
DOCTORAL THESIS

Pavel Klavík

Extension Properties of Graphs
and Structures

Computer Science Institute of Charles University

Supervisor of doctoral thesis: Prof. RNDr. Jaroslav Nešetřil, DrSc.
Study program: Informatics

Study branch: Discrete Models and Algorithms

Prague 2017

2

Acknowledgements

The results presented in this thesis are based on several conference and journal papers.
Below, I give their list in the order of appearence.

Chapters 1 and 2. For these introductory chapters, only small parts and some
figures are used from the following papers.

[216] Pavel Klavík, Jan Kratochvíl, Tomasz Krawczyk, Bartosz Walczak.
Extending partial representations of function graphs and permutation graphs.
In Algorithms, ESA 2012, volume 7501 of Lecture Notes in Computer Science,
pages 671–682, 2012.
The full version at http://arxiv.org/abs/1204.6391.

[211] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki
Saitoh, Maria Saumell, and Tomáš Vyskočil.
Extending Partial Representations of Proper and Unit Interval Graphs.
In Algorithm Theory, SWAT 2014, volume 8503 of Lecture Notes in Computer
Science, pages 253–264, 2014.

[212] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki
Saitoh, Maria Saumell, and Tomáš Vyskočil.
Extending Partial Representations of Proper and Unit Interval Graphs.
The journal version of [211]. Algorithmica, 77(4):1071–1104, 2017.
The pre-print available at http://arxiv.org/abs/1207.6960.

[213] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh.
Extending Partial Representations of Subclasses of Chordal Graphs.
In Algorithms and Computation, ISAAC 2012, volume 7676 of Lecture Notes in
Computer Science, pages 444–454, 2012.

[214] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh.
Extending Partial Representations of Subclasses of Chordal Graphs.
The journal version of [213]. Theoretical Computer Science, 576:85–101, 2015.
The pre-print available at http://arxiv.org/abs/1207.0255.

[58] Steven Chaplick, Radoslav Fulek, and Pavel Klavík.
Extending Partial Representations of Circle Graphs.
In Graph Drawing, GD 2013, volume 8242 of Lecture Notes in Computer Science,
pages 131–142, 2013.

3

http://arxiv.org/abs/1204.6391
http://arxiv.org/abs/1207.6960
http://arxiv.org/abs/1207.0255

[59] Steven Chaplick, Radoslav Fulek, and Pavel Klavík.
Extending Partial Representations of Circle Graphs.
The journal version of [58], submitted, 2015.
The pre-print available at http://arxiv.org/abs/1309.2399.

[18] Martin Balko, Pavel Klavík, and Yota Otachi.
Bounded Representations of Interval and Proper Interval Graphs.
In Algorithms and Computation, ISAAC 2013, volume 8283 of Lecture Notes in
Computer Science, pages 535–546, 2013.

[19] Martin Balko, Pavel Klavík, and Yota Otachi.
Bounded Representations of Interval and Proper Interval Graphs.
In preparation, 2017.

Chapter 3.

[216] Pavel Klavík, Jan Kratochvíl, and Tomáš Vyskočil.
Extending Partial Representations of Interval Graphs.
In Theory and Applications of Models of Computation, TAMC 2011, volume
6648 of Lecture Notes in Computer Science, pages 276–285, 2011.

[215] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomáš
Vyskočil.
Extending Partial Representations of Interval Graphs.
The journal version of [216], accepted to Algorithmica, 2016.
The pre-print available at http://arxiv.org/abs/1306.2182.

Chapter 4.

[222] Pavel Klavík, and Maria Saumell.
Minimal Obstructions for Partial Representations of Interval Graphs.
In Algorithms and Computation, ISAAC 2014, volume 8889 of Lecture Notes in
Computer Science, pages 401–413, 2014.

[223] Pavel Klavík, and Maria Saumell.
Minimal Obstructions for Partial Representations of Interval Graphs.
The journal version of [222], submitted, 2015.
The pre-print available at http://arxiv.org/abs/1406.6228.

Chapter 5.

[219] Pavel Klavík, Yota Otachi, and Jiří Šejnoha.
On the Classes of Interval Graphs of Limited Nesting and Count of Lengths.
In 27th International Symposium on Algorithms and Computation, ISAAC 2016,
volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pages
45:1–45:13, 2016.

4

http://arxiv.org/abs/1309.2399
http://arxiv.org/abs/1306.2182
http://arxiv.org/abs/1406.6228

[221] Pavel Klavík, Yota Otachi, and Jiří Šejnoha.
On the Classes of Interval Graphs of Limited Nesting and Count of Lengths.
The journal version of [219], submitted, 2017.
The pre-print available at http://arxiv.org/abs/1510.03998.

Chapter 6. For this introductory chapter, only small parts and some figures are used
from the following papers.

[224] Pavel Klavík and Peter Zeman.
Automorphism groups of geometrically represented graphs.
In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, volume 30 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 540–553, 2015.

[225] Pavel Klavík and Peter Zeman.
Automorphism groups of geometrically represented graphs.
The journal version of [224], submitted, 2015.
The pre-print available at http://arxiv.org/abs/1407.2136.

Chapters 7, 10, and 11.

[118] Jiří Fiala, Pavel Klavík, Jan Kratochvíl, and Roman Nedela.
Algorithmic Aspects of Regular Graph Covers with Applications to Planar Graphs.
In Automata, Languages, and Programming, ICALP 2014, volume 8572 of Lec-
ture Notes in Computer Science, pages 489–501, 2014.

[119] Jiří Fiala, Pavel Klavík, Jan Kratochvíl, and Roman Nedela.
3-connected Reduction for Regular Graph Covers.
The journal version of the first part of [118], submitted, 2017.
The pre-print available at http://arxiv.org/abs/1503.06556.

[120] Jiří Fiala, Pavel Klavík, Jan Kratochvíl, and Roman Nedela.
Algorithmic Aspects of Regular Graphs Covers.
The journal version of the second part of [118], submitted, 2017.
The pre-print available at http://arxiv.org/abs/1609.03013.

Chapter 8.

[217] Pavel Klavík, Roman Nedela, and Peter Zeman.
Jordan-like Characterization of Automorphism Groups of Planar Graphs.
Submitted, 2017. The pre-print available at http://arxiv.org/abs/1506.
06488.

Chapter 9.

[209] Pavel Klavík, Dušan Knop, and Peter Zeman.
Graph Isomorphism Restricted by Lists.
Submitted, 2017. The pre-print available at http://arxiv.org/abs/1607.
03918.

5

http://arxiv.org/abs/1510.03998
http://arxiv.org/abs/1407.2136
http://arxiv.org/abs/1503.06556
http://arxiv.org/abs/1609.03013
http://arxiv.org/abs/1506.06488
http://arxiv.org/abs/1506.06488
http://arxiv.org/abs/1607.03918
http://arxiv.org/abs/1607.03918

I would like to thank my supervisor prof. Jaroslav Nešetřil for discussions and
generous support during my PhD studies. I would like to thank the students of my
classes at Charles University for many ideas and discussions—this is what moves math-
ematics forward. I am glad that I could supervise Bachelor’s and Master’s thesis’ of
Peter Zeman, we did a lot of great collaboration together.

I am also thankful to Zdeněk Hedrlín and his group, namely Jiří Šejnoha, for
changing my view of the world. We worked on mind modelling, and sharing and
understanding of Big Picture using structural diagrams. I would like to thank about
200 students of Charles University who participated in our education experiment of
this method for examination of linear algebra.

I would like to thank Jan Bok, Andrew Goodall, and Peter Zeman for proofread-
ing some parts of this thesis.

Last, but not least, I would like to thank my family and to my friends for
supporting me during my studies, especially to my girlfriend Kamila.

I declare that I carried out this PhD thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Prague, June 28, 2017 Pavel Klavík

6

Contents

1 Introduction to Geometric Representations of Graphs 15

1.1 Motivation . 16
1.1.1 Tutte’s Spring Embedding and Spectral Graph Drawing 18
1.1.2 Benzer’s Study of the Structure of DNA 21
1.1.3 Riemann Mapping Theorem and Circle Packings 26

1.2 Definitions . 32
1.3 Intersection Representations . 33

1.3.1 Interval Graphs . 34
1.3.2 k-nested and k-length Interval Graphs 36
1.3.3 Chordal Graphs . 37
1.3.4 Comparability Graphs and Related Geometric Graph Classes . . 39
1.3.5 Circle Graphs . 42
1.3.6 Circular-Arc Graphs . 44
1.3.7 String Graphs . 45

1.4 Planar Embeddings . 45
1.4.1 Polyhedral Graphs . 46
1.4.2 Contact Representations . 47
1.4.3 Subclasses of Planar Graphs . 47
1.4.4 Bounded Genus Graphs and Other Graph Classes 48

1.5 Results of This Thesis . 48
1.5.1 Part I: Partial Representation Extension Problems 49
1.5.2 Part II: Extending Algebraic Properties of Graphs 51

7

I The Partial Representation Extension Problems 53

2 State of The Art for Partial Representation Extension 55
2.1 Definitions and Motivation . 56
2.2 Interval Graphs . 59

2.2.1 Structural Results . 59
2.2.2 Algorithmic Results . 61

2.3 Proper and Unit Interval Graphs . 62
2.3.1 Proper Interval Graphs . 62
2.3.2 Unit Interval Graphs . 63

2.4 k-nested and k-length Interval Graphs 67
2.5 Chordal graphs . 69
2.6 Circle Graphs . 71
2.7 Partial Orientation Extension Problems 75

2.7.1 Modular Decomposition and Modular Trees 76
2.7.2 Transitive Orientations and Comparability Graphs 78
2.7.3 Permutation Graphs . 80
2.7.4 Function Graphs . 81
2.7.5 Trapezoid Graphs . 84
2.7.6 Proper Circular-arc Graphs . 85

2.8 Extending Other Types of Partial Representations 86
2.9 Related Restricted Representation Problems 87

2.9.1 Chronological Ordering . 88
2.9.2 Bounded Representation Problems 89
2.9.3 Representation Sandwich Problems 91
2.9.4 Simultaneous Representations Problems 92
2.9.5 Allen Algebras and Interval Satisfiability 94

2.10 Open Problems . 96

3 Extending Partial Interval Representations in Linear Time 99
3.1 PQ-trees and Consecutive Orderings of Maximal Cliques 100
3.2 Characterization of Extendible Partial Representations 102
3.3 The Reordering Problem of PQ-trees 106

3.3.1 The Reordering Problem for General Orderings 106
3.3.2 The Reordering Problem for Interval Orderings 108

8

3.4 Linear-time Algorithm . 113

4 Minimal Obstructions for RepExt of Interval Graphs 117
4.1 Definition of Minimal Obstructions . 118

4.1.1 List of Minimal Obstructions 119
4.1.2 Proofs of Non-extendibility and Minimality 124

4.2 MPQ-trees and Basic Tools . 125
4.2.1 MPQ-trees . 125
4.2.2 Basic Tools . 128

4.3 Strategy for Finding Minimal Obstructions 129
4.4 Obstructed Leaves . 131
4.5 Obstructed P-nodes . 131
4.6 Obstructed Q-nodes . 134

4.6.1 Cliques in Two Different Subtrees 135
4.6.2 k-FAT and (k, ℓ)-CE Lemmas 137
4.6.3 Cliques in Three Different Subtrees 142

4.7 Proofs of the Main Results . 150
4.8 Conclusions . 151

5 Interval Graphs of Limited Nesting and Count of Lengths 155
5.1 Extending Partial Representations with Two Lengths 156
5.2 Basic Properties of k-Nested Interval Graphs 157
5.3 Recognizing k-nested Interval Graphs 159

5.3.1 Triples (α, β, γ) . 160
5.3.2 Triples for P-nodes . 164
5.3.3 Triples for Q-nodes . 165
5.3.4 Construction of Linear-time Algorithm 168

5.4 Conclusions . 169

II Extending Algebraic Properties of Graphs 171

6 Overview of Algebraic Properties of Graphs 173
6.1 Outline . 174
6.2 3-connected Reduction . 175

6.2.1 Atoms, Reduction Series and Reduction Tree 175

9

6.2.2 Change in Automorphism Groups 175
6.2.3 Relation to Previous Works . 176

6.3 Automorphism Groups of Planar Graphs 177
6.3.1 Restricted Graph Classes and Jordan-like Characterizations . . 177
6.3.2 Babai’s Characterization . 182
6.3.3 The Jordan-like Characterization 184
6.3.4 Quadratic-time Algorithm . 184

6.4 Graph Isomorphism Problem . 186
6.5 Graph Isomorphism Problem Restricted by Lists 188

6.5.1 Our Results . 190
6.6 Regular Graph Covers . 191

6.6.1 Motivations for Regular Graph Covering 192
6.6.2 Structural Results . 194
6.6.3 Regular Covering Testing . 196
6.6.4 Related Computational Problems 196
6.6.5 Other Covering Problems . 198
6.6.6 Three Properties . 200
6.6.7 The Meta-algorithm . 200

7 3-connected Reduction 203
7.1 Definition of Extended Graphs . 204
7.2 Group Theory and Automorphism Groups of Graphs 205

7.2.1 Introduction to Group Theory 205
7.2.2 Automorphism Groups of Extended Graphs 210

7.3 Block Trees and Their Automorphisms 212
7.3.1 Properties of Automorphisms 212
7.3.2 Characterization of Automorphism Groups 213
7.3.3 Why Not Just 2-connected Graphs? 215

