
Parameterized Complexity of Length-bounded Cuts
and Multicuts

Pavel Dvořák · Dušan Knop

Abstract We show that the Minimum Length-Bounded Cut problem can
be computed in linear time with respect to L and the tree-width of the input
graph as parameters. In this problem the task is to find a set of edges of
a graph such that after removal of this set, the shortest path between two
prescribed vertices is at least L + 1 long. We derive an FPT algorithm for a
more general multi-commodity length-bounded cut problem when additionally
parameterized by the number of terminals.

For the former problem we show a W[1]-hardness result when the param-
eterization is done by the path-width only (instead of the tree-width) and
that this problem does not admit polynomial kernel when parameterized by
path-width and L.

We also derive an FPT algorithm for the Minimum Length-Bounded
Cut problem when parameterized by the tree-depth. Thus showing an inter-
esting paradigm for this problem and parameters tree-depth and path-width.

Keywords length-bounded cuts · parameterized algorithms ·W[1]-hardness ·
polynomial kernel · tree-depth · tree-width

Research was supported by the project SVV-2016-260332.

The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) /
ERC Grant Agreement n. 616787.

Author supported by the project Kontakt LH12095, project GAUK 1784214 and project
CE-ITI P202/12/G061.

P. Dvořák · D. Knop
Faculty of Mathematics and Physics, Malostranské náměst́ı 25, 118 00 Praha 1
Tel.: +420-221914230
Fax: +420-257531014
E-mail: koblich@iuuk.mff.cuni.cz, knop@kam.mff.cuni.cz



2 Pavel Dvořák, Dušan Knop

1 Introduction

The study of network flows and cuts began in 1950s by the work of Ford
and Fulkerson [11]. It has many generalizations and applications now. We are
interested in a generalization of cuts related to the flows using only short paths.

Length-bounded Cuts Let s, t ∈ V be two distinct vertices of a graph
G = (V,E)—we call them the source and the sink, respectively. We call a
subset of edges F ⊆ E of G an L-bounded cut (or L-cut for short), if the
length of the shortest path between s and t in the graph (V,E \ F ) is at least
L + 1. We measure the length of the path by the number of its edges. In
particular, we do not require s and t to be in distinct connected components
as in the standard cut, instead we do not allow s and t to be close to each
other. We call the set F a minimum L-cut if it has the minimum size among
all L-bounded cuts of the graph G. Throughout the paper we denote by n the
number of vertices of input graph G and by m the number of edges of G.

We state the cut problem formally:
Problem: Minimum Length-Bounded Cut (MLBC)
Instance: graph G = (V,E), vertices s, t and integer L ∈ N
Goal: find a minimum L-bounded s, t cut F ⊂ E

Length-bounded flows were first considered by Adámek and Koubek [1].
They showed that the max-flow min-cut duality cannot hold and also that
integral capacities do not imply integral flow. Finding a minimum length-
bounded cut is NP-hard on general graphs for L ≥ 4 as was shown by Itai
et al. [15]. They also found algorithms for finding a minimum L-bounded cut
with L = 1, 2, 3 in polynomial time by reducing it to the usual network cut in
an altered graph. The algorithm of Itai et al. [15] uses the fact that paths of
length 1, 2 and 3 are edge disjoint from longer paths, while this does not hold
for length at least 4.

Baier et al. [2] studied linear programming relaxation and approxima-
tion of MLBC together with inapproximability results for MLBC. They also
showed instances of the MLBC having O(L) integrality gap for their linear
programming approach, which are series-parallel graphs and thus have con-
stant bounded tree-width. The first parameterized complexity study of this
and similar topics was made by Golovach and Thilikos [12] who studied pa-
rameterization by paths-length (that is in our setting the parameter L) and
the size of the solution for cuts. They also proved hardness results—finding
disjoint paths in graphs of bounded tree-width is a W[1]-hard problem. Very
recently Fluschnik et al. [10] showed that, unless a collapse in the Polynomial
Hierarchy occurs, there is no polynomial kernel with respect to parameters L
and the size of the solution.

The MLBC problem has its applications in network design and in telecom-
munications. Huygens et al. [14] use a MLBC as a subroutine in the design of
2-edge-connected networks with cycles at most L long. The MLBC problem
is called hop constrained in telecommunications and the number L is so called



Parameterized Complexity of Length-bounded Cuts and Multicuts 3

number of hops. The main interest is in the constant number of hops, see for
example the article of Dahl and Gouveia [6].

Note that the standard use of Courcelle’s theorem [4] gives for each fixed L
a linear time algorithm for the decision version of the problem. But there is no
apparent way of changing these algorithms into a single linear time algorithm.
Moreover there is a nontrivial dependency between the formula (and thus
the parameter L) and the running time of the algorithm given by Courcelle’s
theorem.

Now we give a formal definition of a rather new graph parameter, for which
we give one of our results:

Definition 1 (Tree-depth [18]) The closure Clos(F ) of a forest F is the
graph obtained from F by making every vertex adjacent to all of its ancestors.
The tree-depth td(G) of a graph G is one more than the minimum height of a
rooted forest F such that G ⊆ Clos(F ).

Our Contribution Our main contribution is an algorithm for the MLBC prob-
lem, its consequences and an algorithm for a more general multi-terminal ver-
sion problem.

Theorem 1 Let G be a graph of tree-width k. Let s and t be two distinct
vertices of G. Then for any L ∈ N a minimum L-cut between s and t can be
found in time O

(
L6k2 · n

)
.

Corollary 1 Let G be a graph, k = td(G) and s and t be two distinct vertices
of G. Then for any L ∈ N a minimum L-cut between s and t can be found in
time O

(
max{26k3 · n, nm}

)
.

Proof As k is the tree-depth of G it follows that the length of any path in G
can be upper-bounded by 2k (this follows from Proposition 6.2 in Nešetřil, de
Mendez book [17]). It is a folklore fact, that k is also an upper-bound on the
tree-width of G. Thus, we can use Theorem 1 for L < 2k. If L ≥ 2k, then L-cut
is standard minimum cut in G. For this case we use Orlin’s algorithm [19] for
max flow/min cut problem with running time O(nm). ut

Corollary 2 Let G = (V,E) be a graph of tree-width k, s 6= t ∈ V and L ∈ N.

A minimum L-cut between s and t can be found in time O
(
n6k

2+1
)
.

Theorem 2 Minimum Length-Bounded Cut parameterized by path-width
is W[1]-hard.

Path-width versus Tree-depth Admitting an FPT algorithm for a problem
when parameterized by the path-width (tree-width) implies an FPT algorithm
for the problem when parameterized by the tree-depth, as parameter-theoretic
observation easily shows. On the other hand, the FPT algorithm parameterized
by the path-width (tree-width) usually uses exponential (in the width) space,
while the tree-depth version uses only polynomial space (in the tree-depth).



