structures in a convergent sequence, we compute the parameters driving a den-
sity clustering of each of the structures in the sequence, in a seemingly “continuous”
way. We believe that the cluster analysis presented here has a broader impact than
the analysis of structural limits (which was our original motivation), and that it high-
lights a duality of the density and distribution models. Our analysis found immediate
applications to the study of structural limits and we hope that more will come.

The convergence notion we use is the convergence of the distribution of the local
properties of random vectors of elements. The limit distribution is used to drive a seg-
mentation process, which can be seen as a marking of the elements of each structure
in the sequence. The consistency of these markings is ensured by the requirement that
the sequence of marked structures is still local convergent (see Fig 1 for a schematic
visualization of this segmentation method).

Our approach is a natural one: if instead of considering a single snapshot of an
evolving system we consider a significant part of the full movie, then clusters appear
in a more obvious way, and meaningful parameters are much more easily defined and
estimated. However the details are involved and lead to a new taxonomy.

Note that the notion of convergence considered here is a generalization of the notion
of local convergence introduced by Benjamini and Schramm for graphs with bounded
degrees [3]. In the general structural setting, introduced by the authors in [19], there



CLUSTER ANALYSIS OF LOCAL CONVERGENT SEQUENCES OF STRUCTURES 3

A

A3
A,

/

FIGURE 1. Segmentation of structures in a convergent sequence based
on cluster analysis
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is no restriction on the degrees of the considered graphs or structures. (We refer the
reader to [17] for an in-depth study of the classical notions of graph limits.) Infor-
mally, a sequence A = (A)),cy Of structures is local convergent if the probability
(¢, A,) (the Stone pairing of ¢ and A)) of satisfaction of every local first-order for-
mula ¢ in structure A, (for a random assignment of the free variables) converges as
n grows to infinity. (Recall that a local formula is a formula whose satisfaction only
depends on a bounded neighborhood of its free variables.) The limit of a local con-
vergent sequence can thus be described by the (infinite) vectors of limit satisfaction
probabilities lim,_, (¢, A,,) indexed by all local first-order formulas ¢. This can also
be represented as a probability measure, as stated by the general representation theo-
rem (Theorem 3), in a way extending Aldous-Hoover representation of left limits of
dense graphs by infinite exchangeable graphs [1, 13] and Benjamini-Schramm repre-
sentation of local limits of graphs with bounded degree by an unimodular distribution
on rooted connected countable graphs [3].

Our cluster analysis allows to meaningfully partition the structures in a local con-
vergent sequence into dense connected clusters (plus an additional residual sparse
cluster). It also show how this clustering is related to an imaginary connectivity struc-
ture of every limit structure one may define. Structural limits define convergence by
means of statistics of first-order formula satisfaction. For various fragments of first-
order logic we obtain various types of convergence. (In fact standard notions of left
convergence [6, 18] and local convergence of graphs with bounded degrees [3] fall
into this scheme.) It follows that limit objects one can construct share and express
many interesting first-order properties. Can one say something about second order
properties? Among them the most prominent is connectivity. What can we say about
the asymptotic component structure of graphs in a convergent sequence? Note that
the existence of a limit object does not help too much, as connectivity properties are
not a priori continuous.

In this paper we provide an analysis of the connectivity structures of each structure
in a convergent sequence, leading to a connectivity analysis of every limit object one
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can consider (ultraproduct endowed with Loeb measure [19], modeling [14], graph-
ing, etc.) hence justifying a posteriori the relevance of satisfaction statistics for each
connected component of a limit object with non-zero measure, and to the possibility
to extract in the structures of the sequence the part converging to this particular con-
nected component. Our assumptions are minimal: the analysis only uses the conver-
gent sequence and the (unique) limit distribution associated to it by the representation
theorem proved in [19].

FIGURE 2. Typical shape of a structure continuously segmented by a
clustering: dense spots correspond to globular clusters, and the back-
ground to the residual cluster. Biggest globular clusters appear first
and then move apart from each other, while new (smaller) globular
clusters appear and residual cluster becomes sparser and sparser.

Let us take time for a more detailed description both of our main result (Theo-
rem 1) and of the main difficulties that we have to overcome to prove it. The first
(surprising, at least at first glance) aspect, which already appears when considering
Benjamini-Schramm limit of connected graphs with bounded degrees, is that the limit
of a sequence of connected graphs needs not to be connected: if G = (G,,), 18 a local
convergent sequence of finite connected graphs with degree at most D and with orders
growing to infinity, then for every integers k, r the probability that a random subset
of k vertices contains two vertices at distance at most r tends to 0, which ultimately
shows that the limit cannot have finitely many connected components. Actually every
limit graphing will have uncountably many connected components.

When considering general local convergent sequences of finite structures, even if
we don’t have an explicit limit structure, it makes sense to talk about the limit con-
nected components and some of their properties. For instance, we prove that it is
possible to determine the measure of all the limit connected components and, for
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FIGURE 3. Semantic connections of new notions considered in this paper.

those with non-zero measures, their associated statistics. This is basically done by
using Fourier analysis. Using this information, we prove that it is possible to track
the limit connected components back to the structures of a local convergent sequence,
by marking consistently the elements of all the structures in the sequence (see also
schematic Fig. 2). The component structure of the limit is very complex and it has
been repeatedly asked as a problem (by Lovéasz and others) how sequences of con-
nected structures disconnect at the limit. Here we solve this problem at a general
level, by showing that we can trace limit connected components with positive mea-
sure back in the sequence and how they gradually disconnect themselves from the
remaining of the structures.

This analysis leads to interesting new notions: globular cluster (corresponding to
a limit non-zero measure connected component), residual cluster (corresponding to
all the zero-measure connected components taken as a whole), and negligible cluster
(corresponding to the stretched part connecting the other clusters, which eventually
disappears at the limit). Fig 3 summarizes schematically the interplay of the newly
introduced notions. The marking of each of all these types of clusters will be explained
in the second part of the paper. But let us mention that the main issue here is that we
require that the marking of all these (countably many) clusters should preserve local
convergence. This means that even if we consider local formulas using these marks,
the satisfaction probabilities will still converge.

The main result of this paper reads as follows:
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Theorem 1. Let A be a local convergent sequence of o-structures. Then there
exists a signature o™ obtained from o by the addition of countably many unary
symbols Mg and M, ; (i € N, 1 < j < N,) and a clustering A* of A with the
following properties:

. N, : :
e Foreveryi € N, (sz’l MiJ(A:))neN is a universal cluster;

o Foreveryi € Nandeveryl < j < N, (Mi’j(A:))
e Two clusters <Mi’j(A:))neN and (Mi,’j,(A:))
only ifi =1i';

. (M R(A:))nEN is a residual cluster.

(all undefined notions are explained below.)

oy S a globular cluster;

oy are interweaving if and

The paper is organized in three parts, each subdivided into sections:

In the first part of the paper we introduce (in Section 2) the main definitions and
notations used in this paper, and present (in Section 3) a reduction argument showing
that considering strongly local formulas (that is local formulas whose satisfaction
requires that all the free variables are assigned to vertices which are close) is sufficient
to compute (exact) statistics component-wise, possibly after deletion of some set with
negligible impact. For this purpose, a “weak algebra” of strongly local formulas is
developed.

The second part of the paper is devoted to the theoretical study of an abstract notion
of “cluster”. Section 4 is devoted to the study of sets with negligible impact, called
negligible sets and to sequence of more and more negligible sets, called negligible
sequences. Deletion of subsets forming a negligible sequence does not change the
limit statistics of a local convergent sequence. Ultimately, our goal is thus to consider
a negligible sequence, whose deletion will disconnect the graphs in the sequence into
clusters. The formal notion of a cluster is discussed in Section 5. For us, a cluster will
be a “continuous” sequence of subsets that correspond to a “stable entity” and that is
“well separated” from the rest of the structure. This is expressed by the property that
marking a cluster (formalized by considering a lift) preserves the local convergence,
and that the frontier of a cluster forms a negligible sequence. Several types of clusters
are defined and discussed in this section, in particular universal clusters and strongly
atomic clusters. These last clusters corresponding to expanding parts of the structures
in a local convergent sequence, and their properties are close to those of expander
graphs. It follows from the definition of a cluster that iteratively marking finitely
many clusters preserves local convergence. However, if we want to mark countably
many clusters then the situation becomes more tricky. The conditions under which
countably many clusters can be marked, sometimes modulo a limited modification, is
discussed in Section 6, and is the purpose of the Cluster Comb Lemma (Lemma 26).

Particular clusters are intrinsically defined by the local convergence, which allow
to mark dense spots in the structures of a local convergent sequence. These clusters,



CLUSTER ANALYSIS OF LOCAL CONVERGENT SEQUENCES OF STRUCTURES 7

called globular clusters, ultimately represent the non-zero measure imaginary con-
nected components of the limit. To the opposite, a residual cluster represents a group
of zero-measure imaginary connected components.

The third part of the paper is devoted to effective density clustering into countably
many clusters and a residual cluster. In Section 8 we review the general representa-
tion theorem for limits of convergent sequences, and prove a general random rooting
theorem using Fourier analysis. This result allows us to compute the spectrum of the
sequence, from which we derive the asymptotic measures of the globular clusters.
Using these informations, the actual computation of the clustering is done, and we
deduce a complete characterization of all the globular clusters of the sequence, the
computed globular clusters serving as a “globular basis”. in Section 9.

Part 1. Preliminaries
2. BASIC DEFINITIONS AND NOTATIONS

. The theory of graph (and structure) convergence gained recently a substantial at-
tention. Various notions of convergence were proposed, adapted to different contexts.
Let us mention:

« the theory of dense graph limits [7, 18] based on the notion of left convergence,
e the theory of bounded degree graph limits [3] based on the notion of local
convergence.

These approaches have been (partly) unified by the authors in the setting of structural
limits [19]. This last approach relies on a balance of model theoretic and functional
analysis aspects. For a signature o and a fragment X of the set of first-order formulas
over the language generated by o, we define for a finite o-structure A and a formula
¢ € X with free variables x|, ..., x, the Stone pairing of ¢ and A as

|$A)]
7A = 2

where ¢p(A) = {(v,...,v,) € A? : AFE ¢(vy,...,v,)}. In other words, (¢, A) is the
probability that ¢ is satisfied in A for a random (uniform independent) assignment of
the free variables x,, ..., x, to elements of A.

The above setting naturally extends to the case where a structure A is equipped with
a probability measure v, on its domain. In this case, we define the Stone pairing as

(4. A) = V{7(A),

where vfp stands for the product measure on A”. In this paper we deal with finite
structures endowed with a probability measure (which we briefly call structures for
the sake of simplicity); when not defined, the probability measure considered on a
finite structure is meant to be the uniform measure. The class of all the finite structures
with signature o will be denoted by Rel(o).

In the following, we shall use the following convention (see Tables 1 and 2):
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Symbol Signification
Rel(o) Set of all finite o-structures
(endowed with probability measure)
A A structure
A The domain of structure A
Va Probability measure on the domain A of A
X,Y Subsets of A
XNY,XUY,X\Y | Setoperations
XCY Set inclusion
P(A) Set of tuples satisfying ¢ in A
(p,A) Stone pairing of ¢ and A
A[X] Substructure of A induced by X
A-X Substructure of A induced by A \ X
NZ(X ) Closed d-neighborhood of subset X in A
0,(X) Outer boundary of X in A: d,(X) = N, (X) \ X
A Sequence (A,),cy Of structures
A Sequence (A4,),cy Of the domains of structures in A
X Sequence (X)), Of subsets, cluster
0 Sequence of empty sets: sequence X, where X, = )
A, Subsequence (A ;(,)),en Of A
X, Subsequence (X ;(,),en Of X
VA (X) Sequence (VAn (X,),en Of measures of subsets
XNY,XUY,X\Y | Sequences (X,NY,),cn: (X, UY,),en> and (X, \ Y,),cn
Xcy Pointwise sequence inclusion: X CY < (Vn) X, C Y,
A[X] Sequence (A,[X,]),cy Of induced substructures
A-X Sequence (A,[A, \ X,]),ey Of induced substructures
N4 (X) Sequence (Nin (X,)),en Of closed d-neighborhoods
0 X Sequence (d, (X,)),ey Of outer boundaries
P(A) Sequence (¢(A,)),n Of satisfaction sets of ¢
Ly (A) Lifted sequence obtained by marking X in A
lim A Limit of A (as an abstract object)
(¢, limA) Limit Stone pairing: (¢, limA) =lim,_ (¢, A,)

TABLE 1. Main symbols and notations of this paper (part 1)

« Structures are denoted by boldface capital letters A;
« Sets are denoted by plain roman capital letters X, Y;
« Sequences of structures are denoted by boldface capital sans serif letter A =

(An)neN;

 Sequence of sets are denoted by plain capital sans serif letter X = (X,),,en-
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Introduced in Section &

S, | Stone space associated to o-structures
P(S) | Space of probability measures on space .S
M, | Closure of the space of representation measures of finite

o-structures in P(SS,)

Ux | Representation measure of structure A
Hima | Representation measure of the limit of sequence A
k(¢) | Function representing ¢, s.t. (¢, A) = f k() duy

Introduced in Section 3

¢ @ y | addition: ¢ V y, definedif p Ay =0
¢ © v | subtraction: ¢ A ~y, defined if ¢ — y
¢ ® v | free product of ¢ and y

Introduced in Section 4

X =~ 'Y | Equivalent sequences (XAY negligible)

Introduced in Section 5
X QY | Interweaving clusters (lim Ly (A) = lim L, (A))

TABLE 2. Main symbols and notations of this paper (part 2)

Let A be a o-structure and let X be a subset of the domain A of A. If v,(X) > 0
we define A[X] as the substructure of A induced by X endowed with probability
measure defined by vy (Y) = vy (Y)/vy(X) (forevery Y C X). If vy (X) < 1 we
define A — X = A[A \ X]. We denote by Gaif(A) the Gaifman graph of A. Recall
that the Gaifman graph of A is the graph with vertex set A in which two vertices x, y
are adjacent if they belong together to some relation of A. The distance between two
elements of a structure will always refer to the graph distance in the Gaifman graph
of the structure.