7.4 Structural Properties of Atoms . 216
7.4.1 Definition and Basic Properties of Atoms 216
7.4.2 Structure of Primitive Graphs and Atoms 217
7.4.3 Non-overlapping Atoms . 219
7.4.4 Symmetry Types of Atoms . 221

7.5 Reduction Series and Reduction Trees 222
7.6 Reduction Epimorphism . 224

10

7.6.1 Properties of Reduction Epimorphism 224
7.6.2 Semidirect Product . 226
7.6.3 Inductive Characterization . 229

7.7 Polynomial-time Algorithms . 230
7.8 Comparison with Previous Results . 232

8 Automorphism Groups of Planar Graphs 235
8.1 Automorphism Groups of 3-connected Planar Graphs 236

8.1.1 Automorphism Groups of Planar Primitive Graphs and Atoms . 237
8.2 The Jordan-like Characterization . 238

8.2.1 Characterization by Semidirect Product Series 239
8.2.2 Fixer of the Boundary of an Expanded Atom 239
8.2.3 Composition of Spherical groups with Fixers 250
8.2.4 Possible Lengths of Orbits . 252

8.3 Applications of Jordan-like Characterization 256
8.3.1 Automorphism Groups of 2-connected Planar Graphs 256
8.3.2 Automorphism Groups of Outerplanar Graphs 257
8.3.3 Automorphism Groups of Series-Parallel Graphs 259

8.4 Comparison with Babai’s Characterization 261
8.5 Quadratic-time Algorithm . 264
8.6 Conclusions . 266

9 Graph Isomorphism Restricted by Lists 269
9.1 Basic Results . 270

9.1.1 Bipartite Perfect Matchings . 270
9.1.2 Basic Complexity Results . 270

9.2 GI-completeness of GraphIso Implies NP-completeness of ListIso 272
9.3 NP-completeness for 3-regular Colored Graphs 274
9.4 Trees . 277
9.5 Planar Graphs . 278
9.6 Interval, Permutation and Circle Graphs 280

9.6.1 Interval Graphs . 280
9.6.2 Permutation Graphs . 281
9.6.3 Circle Graphs . 282

9.7 Bounded Genus Graphs . 283

11

9.8 Bounded Treewidth Graphs . 284
9.9 Conclusions . 287

10 3-connected Reduction for Regular Graph Covers 291
10.1 Definition of Regular Graph Covering 292
10.2 Regular Projections and Quotients of Atoms 294
10.3 Quotient Expansions . 298

10.3.1 Quotients and Their Expansion 299
10.4 Quotients of Planar Graphs and Negami’s Theorem 304
10.5 Concluding Remarks . 307

11 Algorithmic Aspects of Regular Graph Covers 309
11.1 Complexity of Regular Graph Covering 310
11.2 Atoms, Reduction and Expansion . 311
11.3 Meta-algorithm . 312

11.3.1 Overview of Testing Expandability 313
11.3.2 Catalog of Atoms . 315
11.3.3 Reductions with Lists . 318
11.3.4 Proof of The Main Theorem . 325

11.4 Star Blocks Atoms with Lists . 327
11.4.1 Preprocessing Star Block Atoms 328
11.4.2 Sizes and Chains . 330
11.4.3 Reduction to the IV-Matching Problem 332

11.5 Applying the Meta-algorithm to Planar Graphs 334
11.6 Concluding Remarks . 334

Bibliography 339

Index 363

12

Title: Extension Properties of Graphs and Structures
Author: RNDr. Pavel Klavík
Department: Computer Science Institute of Charles University
Supervisor: Prof. RNDr. Jaroslav Nešetřil, DrSc.
Supervisor’s e-mail: nesetril@iuuk.mff.cuni.cz
Keywords: geometric representations of graphs,

partial representation extension,
regular graph covering,
automorphism groups,
graph isomorphism problem

Abstract:
The main motivation for graph drawing and geometric representations is find-

ing ways to visualize graphs efficiently to make their structure as understandable as
possible. In this thesis, we are concerned with structural properties which are implied
for graphs having certain geometric representations. We study two types of geometric
representations: intersection representations in which the vertices are represented by
geometric sets while the edges are encoded by their intersections, and planar embed-
dings of planar graphs which are drawing of graphs into the plane without crossing
edges. The existence of geometric representations can be used to deduce additional in-
formation about graphs. The main idea of this thesis is to ask what extra information
can be deduced from the structure of all possible geometric representations.

In Part I, we study the partial representation extension problems for intersection
representations. Aside from the graph, the input also gives a partial representation,
which prescribes a representation of an induced subgraph. We ask whether this par-
tial representation can be extended to a full representation of the input graph without
altering the predrawn sets. I introduced this problem in 2010 in my Bachelor’s the-
sis. We survey the state-of-the-art results for many graph classes. We concentrate
on interval graphs and prove both structural and algorithmic results for the partial
representation extension problem.

In Part II, we study algebraic properties of graphs, namely their automor-
phism groups, the graph isomorphism problem and regular graph covering. The main
structural tool is the 3-connected reduction which decomposes each graph G into 3-
connected components. We are mostly concerned with planar graphs, but some of our
results apply to general graphs. In 1867, Jordan described an inductive characteriza-
tion of the automorphism groups of trees. We describe the first Jordan-like inductive
characterization of the automorphism groups of planar graphs. Also, we study the
list restricted graph isomorphism problem for variety of graph classes and parameters.
For regular graph covering, we describe all regular quotients of planar graphs and
construct an FPT algorithm for testing regular graph covering for planar inputs.

13

14

1 Introduction to Geometric
Representations of Graphs

1.1 Motivation . 16
1.2 Definitions . 32
1.3 Intersection Representations . 33
1.4 Planar Embeddings . 45
1.5 Results of This Thesis . 48

This chapter contains:

• 1.1: Motivation. We introduce graph drawing and graph representations by
three detailed motivations: 1) Tutte’s spring embedding of planar graphs
using linear algebra and physics, 2) Benzer’s study of DNA using interval
graphs, 3) circle packings of planar graphs and their relation to Riemann
Mapping Theorem in complex analysis.
• 1.2: Definitions. We define graphs, geometric representations, the recogni-

tion problems, and the other main definitions used in this thesis.
• 1.3: Intersection Representations. We describe the main classes of inter-

section graphs which are discussed in this thesis.
• 1.4: Planar Embeddings. We describe planar and spherical embeddings.

Also, the special geometric role of 3-connected planar graphs due to Steinitz,
Whitney and Mani is discussed.
• 1.5: Results of This Thesis. We describe the organization of this thesis and

give a short overview of the main proved results.

http://pavel.klavik.cz/orgpad/geom_rep.html

15

http://pavel.klavik.cz/orgpad/geom_rep.html

Chapter 1. Introduction to Geometric Representations of Graphs

1.1 Motivation

The study of geometric representations of graphs is as old as graph theory itself and
drawings of graphs appear in every introductory book and lecture. We are so used to
these drawings that when one says “think of the Petersen graph”, we likely think of a
figure similar to the one on the left instead of an abstract pair of vertices and edges
as on the right. (However, the description on the right is sometimes useful.)

G

versus

V (G) =

(

{1, 2, 3, 4, 5}

2

)

=

{

{x, y} : x, y ∈ {1, 2, 3, 4, 5}, x 6= y
}

E(G) =
{

uv : u, v ∈ V (G), u ∩ v = ∅
}

The main motivation for graph drawing and geometric representations is find-
ing ways to visualize graphs efficiently to make their structure as understandable as
possible; see Fig. 1.1. The issue with this statement is that the notion of efficiency of
representations is very vague. In my experience, there are two basic approaches in the
field of graph drawing:

• Theoretical approach – studying restrictive types of representations of restricted
graphs. The representations studied are precisely defined but might not be very
helpful (and so non-efficient).
• Applied approach – construction of nice representations of large graphs and net-

works, coming from practice, and construction of algorithms based on heuristics.

Of course, results in the field are based on a combination of these approaches. In this
thesis, our approach is theoretical. We are concerned with structural properties which
are implied for graphs having certain geometric representations.

Three Applications of Geometric Representations. In the rest of this section,
we describe three diverse connections of graph representations to other areas of math-
ematics and to other sciences.

∼
=

Figure 1.1: On the left, the drawing is not very understandable since the graph
contains too many edges. The drawing in the middle is also hard to understand, while
the structure of the same graph is immediately apparent from the drawing on the
right.

16

1.1. Motivation

Section 1.1.1: Tutte’s Spring Embedding of planar graphs [343] and its connec-
tion to linear algebra and physics. Tutte proved that every 3-connected planar graph
can be drawn by pinning vertices of the outer face into a convex polygon, replac-
ing edges by springs and letting the system of springs come to rest. By the laws of
physics, the system in the rest minimizes the total potential energy of springs, and the
energy-minimizing state can be computed by solving linear systems. Having over 1000
citations in Google Scholar, this work greatly influenced the study of graph drawing
and embeddings of planar graphs.

Section 1.1.2: Benzer’s application of interval graphs in his study [24] of the
structure of DNA and genes from 1959. Each mutation modifies a small connected
part of DNA. Benzer constructed experiments which tested for each pair of mutations
whether they overlapped. Therefore, he obtained information about intersections in
the data and he pioneered the mathematical study of the possible topologies which
can be inferred from the data. For geometric representations of graphs, his work is
historically important because it had a profound influence on the study of interval
graphs and many other classes of intersection graphs.

Section 1.1.3. Thurston’s application of circle packings of planar graphs [309]
to the Riemann Mapping Theorem [302] for conformal mappings in complex analysis.
Ensured by the existence of complex derivatives, conformal mappings are locally rigid
since they map infinitesimal circles to infinitesimal circles. The Riemann Mapping
Theorem states that they are globally flexible: any simply connected region can be
mapped by a conformal bijection into the unit disk. (For instance, the unit square
can be mapped to the unit disk while locally preserving angles and ratios of lengths.)
The Riemann Mapping Theorem proves existence, but explicitely finding conformal
bijections is a difficult problem. Thurston’s method is an iterative approach to compute
approximative conformal bijections using circle packings.

I choose these applications based on several criteria. Most importantly, they
should be beautiful and surprising, but of course this criterion is very subjective. They
should be important and influential. I really love their connection to linear algebra
and complex analysis, which are both subjects I am very fond of. (And I am very
thankful to Charles University that I could teach them for a few years.)

I also wanted to include applications which are not widely known, i.e., which
are not a part of introductory texts and lectures on graph theory or even geometric
representations. (This was one of the reasons not to include Euler’s formula for the
number of vertices, edges, and faces of polyhedra.) From these three applications,
Tutte’s Spring Embedding is likely the most widely known.

Lastly, these applications should be important with respect to the rest of the
thesis. Therefore, they are concerned with interval graphs (key in Part I) and planar
graphs (key in Part II). In particular, Section 1.1.1 sheds some light on the structure of
3-connected planar graphs. Complex analysis, described in Section 1.1.3, is important
for describing symmetries of the sphere, which play a key role in Chapters 8, 10,
and 11.

It is important to note that the rest of this section may be freely skipped and only
some small details are occasionally referred to in the remainder of this thesis. On the

17

Chapter 1. Introduction to Geometric Representations of Graphs

other hand, I believe that these three applications greatly spice up this thesis. In the
remainder of this chapter, i.e., Sections 1.2, 1.3, 1.4, and 1.5, we give an overview of
important geometric representations of graphs and describe the main goals and results
of this thesis.

1.1.1 Tutte’s Spring Embedding and Spectral Graph Drawing

Planar graphs are graphs which can be drawn in the plane without edges crossing, see
Section 1.4 for more details. In 1963, Tutte [343] described an elegant way to construct
embeddings of 3-connected planar graphs based on linear algebra and physics.

Laplacian Matrices. We start with a small detour into applications of linear algebra
in graph theory; for more detail, see [325, 66, 151]. The central idea is to study graph
properties from algebraic properties of an associated matrix. For instance, to an
n-vertex graph G with V (G) = {1, . . . , n}, we can associate two n-by-n matrices: the
adjacency matrix AG and the Laplacian matrix LG, defined as

(AG)i,j =

⎧⎨⎩1 if ij ∈ E(G),
0 else,

and (LG)i,j =

⎧⎪⎪⎨⎪⎪⎩
d(i) if i = j,
−1 if ij ∈ E(G),
0 else,

where d(i) is the degree of the vertex i. Figure 1.2 depicts an example.
By choosing different matrix representations of G, different graph properties of

G are revealed. Why? The key concept of linear algebra is that an m-by-n real matrix
can be viewed in two different ways: as an m-by-n table of data, or as a representation
of a linear mapping from Rn to Rm. There is no difference between AG and LG when
we look at them as tables of data since they contain the same information. However,
they represent completely different linear transformations from Rn to Rn.

We can think of vectors x ∈ Rn as of evaluations of the vertices V (G), i.e., xi is
the value of the vertex i. For y = AG · x and z = LG · x, we get

yi =
∑

ij∈E(G)
xj,

zi = d(i) · xi −
∑

ij∈E(G)
xj = d(i) ·

(
xi −

1
d(i)

∑
ij∈E(G)

xj

)
. (1.1)

By iterating AG, we distribute the values of vertices in x throughout the graph which
can be used for instance in probabilistic models of random walks. We are concerned

1

2

34

5
6

G

AG =

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1 1

, LG =

3 −1 −1 −1

−1 3 −1 −1

−1 3 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 −1 −1 5

.