4 Pavel Dvořák, Dušan Knop

From this point of view, it is interesting to find problems that are “on the
edge between path-width and tree-depth”. That is problems that admit an
FPT algorithm when parameterized by the tree-depth, but being W[1]-hard
when parameterized by the path-width.

The only other result of this type we are aware of, in the time of writing this
article, is by Gutin et al. [13]. The Minimum Length-Bounded Cut problem
is also a problem of this kind—as Theorem 2 and Corollary 1 demonstrate.

Theorem 1 gives us that the MLBC problem is fixed parameter tractable
(FPT) when parameterized by the length of paths and the tree-width and
that it belongs to XP when parameterized by the tree-width only (and is thus
solvable in polynomial time for graph classes with constant bounded tree-
width).

Theorem 3 There is no polynomial kernel for the Minimum Length-
Bounded Cut problem parameterized by the tree-width of the graph and the
length L, unless NP ⊆ coNP/poly.

We want to mention that our techniques apply also for a more general
version of the MLBC problem.

Length-bounded Multicut We consider a generalized problem, where instead of
only two terminals, we are given a set of terminals. For every pair of terminals,
we are given a constraint—a lower bound on the length of the shortest path
between these terminals.

More formally, let S = {s1, . . . , sq} ⊆ V be a subset of vertices of the graph

G = (V,E) and let a ∈ N(S
2) be a vector, where N(S

2) is a set of all natural
number vectors indexed by pairs of vertices in S. We call a subset of edges
F ⊆ E of G an a-bounded S-multicut if the length of the shortest path between
si and sj in the graph (V,E \F ) is at least asi,sj + 1 for every si, sj ∈ S, i < j.
Again if F has smallest possible size, we call it minimum a-bounded S-multicut.
We call the vertices s1, . . . , sq terminals. Let L ≥ maxsi,sj∈S : i<j asi,sj , we say
that the problem is L-limited.

Problem: Minimum Length-Bounded MultiCut (MLBMC)

Instance: graph G = (V,E), set S ⊂ V and a ∈ N(S
2)

Goal: find a minimum a-bounded S-multicut F ⊂ E

Theorem 4 Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = q
and let p := q + k. Then, for any L ∈ N and any L-limited length-vector a on
S a minimum a-bounded S-multicut can be computed in time O

(
L4p2 · n

)
.

2 Preliminaries

In this section we recall some standard definitions from graph theory and state
what a tree decomposition is. After this we introduce changes of the tree de-
composition specific for our algorithm. We proceed by the notion of auxiliary



Parameterized Complexity of Length-bounded Cuts and Multicuts 5

graphs used in proofs of our algorithm correctness. Finally, in Section 2.1 we
summarize the results allowing us to prove that it is unlikely for a parameter-
ized problem to admit a polynomial kernelization procedure.

Definition 2 A tree decomposition of a graph G = (V,E) is a pair T =
({BX : X ∈ I}, T = (I, F )), where T is a rooted tree and {BX : X ∈ I} is a
family of subsets of V, such that

1. for each v ∈ V there exists an X ∈ I such that v ∈ BX ,
2. for each e ∈ E there exists an X ∈ I such that e ⊆ BX ,
3. for each v ∈ V, Iv = {X ∈ I : v ∈ BX} induces a subtree of T.

We call the elements of I the nodes, the elements of the set F the decomposition
edges and a set BX is a bag of node X.

We define a width of a tree decomposition T = ({BX : X ∈ I}, T ) as
maxX∈I |BX | − 1 and the tree-width tw(G) of a graph G as the minimum
width of a tree decomposition of the graph G. Moreover, if the decomposition
is a path we speak about the path-width of G, which we denote as pw(G).

Nice Tree Decomposition [16] For algorithmic purposes it is common to define
a nice tree decomposition of the graph. We rooted the decomposition and
naturally orient the decomposition edges towards the root. For an oriented
decomposition edge (X,Y ) from X to Y we call Y the parent of X and X
a child of Y . If there is an oriented path from X to Y we say that X is a
descendant of Y .

We also adjust a tree decomposition such that for each decomposition edge
(X,Y ) it holds that BX and BY differ in at most one vertex. The in-degree
of each node is at most 2 and if the in-degree of the node Z is 2 then for its
children X,Y holds that BX = BY = BZ (i.e. they represent the same vertex
set).

We classify the nodes of a nice decomposition into four classes—namely
introduce nodes, forget nodes, join nodes and leaf nodes. We call the node X
an introduce node of the vertex v, if it has a single child Y and BX \BY = {v}.
We call the node X a forget node of the vertex v, if it has a single child Y
and BY \BX = {v}. If the node Z has two children X and Y , we call it a join
node (of the nodes X and Y ). Finally we call a node X a leaf node, if it has
no child.

Proposition 1 [16] Given a tree decomposition of a graph G with n vertices
that has width k and O(n) nodes, we can find a nice tree decomposition of G
that also has width k and O(n) nodes in time O(n).

Grafted Tree Decomposition So far we have described a standard nice tree
decomposition. Now, we will describe how to change a nice tree decomposi-
tion to a grafted tree decomposition. Let X be an introduce node and Y its
child. We add another two nodes Xc and Xs such that BXc = BXs = BX .
We remove decomposition edge (Y,X) and add three decomposition edges



6 Pavel Dvořák, Dušan Knop

(Y,Xc), (Xs, X) and (Xc, X) (see Figure 1). Note that after this operation,
Xs is a leaf of the decomposition, Xc is an introduce node and X is a join
node. Note that by these further modifications we preserve linear number of
nodes in the decomposition.

XBX

YBY

XBX

XcBXXsBX

YBY

Fig. 1 Change of Introduction nodes in the grafted tree decomposition.

Note that in the grafted tree decomposition for each edge e there is at least
one leaf Xs of the decomposition satisfying e ⊆ BXs . By the definition of tree
decomposition, we know there is a node Xc such that e ⊆ BXc . If Xc is not
a leaf node, then we may suppose that Xc is an introduce node (for join or
forget node choose its descendant). However, in the grafted decomposition any
introduce node Xc has a sibling Xs that is a leaf node and BXc = BXs .

Auxiliary Subgraphs For every edge e ∈ E(G) we choose an arbitrary leaf node
X such that e ∈ BX and say that the edge e belongs to the leaf node X. By
this process we have chosen set EX ⊂ E(G) for each leaf node X. Note that
the sets EX for all leaves X of the decomposition forms a partition of the
set E(G). We further use the notion of auxiliary graph GX . For a leaf node
X we set a graph GX = (BX , EX). For a non-leaf node Y we set a graph
GY = (V,E), where

V = BY ∪
⋃

X child of Y

V (GX)

E =
⋃

X child of Y

E(GX).