For a subset X C A, the closed neighborhood of X in A is N, (X). Consequently
the set of all elements of A at distance at most d from an element of X is N i(X ). The
outer vertex boundary (or simply the outer boundary) of X in A is the set of vertices
in A \ X with at least one neighbor in X [4]:

9, X =N, (X)\ X.

Note, in particular, that if X is the domain of a union of connected components of A,
then 9, X = .

Furthermore, we extend all operations defined on structures and subsets to se-
quences coordinate-wise: The sequence A has domain A (meaning A, has domain
A,); for X € A (meaning X, C A,) we denote by A[X] the sequence (A,[X,]),ens
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by d, X the sequence (d, X,),en. by X €Y the inclusions X, C Y, by ¢(A) the se-
quence of the sets ¢(A ), by v,(X) the sequence of the measures Va, (X,), etc. Also,
for increasing /' : N — N we denote by A, the subsequence (A /),y Of A and by
X the subsequence (X ;,)),en Of X. For instance, A denotes a sequence of structures

whose nth termis A, and A denotes the sequence of the domains A, of the structures
A

-
Definition 1. For o-structures A, A,, ... and not negative reals 4, 4,, ... with sum

1 we define ), 4,A, as the o-structure A obtained by endowing the disjoint union of
the o-structures A, A,, ... with the probability measure vy = 3, 4,v, .

Note that although this allows us to define (¢, >, 4,A;), in general we have
(¢, 2, LAY # X, A{d,A;). However, equality holds in the very particular case
where ¢ is a local formula with a single free variable. When ¢ is a general local
formula with p free variables, it is possible to express (¢, ), 4,A;) as a polynomial
of degree at most p in terms of the form (¢;, A;), for some strongly local formulas ¢,
depending on ¢ (see Corollary 1).

To deal with “marking” we introduce the following notions of lift and shadow:

Definition 2. Let 6 C o™ be countable signatures, let A be a sequence of o-structures,
and let B be a sequence of o -structures.

The sequence A is the shadow of the sequence B if, for each n € N, the struc-
ture A is the structure obtained from B, by “forgetting” about all relations not in o.
Conversely, the sequence B is a [ift of the sequence A if A is the shadow of B. The
sequence B is a conservative lift of the sequence A if, for each n € N, the structures
A, and B, have the same Gaifman graph.

Note that the terms lift and shadow (used here in a very general sense) are known
in model theoretic literature as expansion and reduct [16]. Our choice of terminology
is motivated here by the combinatorial context (see e.g. [15]).

In this paper, a lift of a sequence A will usually be denoted by L(A), with possibly
adding some subscripts to differentiate different lifts of a same sequence. In particular,
if X is a sequence of subsets of A (i.e. X, C A,) and o™ is the signature obtained from
o by adding a single unary symbol M, we shall denote by L, (A) the lift of A such
that M (L (A)) = X.

For the benefit of the reader we included in Tables 1 and 2 the list of the main
symbols and notations used throughout this paper.

3. REDUCTION FROM LOCAL FORMULAS TO STRONGLY LOCAL FORMULAS

Recall that a first-order formula ¢ with free variables x, ... , X, 18 r-local if, for
every structure A and elements v, ..., v, € A it holds

AFP(vy,...,v) <= AN {ov,....0,DIF P(vy,...,0).

A formula is called local if it 1s r-local for some r. The set of all local first-order
formulas (for given signature o) is denoted by FO'"**(s).
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The following is the key definition.

Definition 3. A sequence A = (A,), o Of o-structure is local-convergent if
(@, A,)),en convergences for every local formula ¢.

Note that this notion of convergence extends Benjamini-Schramm’s notion of local
convergence:

Fact 1 ([19]). A sequence (G,), .y Of graphs with maximum degree at most D is local-
convergent (in the sense of Benjamini-Schramm) if and only if it is local-convergent
(in the sense of FO'**-convergence).

Indeed, by Gaifman locality theorem [10] (see also [16, Theorem 4.22]), for every
local formula ¢ with p free variables there exist p formulas y, ..., y, with single free
variable, such that for every graph G with bounded degrees it holds

p
(6.G) = [[(wi, G) + o).
i=1

The main interest of our definition of local-convergence is that it does not need
any restriction on the degrees. For general graphs (or regular hypergraphs), local
convergence is stronger than the left convergence considered by [18, 8].

Before discussing the notion of local convergence in greater detail, we take time
for few definitions.

Fact 2. Let X,Y be subsets of the domain A of a structure A, let d be an integer and
let Zbeanyof XNY,XUY,X\Y,Y \ X, XAY, and their complements in A.
Then it holds

N0, Z) SN (9, X) UNTH (0,Y).

The notion of local formula can be strengthened by requiring that all the free vari-
ables are at bounded distance from each other. Precisely, a first-order formula ¢ with
free variables x, ..., x, is strongly r-local if it is r-local and the following entailment
holds:

p
¢+ [\(dist(x;, x)) < 7).
i=1

A formula is called strongly local if it is strongly r-local for some r.

We now introduce a notion of “weak algebra” of formulas. In the following defi-
nition, a formula ¢ is packed if its free variables are x4, ..., x, (for some p € N). For
a formula ¢ with free variables Xijsooes Xp and an injection 1 : N — N, 1(¢p) denotes
the formula ¢ where all the occurrences of x; are replaced by x, ;). We denote by 7
be the injection i — i + 1.

To formalize how strongly local formulas and local formulas are related we find
useful to introduce the following notion of “weak algebra”.
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Definition 4. Let S be a set of logical equivalence classes of first-order formulas. We
say that S forms a weak algebra if it is closed under the following (partially defined)
operations:

(D Ifgp,yeSandp Ay =0then p ®y = ¢ VvV y belongs to S;
2)ifp,y € Sand p - y then @ Sy := ¢ A -y belongs to S;
(3) if 1 : N — Nis an injection and ¢ € S then 1(¢p) € S;
(4) if ¢,y € S are packed and ¢ has p free variables, then ¢ @ v := p A 7 (y)
belongs to S.
Note that for every ¢, v, we have:
o If ¢ @ y is defined then for every structure A it holds

(D y)A) =p(A)Uy(A)
(PO W, A)=(d,A) + (v, A)
 If ¢ © y is defined then for every structure A it holds

(PO w)A) = d(A)\w(A)
e If » ® y is defined then for every structure A it holds

(@ W)(A) = d(A) X y(A)
(P, A) =($,A).(yv,A)

Here, the equivalence X = Y (with respect to domain A) means, for X C A” and
Y C A7 that there exist a permutation : of [p + ¢] such that

(X XA =Y x A®.

Note that all these operations preserve logical equivalence and thus the notion of weak
algebra is well defined. Also, note that if ¢ @ y is defined then ¢p = (p D y) S .

Theorem 2. The smallest weak algebra containing all (logical equivalence
classes of) strongly local formulas is the weak algebra of all (logical equiva-
lence classes of) local formulas.

Proof. One direction is obvious (as local formulas form a weak algebra). For the
other direction, consider an r-local formula ¢ with free variables x; fori € I. Let §,
be the set of all graphs with vertex set 1. Obviously it holds

¢ = @ ( /\ (dist(x,, x;) < 2r) A /\ (dist(x;, x;) > 2r) A ¢>,

Feg; \ijEE(F) ijJEE(F)

It follows that we can restrict our attention to formulas of the form used in the above
sum for some F. Moreover, we can assume that I = [p] and that the vertex sets
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I,,...,1, of the connected components F|, ..., F, of F are intervals of [p]. By locality
property, we further assume that ¢ has the following form:

k
o= N\ istx.x) <20 A N (dist(x;.x)>2r) A\ ..

ijeE(F) ij¢E(F) z=1

where p, 1s r-local with set of free variables {x, : i € I,}.

We proceed by induction on k. If k = 1 then the formula is 2pr-strongly local so
the lemma holds. Assume that kK > 1 and that the statement holds for less than k
connected components. For 1 < z < k define

¢.= /\ (ist(x.x;) <2r) A p..

iJEE(F;)
Then it holds
k k
®¢Z = @ < /\ (dist(x;, x;) <2r) A /\ (dist(x;, x;) > 2r) A /\pz> ,
z=1 HeF' \ijeE(H) ij&E(H) z=1

where ' is the set of all graphs H with vertex set [p] such that H[I_] = F, for every
1 < z < k. Note that i’ contains exactly one graph with k connected components,
namely F, all the other ones containing strictly less than k connected components.
Thus, if we denote

k
w = @ < /\ (dist(x;, x;) < 2r) A /\ (dist(x,-,xj)>2r)A/\pz>,
z=1

HeF'\{F} \ijeE(H) ij¢E(H)
it holds
k
p=Q)¢.0v.
z=1
By induction, y belongs to the weak algebra generated by strongly local formulas,
hence so does ¢. [

We now take time for three important corollaries.

Corollary 1. For every r-local formula ¢ with p free variables, there exist finitely
many (2pr)-strongly local formulas ¢; (1 < i < N) and a polynomial P €
Z[X,,..., X y] of degree at most p such that for every structure A it holds

(., A) = P((¢1,A), ... (. A)).

Example 1. Consider the formula ¢(x,, x,), which asserts that x, and x, are at not
equal or adjacent, and either x,; and x, have the same degree or both have degree at
least 4. This formula is clearly local, but not strongly local. It holds

b = (écﬁi@@) ov.
i=1
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where ¢,(x,) asserts that x, has degree i (for 1 <i < 3) or degree at least4 (if i = 4),
and y(x,, x,) 1s a strongly local formula, which asserts that x, and x, are equal or
adjacent and either x, and x, have the same degree or both have degree at least 4.
Hence for every graph G it holds

(#.G) = Y (,,G) = (w,G).
i=1

Note also the following corollary, which allows to check that first-order definable
subsets of (the power of) a measurable structure are measurable (with respect to prod-
uct measure) by reduction to sets definable by strongly local formulas.

Corollary 2. Assume A is an infinite structure, whose domain is a measurable space.
If, for every strongly local formula ¢ the set ¢p(A) is measurable (with respect to
product measure) then for every first-order formula y the set w(A) is measurable
(with respect to product measure).

Proof. This is a direct consequence of Theorem 2 and Gaifman locality theorem [10].
]

Corollary 3. A sequence A is local-convergent if and only if it is strong-local-
convergent.

Part 2. Clustering Local Convergent Sequences

The notion of clustering we develop in this part is based on the stability of the con-
vergence of a sequence when marking certain subsets of the domains of the structures
in the sequence. This is expressed by the notion of lift introduced in Section 2.

Fig. 4 contains an example which we shall use as a running example to illustrate
some of the concepts and results of this second part. This example illustrates a sam-
ple sequence G, where G, is built from an N X N grid (where N is some increasing
unbounded function of n) by adding locally some edges within regions A, ..., As,
which have relative sizes and also distances between them as indicated. Within re-
gion A, (resp. A,), edges are added randomly and independently with probability p,
(resp. p,), within regions A, and A, edges are added randomly and independently
with probability p,, and within region A; are added the edges of a graph Z,, such that
Z forms an expander sequence of regular graphs (for instance Margulis’ construction
of an m X m 8-regular expander). Considering a subsequence if necessary, we can
assume that G is convergent, and that so are also G[A.] (fori = 1, ...,5). Moreover,
we assume that G[A;] and G[A,] have same limit (what is almost surely true).

4. NEGLIGIBLE SETS AND SEQUENCES

The following notion of negligible set corresponds intuitively to parts of the graph
one can remove, without a great modification of the statistics of the graph.
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FIGURE 4. Our running example G,,.

Definition 5. Let A be a structure, let d € N and let ¢ > 0. A subset X C A of
elements of A is (d, €)-negligible in A if

v (NG (X)) < e.

The main property of (d, €)-negligible sets is the following:
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Lemmal. Let ¢ € FO}DOcall be r-local withr < d, and let X be a (d, €)-negligible
set of a structure A. Then

|<¢’A> - <¢’A_X>| < 2p€

Moreover, suppose B is a structure with same domain as A, that X is a (d, €)-
negligible set of B, and that A — X = B — X. Then

|<¢’A> - <¢’B>| < pe.

Proof. We first prove the second inequality.

Consider the lift L(A) (resp. L(B)) of A (resp. B) where all elements in NZ(X )
(resp. Ni(X )) are marked with new unary relation M. Let y(x,...,x,) =
\/ M (x,). Then it holds

0 <(¢,L(A)) = (p Ay, L(A)) <(w,L(A) <1 -(1—-¢) <pe
0 < (¢,L(B)) — (¢ Ay, L(B)) < (y,L(B)) < pe

Thus, as ¢(L(A)) = ¢(A), ¢(L(B)) = ¢(B) and (¢ A ~yw)(L(A)) = (¢ A ~w)(L(B)) it
holds

(¢, A) — (&, B)| < pe
For the second inequality, we have likewise

__pe
VA(A\ X)P

Moreover, as ¢ is r-local, it holds (¢ A “y)(L(A)) = (¢ A ~yw)(L(A) — X) hence
(@ Ay, L(A)) = vy (A\ X)(d Ay, L(A) - X).

0 <(¢,L(A) - X) — (¢ A~w,L(A) - X) < (y,L(A) — X) <

Thus
(¢, L(A)) — vy (A\ X)(¢,L(A) — X)| < pe
Hence
(¢, L(A)) — (¢,L(A) — X)|
< @, L(A)) = vy (A\ X)(, L(A) = X)| + 1 = vy(A\ X)”
<pe+1—-(1-¢)f
< 2pe.
hence the result, as (¢, L(A)) = (¢, A) and (¢, L(A) — X) = (¢, A — X). O]

Definition 6. A (d, €)-fragmentation of a structure A is a (at most) countable partition
(S, X, X,, ...) of A such that no element in X, has a neighbor in X for i # j and .S
1s (d, €)-negligible in A.
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Lemma 2. Assume (S, X, X,, ...) is a (d, €)-fragmentation of A and let ¢ be a
strongly r-local formula (r < d) with free variables x, ..., x,. Then

(8, A) = 3 va(X,y(, ALX, )| < 2pe.

i>1

Proof. This follows from Lemma 1 and the fact that ¢(A — .§) is the disjoint union of
the structures ¢p(A[X;]). O]

We now consider how the notion of (d, €)-negligible subset of a structure allows to
define negligible sequences of subsets and equivalence of sequences.