Figure 1.2: The adjacency matrix AG and the Laplacian matrix LG of the graph G.

18

1.1. Motivation

with the Laplacian matrix LG for which the value zi is the difference between xi and
the average xj over all neighbors j of i, and this difference is multiplied by d(i).

The Laplacian matrix LG is the discretization of the Laplace operator ∆, which
is a differential operator used in physics to model diffusion, electrostatic potential, etc.
In the Cartesian coordinates in R2, it is defined as

∆f = ∂2f

∂x2 + ∂2f

∂y2 .

The value ∆f(x, y) is the difference between f(x, y) and the average value of f over
infinitesimal circle centered at (x, y) [287, Section 12.II.3]. Equivalently, the Laplace
operator ∆ is the divergence of the gradient: ∆ = ∇·∇. We note that this corresponds
to the discrete analog LG = IGI

T
G where IG is the incidence matrix of the graph G;

see [333] for more detail.

Spring Embedding. Let G be a 3-connected planar graph. We fix positions of k
vertices of an outer face in such a way that they form a convex k-gon. Tutte [343]
proved that LG can be used to construct the rest of the planar embedding.

Let 1, . . . , k be the vertices of the outer face and let k+1, . . . , n be the remaining
vertices. We want to compute vectors x and y of positions such that the vertex i
is placed in the position (xi, yi). The fixed positions of 1, . . . , k prescribe the values
x1, . . . , xk and y1, . . . , yk. For each vertex k+1, . . . , n, we require that it is placed in the
barycenter of the position of its neighbors, and we call it a barycentric representation.

By (1.1), this requirement is equivalent to

(LG · x)j = 0 and (LG · y)j = 0, ∀j = k + 1, . . . , n.

Since the values x1, . . . , xk and y1, . . . , yk are fixed, we can substitute them into these
linear systems, and we get linear systems

L̂G · x̂ = b and L̂G · ŷ = c, (1.2)

where L̂G is the minor of LG created by removing the first k rows and columns, x̂
and ŷ are the vectors x and y without the first k coordinates, and b and c are the
right-hand sides determined by the positions of the vertices 1, . . . , k.

Tutte [343] proved that L̂G is regular, so there exist unique solutions to the
linear systems in (1.2), and when edges are represented by straight-line segments, the
barycentric representation is a planar embedding of G.

Even though it was not described in [343], there is the following well-known
physics interpretation, which explains why it is often called a spring embedding; see [231]
for a survey. Figure 1.3 shows an example. Suppose that we pin vertices 1, . . . , k to
their positions. For every edge, we place a spring. The springs corresponding to edges
sharing a vertex are attached to each other, and for the edges incident with the ver-
tices 1, . . . , k, we attach their springs to pinned positions. We let the system of springs
come to rest, and let x and y be the vectors of positions of the vertices 1, . . . , n.

Ignoring constants, the potential energy of a spring between i and j is (xi −
xj)2 + (yi − yj)2. Assuming that all springs are the same and ideally elastic, the total

19

Chapter 1. Introduction to Geometric Representations of Graphs

1

2

34

5

6

7

8

9

6 −1 −1 −1 x1 + x2 + x3

−1 5 −1 −1 x1 + x5

−1 −1 5 −1 x3 + x4

−1 −1 −1 3 0

6 −1 −1 −1 y1 + y2 + y3

−1 5 −1 −1 y1 + y5

−1 −1 5 −1 y3 + y4

−1 −1 −1 3 0

Figure 1.3: Suppose that the vertices 1, . . . , 5 are pinned in the depicted positions.
The remaining vertices 6, . . . , 9 are placed in such a way that the total potential energy
of the system of springs is minimized. Their positions x6, . . . , x9 and y6, . . . , y9 are
computed by solving the depicted linear systems L̂G · x̂ = b and L̂G · ŷ = c, and they
are placed at the barycenters of their neighbors.

potential energy of the system is

Ep =
∑

ij∈E(G)
(xi − xj)2 + (yi − yj)2 = xTLG x + yTLG y.

The system in the rest minimizes the total potential energy Ep, subject to the boundary
constraints given by the fixed positions x1, . . . , xk and y1, . . . , yk. The minimization
then leads to

min
x̂

x̂TL̂G x̂ + 2x̂Tb + min
ŷ

ŷTL̂G ŷ + 2ŷT c + d, (1.3)

where d corresponds to the total potential energy of strings between the pinned vertices
1, . . . , k. Since L̂G is symmetric positive definite, by [334, Section 6.4] and [333, Section
1.4], this minimization problem is equivalent with solving the linear systems in (1.2).

Spectral Graph Drawing. A similar approach was pioneered by Hall [173] for draw-
ing general graphs; see also [233, 234]. Suppose that we want to construct a barycentric
representation for a general graph G. To place every vertex at the barycenter of its
neighbors, the positions have to satisfy LG ·x = 0 and LG ·y = 0 which is only possible
for degenerate drawings placing all vertices at the same point.

Therefore, we relax the conditions to an almost barycentric representation, sat-
isfying that both LG · x and LG · y are small. To avoid degenerate drawings, we want
x and y to be orthogonal to each other and to the vector (1, 1, . . . , 1). To control
the proportions, let ∥x∥ = ∥y∥. If G is connected, then the Laplacian matrix LG is
symmetric positive semidefinite with eigenvalues

0 = λn < λn−1 ≤ λn−2 ≤ · · · ≤ λ1

20

1.1. Motivation

Figure 1.4: This figure is taken from [233, 234]. Spectral graph drawings of three
graphs using eigenvectors of the Laplacian matrices. Notice that almost every vertex
is placed very close to the barycenter of its neighbors.

and eigenvectors u1, . . . ,un, i.e., LG · ui = λiui. By the Spectral Decomposition
Theorem [334], there exists an orthogonal basis of eigenvectors.

We have un = c · (1, 1, . . . , 1). To get a spectral graph drawing, we choose
x = un−1 and y = un−2 such that ∥x∥ = ∥y∥, which minimizes the error in al-
most barycentric representations. When λn−1 and λn−2 are suitably close to zero, the
drawing is very close to a barycentric one, as can be observed in Fig. 1.4.

1.1.2 Benzer’s Study of the Structure of DNA

Interval graphs were first mentioned in 1957 in a talk of the Hungarian mathematician
Hajós [172]; see Fig. 1.5 for his abstract. Unfortunately, it is not clear what was his
motivation to introduce this class of graphs and which results he presented. In 1959,
Benzer [24] independently derived interval graphs in his experimental study of local
structures in DNA. His paper greatly motivated the research of interval graphs and
related classes of geometrically represented graphs.

History of DNA. The origin of genetics lies in the breeding experiments of Mendel
between 1856 and 1863. He noticed inheritance patterns of certain traits in pea plants
and described simple rules with some traits being dominant and others being recessive.
But the hereditary mechanisms remained a mystery till the 20th century. Already in
1869, Miescher made a remarkable discovery of DNA (deoxyribonucleic acid) molecules
in the nuclei of human white blood cells; see [360]. In 1910, Morgan identified that
genes reside in chromosomes. In the 1940’s, it was identified that the gene’s information
is encoded in DNA.

In 1953, Watson and Crick [353] published the famous double-helix model of
DNA, by building on the previously known result in the field [299]. Levene [250]
identified in 1919 components of DNA, in particular four nucleobases: adenine (A),
guanine (G), cytosine (C), and thymine (T). Chargaff [62] showed in 1950 that the
structure of nucleobases’ varies among species and that the amount of A is the same
as the amount of C and the amount of G is the same as the amount of T, which is

21

Chapter 1. Introduction to Geometric Representations of Graphs

Figure 1.5: The abstract of Hajós’ talk [172] in the 4th Austrian Mathematical
Congress, and our translation:

G. Hajós (Budapest): About a type of graphs

If a finite number of intervals is given on a straight line, then a graph can be
assigned to this set of intervals: each interval corresponds to a node of the graph,
and two vertices are connected by an edge if and only if the corresponding intervals
at least partially cover each other. The lecture deals with the question whether a
given abstract graph is isomorphic with one of the graphs just described, for which
conditions are specified. When these are fulfilled, the question of the reconstruction
of the set of intervals will be dealt with.

Figure 1.6: A figure from Quora.com (http://goo.gl/iM89uE). An illustration of
the structure of a chromosome down to the molecular level of DNA.

22

http://goo.gl/iM89uE

1.1. Motivation

now known as Chargaff’s rule. Watson and Crick also used an image from the X-ray
crystallography work of Franklin and Wilkins, without knowledge of Franklin [266].
The double-helix model of Watson and Crick was not widely known or accepted till
the end of the 1950’s, when their conclusions were experimentally confirmed. Together
with Wilkins, they were awarded the Nobel Prize in Physiology or Medicine in 1962.
Figure 1.6 depicts the current understanding of the structure of chromosomes.

Benzer’s Study. See [176, 199, 161, 354] for details about Benzer’s life and influence
in biology. He originally studied physics and his early work was related to germanium
crystals which were later used in semiconductors. After reading Schrödinger’s What
is Life? [319], he got fascinated in the emerging area of molecular genetics. His unique
background in physics allowed him to construct a revolutionary approach in the field.
Also, he was one of the pioneers of neurogenetics and behavioral genetics.

In 1952, Benzer noticed a surprising property of Enterobacteria phage T4. Bac-
teriophages are viruses that infect and replicate in bacteria, and T4 infect bacteria
Escherichia coli. One type of mutation of T4 called r (for rapid) can be easily identi-
fied because it produced large plaque compared to the wild type virus. Specific regions
of T4 chromosomes were known, called rI, rII, and rIII. Benzer found that rII mutants
failed to grow on the strain K of bacteria. He gave the following description of this
discovery: “Well, at first I thought I made a mistake. I thought I had forgotten to
put the phage on there. Dummkopf, do it again! I did it again and saw the same
phenomenon. So I immediately realized—a Eureka moment—that this was a system
in which I could do very fine genetic mapping!” [176].

In his experiment, he would infect the strain K placed in a Petri dish with
two different rII mutants. Themselves, they would produce no plaque. But if there
would be a recombination which created the wild type, plaque would be visible. Such
recombination would be only possible if these two rII mutations would not overlap,
which could be detected. Benzer [23] published his findings in 1955 and used them to
map the region rII. Nowadays, this is called T4 rII system.

From Genes to Topological Spaces. In 1959, Benzer [24] published his work
on the topology of fine genetic structure, which we describe below. Genes are the
molecular unit of heredity and nowadays it is known that they are regions of DNA.
But in early 1950’s, not much was known and they were considered to be discrete
entities of chromosomes, indivisible by recombination and arranged like beads on a
string. Morgan [283] showed that chromosomes are linear arrangements of genes.
Benzer writes: “At this finer level, within the ‘gene’ the question arises again: what is
the arrangement of the sub-elements? Specifically, are they linked together in a linear
order analogous to the higher level of integration of the genes in the chromosome?”

Benzer pointed out that previous research was dealing with distances between
close changes in the structure. However, the distances sometimes behaved in a com-
plicated manner and they should not be taken as the criterion for linear arrangement.
Benzer argued that the question should be studied from the point of topology since
the connections between parts matter, not distances. In his experiment, he therefore
asked qualitative questions instead of quantitative ones. He studied the topology of
the region rII and assumed that every mutation changes a connected part of the re-

23

Chapter 1. Introduction to Geometric Representations of Graphs

Figure 1.7: The figure from [24, Fig. 5 and 6]. On the left, we have added highlighting
of consecutive zeroes on and below the diagonal.

gion. From his experiment in [23], he was able to determine which pairs of mutations
intersect and which pairs do not.

Benzer described the data by matrices: for n mutations, he constructed an n-by-
n matrix A having ai,j = 1 if and only if the mutations i and j did not intersect (so they
could produce the wild type by recombination), and ai,j = 0 otherwise; see Fig. 1.7 on
the left. The mathematical question was to find which topology is determined by these
intersections, as Benzer writes: “It would be an interesting mathematical problem to
derive the characteristic feature of the matrix for each kind of topological space.”

Benzer computed the data for 145 rII mutants of T4. He wanted to determine
whether the region rII has linear topology and he nicely sums up the main idea:

“Consider now a connected standard structure of linear topology without
branches or loops: a perfect tape recording of a piece of music. Such
a structure can be rendered unacceptable by a blemish—one false note,
perhaps, or a blank interval (due to a jump of the tape, say). Given two
independent ‘mutant’ versions, it may be possible to fabricate a standard
one, but only if the two blemishes do not overlap. [. . .] Now if various
mutant versions are tried two-by-two, in each case noting only whether or
not successful recombination is possible, a new sort of result may be found.
A blemish in the recording can involve a segment of the structure [. . .]. It
may therefore occur that one mutation intersects two others that do not
themselves intersect. Given enough defective versions, the yes-or-no results
of recombination experiments would enable one to construct a linear map
showing the various defects in their relative positions within the standard
structure.”

The data have linear topology if each mutation can be represented by an interval
and these intervals intersect exactly as described in the matrix A. Benzer states that
A has this property if and only if there exists a symmetric reordering PAPT for some
permutation matrix P such that in each column the zeroes in the diagonal and below

24

1.1. Motivation

Figure 1.8: The figure from [24, Fig. 8]. Interval representation of the interval graph
formed by 145 rII mutants of T4.

it appear consecutively (see the highlighting in Fig. 1.7 on the left). This reordering
of rows/columns determines the left-to-right ordering of left endpoints in an interval
representation which can be easily derived from the reordered matrix; see Fig. 1.7 on
the right.