Vector Notation We often use integer vectors whose entries are indexed by
pairs of vertices. We use bold characters for vectors (a,b) and italic characters
for entries (ax,y, bx,y are entries of a, b respectively, for a pair of vertices x, y).

Let S be a set of vertices and a,b ∈ N(S
2). We write a � b, if ax,y ≤ bx,y for

all {x, y} ∈
(
S
2

)
.



Parameterized Complexity of Length-bounded Cuts and Multicuts 7

2.1 Preliminaries on Refuting Polynomial Kernels

Here we present a simplified review of a framework used to refute existence of
polynomial kernel for a parameterized problem from Chapter 15 of a mono-
graph by Cygan et al. [5].

In the following we denote by Σ a finite alphabet, by Σ∗ we denote the
set of all words over Σ and by Σ≤n we denote the set of all words over Σ and
length at most n.

Definition 3 (Polynomial equivalence relation) An equivalence relation
R on the set Σ∗ is called polynomial equivalence relation if the following con-
ditions are satisfied:

1. There exists an algorithm such that, given strings x, y ∈ Σ∗, resolves
whether x ≡R y in time polynomial in |x|+ |y|.

2. Relation R restricted to the set Σ≤n has at most p(n) equivalence classes
for some polynomial p(·).

Definition 4 (AND-cross-composition) Let L ⊆ Σ∗ be an unparame-
terized language and Q ⊆ Σ∗ × N be a parameterized language. We say
that L cross-composes into Q if there exists a polynomial equivalence rela-
tion R and an algorithm A, called the AND-cross-composition, satisfying the
following conditions. The algorithm A takes on input a sequence of strings
x1, x2, . . . , xr ∈ Σ∗ that are equivalent with respect to R, runs in polynomial
time in

∑r
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗ × N such that:

1. k ≤ p(maxr
i=1 |xi|, log r) for some polynomial p(·, ·), and

2. (y, k) ∈ Q if and only if xi ∈ L for all i.

We say that language L has a polynomial kernel if there is a kernelization
algorithm that takes on input an instance (x, k) ∈ Σ∗×N, runs in polynomial
time in |x| and k, and outputs an equivalent instance (x′, k′) ∈ Σ∗ × N with
|x′| ≤ p(k′) and k′ ≤ q(k), where p(·), q(·) are polynomials. With this frame-
work, it is possible to refute even stronger data reduction techniques—namely
polynomial compression:

Definition 5 (Polynomial compression) A polynomial compression of a
parameterized languageQ ⊆ Σ∗×N into an unparameterized languageR ⊆ Σ∗
is an algorithm that takes as input an instance (x, k) ∈ Σ∗ × N, works in
polynomial time in |x|+ k, and returns a string y such that:

1. |y| ≤ p(k) for some polynomial p(·), and
2. y ∈ R if and only if (x, k) ∈ Q.

It is easy to see that the polynomial kernelization is a special case of the
polynomial compression. It is possible to refute existence of polynomial com-
pression (and polynomial kernel) using AND-cross-composition with the help
of use of the following theorem and a complexity assumption that is unlikely
to hold—namely NP ⊆ coNP/poly.



8 Pavel Dvořák, Dušan Knop

Theorem 5 ([5,3]) Assume that an NP-hard language L AND-cross-
composes to a parameterized language Q. Then Q does not admit a polynomial
compression, unless NP ⊆ coNP/poly.

3 FPT Algorithm for the L-bounded Cut

In this section we present our approach to the L-bounded cut for the graphs
of bounded tree-width. First, we give a more detailed study of the length
constraints for the length-bounded multicut and the triangle inequalities. From
this we derive Lemma 1 for merging solutions for edge-disjoint graphs. Second,
we describe how to use dynamic programming in different nodes of the tree
decomposition, which gives us the final algorithm.

Triangle Inequalities Let I =
(
G = (V,E), S,a

)
be an instance of MLBMC

and F ⊆ E(G) be a solution of I. Note that the distances between terminals in
G′ = (V,E \F ) satisfy the triangle inequalities. This means that for any three
terminals s, t, u ∈ S and the distance function dist : V × V → N in G′ it holds

that dist(s, u)+dist(u, t) ≥ dist(s, t) ≥ as,t +1. We say that a vector a ∈ N(S
2)

satisfies sharp triangle inequalities if as,u+au,t+1 ≥ as,t (i.e. as,u+au,t > as,t)
for all distinct terminals s, t, u ∈ S. Thus, it makes sense to restrict instances
of MLBMC problem only to those satisfying sharp triangle inequalities. We
will formalize this idea in Observation 1.

Definition 6 (Length constraints) Let G = (V,E) be a graph, S ⊂ V and
let k = |S|. We call a vector a = (as1,s2 , . . . , ask−1,sk) a length constraint if it
satisfies sharp triangle inequalities.

Observation 1 Let I =
(
G = (V,E), S,a

)
be an instance of MLBMC and

F ⊆ E be a solution of I. Now, there exists a length constraint b ∈ N(S
2) such

that b � a and F is a solution of (G,S,b).

Proof Let dist : V × V → N be a distance function in graph (V,E \ F ). We
define bs,t as dist(s, t)−1 for all distinct terminals s, t ∈ S; thus F is b-bounded
S-multicut. It is straightforward to check the vector b is a length constraint
because the function dist satisfies triangle inequality. Now, b � a, since as,t <
dist(s, t) for all distinct terminals s, t ∈ S. Since b � a, the instance (G,S,b)
does not admit a solution of size smaller than |F |. Therefore, the set F is a
solution of (G,S,b). ut

For our approach it is important to see the structure of the solution on a
graph composed from two edge disjoint graphs.

Lemma 1 Let G1 = (V1, E1), G2 = (V2, E2) be edge disjoint graphs. Then for
the graph G = G1 ∪ G2 and S = V1 ∩ V2 and an arbitrary length constraint

a ∈ N(S
2) it holds that a minimum length a-bounded S-multicut F for G is a

disjoint union of the minimum length a-bounded S-multicuts F1 and F2 for
G1 and G2.



Parameterized Complexity of Length-bounded Cuts and Multicuts 9

Proof First we prove that there cannot be smaller solution than F1 ∪ F2. To
see this observe that for every a-bounded S-multicut F ′ on G it holds that
F ′ ∩ E1 is an a-bounded S-multicut on G1 (and vice versa for G2). Hence, if
F ′ would be a cut of smaller size than F , we would get a contradiction with
the minimality of choice of F1 and F2, because we would have |F ′| < |F | =
|F1|+ |F2|.

Now we prove that F = F1 ∪ F2 is a valid solution. To see this we prove
that every path between two terminals is not shorter than L. Let P be a path
in (V (G), E(G) \ F ) between terminals s, t ∈ S. We prove that the length of
P is at least as,t + 1 by an induction over a number h := |V (P ) ∩ S|. If h = 2
then because G1 and G2 are edge disjoint, we may (by symmetry) assume that
P ⊂ G1. Therefore, the length of P is at least as,t + 1 because F1 is a valid
solution.