Definition 7. Let A be a local-convergent sequence of structures. A sequence X C A
is negligible in A if
Vd eN: limsupv, (N§ (X,)) =0,

n—-oo

what we simply formulate as
Vd e N : limsup vA(Nfi(X)) = 0.

Two sequences X and Y of subsets are equivalent in A (and we note X = Y if the
sequence XAY = (X,AY,), . 1s negligible in A.

We denote by O the sequence of empty subsets. Hence X = 0 is equivalent to the
property that X is negligible.

We further define a partial order on sequences of subsets by X <Y if the sequence
X\Y =(X,\Y,),c is negligible in A. Hence < has 0 for its minimum.

Two sequences A and B of structures are equivalent if there exists a negligible
sequence X of A and a negligible sequence Y of B such that A, — X, is isomorphic to
B, - Y, forevery n € N.

For an example of a negligible sequence of subsets and of equivalent sequences
based on our running example, see Fig. 5.

The following lemma is a straightforward consequence of Lemma 1 but we think
it nevertheless deserves to be explicitly stated.

Lemma 3. Let A and B be equivalent sequences of structures.
Then A is local-convergent if and only if B is local-convergent. In this case, they
have the same limit.

5. CLUSTERS AND PRE-CLUSTERS

The notion of cluster of a local-convergent sequence we introduce now is a weak
analog of the notion of union of connected components, or more precisely of the
topological notion of “clopen subset”.
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FIGURE 5. On the left, our running example G with a negligible set
(in black); on the right, a sequence H equivalent to G, obtained by
removing the negligible set.

5.1. Clusters. In our setting, where clustering is performed on a local convergent
sequence A, the term of “cluster”, which we will now define, will be used to qualify
a sequence X of sets, with X, C A,.

Definition 8. Let A be a local-convergent sequence of structures.
A sequence X C A is a cluster of A if the following conditions hold:

(1) the lifted sequence Ly (A) obtained by marking set X, in A, by a new unary
relation My is local-convergent;
(2) the sequence d, X is negligible in A.

Condition (1) can be seen as a continuity requirement for the subset selection. Con-
dition (2) is stronger than the usual requirement that there are not too many connec-
tions leaving the cluster. We intuitively require that the (asymptotically arbitrarily
large) ring around a cluster is very sparse zone. Note that no minimality nor connec-
tivity assumption is made at this point.

We start our “cluster analysis” by means of the following notions (more will follow,
see Fig. 3): A cluster X is atomic if, for every cluster Y of A such that Y < X either
Y ~ 0orY = X; the cluster X is strongly atomic if X is an atomic cluster of A , for
every increasing function f : N — N. To the opposite, the cluster X is a nebula if, for
every increasing function f : N — N, every atomic cluster Y , of A, with Y , C X,

is trivial. Finally, a cluster X is universal for A if X is a cluster of every conservative
lift of A.
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Lemma 4. Let X be a cluster of A and let Y be a sequence of subsets. Then X = Y in
A if and only if Y is a cluster of A and

limsup vy(XAY) =0.
Proof. Assume Y is a cluster and lim sup v, (X AY) = 0. For every integer d it holds

N{ (X,AY,) C(X,AY,)UN{ (9, (X, AY))
C (X, AY,)UN? (9, X,)UNY (3, Y,)

Thus X A'Y is negligible in A, thatis X =~ Y.

Conversely, assume X =~ Y. Then obviously limsup va(XAY) = 0. As d, ¥, C
dy X, UN, (X,AY,), and as XAY is negligible since X =~ Y, the sequence d,Y is
negligible. Moreover, as Ly(A) ~ L, (A) (considering we use the same symbol for
both lifts), we deduce that Y is a cluster of A. ]

In particular, if X is a cluster and Y =~ X then Y is a cluster.
We have the following alternative characterization of clusters:

Lemma 5. Let A be a local-convergent sequence of structures.
A sequence X C Ais a cluster of A if either X ~ O or the following conditions hold:

(1) the sequence A[X] is local-convergent,
(2) the limit lim v, (X) exists and is strictly positive;
(3) the sequence 0, X is negligible in A.

Proof. Assume X is a cluster of A, and let a = (M, limLy(A)). If « = 0 then X is
negligible in A as for every d, n € N itholds N{ (X,) = X, UN{"'(d, X,) and thus

lim sup va(N$ (X)) < 1im vp(X) + lim sup va(N§ ' (0,X) = a = 0.

Otherwise, @ > 0. To every local formula ¢ we associate the local formula ¢| My
conditioning every variables with My. Then it holds

<¢’ An[Xn]> = <¢|MX’ LX(An)[Xn]>
= a(PI My, Ly(A,) — 95 (X,)) + o(1)
= a (P My, Ly (A,)) + o(1)

It follows that the sequence A[X] is local-convergent.

Conversely, let X be a sequence satisfying the conditions of the lemma. Then ei-
ther X =~ 0 and X is a cluster (according to Lemma 4), or A[X] is local convergent,
limv,(X) > 0, and d,X =~ 0. Then, denoting a = lim v, (X) it holds for every local
formula ¢ (with respect to the language of L (A)), denoting ¢* (resp. ¢~) the formula
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where My is replaced by true (resp. false) it holds:

(6. Lx(A,) = (b, Lx(A,) = 0, X,)+o(])
= @(, Ly(A)[X, 1) + (1 — (B, Ly(A D[4, \ X, \ 9, X, 1) +o(1)
= a?(¢*, LA X, 1) + (1 — (¢ Ly(A D[4, \ X, \ 9, X,1) +o(])
= ap(¢+,An[Xn]) + (1 —a)’{¢p7,A,[A,\ X, \ 6Aan]) + o(1)
= a?($* A LX,]) + (D7 A,) — a?(¢7. A, LX, 1) + o(])

Hence Ly (A) is local convergent. [

Definition 9. Two clusters X and Y of a local-convergent sequence A are interweav-
ing, and we note X { Y if every sequence Z with Z, € {X,,Y,} is a cluster of A.

n

For an example of interweaving clusters based on our running example, see Fig. 6.

We characterize interweaving clusters in Lemma 6. An explicitexample is provided
by the sequence of graphs (G,), oy Where G, 1s the disjoint union of a path of length
n and a cycle of length n. The cluster formed by the paths and the cluster formed by
the cycles are interweaving. (For another example, see Example 4.)

Interweaving clusters allow to build many new clusters by weaving (hence the name
“interweaving”’). Interweaving clusters have the following handy characterization:

Lemma 6. Let X and Y be two clusters of a local-convergent sequence A. The fol-
lowing are equivalent:

(1) Xand Y are interweaving;

(2) imLy(A) = lim L, (A);

(3) either X = Y = 0 or the following two conditions hold:
(a) im A[X] = limA[Y];
(b) lim v, (X) = lim v, (Y).

Proof. Let us prove (1)=(2)=3)=>(1).

(1)=>(2): Let Z, be X, if nis odd and Y, if n is even. As X { Y, the sequence Z is a
cluster and (by considering the common subsequences) it holds lim Ly (A) =
limL,(A) = limL,(A).

2)=>3): Let a = lim(M(xl),LXn(An)). Then either « = Oand X ~ Y =~ 0 or
limv,(X) = limv,(Y)a > 0. In the later case, for any local formula ¢, let

d~> be the formula where all the variables (free or bound) are constrained to
belong to relation M. For sufficiently large » (so that (M (x,), Ly A)) >0
and (M(xl),LYn(An)> > () it holds

(6. Ly (A,)) (. Ly (A)
d d (¢, A,[Y,]) = " .
(MG Ly Ay " O A = S )

Thus lim A[X] = im A[Y].

(b, A,[X,]) =
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(3)=(1): If X ~ Y =~ 0 then obviously X {§ Y. Otherwise, consider arbitrary Z with
Z, € {X,,Y,}. Assume for contradiction that A[Z does not converge. Then
we can extract two subsequences Z , and Z,, such that lim A 7Z; # lim A 2,1
By taking further subsequences if necessary we can assume that Z, and Z,
are each either a subsequence of X or Y. As limA[X] = limA[Y] we get a
contradiction, so A[Z converges. Similarly, v,(Z) converges. As 6An(Zn) C
dy, (X,)U0, (Y,) and 0,X = 0, Y ~ O we get d,Z = 0. Altogether, this means
that Z is a cluster of A.
[

Obviously, interweaving is a limit for the possibility to track clusters in a local-
convergent sequence. In some sense, interweaving clusters cannot be distinguished.

We now prove that the families of all clusters of a local convergent sequence is
closed under complementation.

Lemma 7. Let A be a local-convergent sequence, and let X be a cluster of A.
ThenY = A\ X is a cluster of A.

Proof. First notice that for every integer d it holds
N4 (0x(Y)) € N9+1(9,(X))

thus lim vA(NZ(dAY)) = 0, thatis Y = 0. As L, (A) can be obtained from L, (A) by
taking for M, the negation of M, it is clear that L, (A) is local convergent. O

To the opposite, if X and Y are clusters, none of XNY, X\ Y, Y\ X, XAY,XUY
and their complements needs to be a cluster. For that consider the following:

Example 2. Consider a local-convergent sequence E of connected expanders, where
|E,| = cn(1 + o(1)). Define the sequence A as follows:
{ES,, UE,, UE,, if n is odd

n

E,,UE;, UE, UE,, ifniseven

Then it is easily checked that A is local convergent, and that the only clusters of A are
(up to equivalence) 0, X, Y, A\ X,A\ Y, and A, where

E, if nis odd
X, =
E, UE,, ifniseven

Y =

n

E,, if nis odd
E, UE, 1ifniseven

Also notice that the graphs A, could be made connected by linking connected com-
ponents using paths of lengths \/; without changing the conclusion.
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Nevertheless, a simple necessary and sufficient condition for a family of clusters to
generate a Boolean algebra of clusters can be given.

Lemma 8. Let A be a local convergent sequence, and letC', ... ,C, ... be count-

ably many clusters of A. Then the following conditions are equivalent:

(1) The lifted sequence L(A) defined by marking elements in C' by mark M, is
local convergent;

(2) The clusters C' generate a Boolean algebra of clusters, that is: every finite
Boolean combination of C'’s is a cluster;

(3) Every finite intersection of C'’s is a cluster.

Proof. We proceed by proving that (1) and (3) are both equivalent to (2).

That (1)=(2) is obvious as every finite Boolean combination of C'’s is the set of so-
lutions of the corresponding Boolean combination of M,’s. Let us now prove (2)=(1).
According to Corollary 3, in order to prove (1) it is sufficient to prove that for every
strongly local formula ¢ (with some p free variables) the sequence (¢, L(A)) con-
verges. Let N be the maximum index of a mark symbol used in ¢. For I C [N]
denote by ¢’ the formula where every term M,(x) is replaced by true if i € [
and false if i ¢ I. Define 0, as the formula /\,., M;(x)) A \,; "M,(x,). Let
S = Ucvy 9a0;(A). As each 6;(A) defines a cluster, S is negligible. Thus Then it
holds

(¢,L(A)) =(p,L(A,)) — §) +o(])
= Y v 0,4 (b A,[8,(A)]) + o(1)
IC[N]

thus (¢, L(A,)) converges as n — oo. As this holds for every strongly local formula,
we deduce that L(A) is local convergent.

That (2)=(3) is trivial. Let us now prove (3)=(2). By following an easy induction
and using the fact that the complement of a cluster is a cluster (Lemma 7) we reduce
easily the implication to the following statement to be proved: if X,Y, and X N'Y are
all clusters of A then so is X \ Y. To prove this, let S = 0, X U d,(X NY). Then S is
negligible and thus for every strongly local formula ¢ (with p free variables) it holds

(9. Ly (A)) = (¢",A) + vy (X,) ({91, A,[X,]) = (¢°, A, [X,]1))
+vy (X, NY,) ((@° A LX, nY,]) - (¢ A, [X,NY,])) + o(D),

where ¢° (resp. ¢') stands for the formula obtained from ¢ by replacing each term
of the form M (x) by false (resp. true). Hence Ly, (A,) is local convergent, and
as d,(X'\ Y) C S is negligible, it follows that X \ Y is a cluster. ]

Definition 10. We say that two clusters C, and C, are
» weakly disjoint if C,AC, = 0;
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e disjoint if C,AC, = 0;
o strongly disjoint if (N,(C;) N C,) U (C; N N,L(C,)) =0.

With this definition, we have the following direct consequence of Lemma 8.

Corollary 4. Let A be a local convergent sequence, and let C', ..., C, ... be count-
ably many pairwise weakly disjoint clusters of A.

Then the lifted sequence L(A) defined by marking elements in C' by mark M, is
local convergent.

The ultimate goal would be to extend Lemma 8 to the o-algebra generated by the
C"’s. However, we do not expect this will be always the case, and we expect that some
further conditions will be required.

For instance, in order to guarantee that countable unions will be clusters, it is natural
to require that there is a negligible sequence including all the possible frontiers of
countable Boolean combinations. Also, we shall need some “continuity” property
for countable Boolean combinations. The simplest form for these conditions can be
given when we further assume that the clusters C'’s are pairwise weakly disjoint. In
this case sufficient conditions for the property that the union of every countable subset
of the C"’s is a cluster are:

(1) The sequence [ J, 9,C' is negligible;
(2) The clusters C' form a stable partition of A in the sense that )}, lim v, (C") = 1.

Lemma 9. Let A be a local convergent sequence, and let C', ... ,C!, ... be countably
many weakly disjoint clusters of A. Assume | J, 0,C' is negligible and ), lim v,(C') =
1. Then for every I C N, the sequence | J,.; C' is a cluster. In other words, the
collection of all unions of clusters among the C'’s forms a c-algebra of clusters.