For his data, Benzer was able to determine a representation of 145 mutations by
intervals, as depicted in Fig. 1.8. In the conclusions, Benzer comments his findings
based on Occam’s razor: “It is in the nature of the present analysis that the existence
of complex situations cannot be disproved. However, the fact of the matter is that a
simple linear model suffices to account for the data.” Further, Benzer described two
simple matrices which cannot be reordered as described above, so their appearance in
the data would imply non-linear topology, see Fig. 1.9.

Figure 1.9: The figure from [24, Fig. 2 and 3]. Two simple structures which do not
have linear topology and cannot be realized by intervals. On the left, a 2-dimensional
structure, on the right, a branched structure.

25

Chapter 1. Introduction to Geometric Representations of Graphs

Benzer does not mention any graphs in his paper [24]. Instead of a matrix, we
may represent the data by a graph G. The vertices V (G) correspond one-to-one to
mutations and we have an edge between two mutations if and only if they intersect.
An interval representation of G is a collection of intervals

{
⟨u⟩ : u ∈ V (G)

}
such that

uv ∈ E(G) if and only if ⟨u⟩ ∩ ⟨v⟩ ̸= ∅. A graph is called an interval graph if it can
be represented by intervals in this manner. Benzer’s result [24] states that the graph
constructed from the data for 145 rII mutants of T4 is an interval graph.

Benzer’s surprising biological applications stimulated research in intersection
graphs and in particular interval graphs. Figure 1.9 gives two forbidden induced sub-
graphs for interval graphs: C4 and 1-net; the full characterization of minimal forbidden
induced subgraphs was given by Lekkerkerker and Boland [249] already in 1962. In
the early 1960’s, two other papers [133, 149] gave different characterizations of interval
graphs. In 1976, Booth and Lueker [39] solved a long-standing open problem of recog-
nizing interval graphs in linear time. Also, intersection graphs of branching structures
(Fig. 1.9 on the right) were characterized as chordal graphs [45, 145].

Benzer’s huge influence in this area of graph theory is best evidenced by citations
of his works. His 1955 paper [23] with T4 rII system has over 600 citations in Google
Scholar, mostly in biology. On the other hand, his 1959 paper [24] with interval
graphs has over 400 citations, with a large fraction of them related to graph theory
and interval graphs.

We note that despite the initial motivation in biology, interval graphs never found
much application there. For some time, interval graphs played an important role in
DNA hybridization [204], in which short pieces of DNA are studied independently. One
of the reasons is that the methods for constructing interval representations were never
able to cope with errors in the data. In many situations, all pairs of pieces of DNA
cannot be compared, so we would have to construct an interval representation only
for the partial data which lead to interval probe graphs [364, 276]. Also, other more
efficient experimental methods were developed. Nevertheless, Benzer’s application of
interval graphs in his study of fine genetic structure [24] is an important and beautiful
historical milestone in genetics.

1.1.3 Riemann Mapping Theorem and Circle Packings

The Riemann Mapping Theorem is a surprising result of global flexibility of conformal
mappings in complex analysis. For instance, it implies that the unit square can be
bijectively mapped to the unit disk while locally preserving angles and ratios of lengths.
We describe its connection to circle packing which are representations of planar graphs
by touching disks. To reveal the importance of conformal mappings, we first introduce
complex numbers and complex analysis. Our approach is inspired by the excellent
visual treatment of complex analysis in [287].1

Geometry of Complex Numbers. We first sketch the historical development,
see [287, 277] for more details. In 1545, complex numbers first appeared in the context

1I would like to thank Petr Kratochvíl for introducing me to this book several years back and to
the students of my complex analysis class based on this book in Spring 2016.

26

1.1. Motivation

of roots of negative numbers, when Italian mathematician Cardano described formulas
for solving cubic equations. In 1572, Bombelli gave the first substantial calculations
using them.

For more than 250 years, there was not much interest in studying such strange
numbers. For instance, Cardano used the description “subtle as they are useless”.
Descartes coined the derogatory term imaginary for them: “For any equation one can
imagine as many roots [as its degree would suggest], but in many cases no quantity
exists which corresponds to what one imagines.” [32]. Even in 1770, Euler called
imaginary numbers “impossible”.

This attitude completely changed at the beginning of the 19th century when
independently Wessel, Argand and Gauss recognized the geometry of complex num-
bers and thus completely revealed their meaning. Shortly after, in works of Cauchy,
Riemann and others, the main body of complex analysis was constructed.

The geometry works as follows. The complex numbers correspond to points
(or vectors) in a plane called the complex plane C. Each complex number can be
represented as a+bi in the Cartesian coordinates or reϕi = r(cosϕ+i sinϕ) in the polar
coordinates. Three basic operations have the following meaning as transformations of
C:

• The addition z ↦→ z + A translates C by the vector A.
• The multiplication z ↦→ z · A for A = reϕi scales C by the factor r and rotates

it by the angle ϕ. In [287], the excellent term amplitwist is coined since the
multiplication is a combination of amplification (scaling) and twisting (rotation).

• The conjugation z ↦→ z̄ reflects C along the real axis.

By combining these operations, we can describe all similarity transformations of the
Euclidean plane. Suddenly, complex numbers are not imaginary numbers anymore,
but they give a powerful arithmetic for these transformations [287, Section 1.IV].
Alternatively, complex numbers can be represented by 2-by-2 real matrices:

a+ bi = reϕi is represented by
(
a −b
b a

)
=
(
r cosϕ −r sinϕ
r sinϕ r cosϕ

)
. (1.4)

The three basic operations correspond to matrix addition, matrix multiplication and
matrix transposition, respectively.

But in many situations we still work with complex numbers and complex anal-
ysis almost magically, as going against our intuition. Consider the following two
statements:

(i) There exist complex roots for every negative real number, e.g.,
√
−1 = ±i.

(ii) Every real polynomial P (x) = anx
n + · · ·+ a1x+ a0 has n complex roots.

These results are surprising only if we try to interpret them with the algebraic under-
standing of complex numbers as a + bi from the 16th century. If we instead use the
geometric view, then everything becomes immediately clear.

27

Chapter 1. Introduction to Geometric Representations of Graphs

z 7→ z
2

C C

Figure 1.10: The mapping z ↦→ z2 as a geometric transformation of the complex
plane C. On the left, a grid (in the polar coordinates), a spiral and two points i and
−i. On the right, their images are shown, which gives a good insight into the geometric
nature of the transformation. Notice that the spiral on the left winds once around the
origin, but its image on the right winds twice around it.

Concerning (i), the main point is that the mappings x ↦→ x2, for x ∈ R, and
z ↦→ z2, for z ∈ C, are completely different, and just our notation makes them seem
similar. Geometrically, x2 is the area of a square with sides x, so it is non-negative,
and the mapping has as the graph the well-known parabola. On the other hand, for
z = reϕi, we have z2 = r2e2ϕi, so the length is squared but the angle is doubled [287,
Section 2.II]. Geometrically, the transformation z ↦→ z2 winds the complex plane C
twice around the origin, as depicted in Fig. 1.10. Then, it is not surprising that√
−1 = ±i, since the transformation maps the both complex numbers i and −i to −1.

Concerning (ii), we can generalize the above for the mapping z ↦→ zn. It is a
transformation which n-times winds the complex plane C around the origin. A complex
polynomial P (z) is some combination of these transformations: a0 for a translation,
a1z for an amplitwist, and a2z

2 till anz
n winds C around the origin twice to n-times.

Therefore, the mapping covers almost every point of C by n layers of C, and the number
of roots is at most n. (To understand it in more details, we would need to deal with
multiple roots, which are related to branch points of multifunctions; see [287, Section
2.VI].) Certainly, this is not a proof of the Fundamental Theorem of Algebra, but it at
least explains why it makes sense that every complex polynomial has n complex roots.

Analytic Functions and Conformal Mappings. We first describe derivatives of
complex functions f : C → C [287, Chapter 4]. As in real analysis, the derivative is
the best local “linear” approximation:

f(z + h) ≈ f(z) + f ′(z)h, for h small.

Suppose that we view f as a mapping f : R2 → R2, so f(x, y) = (u(x, y), v(x, y))
for some mappings u, v : R2 → R. Then the best local linear approximation is given

28

1.1. Motivation

(x, y) f(x, y)

f

non-analytic
J =

(

1 −1

2 1

4

)

(x, y) f(x, y)

f

analytic

J =

(

1

2
−

5

4

5

4

1

2

)

≈
1

2
+ 5

4
i

Figure 1.11: On the top, the Jacobian J of a general mapping f maps an infinitesimal
circle around (x, y) to an infinitesimal ellipse around f(x, y). On the bottom, the
Jacobian J of the complex derivative f ′(z), z = x + yi, is an amplitwist, mapping an
infinitesimal circle around (x, y) to an infinitesimal circle around f(x, y).

by the Jacobian matrix

J =
⎛⎝∂u

∂x
∂u
∂y

∂v
∂x

∂v
∂y

⎞⎠
and we have

f(x+ h, y + h′) ≈ f(x, y) + J

(
h
h′

)
, for h, h′ small.

In general, an infinitesimal circle around (x, y) is mapped to an infinitesimal ellipse
around f(x, y); see [287, Section 4.IV] and SVD in [334].

When can the Jacobian J be represented by a complex number f ′(z), for z =
x + yi? Exactly when J corresponds to an amplitwist, i.e., it is of the form (1.4).
Therefore, the complex derivative f ′(z) exists if and only if the well-known Cauchy-
Riemann equations are satisfied:

∂u

∂x
= ∂v

∂y
and ∂v

∂x
= −∂u

∂y
.

Geometrically, existence of a derivative means that an infinitesimal circle around (x, y)
is mapped to an infinitesimal circle around f(x, y), so the mapping f locally preserves
the geometry: angles and ratios of lengths [287, Section 4.IV]. For comparison, see
Fig. 1.11.

A mapping preserving angles in some region is called conformal and this prop-
erty is implied by non-zero derivatives in this region. For instance, z ↦→ z2 of Fig. 1.10
has the derivative 2z and it is conformal everywhere except in the origin. Analytic
functions, which are nice functions f : C → C, are in the center of complex analysis.
There are several equivalent definitions when what it means f to be analytic, for in-
stance by the existence of derivatives or that f is conformal in some region. Therefore,
the study of conformal mappings is important.

29

Chapter 1. Introduction to Geometric Representations of Graphs

Riemann Mapping Theorem. We can think of the property of analytic functions
that infinitesimal circles are mapped to infinitesimal circles as “local rigidity” [330].
In 1851, Riemann [302] described the following theorem which proves their “global
flexibility”: for any two simply connected regions U and V in the plane (which are non-
empty and different from the plane), there exists a conformal bijective mapping from
U to V . Since composition of conformal bijective mappings is a conformal bijective
mapping, it is sufficient to prove that there exists a conformal bijective mapping f
from U to the unit disk D.

We sketch the main idea of Riemann’s original proof [302]. We note that his
treatment is not completely rigorous [160] and there are other methods to prove it,
e.g. [49]. But crucially, Riemann’s idea of what he called the Dirichlet principle pro-
foundly influenced mathematics.

We want to construct a conformal bijective mapping f from U to D such that
f(z0) = 0. The trick is to guess that

f(z) = (z − z0)eg(z)

for some analytic function g(z) : C → C. We have g(z) = u(z) + v(z) · i, where
u, v : C→ R are the real part of g and the imaginary part of g, respectively.

First, we deal with the real part u(z) only. For every z ∈ ∂U , we have |f(z)| = 1,
which determines that u(z) = − log |z − z0|; see [287, Chapter 2] for properties of
complex exponentials and logarithms. Recall the Laplace operator from Section 1.1.1.
Since g is analytic, the real part u is a harmonic function and satisfies the Laplace
equation ∆u = 0 on the interior Ů ; see [287, Section 11.III]. The Dirichlet principle
states that u prescribed on the boundary ∂U is uniquely determined on Ů by ∆u = 0
as the function minimizing the Dirichlet energy.

So the real part u(z) of g(z) is constructed. From the assumption that the region
U is simply connected, it follows that v(z) is the so-called harmonic dual of u(z) and
is uniquely determined by the local rigidity of analytic functions [287, Chapter 12].

We cannot leave this topic without pointing out a connection with Section 1.1.1
where the Laplace operator ∆ and its discretization the Laplacian matrix LG were
discussed. Solving the Laplace equation ∆u = 0 with the boundary conditions cor-
responds to solving the discretized linear system L̂Gu = b as in (1.2). The discrete
version of the Dirichlet principle is that solving this system is equivalent with en-
ergy minimization in (1.3). This discretization can be used to compute approximate
conformal bijections [35] and has many applications in applied mathematics.

Instead of existence, we can ask what are all possible conformal bijective maps
from U to D. Notice that if f and g are two such maps, then the composition f ◦ g−1

is a conformal automorphism of D, and vice versa. So it is sufficient to identify all
conformal automorphisms of D, forming the automorphism group Aut(D).

Möbius transformations are transformations of the form

z ↦→ az + b

cz + d

for some a, b, c, d ∈ C. They generalize rotations, translations, scalings and other
geometric transformations, and they are related to circular inversions [287, Chapter

30

1.1. Motivation

3]. For instance, there exists a unique Möbius transformation sending any three points
to any other three points. In [287, Sections 3.IX and 7.VII], it is proved that Aut(D)
consists of a 3-parametric family of Möbius transformations

z ↦→ eϕi z − a
āz − 1 ,

where a is an arbitrary point of D̊ which is mapped to 0, and ϕ is an arbitrary angle
of the rotation.