If h > 2 then there is a vertex u ∈ S \ {s, t} such that the path P is
composed from two segments P1 and P2, where P1 is a path between s and u
and P2 is a path between u and t. Thus, by induction hypothesis and sharp
triangle inequalities, we have |P | = |P1|+ |P2| ≥ as,u + 1 + au,t + 1 ≥ as,t + 1,
what was to be demonstrated. ut

We use dynamic programming techniques on a grafted tree decomposition
T of an input graph. First, we want to root the decomposition T in a node
containing both source and sink of the L-cut problem. This can be achieved by
adding the source to all nodes on the unique path in the decomposition tree
between any node containing the source and any node containing the sink.
Note that this may add at most 1 to the width of the decomposition.

We solve the L-cut by reducing it to simple instances of generalized
MLBMC problem.

We reduce the problem to the a-bounded S-multicut for k terminals, where
k = tw(G) + 1 (the additional one is for changing the decomposition).

Let X = {x1, . . . , xk} be a set of vertices, a be a length constraint, let
I ⊂ [k] and let Y = {xi ∈ X : i ∈ I}. By a|Y we denote the length constraint
a containing axi,xj if and only if both i ∈ I and j ∈ I (in an appropriate
order)—in this case we say a|Y is a contracted on the set Y .

Dynamic programming tables Recall that for each node X of a tree decomposi-
tion we have defined the auxiliary graph GX (see Section 2 for the definition).
With a node X we associate the table TabX . The table entry for length con-
straints a = (ax1,x2

, . . . , axk−1,xk
) of TabX (denoted by TabX [a]) for the node

X = {x1, . . . , xk} contains the size of a minimum a-bounded X-multicut for
the set X in the graph GX . Note that for two length constraints a � b it holds
that TabX [a] ≤ TabX [b].

3.1 Node lemmata

The leaf nodes are the only nodes bearing some edges. We use an exhaustive
search procedure for building tables for these nodes. For this we need to com-



10 Pavel Dvořák, Dušan Knop

pute the lengths of the shortest paths between all the vertices of the leaf node,
for which we use the well known procedure due to Floyd and Warshall [9,20]:

Proposition 2 ([9,20]) Let G be a graph with nonnegative length
f : G(E)→ N. It is possible to compute the table of lengths of the shortest
paths between any pair u, v ∈ V (G) with respect to f in time O(|V (G)|3).

Lemma 2 (Leaf Nodes) For all L-limited length constraints and a leaf node
X the table TabX of sizes of minimum length-bounded multicuts can be com-
puted in time O

(
Lk2 · 2k2 · k3

)
, where k = |X|.

Proof Fix one L-limited length constraint a. Let GX = (V,E) and F ⊆ E.
We run the Floyd-Warshall algorithm (stated as Proposition 2) in graph
GF

X = (V,E \ F ). We check all O(k2) pairs of terminals if their distance is
sufficiently large, i.e. if F is an a-bounded S-multicut.

We iterate over all subsets of E and pick the minimum cut. As |E| ≤
(
k
2

)
there are O

(
2k

2)
choices for F . This gives us a running time O

(
2k

2 · k3
)

for a
single length constraint a. We set the entry for a in TabX as

TabX [a] := min
F⊆E : F is a a-bounded S-multicut

|F |.

Finally there are O
(
Lk2)

L-limited length constraints, this gives our result.
ut

We now use Lemma 1 to prove time complexity of finding a dynamic pro-
gramming table for join nodes from the table of its children.

Lemma 3 (Join Nodes) Let X be a join node with children Y and Z, let L
be the limit on length constraints and let k = |X|. Then the table TabX can be

computed in time O
(
Lk2)

from the table TabY and TabZ .

Proof Recall that graphs GY and GZ are edge disjoint and that we store sizes
of a-bounded multicuts. Note also that BX = V (GY ) ∩ V (GZ) and so we can
apply Lemma 1 and set TabX [a] := TabY [a] + TabZ [a], for each a satisfying

the triangle inequalities. As there are O
(
Lk2)

entries in the table TabX we
have the complexity we wanted to prove. ut

As the forget node represents forgetting a vertex, its table can be calculated
by forgetting part of the table of the child node.

Lemma 4 (Forget Nodes) Let X be a forget node, Y its child, let L be
the limit on length constraints and let k = |X|. Then the table TabX can be

computed in time O
(
L2k2)

from the table TabY .

Proof Fix one length constraint a and compute the set A(a) of all BY -
augmented length constraints. Formally, b ∈ A(a) if b is a length constraint
for BY and b|BX

= a. After this we set

TabX [a] := min
b∈A(a)

TabY [b].

In the worst case for every entry in TabX we search whole TabY , which gives
us the claimed time. ut



Parameterized Complexity of Length-bounded Cuts and Multicuts 11

Also the introduce node (as the counter part for the forget node) only adds
coordinates to the table of its child. It does no computation as there are no
edges it can decide about—these nodes now only add isolated vertices to the
auxiliary graph.

Lemma 5 (Introduce Nodes) Let X be an introduce node, Y its child, let
L be the limit on length constraints and let k = |X|. Then the table TabX can

be computed in time O
(
Lk2)

from the table TabY .

Proof Let v be the introduced vertex, i.e. v ∈ BX \ BY . Let T ′ be a subtree
of the grafted tree decomposition T rooted in X. Recall that each edge of the
auxiliary graph GX belongs to some leaf node of T ′. Since v is introduced in
the root of T ′, there is no leaf node of T ′ containing v. Thus, there is no edge
incident to v in GX . Therefore, we can set TabX [a] := TabY [a|BY

], because v
is arbitrarily far from any vertex in GY , especially from the set BY . ut

3.2 Proofs of Theorems

We use Lemma 2, 3, 4 and 5 to prove Theorem 4.

Theorem 6 Let G = (V,E) be a graph of tree-width k, S ⊆ V with |S| = q
and let p := q + k − 1. Then for any L ∈ N and any L-limited length con-

straint b ∈ [L](
S
2) a minimum b-bounded S-multicut can be computed in time

O(L3p2 · n).

Proof First, we compute all L-limited length-constraints in advance to work
with constraints instead of vectors that do not have to fulfill triangle inequal-
ities. This takes additional time O

(
Lk2 · k3

)
which can be upper-bounded by

O
(
L2k2)

for L ≥ 2, which we can suppose because the problem for L = 1 can
be trivially computed in linear time.

We create grafted tree decomposition T in linear time (see Section 2). We
need that all terminals would be in the root of T . Let S′ be a set S without one
vertex. We add the set S′ to every bag of the decomposition T—this increases
the width of T by at most |S′| = q− 1. Thus, there exists a node R of T such
that S ⊆ BR. We rooted the decomposition T in R.