Proof. Let S = |J,0,C". Let ¢ be an r-local strongly local formula with p free
variables. Then for every positive real € > 0 there exists n, € N such that for every
n > ng it holds vA(N;\“(S)) < ¢/8p. Let I C N and let L,;(A) be the sequence
obtained from A by marking elements of [ J,_, C' by a new mark M. Let y be an
r-local strongly local formula in the extended signature, and let w° (resp. w!) be the
formula obtained from y by replacing each term of the form M (x) by false (resp.
true). According to Lemma 2 we deduce that for every n > n, it holds

|<w, Li(A)) = ) va (CH(w A, ICIT) = D v, (C(w', A, ICID)] < e/4.
igl iel

As Y5, limv,(C') = 1 there exists iy € N such that )., limv,(C') < €/8 thus

i>ig
2 (lim v, (CH)" lim(y°, A[C']) + 2 (lim v, (CH)" lim(y', A[C']) < /8.
igl,i>i i€l ,i>i,
Moreover, the exists n; > n, such that for every n > n,, every 1 <i < i, and every
k € {0, 1} it holds

(vAn(c;)Pwk,An[c;D — (lim v,(CH)" 1im<q/k,A[c"]>| < €/4i,
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and
|vAn(c;) — lim vA(c")| < e/4i,.
We deduce that
. iO . iO . .
D va (C=1=) v, (C}) < 1= limv,(C+e/4 = ) limv,(C)+e/4 < 3¢/8.
i>i i=1 i=1 i>i

From this follows that
|(1//, L;(A))= Y (limv,(CH)” lim(y°, A[CT)= )" (lim v, (C))” lim(y", A[C])| < e.

iEl iel
It follows that L;(A) is local convergent. As 6A<Ul.e / Ci> C |, 95C' is negligible by

assumption, we deduce that [ J,_, C' is a cluster. ]

Note that when we consider the complete Boolean algebra generated by non
weakly-disjoint clusters C’ the situation is less clear.

5.2. Universal Clusters. The next lemma states that the cluster of a sequence remain
the same when marking a universal cluster.

Lemma 10. Let C be a universal cluster of a local convergent sequence A, and let
L (A) be the lift of A obtained by marking C by a new unary symbol M.
Then, a sequence X is a cluster of A if and only if it is a cluster of Lo(A).

Proof. Of course, every cluster of L-(A) is a cluster of A.

Assume X is a cluster of A. Then, by definition, the sequence L, (A) is a local
convergent lift of A. As C is universal, it is a cluster of L, (A) hence the sequence
L-(Ly(A)) is local convergent. As L-(Ly(A)) = Ly(L-(A)) we deduce that X is a
cluster of L~(A). ]

Also, marking a universal cluster preserves universal clusters (but new universal
cluster may appear).

Remark 1. Let C be a universal cluster of a local convergent sequence A, and let L-(A)
be the lift of A obtained by marking C by a new unary symbol M.

Then, as every conservative lift of L-(A) is a conservative lift of A, it follows that
every universal cluster of A is a universal cluster of L-(A).

The universal clusters of A are of a particular interest, as they form (as we shall
prove in the next two lemmas) a Boolean algebra of clusters preserved by conservative
lifts, which includes all definable clusters of A.

Lemma 11. Let A be a local convergent sequence and let ¢ be a local formula with
single free variable x .
Then the following conditions are equivalent:

(1) 0pd(A) = 0;
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(2) ¢(A) is a cluster of A,
(3) ¢(A) is a universal cluster of A.

Proof. If ¢(A) is a (universal) cluster of A then d, $(A) = 0 (by definition of a cluster).

Conversely, if d,¢(A) =~ 0 then either ¢(A) is negligible (thus ¢(A) is a cluster) or
A[¢(A)] is local convergent: for every local formula y with free variables x, ..., x,
denoting Y the formula obtained by replacing terms (3y)@ by (y)(¢p(y) A 8) and
terms (V)0 by (Vy)(¢(y) — ) and denoting y the formula A /\f’=1 P(x;) we get

W(A\ 0pp(A)) = w(A[$(A)]) hence
(W, A, [p(A)]) = (W, A,) + o(1).

It follows that ¢p(A) is a cluster of A. As condition (1) holds as well in every conser-
vative lift of A, it follows that ¢p(A) is a universal cluster of A as well. ]

Lemma 12. Let A be a local convergent sequence. Then the equivalence classes
of universal clusters of A form a Boolean algebra.

Proof. Let X,Y be universal clusters of A, and let L(A) be a local convergent conser-
vative lift of A. Then the sequence L(Ly(Ly(A))) is local convergent. If follows, by
considering formulas ~M,, M, v M, and M, A M, that A\ X, XUY and XNY are
clusters of L(Ly(Ly(A))) hence of L(A). It follows that A\ X, XU Y and X NY are
universal clusters of A. L]

5.3. Pre-Clusters.

Definition 11. A sequence X is a pre-cluster of A if X = 0 or if it holds

(1) the sequence A[X] is local-convergent;
(2) the limit lim v, (X) and is strictly positive;
(3) for every integer d it holds

lim sup v,(N4(X) \ X) = 0.

The definition of pre-clusters of A is consistent with the notion of equivalence of
sequence of subsets:

Lemma 13. Let X be a pre-cluster of A and let Y ~ X in A. Then Y is a pre-cluster
of A.

Proof. That A[Y] is local-convergent follows from Lemma 3. Also, it is immediate
that lim v, (Y) exists and that lim v,(Y) = lim v, (X).
Let Z =X AY. By assumption, Z is negligible in A.
Assume X is a pre-cluster. Let d € N. Then
NS\ Y CNGX)UNL(2) \ (X\ 2)

C (NZ(X) \ X) UNZ(2)
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It follows that lim sup vA(Nfi(Y) \ Y) =0 hence Y is a pre-cluster. ]

Lemma 14. Every cluster is a pre-cluster.

Proof. This follows from the fact that Ny (X) \ X € N4 (9, X). O]
We now define a standard construction of a cluster from a pre-cluster.

Definition 12. Let X be a pre-cluster of a local-convergent sequence A.

The wrapping of X in A is the sequence W obtained as follows:

For every n € N, let D(n) € NU {0} be the supremum of integers d such that for
every n’ > nitholds v, (NJ*'(X,)) \ X)) < 1/d. Then we define W, = NJ™(X,,).

Note that D(n) is non-decreasing and unbounded.

Lemma 15. For every pre-cluster X of A, the wrapping W of X in A is (up to equiv-
alence) the unique cluster such that X C W and

limsup v, (W \ X) = 0.

vAn(Nidl(Xn) \X,)<1/d.ForT(d) <n<T(d+1)wehave W, = Ni (X,). Thus,
forevery d € Nand every T(d') < n < T(d' + 1) (with d’ > d) it holds

va, (NG (04 W) < vy NG\ X,) < 1/d".

Proof. For every d € N there exists T'(d) such that for every n > T'(d) it holds

Thus 0, W is negligible in A hence W is a cluster of A.
Moreover, for every n > N(d) it holds va (W, \ X,) <1/d.
Assume that a cluster Y of A as the same properties. Then

limsup v,(WAY) < limsup v,(W \ X) + limsup v,(Y \ X) =0.

Hence, according to Lemma 4, W and Y are equivalent in A. [

5.4. Expanding Clusters. Here we introduce a sequential version of expansion

property.

Definition 13. A structure A is (d, €, 0)-expanding if, for every X C A it holds
e<va(X)<l—-€e = v,(NUX)) > (1+5)vy(X),

that is

: { VA(Ni(X) \ X)
inf :
VA (X)
Note that the left hand size of the above inequality is similar to the magnification
introduced in [2], which is the isoperimetric constant s, defined by

N, (X)\ X
hout:inf{l AKX 0<m<1/2}.
| X| |A|

€<vA(X)<1—€}>5.
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Lemma 16. Let 0 < € < 1/6 and let A be a (d, €, 6)-expanding structure. Then there
exists a subset Y C A of measure v,(Y) < € such that, denoting A’ = A =Y, it holds

VX CA vy(X)<1/2 = vy (N, (X)) \ X) > 6vy(X).

Proof. Let Y C A be maximal (for inclusion) with the property that v,(Y) < 1 — 2e
and vA(NZ(Y) \ Y) < 6v,(Y). First note that v,(Y) < € as A is (d, €, 6)-expanding.
LetA’=A-Y.

Assume for contradiction that there exists Z C A’ is such that v,,(Z) < 1/2
and vA,(Ni,(Z) \ Z) < 6vy(Z). (Note that v\(Z) < vy (Z) < 1/2.) As v, is
proportional to v, it also holds vA(NI‘i,(Z )\ Z) < 6v,(Z). Moreover it obviously
holds Ni(Y uZ)cC Ni(Y) U Nji,(Z) thus

VANL(Y U Z)) < v (N( (V) + vy (N, (2))
<A +8)(Vy(¥) + v (Z2)) = (1 +6)(vy(Y U Z))

Hence vA(Ni(YUZ)\(YUZ)) < ovy(YUZ). However v, (YUZ) = v, (Y)+v,(Z) <
€+ 1/2 < 1—2¢, what contradicts the maximality of Y. [

This lemma brings us even closer to the definition of the magnification. The main
difference now stands in the existence of the parameter d. For graphs and d = 2,
the sequence of stars shows that the concepts differ. Actually, for graphs, (d, €, §)-
expansion means that the dth power of the graph (after deletion of a subset of vertices
of measure at most €) has magnification at least 6. In the very special (but standard)
case of graphs with maximum degree at most A we recover the standard definition of
expansion:

Lemma 17. Let 0 < € < 1/6 and let G be a (d, €, 6)-expanding graph with degree
at most A. Then there G has a subset Y of size at most €|G| such that h,, (G —-Y) >
§/(A - 1),

Proof. We consider the uniform probability measure on G. Then the lemma follows
from Lemma 16 and the simple fact that if G has maximum degree at most A then for
every subset X of vertices and for every integer k > 1 it holds |N'é+1(X )\ NZ(X )| <

(A — DINEX) \ N&'(X)], where we define N.(X) = X. Hence [N.(X) \ X| <
I+ +(A-DHINGX)\ X|. O

Definition 14. A local-convergent sequence A is expanding if, for every € > 0 there
exist d,t € N and 6 > O such that every A, with n >t is (d, €, §)-expanding.
A non-trivial cluster X of A is expanding of A if A[X] is expanding.

We have the following equivalent formulations of this concept:

Lemma 18. Ler X % 0 be a cluster of a local convergent sequence A. The following
conditions are equivalent:

(1) the sequence A[X] is expanding;
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(2) forevery e > 0 there exists d,t € N such that for every Z C X with vy (Z,) >
€vAn(Xn) and every n > t it holds

va, (NG (Z,)) > (1 =€)y, (X,,);

(3) the sequence X is a strongly atomic cluster of A,
(4) for every € > 0O there exists no Y C X such that 0,Y =~ 0 and

e < liminf v,(Y) < lim v, (X) — €.

Proof. First assume that A[X] is expanding, and assume for contradiction that X is
not a strongly atomic cluster of A. Then there exists some increasing function f :
N — N such that Y 5 1s a non-trivial cluster of A Iz Y 5 C X 7 and Y ;R X 7 Then
a = lim Va, (Y) / Va, (X,) is bounded away from 0 and 1. Thus there exists 6 > 0 and

d € N such that
d
VAf (NAf [Xf] (Yf))
VA, (Y,)
what contradicts the property that Y, is a cluster.

Now assume that X is a strongly atomic cluster of A and assume for contradiction
that A[X] is not expanding. Then there exists € > 0 such that for every d € N it holds
lim inf inf

va, (NS (V)

R AN
where infimum is on subsets ¥, C X, with e < v, (¥,)/vy (X,) < 1 —€. We
inductively construct an increasing function f : N — N and subsets Y, C X,
as follows: f(1) is the minimum integer n such that there exists Y, C X, with € <
vAn(Yn)/vAn(Xn) < l—eand VA,,(NA,,[X,,](Yn)) < 2vAn(Yn) and (ford > 1) f(d+1)isthe
minimum integer n > f(d) such that there exists Y, C X, withe < vAn(Yn) / vAn(Xn) <
1 —eandv, (fo”[lx () < Z—ﬁvAn(Yn). It is easily checked that (Y,,) is such that
for every integer d it holds

lim sup vAf(Njif(Y A\Y,)=0.

lim inf > 146,

9

We can further consider a subsequence Y ;,, of Y , such that A, [Y .,] is local con-
vergent and vAfog(Y rog) converges. It follows that Y ., is a pre-cluster. Let Y fog D
the wrappingiof Y fog 1N Afog?. Then Yf?g 1s a cluster, Yf°§ < Xjogand Yoo, & X
what contradicts the assumption that X is a strongly atomic cluster.

Sfog?

A stronger form of expanding property is the non-dispersive property.

Definition 15. A local-convergent sequence A is non-dispersive if, for every ¢ > 0
there exists d € N such that

liminf sup vy (N§ (v,)) > 1—e.

n—co U,EA,
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In other words, a sequence A is non-dispersive if, for every ¢ > 0, e-almost all
elements of A, are included in some ball of radius at most d, for some fixed d.

Definition 16. A non-trivial cluster X of A is a globular cluster of A if A[X] is non-
dispersive.

Every globular cluster is clearly strongly atomic, but the converse does not hold as
witnessed, for instance, by sequence of expanders. The strongly atomic clusters that
are not globular are called open clusters.

Opposite to globular clusters are residual clusters:

Definition 17. A cluster X of A is residual if for every d € N it holds
limsup sup v, (N} (v,)) =0.

n—oo  U,EA,

The case of bounded degree graphs is particularly interesting. Recall that a se-
quence G of graphs is a vertex expander if there exists @ > 0 such that

liminf A, (G,) > a.
For more information on expanders we refer the reader to [12].

Lemma 19. Let G be a sequence of graphs with maximum degree at most A and let
C % 0 be a cluster of G. The following are equivalent:

e Cis a strongly atomic cluster;

e for every € > 0 there exists X C C such that for every n € N it holds | X | <
¢|C,| and G[C \ X] is a vertex expander.

Proof. This is a direct consequence of Lemma 17. [
We now consider general expanding clusters (see Definition 14).

Lemma 20. Let X be an expanding cluster of A, and let Y be any cluster of A.

M) has limit either O or 1.

Then any convergent subsequence of < %
VA

Proof. Let Z = XN Y. Assume there exists an increasing function f : N — N and a
positive real @ € (0, 1) such that lim Va, (Zf)/vAf (X;) = a.
According to Fact 2, for every integer d € N it holds

Ny (Zya) ENGE (X)) UNGE (Y ).
It follows that 6Af Z, is negligible in A ..