Approximation by Circle Packings. A circle packing is a configuration of disks in
the plane with pairwise disjoint interiors. It is a contact representation of the following
graph G. The vertices V (G) correspond one-to-one to the disks of the packing. We
have uv ∈ E(G) if and only if the disks corresponding to u and v are touching, i.e.,
they have a common point on their boundaries. For an example, see Fig. 1.12.

We can easily observe that every such graph G represented by a circle packing is
necessarily planar. (This is true for every contact representation of connected sets in
the plane such that no three intersect in one point.) The celebrated Koebe-Andreev-
Thurston Theorem [232, 339] states the converse: every planar graph has a contact
representation by touching disks in the plane. Further, when G is a triangulation, this
representation is unique up to Möbius transformations and reflections.

The Riemann Mapping Theorem proves that there always exists a conformal
bijective mapping from U to D. But construction of such mappings is difficult, and
no explicit formulas are given. For instance, when U is a square, a conformal bijective
mapping cannot be described by elementary formulas [101].

In 1985, Thurston suggested a beautiful iterative approach to computing approx-
imate conformal bijective mappings; see Figure 1.13 for details. Its correctness was
proved by Rodin and Sullivan [309]. Compared to other methods, the speed of this
method is limited because computing circle packings is difficult. But this method has
further applications because it can be generalized to other situations; see [330] for a
survey.

G

Figure 1.12: A circle packing representing the depicted planar graph G.

31

Chapter 1. Introduction to Geometric Representations of Graphs

Figure 1.13: This is a modification of [309, Fig 1.1]. By the Riemann Mapping The-
orem, there exists a conformal bijection from the region U to the disk D. Thurston’s
method computes its approximation by the depicted regular hexagonal circle packing.
This packing is a contact representation of the planar graph drawn in bold. A trian-
gulation is created from it by adding another vertex u (depicted in green) adjacent
to all red vertices corresponding to the circles on the boundary. On the right, we
have a circle packing representation of this triangulation where the outer circle ⟨u⟩
corresponding to the disk D represents the added vertex u. The circles on the left
are mapped to circles on the right which defines an approximative conformal bijection
from U to D. The key property proved in [309] is that equilateral triangles are mapped
closer to equilateral triangles the further they are from the boundary.

1.2 Definitions

In this section, we give the key definitions used in the rest of this thesis. Many other
definitions are given in the remaining chapters, and their location can be found using
the Index.

For a graph G, we denote by V (G) its vertices and by E(G) (
(

V (G)
2

)
its edges.

By n and m, we denote the number of vertices and edges of G, respectively. If we work
with multiple graphs, we also use v(G) = |V (G)| and e(G) = |E(G)|. We note that
the notion of extended graphs is defined in Section 7.1 and used in most of Part II.
For A ⊆ V (G), we denote by G[A] the subgraph induced by A. We denote the closed
neighborhood of x by N [x], i.e., N [x] = {y : xy ∈ E(G)} ∪ {x}.

For a graph G, we denote the complement by G which is the graph such that
V (G) = V (G) and uv ∈ E(G) ⇐⇒ uv /∈ E(G). For a class of graphs C, we denote
by co-C the class of all complements, i.e., co-C = {G : G ∈ C}.

Geometric Representations. Let C be a class of graphs together with a class of ge-
ometric representations Rep. For a broader approach to graph representations, see the
monograph [328]. For instance, both the adjacency matrix AG and the Laplacean ma-
trix LG from Fig. 1.2 represent the graph G, meaning that the graph G can be derived
from them. In the context of this thesis, Rep either consists of planar embeddings or
embeddings in surfaces of higher genus (defined at the beginning of Section 1.4), or

32

1.3. Intersection Representations

Rep consists of intersection representations (defined at the beginning of Section 1.3).
The correspondence between representations and graphs is described by a mul-

timapping ρ : Rep → C such that each representation R ∈ Rep represents (encodes)
the graphs ρ(R) ⊆ C. (If C contains exactly one graph for each isomorphism class,
then ρ is a mapping and each ρ(R) is a single graph.) For a graph G ∈ C, we denote
by Rep(G) the class of all geometric representations of G from Rep, i.e.,

Rep(G) =
{
R : R ∈ Rep, G ∈ ρ(R)

}
.

We often require the property that every graph in C can be represented by a represen-
tation in Rep. Then the mapping ρ is surjective.

Recognition. For each graph class C, there is a natural well-studied decision problem
called recognition: does an input graph G belong to C? In the context of geometric
representations Rep, the recognition problem is the following decision problem:

Problem: Recognition – Recog(C,Rep)
Input: A graph G.

Question: Is there a representation R ∈ Rep(G)?

When a class of geometric representations Rep considered for the class of graphs C is
clear from the context, we may just write Recog(C).

In this thesis, we are interested in structural properties of graph classes, coming
from their geometric representations. We are mainly concerned with graph classes
which can be recognized efficiently, meaning that there exists a polynomial-time al-
gorithm for their recognition problem. The reason is that non-existence of such an
algorithm (for instance, when the recognition problem is NP-hard, assuming P ̸= NP)
implies that the structure of C is not very strong.

Moreover, efficient recognition algorithms are almost always able to certify “yes”
answers by constructing geometric representations, which is the starting point of many
other results and applications. In some situations, it is desirable to have a certifying
recognition algorithm which also certifies “no” answers by finding some simple obstruc-
tion in the input proving non-existence of geometric representations for graphs which
do not belong to the class. A precise definition of obstruction depends on the type
of geometric representation. For instance, certifying recognition algorithms for pla-
nar graphs find subdivisions of K5 or K3,3 as obstructions [245, 351], while certifying
recognition algorithms for interval graphs find one of the minimal forbidden induced
subgraphs of Lekkerkerker and Boland [249, 255].

1.3 Intersection Representations

An intersection representation R of a graph G is a collection of sets
{
⟨x⟩ : x ∈

V (G)
}

such that ⟨x⟩ ∩ ⟨y⟩ ̸= ∅ if and only if xy ∈ E(G). Let Rep be the class of
all such representations. Since every graph has an intersection representation [269],

33

Chapter 1. Introduction to Geometric Representations of Graphs

interesting classes Rep of intersection representations are obtained by restricting the
representing sets to some nice classes of, say, geometric objects, e.g., continuous curves
in plane, chords of a circle, convex sets, etc. For an overview of these classes, see the
books [156, 275, 328].

For understanding most of Part I, interval graphs and their subclasses are essen-
tial, and they are described in Sections 1.3.1 and 1.3.2. Other classes of intersection
graphs, described in the remainder of this section, mostly appear in Chapter 2 and
the reader can refer to their description here only when needed.

1.3.1 Interval Graphs

The most famous class of intersection graphs are interval graphs. An interval repre-
sentation of G is an intersection representation such that each ⟨u⟩ is a closed interval
of the real line. A graph is called an interval graph if it has an interval representation,
and we denote the class of interval graphs by INT; see Fig. 1.14a for an example. It is
one of the oldest and most understood classes of graphs. As evidence of its popularity,
Web of Knowledge lists more than 370 papers with the words “interval graph(s)” in
the title.

Applications and Basic Properties. As stated in Section 1.1.2, they were in-
troduced independently by Hajós [172] in 1957 and by Benzer [24] in 1959. Further
applications include scheduling, psychology, archaeology, etc. [332, 305, 208]. They
play an important role in models of time reasoning [155, 159] where relations between
pairs of intervals are modeled by Allen algebras [3]; see Section 2.9.5 for more details.

Interval graphs also have nice theoretical properties. They are perfect (see Sec-
tion 1.3.3) and closely related to path-width decompositions [38]. Feder and Hell [115]
proved the following dichotomy for the complexity of the H-list homomorphism prob-
lem, where H has a loop at every vertex: the problem can be solved in polynomial time
if H is an interval graph, and it is NP-complete otherwise; see also [83]. Interval graphs
can be recognized in linear time [39, 235, 168, 75]. Many hard combinatorial problems
including minimum vertex coloring, maximum clique, maximum independent set, and
minimum dominating set become polynomial-time tractable for interval graphs.

Characterizations. In 1965, Fulkerson and Gross [133] characterized which rectan-
gular 0-1 matrices have the consecutive ones property, which means that their rows
can be reordered in such a way that 1’s in each column appear consecutively. Using
this, they described a fundamental characterization of interval graphs as exactly those

s

t

p

q

r

u v

w

x

y
z

G(a) (b)R

p
q

r

s
t
u v w x

y

z

C4 1-net

Figure 1.14: (a) An interval graph G and one of its interval representations R.
(b) Two minimal forbidden induced subgraphs of interval graphs, described by Ben-
zer [24] in Fig. 1.9.

34

1.3. Intersection Representations

graphs whose incidence matrices between vertices and maximal cliques have consec-
utive ones property, which led to an O(n3) recognition algorithm for interval graphs.
In 1976, Booth and Lueker [39] described an efficient data structure called PQ-trees
which gave the first linear-time algorithms for testing the consecutive ones property
and recognizing interval graphs, and has many other applications, including linear-time
recognition of planar graphs. We describe these results in detail in Section 3.1.

Another fundamental characterization of interval graphs was proved by Lekkerk-
erker and Boland [249] in 1962. They described the minimal forbidden induced sub-
graphs of interval graphs and characterized interval graphs as the intersection of
chordal graphs and asteroidal triple-free graphs. We note that two of these forbid-
den induced subgraphs depicted in Fig. 1.14b were already identified by Benzer [24].
Computationally, these forbidden subgraphs can be found in linear time [255] (us-
ing PQ-trees), which gives a linear-time certifying algorithm for recognizing interval
graphs: if “yes”, a representation is constructed, if “no”, a minimal forbidden induced
subgraph is found. See Section 2.2 for more detail.

In 1964, Gilmore and Hoffman [149] characterized interval graphs by their rela-
tion to comparability graphs, which is linked to the reordering approach of Benzer [24],
and we describe it in Section 1.3.4.

Notation. For a closed interval ⟨x⟩, we denote its left endpoint by ℓ(x) and its right
endpoint by r(x). If r(x) < ℓ(y), we say that ⟨x⟩ is on the left of ⟨y⟩ and ⟨y⟩ is on
the right of ⟨x⟩. We say that ⟨y⟩ is between ⟨x⟩ and ⟨z⟩ if ⟨x⟩ is on the left of ⟨y⟩ and
⟨z⟩ is on the right of ⟨y⟩, or vice versa. In Chapters 3 and 4, we also work with open
intervals, for which the inequalities in these definitions are non-strict.

Proper and Unit Interval Graphs. In 1969, due to a motivation in psychol-
ogy, Roberts [304] introduced two subclasses of interval graphs. An interval rep-
resentation is called proper if ⟨u⟩ ⊆ ⟨v⟩ implies ⟨u⟩ = ⟨v⟩, and unit if the length
of all intervals ⟨u⟩ is one: r(u) − ℓ(u) = 1. The classes of proper and unit inter-
val graphs (denoted PROPER INT and UNIT INT) consist of all interval graphs which
have proper and unit interval representations, respectively. Roberts [304] proved that
PROPER INT = UNIT INT and characterized them as interval graphs without the claw
K1,3 as an induced subgraph. They can be recognized in linear time [257, 73], and we
sketch more detail in Section 2.3.

Interval Orders. An interval representation also represents an associated partial
order < on the intervals called an interval order, introduced by Fishburn [123]. For
intervals ⟨x⟩ and ⟨y⟩, we have x < y if and only if ⟨x⟩ is on the left of ⟨y⟩. So both
interval graphs and interval orders are represented by collections of intervals, and
indeed they are closely related [127, 126].

The study of interval orders has the following motivation. Suppose that each
interval describes when one event can happen in the timeline. If a < b, we know
for sure that the event a happened before the event b. If two intervals intersect, we
do not have any information about the order of the corresponding events. For more
information, see the survey [341].

We note that already in 1956, Luce [261] introduced semiorders which are unit

35

Chapter 1. Introduction to Geometric Representations of Graphs

R
(a)

R
(b)

Figure 1.15: (a) An interval representation with nesting three. (b) The disjoint
union of two components with minimum nesting two requiring three different lengths
of intervals. On the left, the shorter intervals are shorter than 1

4 of the longer ones.
On the right, they are longer than 1

3 .

interval orders, i.e., interval orders representable by unit intervals. The motivation
was in psychology. If the left endpoints ℓ(x) of the intervals ⟨x⟩ correspond to some
evaluation, we are indifferent of values which are close to each other, but we can
distinguish values which are far from each other: x < y if and only if ℓ(x) + 1 <
ℓ(y). This is also the reason why proper/unit interval graphs are sometimes called
indifference graphs. See an excellent book [297] for more detail.

1.3.2 k-nested and k-length Interval Graphs

We consider two hierarchies of subclasses of interval graphs which generalize proper
and unit interval graphs. The class k-NestedINT consists of all interval graphs which
have representations with no k + 1 intervals ⟨u0⟩ , . . . , ⟨uk⟩ such that ⟨u0⟩ (⟨u1⟩ (
· · · (⟨uk⟩; see Fig. 1.15a. The class k-LengthINT consists of all interval graphs which
have representations having at most k different lengths of intervals; see Fig. 1.15b.
We know by [304] that 1-NestedINT = PROPER INT = UNIT INT = 1-LengthINT.