We compute TabX for all nodes X of the decomposition T using
Lemma 2, 3, 4 and 5. Now, we are able to read the value of the solution
from TabR. Since L ≥ 2 and size of every bag in T is at most p = q + k, we
can upper-bound the processing time for any type of node by O

(
L3p2)

. There
are O(n) nodes in T which gives us the claimed time. ut
Theorem 1 and Theorem 4 are corollaries of Theorem 6.

Proof (Proof of Theorem 1) Since for two terminals the notions of length vector
and length constraint are the same, we can use Theorem 6 to prove Theorem 1.
For tw(G) = 1 (G is a tree) can be the problem computed trivially in linear

time. Otherwise for tw(G) = k >= 2, we have running time O
(
L3(k+1)2 · n

)
which can be upper-bounded by O

(
L6k2 · n

)
as claimed. ut



12 Pavel Dvořák, Dušan Knop

Proof (Proof of Theorem 4) Let (G,S,a) be an input and p = tw(G) + |S|.
By Observation 1 we know that there exists a length constraints b such that
instances (G,S,a) and (G,Sb) has the same solution. Therefore, it suffice to
try all length constraints c � a and select the smallest computed cut. By
Theorem 6, the processing for one length constraint is O

(
L3p2 · n

)
. There are

at most L|S|
2

length constraints which gives us the claimed time O
(
L4p2 · n

)
.
ut

4 Hardness of the L-bounded Cut

In this section we prove that Decision version of Length-Bounded
Cut parameterized by path-width is W[1]-hard by FPT-reduction from k-
Multicolor Clique.

Problem: Decision version of Length-Bounded Cut (DLBC)
Instance: Graph G = (V,E), vertices s, t, positive integers L,K
Question: Is there an L-bounded cut of size at most K?

Problem: k-Multicolor Clique
Instance: k-partite graph G = (V1 ∪̇ V2 ∪̇ . . . ∪̇ Vk, E), where Vi is

independent set for every i ∈ [k] and they are pairwise
disjoint

Parameter: k
Goal: find a clique of the size k

Notation In this section, sets V1, . . . , Vk are always partites of the k-partite
graph G. We denote edges between Vi and Vj by Eij . The problem is
W[1]-hard [5] even if every independent set Vi has the same size and the num-
ber of edges between every Vi and Vj is the same. Throughout this section we
denote the size of an arbitrary Vi by N and the size of an arbitrary Eij by M .
For an FPT-reduction from k-Multicolor Clique to DLBC parameterized
by path-width we need the following steps:

1. Create an DLBC instance G′ = (V ′, E′), s, t, L,K from the k-Multicolor
Clique instance G = (V1 ∪̇V2 ∪̇ . . . ∪̇Vk, E) in time f(k)|G|O(1) for a com-
putable function f .

2. Prove that G contains a k-clique if and only if G′ contains an L-bounded
cut of the size K.

3. Prove the path-width of G′ is smaller than g(k) where g is a computable
function.

Our ideas were inspired by work of Michael Dom et al. [7]. They proved
W[1] hardness of Capacitated Vertex Cover and Capacitated Domi-
nating Set parameterized by the tree-width of the input graph. We remark
that their reduction also proves W[1] hardness of these problems parameterized
by path-width.



Parameterized Complexity of Length-bounded Cuts and Multicuts 13

t′s′

t′s′

shortcuts

ridgeways

a) b)b)

3

Fig. 2 a) Example of a butte for h = 3 and Q = 4. b) Simple diagram for a butte of height
3.

4.1 Basic gadget

In the k-Multicolor Clique problem we need to select exactly one vertex
from each independent set Vi and exactly one edge from each Eij . Moreover,
we have to make certain that if e ∈ Eij is a selected edge and u ∈ Vi, v ∈ Vj
are selected vertices. then e = {u, v}. The idea of the reduction is to have a
basic gadget for every vertex and edge. We connect gadgets gv for every v in
Vi into a path Pi. The path Pi is cut in the gadget gv if and only if the vertex
v ∈ Vi is selected into the clique. The same idea will be used for selecting the
edges.

Definition 7 Let h,Q ∈ N. Butte B(s′, t′, h,Q) is a graph which contains h
paths of length 2 and Q paths of length h + 2 between the vertices s′ and t′.
The short paths (of length 2) are called shortcuts, the long paths are called
ridgeways and the parameter h is called height.

A butte for h = 3, Q = 4 is shown in Figure 2 part a. In our reduction all buttes
will have the same parameter Q (it will be computed later). For simplicity we
depict buttes as a dash-dotted line triangles with their height h inside (see
Figure 2 part b), or only as triangles without the height if it is not important.

Let B(s′, t′, h,Q) be a butte. We denote by s(B), t(B), h(B), Q(B) the pa-
rameters of butteB s′, t′, h andQ, respectively. We state an easy but important
observation about the butte path-width:

Observation 2 Path-width of an arbitrary butte B is at most 3.

Proof If we remove vertices s(B) and t(B) from B we get Q(B) paths from
ridgeways and h(B) isolated vertices from shortcuts. This graph certainly has
path-width 1. If we add s(B) and t(B) to every node of the path decomposition
we get a proper path decomposition of B with width 3. ut

Let butte B(s′, t′, h,Q) be a subgraph of a graph G. Let u, v be vertices of
G such that all paths between u and v going through B enter into B in s′ and
leave it in t′ (see Figure 3). The important properties of the butte B are:



14 Pavel Dvořák, Dušan Knop

u s′ t′ v

h

Fig. 3 Example of a path going through a butte.

1. By removing one edge from all h shortcuts of B, we extend the distance
between u and v by h. If a cut C contains one edge of every shortcut of
butte B we say the cut C ridges the butte B.

2. Suppose the size of a cut C is bounded by K ∈ N and C contains only
edges in B. If we increase Q to be bigger than K then C cannot separate
u and v (if C ridges B, then distance between u and v is only extended).

4.2 Butte path

In this section we define how we connect buttes into a path, which we call
highland. The main idea is to have highland for every pair (i, j), i 6= j ∈ [k].
In the highland for (i, j), there are buttes for every vertex v ∈ Vi and every
edge e ∈ Ei,j . We connect vertex buttes and edge buttes into a path. Then we
set the butte heights and limit the size of the cut in such a way that:

1. Exactly one vertex butte and exactly one edge butte have to be ridged.
2. If a butte for a vertex v is ridged, then only buttes for edges incident with
v can be ridged.

The formal description of a highland is in the following definition.