By compactness, there exists an increasing function g : N — Nsuch that (A[Z]) gof
is local convergent. It follows that Z , . is a cluster of A, which is neither equiva-
lent to 0 nor to A, ,, thus X is not strongly atomic, what contradicts the hypothesis,
according to Lemma 18. [

Lemma 21. Let X and Y be expanding clusters of A.
Then
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e cither XNY = 0 (i.e. XandY are essentially disjoint);
e or X { Y and then every Z with Z, € {X,,Y,} is an expanding cluster of A.

Proof. 1t VA, (X, NnY,) =o(l) then X and Y are essentially disjoint (as d,(X NY) is
negligible in A (see proof of Lemma 20).

Otherwise, there exists, according to Lemma 20, an increasing function f : N — N
such that X, = Y .. It follows that A .[X ;] and A ([Y /] (thus A[X] and A[Y]) have the
same local limit. Let Z be such that Z, € {X,,Y,}. Then A[Z] is local-convergent,
0,Z is negligible in A, and lim v, (Z) exists (and lim v,(Z) = lim v, (X) = lim v,(Y)).
It follows that Z is a non-trivial cluster. Thus X and Y are interweaving (i.e. X § Y).
That Z 1s strongly atomic (hence expanding) follows from the hypothesis that both X
and Y are expanding (hence strongly atomic): any cluster included in a subsequence
of Z has a subsequence which is a cluster included in a subsequence of X or in a
subsequence of Y. [

It is possible that a local-convergent sequence A has arbitrarily many pairwise in-
tersecting non equivalent expanding clusters but not two essentially disjoint ones:

Example 3. Consider a local-convergent sequence E of connected d-regular high-
girth expanders with | E,| = c¢n(1+0(1)) (and uniform probability measure), for some
constantc > 1. Let A, be defined as three copies of E, if n is odd, and the union of E,
and E,, if n 1s even. Selecting a copy of E, into each A leads to uncountably many
pairwise intersecting non-equivalent expanding clusters. However, no two essentially
disjoint expanding clusters exist in A. Note that we could have made A, connected by

adding paths of length \/ﬁ linking the connected components without changing the
conclusion.

More examples of clusters based on our running example are displayed on Fig. 6:

Example 4. The regions A, and A, being at bounded distance from each other, they
belong to a same (strongly atomic, universal) globular cluster C,. As G[A;] and G[A,]
have the same limit, the globular clusters C, and C; are interweaving globular clusters.
The cluster C, 1s non-atomic, the cluster C; 1s a (non-atomic residual) nebula, and the
cluster Cs 1s a (strongly atomic, residual) expanding cluster.

6. CLUSTERING AND THE CLUSTER COMB LEMMA

The notion of clustering intuitively covers the idea of partitioning the structures in
a local convergent sequence as well as the limit into disjoint clusters.

Definition 18. Let A be a local-convergent sequence of o-structures. A lifted se-
quence L(A) of A obtained by extending the signature ¢ into o* by adding countably
many unary relations M, M,, ... is a clustering of A if, denoting

s=a\[J M

the following conditions hold:
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o

C3

Cy HH HiH

FIGURE 6. Some clusters of G.

(1) The sequence L(A) is local convergent;
(2) The sequence S is negligible and | J, d, M,(A) C S ;

(3) For every n € N, the non empty sets among .S,, M,(A,), M,(A,), ... form a

partition of A, ;

Co

Cs

(4) The partition induced by the M,’s is stable in the sense that

D lim(M,, A) =1lim ) (M, A) = 1.

Remark 2. Conditions (1) and (2) imply that each sequence M;(A) is a cluster of A
hence a clustering of A induce a “partition” into countably many disjoint clusters, and
that the clusters defined by the marks M, are pairwise strongly disjoint (see Defini-

tion 10).

A simple idea to construct a clustering of a local convergent sequence A is as fol-
lows: assume A has a cluster X; % 0. Then let A, be the lift of A with X, marked
M,. If X, # Alook for a cluster X, % 0 of A, disjoint from M, and mark it M,, thus
obtaining A,. Repeat the process until no cluster can be found. There are two main

problems with this process:

« In general we do not obtain a clustering, as the obtained partition needs not
to be stable and the global outer boundary |, d, M;(A) needs not to be negli-

gible;

« The partition is essentially not unique (and it is not clear which clusters of A

may appear simultaneously in the partition).

31
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The first point is exemplified by the fact that we do not have the converse of Re-
mark 2: partitioning into disjoint clusters do not define a clustering in general.
For instance, consider the following sequence of star forests.

Example 5. Consider the sequence G where G, is the union of 2" stars H,,,....H, 5,
where the i-th star H, ; has order 2*'(2™" + 27") /2. Let C' be the sequence such that
C’i is the vertex set H,; of the ith biggest connected component of G,, (or the empty
subset if i > 2"). It is easily checked that each C' is a cluster and that for each n the
(non-empty) subsets C,i form a partition of G,. Assume that we mark each C,i by mark

M. Then, asymptotically, only one half of the vertices will be marked.

Nevertheless, we shall prove that the converse of Remark 2 is almost true. In or-
der to do so, we consider countably many disjoint clusters C!, ..., C’, ... of a local
convergent sequence A. For each i € N we define

A, = lim v, (C')

dp=1-Y 14

i>1

and

The next lemma shows how powerful the stability assumption (4) can be:
Lemma 22. Assume that there exists negligible S 2 | J, 0,C' and that it holds
(1) D limy, (C) = lim )" v,(C).
Then R = A\ S\ |, C' is a cluster, and the lifted sequence L(A) obtained by marking
R,C!,C?,... by (say) marks My, M|, M,, ... is a clustering of A.

Proof. First note that (1) easily implies that v,(C') converges to (4,),cy in £7-norm
for p > 1. Let ¢, ®,, ... be strongly r-local formulas with p free variables in the
language of ¢. Then for any fixed N € N it holds

(e atey) - (3 aimes.Ach)

i>1 i>1

Z vp (CDY? = 2] + 2 AP

i>1 i>1

<

lim(¢', A[C']) — (¢, A, [C'])

N
IVAC) = Gienll, + 3 [lim(g, AICTT) = (&, A, [CID)| + X 4.
i=1

i>N

It follows that
) lim D" vy (C(¢AIC]) = Y 47 lim(@, AICT).

i>1 i>1
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Let v be a strongly r-local formula with p free variables in the language of 6™ =
o U{M, M,,M,,...}. For { non negative integer, let w* be the formula obtained
from y by replacing each term M,(f) by true if i = { and false otherwise. According
to Lemma 2 it holds

(w.L(A,)) = vy (R (W’ A[R,]) + ) vy (CY(w',A,[CI]),
i>1

<W0aAn> _ VAn(Rn)p<WO7An[Rn]> + Z vAn(C’i)P(WO,An[Ci]).

i>1
Thus, according to (2) it holds
lim ) vy (CH (", A,[C]) = ) 27 lim(y°, A[C']).
(i~ i>1

Hence lim,_ v (R,)"(yv’,A,[R,]) exists and

lim vy (R, (w", A, [R,]) = lim(y°,A) = Y A’ lim(y°, A[C']).
n—oo n is1

It follows that lim(y, L(A)) exists and
lim(y, L(A)) = lim(y",A) — ) A’ lim(y°, A[C']) + )" 4’ lim(y’, A[C'].
i>1 i>1

Hence L(A) is a clustering of A. [
To handle cases where (1) does not hold, we need to introduce the notion of clip:

Definition 19. A clip (for countably many disjoint clusters C!, ..., C’, ... of a local-
convergent sequence A) is a non-decreasing function F : N — Z* such that F > 1
(i.e. lim,_  F(n) = o) and such that for all integers n < n’ it holds

F(n)

3) | =4l < Y 4
i=1

i>F(n)

First, a few remarks are in order. The function F : N — Z* defined by

F(n) = min(n,max{t <n: Vn>n i|vAn,(C’i,) - Ail < Z /Ii}>
i=1 i>t

is aclip, as forr = O the inequality holds and as for every k € N there exists n € N such
that F(n) > min(n, k) (as the left-hand side of the inequality tends to 0 as n’ — ).
Thus clips always exist.

Secondly, remark thatif 1 < G < F and F is a clip then G is a clip as well, as

G(n) F(n)

Z|vAn,(c;,)—,1,.| < Z|VA’1,(C;,)—/11.| <Y n< Y i
i=1 i=1

i>F(n) i>G(n)
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Lemma 23. Let F be a clip. Then

F(n)
lim ) vy (C) =1- A,
et

Proof. 1t follows directly from the definition of a clip that for every integer » it holds

F(n) F(n) F(n)
Y= DAY v (CHS Y A+ Y A
i=1 i>F(n) i=1 i=1 i>F(n)
Alim,_ ¥ py A = 0, we deduce that
F(n)
lim ) vy (Cy= Y 4, =14,
TS i1
0
Given a clip F, we define R by
F(n)
R,=4,\|]JC.
i=1

As for every integers i and d it holds
lim v,(N4(9,C)) = 0

there exists a function T' : NXN — N such that for every integers i,d and n > T'(i, d)
it holds
i 2
va, (N} (04,C)) < —

Define
M (a) = max max T(i, j).
1<i<a 1<d<a
Define also G : N — Z* by
G(n) = min(F(n),max{i € N : M(i) < n}).
Obviously, 1 < G < F thus G is a clip. This clip has the following property:

Lemma 24. The sequence S defined by

G(n)
S, =Jac
i=1

is negligible.
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Proof. Letd € N. For sufficiently large »n it holds
va, (NG () < vy (NL(S,)

G(n)

< 2 va, (NG (0C))

—i

G(n)
Z‘ O G(n)

Hence
lim v, (N4(S)) = 0
that is: S is negligible. [
Define the subset sequences D' by
{c; if n > G(i)

@  otherwise

D' =

n

and let R be defined by R, = A, \ 5, D!.
Lemma 25. Either A, = 0 and R is negligible, or A, > 0 and R is a cluster.

Proof. Note that
s=|JoD'24R
i>1
In particular, dR is negligible. According to Lemma 23, we have
G(n)

lim )" vy (D)) =1- A,
n— oo P n

thus lim v, (R) = 4,. Consider a strongly r-local formula ¢ with p free variable. For
every € > 0 there exists n, such that for every n > ny it holds v, (N, (S,)) < e. It

follows that
(b A,) = va (R (B, AR, = Y vy (D) (d,A,[D,)] < 3pe.
i>1

Thus, if 4, > 0 we have

lim(¢, A[R]) = % hm((qb A=Y A [D’]))

i>1
_ %g(lim(q’),A) _ ; Pl lim((j),A[Di])).

(Note that we can safely exchange limit and sum here because the partition into R
and the D'’s is stable, see Lemma 22.) It follows that either 4, and R is negligible, or
Ao > 0 and R is a cluster. L]



36 JAROSLAV NESETRIL AND PATRICE OSSONA DE MENDEZ

Lemma 26 (Cluster Comb Lemma). Let A be a local convergent sequence of

o-structures, and let C', ... ,C', ... be countably many strongly disjoint clusters
of A.

Let 6™ be the signature ¢ augmented by unary relations M, (i € {0,1,2, ... }).
Then there exist a clustering A* of A with the property that fori = 1, ..., the

marks M, comb the clusters C' in the sense that there exists a non decreasing
function G : N — N with g > 1 with

& e
@ Mi(An):{ T ifn > G(i)

@ otherwise

(which implies M;(A) ~ C').

Proof. Denote S = A\ | J, M,(A), D' = M,(A) and R = M(A).

Remark that we have the property that A = A — S, which is the disjoint union of
A[R] and all the A[D’]. Mark vertices of R by M|, vertices of D’ by M,, and further
mark vertices in N, by mark M. Itis easily checked that the proportion of A, marked
by some mark M, for 0 < i < k tends to Zfzo A; as n — oo, and that this value tends
to 1 as k — oo. Consider the signature o™ extended by these marks, and let A* be the
sequence of marked structures. Let ¢p be an r-local strongly local formula with p free
variables. Then

($.AF) = (D AT[R]) + ) A, AF[D!]).
i>1
Denote by ¢, the formula derived from ¢ by replacing each M, with true and ev-
ery M, with j # i with false. Notice that ¢, is an r-local strongly local formula
in the language of the original signature o, that ¢(AT[R,]) = ¢o(A,[R,]) and that
$(AF[D!]) = ¢,(A,[D!]) (for i € N). Hence
(. AT) = (o A, [R,]) + D A(¢.A,[DL]).
i>1
Thus A* is a local convergent sequence. [

Remark: If one only assumes that the clusters C' are pairwise weakly disjoint

(meaning C'AC’ is negligible if i # j) then we get the same conclusion, except that (4)

is weakened to M,(A) =~ C'. The idea is to define the clusters Z' = C' \ Uj . NA(C))
that are strongly disjoints and equivalent to the original clusters.

7. THE CLUSTERING PROBLEM

It is not clear which clusters of A can be “captured” in general from the only in-
formation available from local convergence, and whether it is possible to mark these
clusters in a constructive way.
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The answer to this question we get here is that we can always capture all the (count-
ably many) globular clusters and that we can explicitly define the marking based on
the knowledge of some of the limit Stone pairing and basic Fourier analysis, and a
subtle cut method to handle the non-commutativity of countable sums and limits. This
will be the motivation of the final part of this paper. As we shall see, this part demon-
strates pleasing mathematical paradox: in order to achieve a more concrete result we
first have to generalize.

Part 3. Effective Construction of the Globular Clusters
8. THE REPRESENTATION THEOREM AND SOME CONSEQUENCES

Let /3 be the Lindenbaum-Tarski algebra defined by FO'**(¢) and let S, be the
Stone dual of B, which is a Polish space, whose topology is generated by its clopen
subsets. Recall that the duality of B and .S, is expressed by the existence of a mapping
K from FO"*® () to the family of all the clopen subsets of S such that K(¢ V y) =
K(p) U K(y), K(d Ay) = K(P) N K(y), K(~¢) = S, \ K(¢), and K(¢) = K(y) if
and only if ¢ and y are logically equivalent. For a local formula ¢, we further denote
by k(¢) the indicator function of K(¢), which is obviously continuous on .S,. Note
that the o-algebra of Borel subsets of S, turns .S into a standard Borel space.