For an interval graph G, we denote the minimum nesting over all interval rep-
resentations by ν(G), and the minimum number of interval lengths by λ(G). Since
nested intervals have different lengths, we know that ν(G) ≤ λ(G) and this inequality
may be strict (as in Fig. 1.15b). For each k ≥ 2,

(k − 1)-LengthINT (k-LengthINT (k-NestedINT ((k + 1)-NestedINT.

Fishburn [127, Theorem 5, p. 177] shows that graphs G in 2-NestedINT have un-
bounded λ(G). Therefore, 2-NestedINT ̸⊆ k-LengthINT for each k. Figure 1.16 depicts
inclusions of considered classes.

Known Results and Motivation. The classes k-LengthINT were introduced by
Graham as a natural hierarchy between unit interval graphs and interval graphs; see
Fig. 1.16. Even after decades of research, the only results known are curiosities that

PROPER INT = UNIT INT

INT

2-LengthINT

3-LengthINT

2-NestedINT

3-NestedINT

· · ·

· · ·

Figure 1.16: The Hasse diagram of proper inclusions of the considered classes.

36

1.3. Intersection Representations

∼ 1980

suggested

by Graham

first results

Leibowitz

et al. [248]

1982

1984

Skrien [322]

lengths 0,1

Fishburn

2 papers [126, 124]

1 book [127]

1984 1985

2011

Cerioli et al. [54]

restricted

k-LengthINT

2-LengthINT with

2-partitioning

Joos et al. [201]

2014

2015

Ganian et al. [138]

FO logic

model checking

Figure 1.17: Timeline of results for k-LengthINT. Notice the big gap between 1985
and 2011.

illustrate the incredibly complex structure of k-LengthINT, very different from the case
of unit interval graphs. For instance, k-LengthINT is not closed under disjoint unions;
see Fig. 1.15b. Timeline of results is depicted in Fig. 1.17.

Leibowitz et al. [248] show that the class 2-LengthINT contains caterpillars,
threshold graphs, and unit interval graphs with one additional vertex. Further, in-
terval graphs G with λ(G) > 2 such that λ(G \ x) ≤ λ(G)− 2 for some x ∈ V (G) are
constructed in [248]. Fishburn [126] shows that there are infinitely many forbidden
interval induced subgraphs for 2-LengthINT, while 1-LengthINT are interval graphs just
without K1,3 [304]. It is also known [124] that there are interval graphs in 2-LengthINT
such that, when the shorter length is fixed to 1, the longer one can be one of the real
numbers belonging to arbitrarily many distinct intervals of the real line, arbitrarily far
from each other.

Not much is known about the computational complexity of problems involving
k-LengthINT, even recognition is open for k = 2. In [54], a polynomial-time algorithm is
given for computing λ(G) for interval graphs G which are extended bull-free or almost
threshold (which highly restricts them). Skrien [322] characterized 2-LengthINT which
can be realized by lengths zero (points) and one (unit intervals), leading to a linear-
time recognition algorithm. As most of the efficient algorithms for intersection graph
classes require representations, there are almost no algorithmic applications of the fact
that a given interval graph can be represented by k lengths.

All these difficulties lead us to introduce the other hierarchy of k-NestedINT
which generalizes proper interval graphs; see Fig. 1.16. To the best of our knowledge,
the only reference is Fishburn’s book [127] in which the parameter ν(G) called depth
is considered and linked to k-LengthINT. There are some different generalizations of
proper interval graphs [300], which are less rich and not linked to k-LengthINT. We
describe all results in Section 2.4 and Chapter 5.

1.3.3 Chordal Graphs

Chordal graphs were originally introduced in the context of perfect graphs by Berge [25,
26] in 1961 as graphs with no induced cycle of length four or more, and they also
appeared in [171, 99, 133]; see Fig. 1.18. We denote the class of chordal graphs by

37

Chapter 1. Introduction to Geometric Representations of Graphs

w
u

v

p q

s t

u

v
w

p

q

s

t

G T R

Figure 1.18: A chordal graph G on the left and one of its intersection representations
R by subtrees of a tree T on the right.

CHOR. They are also known as triangulated graphs and rigid circuit graphs, since
every induced cycle is triangulated. Rose et al. [311] describe a linear-time recognition
algorithm for chordal graphs, based on an elegant application of lexicographic breadth-
first search (LBFS).

Perfect Graphs. Let χ(G) denote the chromatic number of G, and let ω(G) denote
the clique-number of G. Trivially we have ω(G) ≤ χ(G) and the graphs for which
every induced subgraph satisfies equality are perfect graphs [25, 26]. This graph class
has very strong properties. The Weak Perfect Graph Theorem [259, 258] states that
they are closed under complementation and the Strong Perfect Graph Theorem [65]
asserts that a graph is perfect if and only if it contains no odd cycle and no complement
of an odd cycle as an induced subgraph.

Perfect graphs are a superclass of many geometrically represented graph classes,
and they are strongly related to several others, as evidenced by the title of Golumbic’s
book [156]. One example of subclass of perfect graphs are trivially perfect graphs which
are interval graphs having a representations such that each pair of interval ⟨u⟩ and
⟨v⟩ is either disjoint, or one is subset of the other. Berge [25] observed that chordal
graphs are perfect.

Perfect Elimination Schemes. An alternative definition is that chordal graphs are
precisely graphs G which have a so-called perfect elimination scheme [310]. This is a
linear ordering v1, . . . , vn of V (G) such that for each vi, the set N [vi]∩{vi, vi+1, . . . , vn}
induces a complete graph. In other words, G is chordal if there exists a simplicial vertex
v ∈ V (G) such that N [v] induces a complete graph and G \ v is a chordal graph. The
recognition algorithm of [311] finds a perfect elimination scheme if it exists.

The name perfect elimination scheme was introduced in [310] because of a motiva-
tion in solving sparse symmetric positive definite linear systems Ax = b. Such systems
can be solved by Gaussian elimination without pivoting [334], but the elimination pro-
cess may introduce additional non-zeroes making the matrix non-sparse [93, Section
2.7.4]. To preserve symmetricity of A, we may reorder the rows and the columns by a
permutation matrix P and solve the linear system PAPTy = Pb instead; further, this
reordering does not influence numerical properties of the matrix [349]. It is proved
in [141] that it is NP-complete to find an ordering minimizing the number of introduced
non-zeroes by the elimination. Rose [310] studied the existence of a perfect reordering
for which the Gaussian elimination introduces no additional non-zeroes. He proves
that it exists if and only if the matrix created from A by replacing non-zero coeffi-
cients with ones is the adjacency matrix AG of a chordal graph G, and this reordering
is a perfect elimination scheme of G.

38

1.3. Intersection Representations

Subtree in Tree Representations. In 1974, independently Buneman [45] and
Gavril [145] described geometric representations of chordal graphs, linking them to
Benzer’s branching structures (Fig. 1.9 on the right). They proved that a graph G is
a chordal graph if and only if there exists a tree T such that G has an intersection
representation R of subtrees of T ; see Fig. 1.18.

From these geometric representations, it immediately follows that INT (CHOR.
Also, treewidth decompositions are closely related to these subtree-in-tree representa-
tions [38].

Path Graphs. Path graphs were originally considered by Gavril [146]. A graph is
a path graph if and only if there exists a tree T such that there exists an intersection
representation R by subpaths of T ; for instance, the graph G in Fig. 1.18 is a path
graph. We denote this class as PATH and we get that

INT (PATH (CHOR.

The fastest recognition algorithm for path graphs [316] runs in time O(mn).

1.3.4 Comparability Graphs and Related Geometric Graph Classes

In the early 1960’s, Gillmore and Hoffman [149] introduced comparability graphs, and
they were also independently studied in [361, 148]. Let→ be an orientation of a graph
G where x→ y denotes that xy ∈ E(G) and it is oriented from x to y. An orientation
is called transitive if x → y and y → z implies that xz ∈ E(G) and x → z. A graph
is a comparability graph if and only if it has a transitive orientation; see Fig. 1.19a for
an example. In other words, every comparability graph is created from the directed
graph of a poset (not a Hasse diagram) by removing the orientation of edges. We
denote the class of comparability graphs by COMP.

Polynomial-time recognition algorithms for comparability graphs follow implic-
itly from [149, 148]. The first explicit algorithm described by Golumbic [154] runs
in time O((n + m)∆) where ∆ is the maximum degree. More insightful algorithms
are based on modular decomposition, described in Section 2.7.1, which captures all
transitive orientations of a comparability graph and has many other applications. It
can be computed in linear time [77, 272, 337] and a transitive orientation can be con-
structed in linear time as well [272], if it exists. But it is non-trivial to test whether
the constructed orientation is transitive, and the best current approach is to use ma-
trix multiplication with complexity O(nω) (currently, ω ≈ 2.3729 [247]), so this is the
complexity of current fastest recognition algorithm for comparability graphs.

u v w

x y z

(a)

u v
w

x
y z

u

w

z

v

x

y

v

w

y

u

x

z(b)

u

y

x

w

v

z

u

v

w

x

y

z

w

y

u

z

v

x(c)

Figure 1.19: (a) A comparability graph with a transitive orientation. (b) A func-
tion graph and one of its representations. (c) A permutation graph and one of its
representations.

39

Chapter 1. Introduction to Geometric Representations of Graphs

Characterization of Interval Graphs. Gilmore and Hoffman [149] used compara-
bility graphs to prove the following characterization of interval graphs. Let G be an
interval graphs and let R be one of its interval representations. As explained in Sec-
tion 1.3.1, R has an associated poset called an interval order in which non-intersecting
pairs of intervals are ordered from left to right. In other words, the complement G is
a comparability graph, and this was also independently proved in [148]. Gilmore and
Hoffman proved that

INT = co-COMP ∩ CHOR,

where co-COMP are the complements of comparability graphs, called co-comparability
graphs.

Order Dimension. An important structural parameter of a poset P is its Dushnik-
Miller dimension dim(P) [102], defined as the least number of linear orderings L1, . . . , Lk

such that P = L1∩· · ·∩Lk. For a finite poset P , its dimension is always finite since P
is the intersection of all its linear extensions. Similarly, we define the dimension of a
comparability graph G, denoted by dim(G), as the dimension of any transitive orien-
tation of G; every transitive orientation has the same dimension by [137]. By k-DIM,
we denote the subclass consisting of all comparability graphs X with dim(X) ≤ k. We
get the following infinite hierarchy of graph classes:

1-DIM (2-DIM (3-DIM (4-DIM (· · · (COMP.

For instance, [317] proves that a graph G is planar if and only if the bipartite graph
of the incidence between V (G) and E(G) belongs to 3-DIM. Yannakakis [362] proved
that recognizing k-DIM, for k ≥ 3, is NP-complete. Also, see the survey [357].

Function Graphs. Golumbic et al. [158] introduced function graphs as intersection
graphs of graphs of continuous real-valued function on the interval [0, 1]. For each
u ∈ V (G), we have a continuous function fu : [0, 1]→ R and

⟨u⟩ =
{
(x, fu(x)) : x ∈ [0, 1]

}
.

Alternatively, we have two parallel vertical lines, and each ⟨u⟩ is an x-monotone con-
tinuous curve from the left line to the right line. Figure 1.19b given an example. We
denote the class of function graphs by FUN.2

Function graphs were introduced in [158] because of the following relation to
comparability graphs:

FUN = co-COMP.

It is easy to see that every function graph is a co-comparability graph: we can orient
the edges between non-intersection functions from the bottom function to the top one,
and this orientation is clearly transitive.

For the other implication, letG be a comparability graph with V (G) = {1, . . . , n}.
The graph G has a transitive orientation, giving a poset P of a finite dimension k such
that P = L1 ∩ · · · ∩ Lk for some linear orderings L1, . . . , Lk. We add k − 2 vertical

2Sometimes, it is more convenient to rotate these figures by 90 degrees, to have y-monotone curves
between two horizontal lines; for instance, in Figs. 1.20 and 1.21.

40

1.3. Intersection Representations

lines in between, so we have vertical lines ℓ1, . . . , ℓk. On each of these lines, we place
n points corresponding one-to-one to the functions in some ordering. On ℓi, we place
them as in the linear ordering Li. By connecting the corresponding points by piecewise
linear functions fu, it is easy to prove that we get a function representation of G.

Permutation Graphs. Permutation graphs is a subclass of function graphs which
can be represented by linear functions [16]; see Fig. 1.19c for an example. We denote
this class by PERM. Permutation graphs can be recognized in linear time [272]. Even,
Pnueli, and Lempel [111] proved that

PERM = COMP ∩ co-COMP = 2-DIM.

So G is a permutation graph if and only if both G and G can be transitively oriented.
Below, we argue this characterization of permutation graphs.

Let G be a permutation graph. Each permutation representation defines two
linear orderings L1 and L2 as the orderings of endpoints of ⟨u⟩ on two vertical lines.
For instance, in Fig. 1.19c, these two linear orders are L1 = uvwxyz and L2 = wyuzvx.
Two vertices are adjacent if and only if their order differs in L1 and L2. Therefore,
every permutation graph is co-2-DIM. Suppose that we reverse the ordering L2 of the
right line and get L↔2 . Then we get a permutation representation of G, so permutation
graphs are closed under complementation: PERM = co-PERM and PERM = 2-DIM. We
get that L1∩L2 is a transitive orientation of G and L1∩L↔2 is a transitive orientation
of G. So PERM (COMP ∩ co-COMP. The other direction is proved similarly.