Definition 8 Let X,Y ∈ N. A highland H(X,Y, s, t) is a graph containing 2
vertices s and t and Z = X + Y buttes B1, . . . , BZ where:

1. s = s(B1), t = t(BZ) and t(Bi) = s(Bi+1) for every 1 ≤ i < Z.
2. h(Bi) = X2 + i for 1 ≤ i ≤ X.
3. h(Bi) ∈ {X4, . . . , X4 +X − 1} for X + 1 ≤ i ≤ Z.
4. Q(Bi) = X4 +X2 for every i.

Let H(X,Y, s, t) be a highland. We call buttes B1, . . . , BX from H low and
buttes BX+1, . . . , BX+Y high (low buttes will be used for the vertices and
high buttes for the edges). The vertex t(BX) = s(BX+1), where low and high
buttes meet, is called the center of highland H. Note that there can be more
buttes with the same height among high buttes and they are not ordered by
height as the low buttes. An example of a highland is shown in Figure 4.



Parameterized Complexity of Length-bounded Cuts and Multicuts 15

s = s1 t1 = s2 t2 sX sX+2 sX+3sX+1 sX+Y t
X2 + 1 X2 + 2 X2 +X

X4

+X − 3
X4

+X − 1
X4

X Y

Fig. 4 Example of a highland H(X,Y, s, t).

Proposition 3 Let H(X,Y, s, t) be a highland. Let L = 2(X + Y ) + X4 +
X2 +X − 1. Let C be an L-cut of size X4 +X2 +X, which cuts all paths of
length L and shorter between s and t then:

1. The cut C ridges exactly two buttes Bi, Bj, such that Bi is low and Bj is
high.

2. Let Bi be the ridged low butte and Bj be the ridged high butte. Then,
h(Bj) = X4 +X − i.

Proof Every butte has at least X2 + 1 shortcuts and X4 + X2 ridgeways.
Therefore, C can not cut all paths in H between s and t and it is useless to
add edges from ridgeways to the cut C. Note that the shortest st-path in H
has the length 2(X + Y ).

1. If the cut C ridges every low butte then the shortest st-path is extended by∑X
i=1(X2 + i) = X3 + X2

2 + X
2 . However, it is not enough and at least one

high butte has to be ridged. Two high buttes cannot be ridged otherwise
the cut would be bigger than the bound. No high butte can extend the
shortest st-path enough, therefore at least one low butte has to be ridged.
However, two low buttes and one high butte cannot be ridged because the
cut C would be bigger than the bound.

2. The height of ridged low butte Bi is X2 + i. Therefore, the length of the
shortest st-path when the edges in C are removed is 2(X + Y ) +X2 + i+
h(Bj) and the size of C is X2 + i + h(Bj). If h(Bj) < X4 + X − i then
shortest st-path is strictly shorter then 2(X + Y ) + X4 + X2 + X. Thus,
C is not an L-cut. If h(Bj) > X4 +X − i then |C| > X4 +X2 +X which
is bigger than the bound.

ut

4.3 Reduction

In this section we present our reduction. Let G = (V1 ∪̇V2 ∪̇ . . . ∪̇Vk, E) be the
input for k-Multicolor Clique. As we stated in the last section, the main
idea is to have a low butte Bv for every vertex v ∈ V (G) and a high butte Be

for every edge e ∈ E(G). Vertex v and edge e is selected into the k-clique if and
only if the butte Bv and the butte Be are ridged. From G we construct MLBC
input G′, s, t, L (the construction is quite technical, for better understanding
see Figure 5):



16 Pavel Dvořák, Dušan Knop

s

s

s

Hi,1

Hi,2

Hi,k

H1,i

s

t

t

N − 1

N M

Fig. 5 Some part of the graph G′. All vertices labeled s and t are actually two vertices s
and t in the graph G′. We divided them for better illustration. Highlands Hi,2 and Hi,k

have also high buttes, but we omitted them.

1. For every 1 ≤ i, j ≤ k, i 6= j we create highland Hi,j(N,M, s, t) of buttes
Bi,j

1 , . . . , Bi,j
N+M .

2. Let Vi = {v1, . . . , vN}. The vertex v` ∈ Vi is represented by the low butte
Bi,j

` of the highland Hi,j for every j 6= i. Thus, we have k − 1 copies of
buttes (in different highlands) for every vertex. Hence, we need to be certain
that only buttes representing the same vertex are ridged. Note that buttes
representing the same vertex have the same height and the same distance
from the vertex s.

3. Let Eij = {e1, . . . , eM}, i < j. Edge e` = {u, v} ∈ Eij(u ∈ Vi, v ∈ Vj) is

represented by the high butte Bi,j
N+` of the highland Hi,j and by the high

butte Bj,i
N+` of the highland Hj,i. Note that two buttes representing the

same edge have same distance from the vertex s. Let hi, hj be the heights
of buttes representing the vertices u and v, respectively. We set the buttes
heights:
(a) h(Bi,j

N+`) = N4 +N − hi
(b) h(Bj,i

N+`) = N4 +N − hj
4. We add edge

{
t(Bi,j

` ), t(Bi,j+1
` )

}
for every 1 ≤ i ≤ k, 1 ≤ j < k, i 6= j and

1 ≤ ` < N .
5. We add paths of length N − 1 connecting t(Bi,j

` ) and t(Bj,i
` ) for every

1 ≤ i, j ≤ k, i 6= j and N + 1 ≤ ` < N +M .
6. We set L to 2(N +M) +N4 +N2 +N − 1.

We call paths between highlands in Items 4 and 5 the valley paths.



Parameterized Complexity of Length-bounded Cuts and Multicuts 17

Observation 3 Graph G′ can be computed in polynomial time in the size of
graph G.

Theorem 7 If graph G has a clique of size k then (G′, s, t) has an L-cut of
size k(k − 1)(N4 +N2 +N).

Proof Suppose G has a k-clique {v1, . . . , vk} where vi ∈ Vi for every i and
eij = {vi, vj} ∈ Eij . We create an L-cut C. For every i the cut C ridges all
k − 1 buttes representing the vertex vi in G′. And for every i < j the cut C
ridges both buttes representing the edge eij .

We claim that the set C is an L-cut. Let Hi,j be an arbitrary highland.
We show there is no st-path of length at most L in Hi,j . Let h(Bv) = N2 + `
where Bv is an arbitrary butte representing the vertex vi. By construction of
G′, the high butte representing the edge eij in Hi,j has height N4 + N − `.
Thus, ridged buttes in Hi,j extend the shortest st-path by N4 +N2 +N and
it has length 2(M +N)+N4 +N2 +N . Buttes representing the vertex vi have
the same height. Thus, a path through the low buttes of highlands using some
valley path is always longer than a path going through low buttes of only one
highland. Therefore, it is useless to use valley paths among low buttes for the
shortest st-path.