The following representation theorem has been proved in [19] (in the case where
finite structures are only considered with uniform measures). The extension to the
general case (finite structures endowed with a probability measure) is easy, and we
do not prove it here. (Note that the representation theorem proved in [19] is stated
in a more general setting, where the considered formulas belong to a fixed fragment
of first-order logic, which can possibly include all first-order formulas; the space .S,
is then the Stone dual of the Lindenbaum-Tarski algebra generated by the considered
fragment. One could ask whether results of this paper could be generalized to FO-
clustering. This is not so, see Remark 11 below.)

Theorem 3. For every finite structure M there is a unique probability measure iy,
on S, such that for every local formula ¢ it holds

(. M) = / k() dpiy-
So‘

Moreover, for every two finite structures M and N, it holds py = py if and only
if the structures obtained from M and N by removing connected components without
non-zero weight elements are isomorphic as weighted structures.

Denote by I the closure of the space of all the probability measures iy, for finite
M (with respect to weak topology).

Then, a sequence A = (A,),cy Of finite o-structure is local-convergent if and only
if the sequence (p, ),en Of probability measures converges weakly, and then the limit
probability measure is the unique probability measure py; A such that for every local
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formula ¢ it holds
/ k(p) dpy,a = (P, limA).

S

[

Recall that a bounded sequence of positive finite measures u, on S, converges
weakly to the finite positive measure y if for any bounded continuous function f :
S, — Ritholds [ fdu, — [ f du. This is denoted by u, = u,

Thus for every continuous function f : S, — R, and for every local convergent
sequence A it holds py = py, o and thus

(5) / S dua = lim /fdyAn.
S, "= Js

(Note, however that (5) does not hold for general Borel functions f : § — R.)
When considering random variables, one equally uses the terms convergence in dis-
tribution, weak convergence, or convergence in law. In our setting, we will use the
term “weak convergence” when referring to convergence of probability measures on
a Stone space, and we then use the notation u, = u; we will use the term “con-
vergence in distribution” (or “convergence in law”’) when referring to convergence

random variables with values in R*, and then we use the notation X, > X. In
this latter case, we use the term distribution (or law) of X for the related probability
function on R*. In the case of a (scalar) random variable X, the distribution can be
alternatively described by means of its cumulative distribution function F defined
by Fy(x) =[X < x].

One of the important aspects of the study of local convergence is to determine (or
even characterize) those parameters F' that are local-continuous in the sense that if a
sequence A = (A,),y of finite structures is local convergent then so is the sequence
(F(A,)),en Of the associated parameters. Of course, every continuous real function
f € C(S,) defines a local continuous parameter A — f < Jfduy,. But we shall make
explicit some local continuous parameters that are not of this form. As we shall see
such parameters will be of prime importance for clustering structures in a local con-
vergent sequence.

Definition 20. Let A be a o-structure and let ¢ be a first order formula with free
variables x,, ..., x, (with p > 1). Denote by ¢"(A) the set

P'(A) = {(ul,... o, )€ AT AR (U,ul,...,up_l)}.
The local Stone pairing of ¢ and A at v is
(w,A), =Pr(A Fy(v, X, ..., X,))
= v (¢"(A))

Hence if v, ({v}) # 0 we get that the local Stone pairing of ¢ and A at v is nothing
but the conditional probability Pr(A F w (X, X,, ..., X )| X, = v).
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In our setting, every finite structure is considered as a probability space and thus
the local Stone pairing of a formula ¢ and finite structure A defines a random variable

<¢’ A)o : (2 ae <¢’ A>U'

The (admittedly technical) Lemma 27 will be the key tool for our estimation of
clustering parameters. As it proceeds by means of Fourier analysis, we take time to
recall some basics.

Given a random variable X with values in R* and law P, the characteristic function
of Xor Pis

y(t) = E[e"X] = /eit"‘ dP(x) for every t € R¥,

where t - x denotes the usual inner product of two vectors x and t in R,
A standard Taylor expansion of E[e’**X] gives the following expression of the char-
acteristic function as an infinite series:

ittt
w wk 1 k
rit) = Z Z[E[X X T

A main property of characteristic functions is that they fully characterise distribution
laws, and that they relate convergence in law of distributions to pointwise convergence
of characteristic functions. Precisely, we have:

Theorem 4 (Lévy’s continuity theorem). If P, are random laws on R* whose char-
acteristic functions y,(t) converge for all t to some y(t), where f is continuous at 0
along each coordinate axis, then P, converges in law to a law P with characteristic
function f.

Note that there is a one-to-one correspondence between cumulative distribution
functions and characteristic functions. If X is a (scalar) random variable we have

Theorem S (Lévy). If y is the characteristic function of a scalar random variable
with cumulative distribution function F, then for two points a < b such that F is
continuous at a and b it holds

1 T o—ita _ oith
F(b) — F(a) = o lim / T}/(t) dr.

T T | _r

Moreover, if a is an atom of X (that is a discontinuity point of F ) then

T
F(a)— F(a—0) = 711—1;n % / e‘”“y(t) dr.
e -T

Note that this inversion theorem extends to the case of random vectors.

Lemma 27 (Continuity of joint distribution of local Stone pairing). Let ¢, ..., ¢p, be
local formulas (with py, ..., p, free variables).
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For y € M_and t € R? define

d (ifj)wf
()= - (/ k(vfw)dﬂ> [+

w20 wy;=0 j=1 J*

where y, ) is true statement, and for w # (0, ..., 0) we define

/\/\(b(xl’ Xpy 41020 Xy qp— 1)

i=1 j=
with

i—1
= <Z w,,,;pf) +(—p, + 1.
=1

Then, the following properties hold:

(1) for every y € M, the mapping t — y(u,t) is the characteristic function of a
d-dimensional random variable D(u);

(2) the mapping u — D(u) is continuous in the sense that if u, converges weakly
to p then D(u,) converges in distribution to D(u), that is:

D
M, = U - D(u,)— D(u);

(3) for every finite structure A (with associated probability measure u, € I )
the d-dimensional random variable

DA = (<¢1’A>n AR <¢d,A>.)

has the same distribution as D(u,).

Proof. We shall prove the three items in reverse order.
Let us prove (3). For any finite structure A and any vector w = (w,, ..., w,) € N?,
let N =n,, +p,— 1. Thenitholds

wo() = {x € AV (Vi € [d1V) € [W,]) (1%, 15+ %, 1) € B(A) |
— U{u} x{xe AN (Vie[dVj € w]) (X, s X, 4y € PUA)}

vEA
w; times w, times
= (10} X $UA) X -+ X BU(A) X+ X B(A) X -+ X (A
VEA

Thus
(W A) = V2" (W (A))
= > va({wh) (Vi) L (v (@A)

VEA

=E, (¢, A))" ... (g A) 7]
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If follows that the characteristic function y, of D, is equal to:

J/A(t) — zt DA] Z 2 (l//W,A> H (lt

w;>20 w;>0

= 7(Uy, 0).

(Note that as all the moments (y,,, A) are bounded by 1 the above series converges for
every (complex) vector t.) As they have the same characteristic functions, the random
variables D, and D(u,) have the same distribution.

Let us now prove (1) and (2). It is sufficient to consider the case where y, = u A,
for some local convergent sequence A. As u, = pu, the fonctions y(u,,t) converge
pointwise to the function y(u,t). Moreover, y(u,t) is clearly continuous at t = 0
hence, according to Lévy’s continuity theorem, the random variables D A, converge
in distribution to a random variable D with characteristic function y(u, t). [

Remark 3 (for an interested reader). The formula defining v, and the equality of
(y,,»A) and E_[(¢p;,A)," ... {(¢;,A), "] are generalization of the following simple
fact: For a graph G and a vertex v of G, (x; ~ x,, G), (where ~ denotes adjacency) is
the probability that a random vertex x, is adjacent to x; = v, that is deg(v)/|G|,
and (x, ~ x,,G) is the average of (x, ~ x,,G), over all vertices of G, that is
(x; ~ x,,G) = E[{x; ~ x,,G),]. Similarly, ((x; ~ x,) A (x; ~ Xx3),G), is the
probability that random x, is adjacent to v and random x5 is adjacent to v. As x,
and x, are independent random vertices, this is nothing but the square of deg(v)/|G|.
Hence ((x; ~ x,) A (x; ~ X3),G) = ({(x; ~ x,,G),)*]. The same way, for every
integer k, it holds

(Gep ~ X)) A s A Gy ~ X)) G) = (X1 ~ X, G

In this paper, we shall be interested in random variables that are a bit more com-
plicated, but definable as a limit of local Stone pairing. In this context we will need
the following complement to Lemma 27.

Lemma 28. Let u € M, and let (P, 1) e - - > (Ppg)ren be sequences of local formu-

las (with p,, ..., p, free variables, respectively) such that for every integer 1 <i < d
it holds

R R A
(where — stands for logical implication).
Let D, () be a d-dimensional random variable with characteristic function
Y¢(u,t), which is the function associated to ¢, |, ..., ¢, , as in Lemma 27.
Then, as ¢ — oo, the random variables D ,(u) converge in distribution to a random
variable D (u), whose characteristic function y_(u,t) is the pointwise limit of the
functions y,(u, t).

Proof. Let

/\/\%(xl, I )

i=1 j=
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(as in Lemma 27).

For each vector w € N the sequence ( f ck(y,y) d,u) sen 1s non-decreasing and
bounded by 1 hence converging. It follows that the functions y,(u, t) converge point-
wise as £ — oo to

d (-tj)wj
Yol t) = 3 Y (;ggo/gk<wf,w>du> -

w20 wy;>0 Jj=1 J:

which is continuous at t = 0. Thus the theorem follows from Lévy’s continuity
theorem. O

Note that if A is a local convergent sequence of finite structures, it holds
D
Df(ﬂA,,)_’ D, (thima) as n — oo

D
D, (thima)— Do (Hyima) as? — oo

D
However, although D, (u An) — D (s ) as £ — oo, it is not true in general that
D, (4 ) converges in distribution to D (4, 4) as n — oo.

Definition 21. Assume A be a o-structures. The 1-point random lift distribution of
A is the probability distribution over (isomorphism classes of) o°-structures (where
o' 1s the signature obtained from o by adding a unary symbol M), corresponding
to the marking a random elements X, of A, drawn from A according to probability
distribution v,. We denote by II the map from the space Rel(o) of isomorphism
classes of finite o-structures (with domain endowed with a probability measure) to the
space P(Rel(o)) of probability distributions over Rel(¢), which maps a o-structure A
to its 1-point random lift distribution I1(A).

Recall that in the context of structures with a domain endowed with a probability
measure, the notion of isomorphism is more involved than standard isomorphism of
structures with no associated probability measure.

Let A and B be o-structures, and let N, (resp. N z) be the union of all the connected
components of A (resp. B) without any element of positive measure. Then A and B
are isomorphic if there exists a bijective mapping f : A\ N, — B\ Ny preserving
the measure (i.e. such that v, = vgof) and all the relations both ways (i.e. A F

R(,,...,v,) <> BER(©),...., f))).

Remark 4. The 1-point random lift corresponds to marking a vertex by M,. Thus
the obtained structure is a “rooted” structure. We choose this terminology in view of
generalization to multiple and iterated random rooting.

The space Rel(o), endowed with topology defined by local convergence, can be
identified (via the continuous injection 1° : A — u, of the representation theorem)
to an open subspace of the Polish space P(.S,), the space of all probability measures
on S, (with weak-* topology). We denote by It the closure of 1°(Rel(s)). Similarly,
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the space Rel(c") can be identified via injection " to an open subspace of P(S..) with
closure M. The pushfoward 1°" : P(Rel(c)) = P(IMN) of 1°, defined by

17(8) = L)
is a continuous injection from P(Rel(s)) to P(IN ).
The following result makes possible to transfer results about unrooted structures to

I-point random lifts (i.e. randomly rooted structures). It is a non-trivial refining of
Representation Theorem 3 and it is the main result of this section.

Theorem 6 (1-point random lift theorem). There exists a (unique) continuous
function I1 : M, — P(IN,.) such that the following diagram commutes:

Rel(6) ——— P(Rel(c"))
M, — P(M,.)
i
Proof. Consider an enumeration ¢, ..., ¢,, ... of local formulas with respect to sig-

nature ¢°. To each formula ¢, with p > 0 free variables we associate the local formula
y; (with respect to signature o) with p + 1 free variables by replacing each free vari-
able x; by x,,,, and then each term M (¢) by the term 7 = x,. Consider o°-structures
A obtained by marking a single element v € A in a o-structure A. Then it holds

(i, AT) = (w1, A),.

In order to prove Theorem 6, it is sufficient to prove that if (A,),cy 1S a local con-
vergent sequence, then the measures p‘:o I1(A,) converge weakly. This is sufficient

as for every y € I we can then define ﬁ(u) as the weak limit of the measures
p‘:o I1(A,), where (A)),cy 18 any sequence of finite o-structures such that u A, = M
This proves Theorem 6.

Thus let (A,),cy be a local convergent sequence and let {, = p? oII(A,). The
topology of M _. can be metrized by means of the following metric: for u,, u, € M.,

we define the distance d(u,, u,) by
/ k() dp, — / k() dpy| < 6} :
Sy S,

Let F : 3M,. — [0, 1] be continuous, and let € > 0. As IN . is compact there is a > 0
such that for every u,, 4, € M. it holds

d(p, ) < = |F(u) — F(w)| <e.

d(,ul,,uz)=inf{€>0 cVI<i<l1/e
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Letd = [1/a]. Consider the continuous map p : IM_. — [0, 1]¢ defined by

p(u)=< / k) du, ... / k(qbd)du).
S, S,

Consider a partition By, ..., B of [0,1]¢ into d? boxes of side 1/d (“Rubik cube
type partition”). Let C; = p (B ), and let ¢, = F(u;) for an arbitrary (fixed) choice
of u; € C;. According to Lemma 27, the sequence of tuples ((y, A )., ..., (W , A,).)
converges in distribution. Thus for every box C; the value

/ dg,(u) = Prlu € C)] (u dist. wrt &)
¢
= Pr[((qbl,A:), cers (d)d,A;;)) € B)] (A;r dist. wrt I1(A,))
=Pr[({y1,A,) s - Wy, A)) € B (v dist. wrt v, )

converges as n — oo. For every 1 < j < d“ and for every pu,, u, € C; it holds
d(uy, pp) < 1/d hence for every u € C; itholds |F(u,) —t;| < e. Thus it holds

/F(M)an(ﬂ)—tj/ dg,(u) Se/ dg,(u).
C. C. C.