Interval Dimension. Similarly to the Dushnik-Miller dimension, let the interval
dimension idim(P) of a poset P be the least number of interval orderings I1, . . . , Ik

such that P = I1 ∩ · · · ∩ Ik. Since every linear ordering is also an interval ordering,
we have idim(P) ≤ dim(P). Similarly, for a comparability graph G, let idim(G) be
the interval dimension of any transitive orientation; the value is the same for every
transitive orientation [264]. Let k-IDIM denote the class of all comparability graphs
of interval dimension at most k. We have k-DIM (k-IDIM and INT = co-1-IDIM. For
more information, see [357] and the references therein.

Trapezoid Graphs. In [81, 72], trapezoid graphs as intersection graphs of trapezoids
with bases on two vertical parallel lines were introduced; see Fig. 1.20 for an example.
We denote this class by TRAPEZOID. It follows from [81] that

TRAPEZOID = co-2-IDIM,

u

v w

x y

z

s

t

G

u

v

w

x y

z s

t R

Figure 1.20: A graph G and one of its trapezoid representations R. Observe that G
is neither an interval graph, nor a permutation graph.

41

Chapter 1. Introduction to Geometric Representations of Graphs

u

v wx

yz

s

G

u v wx y zs

R

Figure 1.21: A graph G and one of its triangle representationsR. Again, G is neither
an interval graph, nor a permutation graph.

so PERM ∪ INT (TRAPEZOID (FUN. Trapezoid graphs can be recognized in time
O(n2) [264] (see also [63]), while recognizing k-IDIM, for k ≥ 3, is NP-complete [362].

Triangle Graphs. In [72], a subclass of trapezoid graphs called triangle graphs was
introduced, and we denote it by TRIANGLE. We have two horizontal lines. Each
triangle graph has an intersection representation, in which each set is represented by
a triangle with one side on the bottom line and the third vertex on the top line; see
Fig. 1.21 for an example. An alternative name for the class is point-interval intersection
graphs. We have

INT ∪ PERM (TRIANGLE (TRAPEZOID.

The complement of each triangle graph is a comparability graph whose poset can be
represented as an intersection of a linear ordering with an interval ordering, so this
graph class uses the concept of linear-interval poset dimension [53]. Very recently, the
first polynomial-time recognition algorithms for triangle graphs were described [278,
336].

1.3.5 Circle Graphs

A circle representation R is an intersection representation in a circle such that each ⟨u⟩
is a chord of this circle. A graph is called circle graph if it has a circle representation; see
Fig. 1.22a. We denote the class of circle graphs by CIRCLE. They were first considered
by Even and Itai [109] in the early 1970s in the study of stack sorting techniques. Other
motivations are due to their relations to Gauss words [89] (see Fig. 1.22b) and matroid
representations [88, 42]. Circle graphs are important regarding rank-width [291]. Also,
PERM (CIRCLE.

Interval Overlap Graphs. Suppose that we pick an arbitrary point of the circle
that is not an endpoint of a chord. We cut the circle at this point and straighten
it into a segment; see Fig.1.23. From this straightening of the circle, each chord can
now be seen as an arc above the resulting segment. Notice that two chords ⟨u⟩ and
⟨v⟩ cross if and only if their endpoints appear in the order uvuv or vuvu from left to
right. Alternatively, circle graphs are called interval overlap graphs. Their vertices can
be represented by intervals and two vertices are adjacent if and only if their intervals
overlap which means they intersect and one is not a subset of the other.

Each circle representation R of G is associated with a unique circular word τ .
The word τ is obtained by the circular order of the endpoints of the chords in R as

42

1.3. Intersection Representations

s

t

u v

w

x
G(a)

u
v

s

w

t

x

R

1

2
3

4

5

6
7

(b)

1

2

3

4

5
3 4

5

6

6

7

1
27

Figure 1.22: (a) A circle graph G with one of its representations R. The chords are
depicted as arcs to make the figure more readable. (b) A self-intersecting closed curve
with n intersections numbered 1, . . . , n corresponds to a representation of circle graph
with the vertices 1, . . . , n where the endpoints of the chords are placed according to
the order of the intersections along the curve.

they appear along the circle when traversed clockwise, so each vertex appears twice in
τ . The occurrences of u and v alternate in τ , if uvuv is a circular subsequence of τ ,
which happens if and only if uv ∈ E(G). For example R in Fig. 1.22 corresponds to
the circular word τ = susxvxtutwvw.

Properties. In general, the difference between ω(G) and χ(G) can be arbitrarily
high, e.g., there is a triangle-free graph with an arbitrary high chromatic number [284].
Circle graphs are known to be almost perfect which means that χ(G) ≤ f(ω(G)) for
some function f . The best known result for circle graphs [236] states that f(k) is
Ω(k log k) and O(2k).

Some NP-hard problems, such as maximum weighted clique and independent
set [147], become tractable on circle graphs. On the other hand, problems such as
vertex colorability [139] and Hamiltonicity [84] remain NP-complete even for circle
graphs.

Recognition. The complexity of recognition of circle graphs was a long standing open
problem; see [328] for an overview. The first results, e.g., [109], gave existential char-
acterizations which did not give polynomial-time algorithms. The mystery whether
circle graphs can be recognized in polynomial time frustrated mathematicians for some
years. It was resolved in the mid-1980s and several polynomial-time algorithms were
discovered [41, 135, 285] (in time O(n7) and similar). Later, a more efficient algo-
rithm [327] based on split decomposition was given, and the current state-of-the-art
recognition algorithm [150] runs in a quasi-linear time in the number of vertices and

x

y

z w

G
w

z

z

y
y

w

x
x

R

✂

wzxywzyx

Figure 1.23: An example of a circle graph with a circle graph representation on the
left; an interval overlap representation of the same graph on the right.

43

Chapter 1. Introduction to Geometric Representations of Graphs

the number of edges of the graph. For more details about recognition, see Section 2.6.

1.3.6 Circular-Arc Graphs

In 1969, Klee [226] (see also [170]) introduced a generalization of interval graphs called
circular-arc graphs which are intersection graphs of arcs of a circle; see Fig. 1.24. He
asked what is the complexity of recognition. We denote the class of circular-arc graphs
as CIRCULAR-ARC. Tucker [342] described an involved O(n3) recognition algorithm.
Currently, circular-arc graphs can be recognized in linear time [271, 203].

Circular-arc graphs were considered as a natural generalization of interval graphs,
but they are much more involved. Fulkerson and Gross [133] characterized interval
graphs by the existence of a certain ordering of maximal cliques (see Section 3.1), but
circular-arc graphs may have exponentially many maximal cliques, and further arcs
of maximal cliques do not satisfy the Helly property: a common intersection does not
have to exist. Circular-arc graphs are very tricky, prone to making mistakes. For
instance, Hsu [195] described a polynomial-time algorithm for graph isomorphism of
circular-arc graphs, but a mistake was later found [80] and the complexity of graph
isomorphism is still open on circular-arc graphs.

Subclasses. We quickly sketch several subclasses of circular-arc graphs, the reader
may refer to the survey [253] and the references therein. Helly circular-arc graphs,
denoted HELLY CIRCULAR-ARC, consist of all circular-arc graphs having circular-arc
representations such that the arcs of every maximal clique satisfy Helly property.
Therefore, their behaviour is much closer to interval graphs. Proper and unit circular-
arc graphs, denoted PROPER CIRCULAR-ARC and UNIT CIRCULAR-ARC, generalize
proper and unit interval graphs, respectively. Proper circular-arc graphs consist of
all circular-arc graphs having circular-arc representations such that no arc is a proper
subset of another arc. Unit circular-arc graphs consist of all circular-arc graphs having
circular-arc representations in which all arcs have the same length. Unlike for inter-
val graphs, UNIT CIRCULAR-ARC (PROPER CIRCULAR-ARC. Figure 1.25 depicts
examples.

u

v

w x

y
z

G

u

w

x
v

y
z

R

Figure 1.24: A circular-arc graph G and one of its circular-arc representations R.
The circle is depicted in dashed.

44

1.4. Planar Embeddings

HELLY CIRCULAR-ARC

R1

UNIT CIRCULAR-ARC

R2

PROPER CIRCULAR-ARC

R3

Figure 1.25: Three example representations of subclasses of circular-arc graph. Ob-
serve that the graph represented by R3 is not a unit circular-arc graph.

1.3.7 String Graphs

The class of string graphs consist of intersection graphs of curves, called strings, in
the plane. We denote this graph class as STRING. It was first introduced in 1976 by
Ehrlich, Even and Tarjan [104] who proved that 3-coloring is NP-complete for string
graphs. The complexity of recognition was a mystery for quite some time. In 1991,
Kratochvíl [237] showed that it is NP-hard. But it was unclear how to certify a string
representation in polynomial space since a string graph may require exponentially
many intersections in every string representation [238]. This question was resolved in
2002 when string graph recognition was proved to be in NP [314].

String graphs generalize most intersection classes of graphs. More precisely, it
contains every intersection graph of arc-connected sets in the plane. Therefore, every
result for string graphs also applies to all classes of intersection graphs mentioned
above. For instance, Gavenčiak et al. [144, 142, 143] study the game of cops and
robbers on intersection graphs. They prove that 15 cops are sufficient to catch the
robber on every connected string graph, so this number is bounded on all connected
intersection graphs of arc-connected sets in the plane. (Better bounds are proved for
some of subclasses of string graphs; see [144, 142, 143] and the references therein.)

Interval Filament Graphs. In 2000, Gavril [147] introduced interval filament graphs
as generalizations of interval graphs and circle graphs. An interval filament graph G
is an intersection graph of graphs of the following continuous functions. For each
u ∈ V (G), we have an interval [a, b] and a function fu : [a, b] → R such that fu(a) =
fu(b) = 0 and fu(x) > 0 for x ∈ (a, b). Then ⟨u⟩ =

{
(x, f(x)) : x ∈ [a, b]

}
. We denote

the class of interval filament graphs by IFA. We have that

CHOR ∪ FUN ∪ CIRCLE (IFA (STRING.

Pergel [294] proved that recognition of interval filament graphs is NP-complete.

1.4 Planar Embeddings

An embedding R of a graph G is defined as follows. To each vertex v ∈ V (G), it
assigns one point ⟨v⟩ in the plane R2. To each edge uv ∈ E(G), it assigns a curve

45

Chapter 1. Introduction to Geometric Representations of Graphs

⟨uv⟩ in the plane starting at ⟨u⟩ and ending at ⟨v⟩. Figure 1.1 gives three examples
of embeddings. An embedding is called planar if the curves representing edges do
not cross, i.e., they have pairwise disjoint interiors. We denote the class of all planar
embeddings by CURVES. A graph is called planar if it has a planar embedding. The
embedding in Fig. 1.1 on the right is planar, but the remaining two embeddings are
not. Faces of the embedding are the regions of R2 \ R. Combinatorially, a planar
embedding is described by circular orderings of edges around each vertex. Another
combinatorial description is by spherical maps; see Section 8.1 for more details. We
denote the class of planar graphs by PLANAR.

The class of planar graphs is the oldest and most studied in graph theory, see the
books [98, 282] for more details. The four color problem, asking whether each planar
graph can be colored by four colors, was first asked in 1852 and greatly influenced
graph theory. Around 1980, the first computer-assisted proof was announced by Appel
and Haken [7], and a different proof was described in [306]. The famous results of
Kuratowski [245] and Wagner [351] characterize planar graphs as those graphs which
do not contain K5 and K3,3 as subdivisions or as minors. Several linear-time algorithms
for recognition of planar graphs are known [193, 112, 39, 43, 92], Further, the algorithm
of [43] is certifying, finding a subdivision of K5 or K3,3 in non-planar inputs. In this
thesis, we are concerned with structural and algebraic properties of planar graphs.

Riemann showed that C extended by∞ can be mapped by a conformal bijection
into the sphere called stereographic projection [287, Section 3.IV]. Therefore, every
planar embedding of a graph can be mapped into a spherical embedding (without
crossing of edges) and vice versa; see Fig. 1.26. So planar graphs are exactly graphs
which can be drawn onto the sphere without crossing edges.

A straight-line embedding is a planar embedding such that each edge is repre-
sented by a segment. By STRAIGHTLINE, we denote the class of straight-line em-
beddings. The well-known Fáry Theorem [114] states that every planar graph has a
straight-line embedding: STRAIGHTLINE(G) is non-empty for each planar graph G.

1.4.1 Polyhedral Graphs

In 1922, Steinitz [329] proved that (vertex) 3-connected planar graphs correspond
to polyhedrons. This means that that for every polyhedron P , there exists a planar
embedding of a 3-connected planar graph G such that V (G) correspond to the vertices
of P , E(G) correspond to the edges of P , and the faces of the planar embeddings

R R̂

Figure 1.26: A planar graph G with a planar embedding R on the left and the
corresponding spherical embedding R̂ on the right. We depict the unit circle and its
image on the sphere by dots.

46

1.4. Planar Embeddings

S4 C2 × S4 C2 × A5

Figure 1.27: The five platonic solids which capture the automorphism groups of the
corresponding planar graphs by their groups of isometries.

correspond to the faces of P . And vice versa, every 3-connected planar graph G can
be represented by some polyhedron. Whitney [359] further proved that 3-connected
planar graphs have unique combinatorial embeddings in the sphere, where uniqueness
is up to reversing the circular order of the edges around all vertices.