The remaining paths to consider are those using valley paths among high
buttes, because buttes representing the same edge have different heights. The
butte Bv representing the vertex vi extends the shortest path at least by
N2 + 1. The butte Be representing the edge ei,j extends the shortest at least
by N4. However, if h(Bv) + h(Be) < N4 + N2 + N then Bv and Be have to
be in different highlands. Therefore, the st-path going through Bv and Be has
to use a valley path between high buttes, which has length N − 1. Hence, any
st-path has length at least 2(N +M) +N4 +N2 +N .

We remove N4 +N2 +N edges from each highland and there are k(k− 1)
highlands in G′. Therefore, G′ has L-cut of the size k(k−1)(N4+N2+N). ut

Theorem 8 If (G′, s, t) has an L-cut of size k(k − 1)(N4 +N2 +N) then G
has a clique of size k.

Proof Let C be an L-cut of G′. Every shortest st-path going through every
highland has to be extended by N4 + N2 + N . By Proposition 3 (Item 1),
exactly one low butte and exactly one high butte of each highland has to
be ridged. By Proposition 3 (Item 2) we remove (N4 + N2 + N) from every
highland in G′. Therefore, there can be only edges from ridged buttes in C.

For fixed i, highlands Hi,j are the highlands whose low buttes represent
vertices from Vi. We claim that ridged low buttes of Hi,1, . . . ,Hi,k represent
the same vertex. Suppose for contradiction, there exist two low ridged buttes
B` of Hi,` and Bm of Hi,m which represent different vertices from Vi. It follows
that there have to be two highlands Hi,p, Hi,p+1 such that their ridged low
buttes represent different vertices. Thus, we can suppose that Hi,` and Hi,m

are next to each other (i.e. |` −m| = 1) and the distance from s to s(B`) is
smaller than the distance from s to s(Bm). Let B′` be a butte of Hi,m such



18 Pavel Dvořák, Dušan Knop

Hi,ℓ

Hi,m

s

s
Bℓ

BmB′
ℓ

Fig. 6 How to miss every ridged low butte if there are ridged two low buttes representing
two different vertices from one color class. Ridged butte is depicted as triangle without
hypotenuse.

that it has the same distance from s as the butte B` (see Figure 6). The path
s–t(B′`)–t(B`)–t does not go through any ridged low butte. Therefore, this
path is shorter than L, which is contradiction. We can use the same argument
to show that there are not two high ridged buttes of highland Hi,j and Hj,i

which represent different edges from Eij .
We put into the k-clique K ⊂ V (G) the vertex vi ∈ Vi if and only if an

arbitrary butte representing the vertex vi is ridged. We proved in the previous
paragraph that exactly one vertex from Vi can be put into the clique K.
Let eij ∈ Eij be an edge represented by ridged high buttes. We claim that
vi ∈ eij . Let B ∈ Hi,j be a butte representing vi with height N2 + `. Then
by Proposition 3 (Item 2), butte B′ ∈ Hi,j of height N4 + N − ` has to be
ridged. By construction of G′, only buttes representing edges incident with vi
have such height. Therefore, chosen edges are incident with chosen vertices
and they form the k-clique of the graph G. ut
Observation 4 Graph G′ has path-width in O(k2).

Proof Let H be a graph created from G by replacing every butte by a single
edge and contract the valley paths between high buttes into single edges, see
Figure 7 transformation a. Let U be a vertex set containing s, t and every
highland center. Let H ′ be a graph created from H by removing all vertices
from U , see Figure 7 transformation b.

Graph H ′ is unconnected and it contains k grids of size k×(N−2) and
(
k
2

)
grids of size 2×(M−2). Path-width of (k−1)×(N−2) grids is in O(k), there-
fore pw(H ′) ∈ O(k). If we add set U to every node of a path decomposition of
H ′ we get proper path decomposition of H. Since |U | ∈ O(k2), path-width of
H is in O(k2). The edge subdivision does not increase path-width. Moreover,
replacing edges by buttes does not increase it either (up to multiplication con-
stant) because butte has the constant path-width (Observation 2). Therefore,
pw(G) = cpw(H) for some constant c and pw(G) ∈ O(k2).

ut
Thus Theorem 2 easily follows from Observations 3 and 4 and Theorems 7

and 8.



Parameterized Complexity of Length-bounded Cuts and Multicuts 19

Hi,1

Hi,2

Hi,k

H2,1

H2,i

H2,k

N M

N − 1

s

s

s

s

s

s

t

t

G′:

Hi,1

Hi,2

Hi,k

H2,1

H2,i

H2,k

s t

N MH:

H2,1

H2,i

H2,k

N − 2 M − 2
H ′:

Hi,1

Hi,2

Hi,k

a

b

Fig. 7 The transformation a replaces all buttes in G′ by single edges and contract long
valley paths into single edges. The transformation b removes vertices s and t and all highland
centers (highlighted by dotted ellipse) from H.

5 Polynomial kernel is questionable

In this section, we prove that the Minimum Length-Bounded Cut problem
is unlikely to admit a polynomial kernel when parameterized by the length L
and the path-width (tree-width) of the input graph. We will prove this fact
by the use of an AND-cross-composition framework—that is by designing an
AND-cross-composition algorithm from the Multicolor Clique problem:

Problem: Multicolor Clique
Instance: k-partite graph G and positive integer k
Question: Has the graph G a clique of size k?

It is unparameterized version of k-Multicolor Clique from the previous
section. The problem is NP-hard by well known reduction from the Clique
problem [5]. Note that in the input graph G all cliques have size at most k.
I.e., an instance (G, k) is an yes-instance if and only if the largest clique of G
has the largest possible size k.

We define the polynomial equivalence relation R as follows. Two instances
of the Multicolor Clique problem (G, k), (G′, k′) are equivalent if |V (G)| =
|V (G′)|, |E(G)| = |E(G′)| and k = k′. It is clear that R is a polynomial
equivalence relation.

AND-cross-composition We take the instances (G1, k), (G2, k), . . . , (Gr, k)
that are equivalent under the relation R. To every instance (Gi, k) we ap-



20 Pavel Dvořák, Dušan Knop

ply our reduction described in the previous section and get an instance
(G′i, si, ti, Li,Ki) of DLBC problem. Let n = |V (Gi)|,m = |E(Gi)|. By the
reduction,

Li = 2(n+m) + n4 + n2 + n− 1

Ki = k(k − 1)(n4 + n2 + n).

Since all instances of Multicolor Clique are equivalent under R, for all
i, j ≤ r holds that Li = Lj and Ki = Kj . Thus, all instances of DLBC has
a form (G′i, si, ti, L,K). We take the disjoint union of graphs G′1, G

′
2, . . . , G

′
r

and unify all sources si to a vertex s and sinks ti to a vertex t of the resulting
graph and denote the graph as G. As we build the AND-cross-composition
we set the budget of the resulting instance to r ·K, i.e., we have an instance
(G, s, t, L, rK) of DLCB problem.