J J J

As the sets C; form a partition of .S,. and as ¢, is a probability measure, we get

/

o

<e.

dd
Fuode,0 - X, [ ag
. j=1 C;

J

Hence for sufficiently large n, f 5. F(u)dg, (u) concentrates in an interval of size at

most 2¢. By letting ¢ — 0 we conclude that / 5. F(u)dg,(u) converges, hence (as
this holds for every continuous function F) that {, is weakly convergent. [

Remark 5. Actually, along the same lines we could prove more: for the linear operator
IT : P(Rel(o)) — P(Rel(c*)) defined by

M) = / TI(A) d¢(A),
Rel(o)

there exists a (unique) continuous linear map 11 such that the following diagram com-
mutes:

~

3

Rel(6) —— P(Rel(0)) P(Rel(c*))
M, ———P(M,) fi P(,.)
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9. SPECTRUM DRIVEN CLUSTERING

We shall now make use of the abstract results of Section 8 to compute the globular
clusters of a local convergent sequence.

In some sense globular clusters corresponds to the non-zero measure connected
components at the limit. We shall see that we can track globular clusters and give an
explicit formula for their limit size.

To achieve this, we shall first show that the moments of the distribution of the limit
sizes of the globular clusters may be computed from Stone pairing, and then we shall
deduce the distribution of the limit sizes of the globular clusters by standard Fourier
analysis.

9.1. Spectrum. We start our analysis by the study of the limit sizes of the globular
clusters.

Let ¢, be the formula dist(x,x,) < d. Let A be a local convergent sequence of
o-structures, and let D, , : A, — [0, 1] be the random variable

Dd,n(v) = <¢d’ An>v = VAn(Nin(U))-
As obviously ¢, implies ¢, ; it follows from Lemma 28 that there exists random vari-

D D
ables D, and D such that D, ,— D, and D,— D (which are limits in distribution,
forn — oo and d — oo, respectively).

Remark 6. The random variables D, , have here a concrete meaning, as the measure of
the radius d ball centered at a random vertex. However, there is no particular meaning
for the sample space of random variables D, and D (as the existence of these were
simply derived from convergence of characteristic functions).

Even if we intuitively interpret the random variables D, and D as if they were built
on a similar limit sample space, we have to take care in our argumentation that this
interpretation is not a priori justified.

We denote respectively by F, ,, F, and F the cumulative distribution functions of
D, ,, D;and D. According to Froda’s theorem, each F, (and F) has at most countably

D
many discontinuities. As D,— D (as d = oo) the functions F, converge pointwise

to F at every continuity point of F. Similarly, for eachd € N, as D, , 2 D, (as
n — oo) the functions F, ;, converge pointwise to F, at every continuity point of F,.
We define A, (resp. A) as the (at most countable) set of discontinuities of F, (resp.
F),and let R = [0,1]\ (A U JeN Ad). In other words, R is the (cocountable) set
of points where all the considered limit cumulative functions (F and F, for d € N)
are continuous.

Remark 7. If d, < d, then for every integer n and ever real 7 it holds
F, () =Pr(D, ,<t)2Pr(D, ,<0)=F, 1)
and thus also F;, > F, > F.
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We now take time for a useful simple lemma.

Lemma 29. Lett, <1, bein R, and let n and d, < d, be integers.
Then

F, () - F, ,(t) <Pr(t, <D, , <D, ,<t) <F, (t,)—F,; (1)
Hence if | F(t;) — Fdl(tj)l < e€and |Fdi(tj) - Fd,.,n(fj)| < eholdfori,je {1,2} then
|Pr(t; < D, , <D, , <t)— (F(ty) — F(t))| <4e.

Proof. The right inequality is obvious as Pr(r;, < D, , < D, , < 1t;) < Pr(t; <
D, , <1,). For the left inequality, note that

PI'(ZI < Ddl,n S Ddz,l’l S tz) = PI'(tl < Ddl,}’l S tz) - PI'(ZI < Ddl,n S tz < Ddz,n)
= (Fy, 1) = Fy (1) = (Fy, (1) — Fy (1))
0

We are now approaching the final steps of our cluster analysis. This is admittedly
technical and we shall need further several lemmas in order to prove Theorem 1.

However the intuition for our proof is easy and can be outlined as follows: if we
would have a proper explicit limit structure, the random variable D would intuitively
correspond to the measure of the connected component of a random element. Thus
we expect D to be a discrete random variable, and that the probability that D =
A 1s the measure of the union of all connected components of measure A hence an
integral multiple of A. The aim of this part is to show that this intuitive notion of limit
connected components is captured by the concept of globular clusters. This setting
will not only ground the above intuition, but will also allow to track the formation of
the limit connected components down to the structures in the sequence.

Hence our first step is to prove that D is a purely discrete random variable, that is
that its cumulative distribution function F' is constant except at its (at most countably
many) discontinuity points. This we shall do now.

Lemma 30. The spectrum distribution of a local-convergent sequence of finite struc-

tures is discrete and its associated mass probability function p . [0,1] — [0, 1]
defined by

p(x) = F(x) — lir% F(x —e).
is such that that for every x € [0, 1], either p(x) = 0 or p(x) > x.

Proof. We shall prove that for #; < ¢, in R, either F(¢,) = F(t,) or F(t,)— F(t,) > t,.
It will follow, by cutting the interval [?,, ?,] recursively, that F' is constant except at
its discontinuity points, and that the mass probability function p satisfies p(x) > x at
every point x where p(x) # 0.
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So let t; < t, be in R and such that F(¢;) < F(t,), and let 0 < € < (F(t,) —
D
F(t,))/4. As D,— D (as d — oo) there exists d such that | F,(¢,) — F(t,)| < € and
D
|F,(t,) — F(t,)| < e. Moreover, as D, ,— D, (for fixed d and n — oo) there exists n
|F2d,n(tz) — F,(1)] <e.
According to Lemma 29 it holds
Pr(t, < D;, < D,;, <t,) — (F(ty) — F(t))) <4e

thus Pr(t, < D,, < D,,, < t,) > 0. Hence there exists v € A, such that 7, <
D, ,(v) £ D,,,(v) < t,. Forevery x € N4 (v) it holds N4 (x) € N3’(v) hence
D, (x) < Dy, (1) < 1. Also, N3(x) 2 N (v) thus D, ,(x) > D, (v) > 1,. As this
holds for every x € Nin(v), we get Nin(v) C{x :t; < Dy ,(x)and D, ,(x) <1,}.
Thus we have

va,(Ny () = Pr(t; < Dy, < 1) S Pr(t; < Dy, and Dy, < 1) = Pr(t; < Dy, < 1))

= Fy(ty) = By (1))
< 4e.

Hence Pr(¢; < Dy, , < t,) > vAn(Ni (v)) —4e > t; — 4e. Hence F(t,) — F(t;) >
t, — 8¢. By letting ¢ — 0, we get F(t,) — F(t,) > t, as claimed. O

Recall that A is the set of discontinuities of F', that is the set of x € [0, 1] such that
p(x) # 0. Note that it follows from Lemma 30 that for every integer z there exists at
most z values 1 € A with 1 > 1/z.

The next lemma will ground our intuition that p(4) should be an integral multiple
of A. Indeed, we will prove later that p(4)/ 4 is the number of disjoint globular clusters
with limit measure A.

Lemma 31. Let A € A. Then p(A)/1 € N.

Proof. Let 0 < e < A*/11. Fix t;,t, € R with0 <t, < A < 1,, 1, —t; < ¢, and such
that A is the only discontinuity point of F on [¢,,1,] (hence p(4) = F(t,) — F(t,)).
Then there exist 6 = 6(e, t,,1,) such that forevery d > o itholds | F(¢,)—F,,t;| <€
forevery 1 < k <4 andevery i € {1,2}, and there exists # = r(e, t,,,,d) such that
for every n > n it holds |F,, (t,) — F,(t,)| < € for every 1 < k < 4 and every
ie{l1,2}.
We prove by contradiction that no two vertices v,, v, € A, exist such that

1) < Dy, (v)) £ Dy ,(v)) <1y,
t, <D, ,(0,) £ Dy (v, <15,
2d < dist(v,,v,) < 3d.
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Assume the contrary. Then N4A‘fl (v,) contains the disjoint union of N‘fAn (v,) and Nfin (v,)
thus
VA, NV (0)) > 21, > 1+ A—e= (1 +e) + (A= 2¢) > 1,
contradicting D, ,(v,) < 1,.
Let.S =S, , 4(n) be amaximal set of vertices v € A,, pairwise at distance greater
than 3d, and such that

1 <D,;,(v) <Dy, <t,.

First note that for v, v/ € S the balls Ni (v) and NZ (V") do not intersect hence

1> vAn<U N{ @) = Z D, () > 1,|S]| > (4 - e)|S|.

vVES vES

Thus [S] < 1/(4 —e).
Also every vertex w such that 1, < D, (w) < D4, ,(w) < t, belongs to

Uoes Nii(v) = Ni‘:(S). It follows that Pr(; < D, , < D,,, <1,) < 1,]S|. Also,

Pr(t; < Dy, S 1) 2 vy (NG (S) = Y D, (s) > 1,|S| > AS| - /(A —¢).

SES

As
Pr(t) < Dy, , <t)) <Pr(ty < D;, < Dy, <t)) LS| < AS[+e/(A—¢),

we get
|Pr(t; < Dy, < 1)) — A|S|| <€e/(A—e).
As
|Pr(t, < Dy,, <)) — p(A)| < 4e
we deduce

|p(A) = AIS|| < 4+ 1/(4—¢€)e.
As e < A2/11,itholds |p(A) — |S|A| < A/2, thus |S| = S}, 1,.a(m)| 1s constant for
all the values ¢,,1,, d, n consistent with 0 < € < A% /11. Denoting m(A) this common
value of |Stl’,2,d(n)|, and by letting € — 0, we get p(4) = m(A)A thus p(A)/A € N. O

We now define several functions, which will be of key importance in our precise
definition and analysis of the globular clusters.
Letus fix 4 € A.

Definition of €,. For z € N, we define

(6) €, =277
Definition of z,(4). We define
(7) zo(4) = [5 = 2log, 4].

(Thus e, ;) < 4*/32.)
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Definition of o, (1) and f,(4). We define
a(A) < ay(A) < =+ <A< < Br(A) < py(A),

such that A N [a;(4), B;(4)] = {4}, every a,(4) and B, (4) belong to R, and such that
for every z € N it holds

8) 18.(4) — &, (D] < e,

D

Definition of 6,(1). As D,— D (as d — oo0) we can define integers 6,(4) < 6,(4) <
. such that for every z € N and every d > 6,(4) it holds

9) | Fy(a,(4) — F(a,(1)] <e,

(10) | F,(B, (1) — F(B,(D)] <e,

D
Definition of n,(1). As D,, — D, (for fixed d and as n — oco0) we can define
integers 7,(4) < n,(4) < ... such that for every z € N, every n > 7,(4) and every
integer k € {1, ... 8} it holds

(11) |Fk5z(,1),n(az(/l)) - Fkaz(g)(az(/l))l <eg,
(12) |Fk5z(,1),n(ﬂz(/1)) - Fk(sz(g)(ﬂz(/l)ﬂ <eg,

We now define some sequences of sets. The sets Z r’}’z will anticipate our construc-
tion of globular clusters, by giving a rough approximate of them. Then the set .S ,f will
collect a “center” for each of the “component” of size A.

Definition of Z**. For n, z € N we define subset Z** as follows:
e If n < 5, then Z** = @;
e Otherwise, Z** is the set of all elements of A, such that
(13) Dg;_,(v) < B.(4)
(14) D;, ,(v) > a,(4) (Vz' € {z,(A), ..., z})

Definition of S*. We define .S* as a maximal set of vertices v € Z**, pairwise at
distance at least 76,, where z is (implicitly) defined by n, < n < n,,,.

We take time for few remarks:

Remark 8. Note that (13) implies Dgéz,,n(v) < p,(A) forevery 1 <z’ < z. Also (14)
becomes clearly more and more restrictive as z grows. Hence for every z > z,(4) and
every n € N such thatn, < n < n,,, it holds

(15) 7 A2o(A) ») 7 A2o(D+] D...D Zhi o ghitl _ ZAz2 d.
Remark 9. According to the definitions of 6, and #,, it holds
|Fg5z(,1),n(ﬁz(/1) - F(ﬁz(ﬁﬂ < 2e,
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Remark 10. If z/ < z” then, according to Lemma 29 it holds
|Pr(azl(i) < Dﬁzr(/l),n S Déz/r(ﬂ),n S (X (A))l < 4€Z,

ZII

Thus

Pr(D; sy, > (D) = Pr( J\ Dy, > ax(D) <4 Y e, =277,

z/=z, z'=z
It follows that
Va (Z15) > p(4) — 4e, — 2%,

We now prove that, as wanted, the number of elements of S’f is (for sufficiently
large A) the anticipated number of globular clusters of size A.

Lemma 32. For every A € R and every n 2 ny,-1y it holds |S;| = p(A)/ A

75,(4)

Proof. Note that obviously, as v, (N,

(s)) < A+ €, holds for every s € S}j, we get

|Z/l,z| 1) — 22-2 _ 92-2(2) A 2=z /) — 22z _ D2-2)(4) y)
"= T re A+ 2 i A— 2= p
hence | S| > p(4)/4. On the other hand, for every s € S/ it holds Dj ;) ,(s) > a,(4)

and Dy; ;) ,(s) < B.(4) thus for every v € N¥(S%) it holds a,(4) < Dys (;,(s) <
p.(A) thus

1,

(A—e)|S < VAH(Nf;:” )

< Pr(a,(4) < Dy; 5 (5) < B,(4))

< p(A) + 4e.
hence
A
|S%| < p4) + 1.
" A
Altogether, it follows that |.S*| = p(4)/A. O

We are now ready to define sets gathering all the “components” with limit measure
A. We will prove that they define universal clusters.

Definition of C,j. For A € A and n € N we define

a6 =" S e
n NY*(S#), otherwise, if z is such that n, < n < 1,

The sets Crf will be the building block for the construction of our clusters. Lem-
mas 33 to 38 will be used to prove that the sequences C* define a clustering of A into
countably many universal clusters plus a residual cluster. The general aspects of the
sets Z*#, 54, and C* we tried to visualize by Fig. 7.

Similarly to Lemma 31 we prove
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FIGURE 7. General aspects of the sets Z*#,.S%, and C/

Lemma 33. Let A € A, let z > zy(A), and letn, < n < n,,,.
Then Z** C C/.

Proof. Assume for contradiction that there exists an element v € Z ’j \ C}f. By the
maximality of S#, we get that v is at distance at most 76, from some element u € S*.

Moreover, dist(u, v) > 26, as v & lefz(S ,’}). Then ngfz(v) contains the disjoint union

62 62
of N An(v) and N A, (u) thus

vAn(Niiz(v)) > 2a,(A) > a,(A)+A—e€, =(a,(4) +€,)+(1—2¢€,) > f,(4),
contradicting D85Z,n(v) < B,(4). (]

We now prove that our sets C ,f are pairwise disjoint.

Lemma 34. Let A < A’ be two elements of A, let z > max(z,(4), [1 —log,(A' — A)]),
andletn, <n<mn,,,.

Then C*n C¥ = .
Proof. Assume for contradiction that there exists an element v € C* n le'. Then
there exists u € S* and v’ € S,f' such that v € Niéz(u) N Niéz(u’ ) hence dist(u, v') <

46,. 1t follows that N7 (') € N3*(u) hence a,(4) < B.(A) thus |4 — V| < 2.27%,
contradicting our choice of z. 0
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We now prove that the measure of le 1s concentrated around the limit measure
p(A).
Lemma 35. Let A € A, let z > zy(A), and letn, < n <n_,,.

Then |vAn(C’f) — p(D)| <277 p(A) [/ A.

Proof. Note that
vy (CH = Z VAH(NZZ(S)).

2
SES)

Hence, as |.S*| = p(4)/4) it holds |vAn(C}f) — p(AD)| < 27%p(A)/ A. O

The next lemma not only shows that the outer boundary of C* is negligible (what is
required in order for C* to be a cluster) but also that the neighborhood of these outer
boundaries are so small that their sum will also be small (what we will make use of
in lemma 37).

Lemma 36. Let A € A, let n > -1}, and let z € N be such thatn, < n <n,,,. Then
it holds S
vAn(NAZn(aAnC:)) <277 p(A)/ A

In particular, 0,C* = 0.
Proof. As elements of S* are pairwise at distance at least 75, it holds
3
N (0,,C) = |4 (N> \Ng (09))
veSs?

(where v denotes a disjoint union). As v € S it holds
v, (N3 (@) = D, ,(0) > a(4)
VAn(NiiZ(U)) < Dy;_,(v) < f.(4)

Hence
va (NV2(0) \ N3 (0))) <,
Thus " "
va, (N5 (95, CH) < |S]le, < 2¢.p(A)/ 4
O

Lemma 37. Let n € N, let A € A be minimum such that n > n, ;. Let z be defined
byn, <n<mn,,, and let

W,={v: D, (v)>aM}\|]C"

aEA

Then
va (N2 (W) < 275(1 4 3/ 4).

In particular, W 2 0, (|J,c, C*) and W = 0.
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Proof. Let F, = {v : D;_,(v) > a,(A)}. Then N (F,) C {v : D;_,(v) > a,(A)}.
Hence Va, (Niz (F)<1- anyn(az(/l)). It follows that

va, (NG (W) S vy (N (F)) = D) v (C1)+ D vy (NG (0, C))
AM>A AM>A

-z 21—2
+

< + .
=TT

[

We now are ready for our last lemma needed to prove that the sequences C* define
a clustering of A into countably many universal clusters plus a residual cluster.

Lemma 38. For each A € A the sequence C* = (C),y is a cluster.

Proof. Let ¢ be an r-local strongly local formula with free variables x, ..., x,. For
d € N let ¥, be the following formula with g + 1 free variables

q+1

Wyt p X)) A f\ dist(x,.x) < d.
i=2

Note that if d; < d, and v € A, then
0<(¥,.A,), —(¥,.A,), <q(D, () - D, ().

For 4 € A we consider an integer z, such that 6, > r and z; > z,(4), an integer

z > zyand n, < n < n,,,. Then the following holds: for every s € S* and every
x € N (s), it holds N¢_ (x) € Ny (s) and N¢ (5) € Ny ™ (x) we get
(Paos, - Au)e S (FaA,), and (¥4 A,), < (Waps A,
It follows that
<T25zl’An>x - <‘P2511,An>s < <\P3521’An>s — (‘1125ZI,A”)S

< qPr(25Zl < dist(x,s) < 36Z1)
< q(Dgs, ,(s) = Dézl,n(s))
< q(B.(A) - a_ (2))

<q(e;, +¢€,)
and
<\P25ZI’An>s - (Tz5zlaAn>x < <T25Z1’An>s - <T5Z1,An>s
< qPr(6, <dist(x,s) <26, )
<q(e, +e¢,).
Thus

|(‘P2521,An)x - (‘Pzézl,An)s| <g(e,, +¢€,).
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Also,
|<lP25Z’An>s - (‘Pzazl ALl S Q(Daz,n(s) - Dgzl,n(s))
< Q(Dgaz,n(s) - D(le,n(S))
< q(B,(A) - a, ()
<q(e, +e,).
Moreover,
[(Wos.- Ap)s — (Wos . A, — aAnC:>s| < 4qe. p(A)/A.
and
(A [CH]) = ZseSj<lP25z’An - aAnC,f>s
» Al VAn(le),,
Thus, as
[va (C) = 4| < e,p(D)/ 4,
it holds

Zuezj’zl VAn(U) <LPZ(SZI ’ An)v
Vo (Z2™)

~ % Z (Fas,- A0y

i
vec;

|E[<lI125Zl s An>u IZ:’ZI (U)] =

~ Z (Tzaz’ A,

sES?
Let H, , be the (multivariate) cumulative distribution function of

(W5, Al =Dy ooos 1= Dy, Dy ).

20’
According to its definition we have v € Z,**" if and only if
(1=D;_ .. 1= Dy, Dy ) €10, 1= (D] X - X[0,1 =, (DX [0, B, (D]
Thus

Prl(¥;, . A,), < xand v € Z2¥] = H,, (3,1 = a, (A .., 1 =t (A), B, (D).

It follows that

1
E[(P55, » Ap)y 1500 (0)] = / Pr[(¥Y; ,A,), <xandv € Z**]dx
1 n 0 z] n

1
= /0 1—H,. (x, 1=, (A,....1 —a, (D)., (1) dx.
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According to Lemma 27 there exists a (vector) random variable VZl such that

D
(¥ A).1-D; ,...1=D; Dy )—V,.

Szon)”

Let H be the cumulative distribution function of V, . Then, as n — oo it holds

1
lim [E[(‘P%Zl, A, 1, (V)] = / 1-H(x,1- aZO(l)(/l), U azl(/l), ﬂzl(/l)) dx.
n—oo n 0

As |[E[(‘I’251l JAL), ].Zr};,zl (0)]-47(¢p, A, [C*])| goes to 0 when z, goes to infinity (and
n grows in consequence), we get that (¢, A, [C/]) converges hence C*is a cluster. [

We are now ready to prove our first clustering result:

Lemma 39. Let A be a local convergent sequence of o-structures. Let 6t be the
signature obtained from o by the addition of countably many unary symbols M p and
M, (i € N). Then marking by M, the cluster C,f" (where A, > A, > ... are the
elements of A order in decreasing order) and by M, the sequence of sets

R=A\W\[ Jc

AEA

we obtain clustering L(A) of A with the following properties:

e For every i € N, (Mi(L(An)))neN is a universal globular cluster, and
M(L(A,)) asymptotically consists in a set inducing p(4,)/4; disjoint con-
nected substructures, each of measure A, + o(1) in A,.

. (M R(A:))neN is a residual cluster.

Proof. That L(A) is clustering follows from Lemma 22. That C* is a universal cluster
is trivial as the constructions and proofs can be achieved the same way (with same
result) in any conservative lift of A. The sequence R is obviously residual. 0

We are now ready to prove Theorem 1, which we state now in the following more
precise form.
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Theorem 7. Let A be a local convergent sequence of o-structures. Then there
exists a signature o™ (obtained from o by the addition of countably many unary
symbols M, ;, (i €N, 1 < j <a;, 1 <k <b,;), of aunary symbol My and of
unary symbol M ), a sequence /11 > A, > ... a positive reals and a clustering
L(A) of A with the following properties:
« Foreveryi € N, 1 < j <a,and1 <k <b;;, G* =M, (L(A)) isa
globular cluster of A such that lim v,(G™/**) = A, that is a cluster such that
for every positive real € there is an integer d which satisfies

A; — e <liminf max Va, (Nd)< hmv (G”k)—

noo et

e R= M(L(A)) is a residual cluster of A, that is a cluster such that for every
integer d it holds
limsup max v, (Nd ) =

n—oo v, EG

o The sequence S is negligible, that is such that for every integer d it holds

lim sup Va, (Ni”n) =0

n—oo

o The marks partition the sets A, is a stable way, that is
lim vy(R) + ) lim v, (G5) = 1.
i>1
o Clusters G™* and G"/"* are interweaving (i.e. G** § G"J'¥) if and only
ifi=i"andj =]
o The clusters U YOGk ( groupmg interweaving clusters) are universal.

o The number N, = ZJ \ b ; of clusters with limit measure 4, is

@) _ias
M=gimar | [Z<IE££ k%,w)dﬂ) wr |

where y, , is the formula

w
W w(Xps o Xyy) 1= [\ dist(x), x,) < d.

Proof. By construction, the number of connected components of A, [C ,f] 1s asymptot-
ically p(4)/A and each of these connected components has asymptotically measure A.
LetB, ,,...,B,, be the connected components of A,[C/]. If there is a local formula
¢ such that '

lim mm(qb B,) # hm rmn(qb B)

n—oo
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we can break C* into smaller universal clusters. At the end of the day, we get a cluster-
ing of A into countably many clusters, such that each cluster C' has asymptotically k;
connected components with same asymptotic measure and same asymptotic profile.
It follows that C' it the disjoint union of k; interweaving clusters.

The statement giving the number N, of clusters with measure 4, is due to the equal-
ity N; = p(4,)4; and the application of Lévy’s theorem (Theorem 5) for the compu-
tation of p(4,;) from the characteristic function y_(u,?) associated to the formulas
dist(x;, x,) < d by Lemma 2. 0

The clustering of our running example obtained from Theorem 7 is displayed on
Fig. 8. Globular clusters are marked M, M,, and M;. The negligible sequence S is
depicted by big black square vertices. The residual sequence R is what remains.
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2 As Ay yd 3
- = 288
- & A5 4
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FIGURE 8. Clustering of our running example

Remark 11. Note that Theorem 7 cannot be extended to full first-order convergence.
Consider the graph G, built by linking two complete graphs of order »n by a induced
path of length n. This sequence is FO-convergent, and its two limit connected compo-
nents with non-zero measure have measure 1/3, and are formed by complete graph on
a graph of measure 1/3, to which is attached a ray. However, each of these connected
components (taken alone) is not the first-order limit (and even not the elementary
limit) of a sequence of finite graphs: the definable subgraph induced by vertices with
degree two has a single vertex of degree one (in the induced subgraph), what cannot
be the case in a finite graph.

A direct consequence of Theorem 7 stands in the following complete characteriza-
tion of the globular clusters of a local convergent sequence.
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Theorem 8. For a sequence X of subsets of a local convergent sequene A the
following are equivalent
(1) X'is a globular cluster of A;
(2) there exists a negligible sequence N and integers i, j (with 1 < j < a;) such
that for every integer n it holds
i.j,b

X,AN, € (GG, ... ,G, 7MY,

Proof. If X is obtained by interweaving clusters from {G~ 1 G 2., G;J “1, then

X is a cluster, which is obviously globular. Hence (2)=(1). Conversely, let X be a
globular cluster. As the partition is stable there exists, for every € > 0, integers i, and
n, such that for every n > n, it holds

Z i vAn(Z;’j) <e.

i>iy j=1
Then notice that X N R = 0 as R is residual and X is not. According to Lemma 21,
for each i, j, k it either holds X N G*/** ~ 0 or X § G***. Let n; > n, be such that for
every n > n, and every integers i, j with i < i, and X N Z* ~ 0 it holds
v, (R, N X,) < eand vy (R,NZY) < ==

a

i=1 i
Then, letting ¢ < lim v,(X)/4 we get that there exists integers i, j, k such that X {
G/*. It follows that X § G"/"¥ if and only if i = i and j = j’. Thus for every
(i’,j") # (i, j) it holds X N Z"V =~ 0, and thus it holds liminf v,(X N Z*/) > 1 — 3e.
Letting ¢ — 0 we get that Z/ \ X is negligible. As X is globular and as Z'/ consists
in connected components with same positive limit measure as X selecting from Z'/

a connected component with maximal intersection with X, we get a globular cluster
Y such that Y = X. [

10. CONCLUSION AND FUTURE WORK

In this paper we have shown that a the local convergence of a sequence of finite
structures 1s enough to obtain properties that cannot be expressed directly by means
of a first-order formula: one can cluster the sequence into countably many globular
clusters and a residual cluster. It is perhaps surprising that one can do so just from
local convergence. The obtained clustering is natural and continuous. We believe that
this analysis may be of interest in cluster analysis itself if only by the concepts that
naturally arose in this study.

On the other hand, we feel that this is only the beginning of the story. Particu-
larly because of their connection to expanders, we would like to further refine our
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clustering and find further expanding (non globular) clusters. However this will re-
quire to consider a stronger notion of convergence, such as generalized local-global
convergence. Our generalization of local-global convergence extends the notion of
local-global convergence based on the colored neighborhood metric of Bollobas and
Riordan [5], which was introduced by Hatami, Lovasz, and Szegedy [11]. This will
be the subject of a forthcoming paper.
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