By the reduction, the minimum L-bounded cut in every graph G′i has size
at least K. Therefore, the graph G has the minimum L-bounded cut of size at
least rK. If all instances (Gi, k) of Multicolor Clique are yes-instances,
then there is an L-bounded cut in the graph G of size rK. If there is an no-
instance (Gj , k) of Multicolor Clique, then every L-bounded cut in G′j
has size at least K + 1. Thus, every L-bounded cut in the graph G has size at
least rK + 1.

So far we created an instance I of MLBC from r instances
(G1, k), . . . , (Gr, k) of Multicolor Clique and the instance I is yes-instance
if and only if all instances (Gi, k) are yes instances. It remains to bound the
parameters path-width of G and L. It is discussed above that L is polyno-
mial in size of Gi. It is easy to see that the path-width of the graph G of our
construction is at most

max
i=1,2,...,r

|V (G′i)| − 1.

We can put each graph G′i into a bag Bi and connect them into a path.
Only two common vertices among bags are the vertices s and t, which arise
by unifying vertices si, ti respectively. Thus, s and t are in all bags and we
described the correct path decomposition such that |Bi| = |V (G′i)|.

Thus, we have AND-cross-composition from NP-hard problem to DLBC
parameterized by path-width and L. By Theorem 5, we can refute existence
of polynomial kernel for DLBC parameterized by path-width and L and this
finishes the proof of Theorem 3.

Acknowledgements We would like to thank our colleagues Jǐŕı Fiala, Petr Kolman and
Lukáš Folwarczný for fruitful discussions. Furthermore, our great thanks belongs to anony-
mous referees for the work they have done and the suggested improvements that led to this
improved version of the paper.

The results presented in this paper are an extension of those presented at the conference
TAMC 2015 [8].

Finally, we would like to mention that part of this research was done during international
REU 2014, when both authors were visiting DIMACS (Rutgers University).



Parameterized Complexity of Length-bounded Cuts and Multicuts 21

References

1. Adámek, J., Koubek, V.: Remarks on flows in network with short paths. Commenta-
tiones mathematicae Universitatis Carolinae 12(4), 661 – 667 (1971)

2. Baier, G., Erlebach, T., Hall, A., Köhler, E., Kolman, P., Pangrác, O., Schilling, H.,
Skutella, M.: Length-bounded cuts and flows. ACM Trans. Algorithms 7(1), 4:1–4:27
(2010). DOI 10.1145/1868237.1868241. URL http://doi.acm.org/10.1145/1868237.

1868241

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without
polynomial kernels. Journal of Computer and System Sciences 75(8), 423 – 434 (2009).
DOI http://dx.doi.org/10.1016/j.jcss.2009.04.001. URL http://www.sciencedirect.

com/science/article/pii/S0022000009000282

4. Courcelle, B.: Graph rewriting: An algebraic and logic approach. Handbook of The-
oretical Computer Science pp. 194–242 (1990). URL http://ci.nii.ac.jp/naid/

10009893142/en/

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015). DOI
10.1007/978-3-319-21275-3. URL http://dx.doi.org/10.1007/978-3-319-21275-3

6. Dahl, G., Gouveia, L.: On the directed hop-constrained shortest path problem. Oper-
ations Research Letters 32(1), 15 – 22 (2004). DOI 10.1016/S0167-6377(03)00026-9.
URL http://www.sciencedirect.com/science/article/pii/S0167637703000269

7. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and
covering: A parameterized perspective. In: M. Grohe, R. Niedermeier (eds.) Param-
eterized and Exact Computation, Lecture Notes in Computer Science, vol. 5018, pp.
78–90. Springer Berlin Heidelberg (2008). DOI 10.1007/978-3-540-79723-4 9. URL
http://dx.doi.org/10.1007/978-3-540-79723-4_9

8. Dvořák, P., Knop, D.: Parametrized complexity of length-bounded cuts and multi-cuts.
In: Theory and Applications of Models of Computation - 12th Annual Conference,
TAMC 2015, Singapore, May 18-20, 2015, Proceedings, pp. 441–452 (2015). DOI 10.
1007/978-3-319-17142-5 37. URL http://dx.doi.org/10.1007/978-3-319-17142-5_

37

9. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962). DOI
10.1145/367766.368168. URL http://doi.acm.org/10.1145/367766.368168

10. Fluschnik, T., Hermelin, D., Nichterlein, A., Niedermeier, R.: Fractals for kernelization
lower bounds, with an application to length-bounded cut problems. In: 43rd Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, pp. 25:1–25:14 (2016). DOI 10.4230/LIPIcs.ICALP.2016.25.
URL http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.25

11. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian journal of
mathematics 8(3), 399–404 (1956)

12. Golovach, P.A., Thilikos, D.M.: Paths of bounded length and their cuts: Parameter-
ized complexity and algorithms. Discrete Optimization 8(1), 72 – 86 (2011). DOI
10.1016/j.disopt.2010.09.009. URL http://www.sciencedirect.com/science/article/

pii/S1572528610000678

13. Gutin, G., Jones, M., Wahlström, M.: Structural parameterizations of the mixed chi-
nese postman problem. In: N. Bansal, I. Finocchi (eds.) Algorithms – ESA 2015,
Lecture Notes in Computer Science, vol. 9294, pp. 668–679. Springer Berlin Heidel-
berg (2015). DOI 10.1007/978-3-662-48350-3 56. URL http://dx.doi.org/10.1007/

978-3-662-48350-3_56

14. Huygens, D., Labbé, M., Mahjoub, A.R., Pesneau, P.: The two-edge connected hop-
constrained network design problem: Valid inequalities and branch-and-cut. Networks
49(1), 116–133 (2007). DOI 10.1002/net.20146. URL http://dx.doi.org/10.1002/

net.20146

15. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with
length constraints. Networks 12(3), 277–286 (1982). DOI 10.1002/net.3230120306. URL
http://dx.doi.org/10.1002/net.3230120306

16. Kloks, T.: Treewidth, Computations and Approximations (Lecture notes in computer
science, 842). Springer-Verlag New York, Inc. (1994)



22 Pavel Dvořák, Dušan Knop

17. Nešetřil, J., de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Algorithms
and Combinatorics. Springer Berlin Heidelberg (2012). URL https://books.google.

cz/books?id=n8UuUePJ_iIC

18. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics 27(6), 1022 – 1041 (2006). DOI http://
dx.doi.org/10.1016/j.ejc.2005.01.010. URL http://www.sciencedirect.com/science/

article/pii/S0195669805000570

19. Orlin, J.B.: Max flows in o(nm) time, or better. In: Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pp. 765–774 (2013). DOI
10.1145/2488608.2488705. URL http://doi.acm.org/10.1145/2488608.2488705

20. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962). DOI
10.1145/321105.321107. URL http://doi.acm.org/10.1145/321105.321107