Mani [268] strengthened this result by describing the geometry of the automor-
phism group Aut(G) of a 3-connected planar graph G. He showed that there exists
a polyhedron P such that Aut(G) coincides with the group of isometries of P . Fig-
ure 1.27 gives examples of such polyhedra associated to the graphs of platonic solids.
Also, the polyhedron P can be placed inside the sphere and projected onto it, so that
each isometry of P corresponds to some isometry of the sphere. Therefore, every au-
tomorphism in Aut(G) can be geometrically viewed as an isometry of the sphere with
G drawn onto it. See [44] for further generalizations. We describe this in more detail
in Section 8.1.

1.4.2 Contact Representations

A contact representation R is a special type of intersection representation, in which
vertices are represented by geometric sets ⟨u⟩ with pairwise disjoint interiors, so uv ∈
E(G) if and only if ∂ ⟨u⟩ ∩ ∂ ⟨v⟩ ≠ ∅. We note that when each ⟨u⟩ is a segment, these
segments are further not allowed to cross.

Notice that if each ⟨u⟩ is an arc-connected set in the plane, then only pla-
nar graphs can have geometric representations. On the other hand, not all planar
graphs may be representable. As discussed in Section 1.1.3, by Koebe, Andreev and
Thurston [232, 339], every planar graph has a contact representation by disks in the
plane. Further, every planar graph has a contact representation by touching isosceles
triangles with horizontal bases [91]. Every bipartite planar graph has a so-called grid
intersection representations [177, 90], which are contact representations of segments
such that the parts are represented by horizontal and vertical segments, respectively.
Figure 1.28 shows examples.

1.4.3 Subclasses of Planar Graphs

Certainly the most famous subclass of planar graphs is the class of trees, denoted
TREE. We also mention the class of caterpillar graphs, denoted CATERPILLAR, con-
taining each tree which consists of a path with leaves arbitrarily attached. We note
that CATERPILLAR = INT ∩ TREE. A pseudoforest is a graph such that each con-

47

Chapter 1. Introduction to Geometric Representations of Graphs

Figure 1.28: Three examples of contact representations of planar graphs.

nected component contains at most one cycle. We denote the class of pseudoforests
by PSEUDOFOREST.

The class of outerplanar graphs, denoted OUTERPLANAR, consists of all planar
graphs which have a planar embedding having all vertices in one face. We have TREE (
OUTERPLANAR (CIRCLE.

Series-parallel graphs are defined inductively as follows. Each series-parallel
graph contains a pair of terminal vertices (s, t). The graph K2 with the vertices (s, t) is
series-parallel. For two series-parallel graphs G1(s1, t1) and G2(s2, t2), we can construct
a series-parallel graph on the vertices V (G1) ∪ V (G2) by using two operations. The
parallel operation identifies s1 = s2 and t1 = t2 and has the terminal vertices (s1, t1).
The series operation identifies t1 = s2 and has the terminal vertices (s1, t2). The class
of all generalized series-parallel graphs (or just series-parallel graphs) consists of all
graphs having each 2-connected block a series-parallel graph, and we denote this class
by SERIES-PARALLEL. Clearly, OUTERPLANAR (SERIES-PARALLEL.

1.4.4 Bounded Genus Graphs and Other Graph Classes

For the purpose of Chapter 9, we quickly sketch possible generalizations of planar
graphs; for more information, see e.g. [282, 98]. Instead of embeddings in the plane, we
may consider embeddings in topological surfaces of higher genus, for instance projective
planar and toroidal graphs. Further generalizations are graph classes with forbidden
minors [307] and with forbidden topological subgraphs [163].

1.5 Results of This Thesis

The title of this thesis is “Extension Properties of Graphs and Structures”. What is
meant by extension properties? Suppose that we have partial information about some
graph property. In this thesis, we study the question whether this partial information
can be used to deduce the full information about the property. Such questions may
be studied from the computational point of view or from the structural one. We
concentrate on geometrically represented graphs and properties related to them.

In this section, we give an overview of the results described in this thesis. It is
structured in two parts, which are mostly independent of each other. (The only major
overlap is in Section 9.6.) Part I deals with the question of which partial intersection
representations can be extended to full representations, and we are mostly concerned
with interval graphs. Part II deals with algebraic properties of graphs: symmetries,

48

1.5. Results of This Thesis

Rep(G)

R

Rep

G
ρ

(a) (b)

R1

R2

R3

R4

R5

R6

T

Figure 1.29: (a) We study what information about a graph G can be derived from
the structure of all its geometric representations Rep(G). (b) All six different interval
representations of a given interval graph, which are efficiently described by the PQ-tree
T at the bottom.

graph isomorphism and regular graph covers, and it is mostly concerned with planar
graphs. For more detailed overviews, see Chapters 2 and 6, respectively.

Structure of All Representations. One of the reasons to study geometric repre-
sentations of graphs is that the existence of such representations can be used to deduce
additional information about graphs. For instance, to compute a minimum vertex col-
oring of an interval graph G, we first find an interval representation R. Then we color
the intervals greedily from left to right, always using the smallest available color. It
can be easily proved that such a coloring uses the minimum number of colors.

Figure 1.29 shows the main underlying theme of this thesis. Let Rep be a class
of geometric representations. Suppose that instead of a representation R of G, we
consider the entire set Rep(G) of representations of G. For geometrically represented
graph classes which are nicely structured, Rep(G) is well understood and can be
obtained. For instance, for interval graphs, Booth and Lueker [39] described a tree
data structure called PQ-trees which efficiently captures all interval representations
of a graph G (see Sections 3.1 and 4.2). The natural question is what additional
information can be found about G using Rep(G). We show that for the studied
problem, a full understanding of Rep(G) is very helpful.

1.5.1 Part I: Partial Representation Extension Problems

The partial representation extension problems generalize the recognition problems for
geometrically represented graphs. Aside from the graph, the input also gives a partial
representation, which prescribes a representation of a part of the graph. We ask
whether this partial representation can be extended to a full representation of the input
graph without altering the representation of the prescribed parts. For intersection
representations, a partial representation is an intersection representation of an induced
subgraph, and the sets representing these vertices cannot be altered.

In the context of intersection representations, I introduced this problem in my
Bachelor’s thesis from 2010 and showed that the problems can be solved in polynomial
time for interval graphs, proper interval graphs and permutation graphs.3 Since then,

3We note the partial embedding extension problems for planar graphs [292, 4] were already studied

49

Chapter 1. Introduction to Geometric Representations of Graphs

research on the partial representation extension problems has been very active and
many computational and structural results for a variety of intersection graph classes
have been proved. In Part I, we describe this development and mostly concentrate on
the partial representation extension problem for interval graphs.

Chapter 2. We precisely define the partial representation extension problems and give
an overview of the state-of-the-art results. We describe the main ideas and techniques,
and also discuss related restricted representation problems.

Chapter 3. We introduce the classical characterization of interval graphs by Fulkerson
and Gross [133] in terms of consecutive orderings of maximal cliques, and describe PQ-
trees of Booth and Lueker [39], which efficiently store all these consecutive orderings.

We show that a partial interval representation inposes a partial ordering ▹ on
the order of maximal cliques. The main structural characterization states that a
partial interval representation is extendible if and only if there exists a consecutive
ordering of maximal cliques extending ▹. Further, we show that this property can be
tested in linear time by reordering PQ-trees, which leads to a linear-time algorithm
for partial representation extension of interval graphs. Section 2.2 contains a more
detailed overview.

Chapter 4. We generalize the minimal forbidden induced subgraphs of interval graphs
to partially represented interval graphs. We study minimal obstructions which are
minimal graphs with non-extendible partial representations. If a minimal obstruction
is contained in a partially represented interval graph, then the partial representation
is clearly non-extendible.

We show that minimal obstructions are involved, consisting of 10 infinite classes,
but nevertheless we fully describe their structure. The proof uses the characteriza-
tion of extendible partial interval representations of Chapter 3 and modified PQ-trees
(MPQ-trees) of Korte and Möhring [235]. If a partial representation is non-extendible,
some node of the MPQ-tree cannot be reordered, and we divide the argument ac-
cording to the type of this node. We find a small configuration of maximal cliques
obstructing the reordering, derive positions of pre-drawn intervals and locate a minimal
obstruction.

As a consequence of our characterization, we prove that partial interval represen-
tations satisfy the Helly property: a partial representation is extendible if and only if
every quadruple of pre-drawn intervals is extendible by themselves, while ignoring the
positions of the remaining pre-drawn intervals. Also, we show that the linear time al-
gorithm of Chapter 3 can be modified to certify non-extendible partial representations
by finding a minimal obstruction. See Section 2.2 for a detailed overview.

Chapter 5. We study interval graphs of limited nesting and count of lengths. We show
that the partial representation extension problem is NP-hard already for 2-LengthINT.
On the other hand, we illustrate the nice structure of k-NestedINT by describing a
relatively simple linear-time recognition algorithm by dynamic programming on MPQ-
trees. See Section 2.4 for precise statements of our results.

in 2007. See Section 2.8 for more detail.

50

1.5. Results of This Thesis

1.5.2 Part II: Extending Algebraic Properties of Graphs

We study algebraic properties of graphs, namely their automorphism groups, the graph
isomorphism problem and regular graph covering. Automorphism groups describes
symmetries of graphs. The graph isomorphism problem (denoted GraphIso) asks
whether two graphs are the same up to relabeling the vertices. Its computational
complexity is a famous unresolved problem in theoretical computer science and it is
closely related to the complexity of computing automorphism groups; see Section 6.4.
Regular graph covering is a similarity relation between two graphs which originated
in topology, and it implies that many graph properties are shared.

The main structural tool is the 3-connected reduction which decomposes each
graph G into 3-connected components (essentially 3-connected graphs, cycles, and
dipoles). We are mostly concerned with planar graphs since 3-connected planar graphs
are very restricted. For instance, as described in Section 1.4, the automorphism groups
of 3-connected planar graphs are spherical groups. The main question is how to com-
bine these spherical groups of all 3-connected components to construct the automor-
phism group Aut(G) of the entire planar graph G. So the main question studied in this
part is whether an understanding of algebraic properties for 3-connected components
can be extended into an understanding of these properties for the entire planar graph.
We note that some of the presented results also apply to general graphs.

Chapter 6. We give a more detailed overview of Part II. We precisely define the
studied algeabraic properties, state the main result proved in this thesis and discuss
other related results.

Chapter 7. Seminal papers by Mac Lane [265] and Trakhtenbrot [340] introduced
the idea that every graph G can be decomposed into 3-connected components. It was
further extended in [344, 188, 191, 78, 352, 27]. This decomposition can be represented
by a reduction tree whose nodes are 3-connected graphs, and this tree is known in the
literature mostly under the name SPQR tree [95, 96, 97, 167].

The reduction procedure works by finding certain inclusion minimal subgraphs
called atoms and by replacing them with edges. We introduce augmented reduction
trees which use colored and possibly directed edges, to capture isomorphism classes
and symmetry types of atoms. This allows to track changes in the automorphism
group, since the reduction defines a natural group epimorphism. We show that the
augmented reduction tree captures all automorphisms of a graph. See Section 6.2 for
a more detailed overview.

Chapter 8. In 1869, Jordan [202] inductively characterized the automorphism groups
of trees as precisely the class of groups closed under the direct product and the wreath
product with symmetric groups. We prove a similar Jordan-like inductive characteriza-
tion of the automorphism groups of planar graphs. The basis is our 3-connected decom-
position and the well-known characterization of automorphism groups of 3-connected
planar graphs. See Section 6.3 for more details. By applying our results, we also char-
acterize the automorphism groups of 2-connected planar graphs, outerplanar graphs
and series parallel graphs.

51

Chapter 1. Introduction to Geometric Representations of Graphs

Chapter 9. Let G and H be graphs. Suppose that for each u ∈ V (G), we are given
a list L(u) ⊆ V (H) of possible images of u. The list restricted graph isomorphism
problem (denoted ListIso) asks whether there exists an isomorphism π : G→ H such
that π(u) ∈ L(u). In 1981, Lubiw [260] proved that ListIso is NP-complete. After 35
years, we revive the study of this problem and consider which results for GraphIso
translate to ListIso.

We prove the following:

• When GraphIso is GI-complete for a class of graphs, it usually translates into
NP-completeness of ListIso.
• Combinatorial algorithms for GraphIso translate into algorithms for ListIso:

for trees, planar graphs, interval graphs, circle graphs, permutation graphs,
bounded genus graphs, and bounded treewidth graphs.
• Two basic algorithms based on group theory do not translate: ListIso remains

NP-complete for cubic colored graphs with sizes of color classes bounded by 8.

Also, ListIso allows to classify results for the graph isomorphism problem. Some algo-
rithms are robust and translate to ListIso. A fundamental problem is to construct a
combinatorial polynomial-time algorithm for cubic graph isomorphism, avoiding group
theory. By the last result, ListIso is NP-hard for these graphs, so no robust algorithm
for cubic graph isomorphism exists, unless P = NP.

Chapter 10. If G regularly covers H, then H is called a (regular) quotient of G. In
1988, Negami [288] characterized the quotients of planar graphs exactly as projective
planar graphs. Inspired by his approach, we give more insight into the behaviour of
regular graph covering with respect to the 3-connected decomposition, namely with
respect to 1-cuts (easy) and 2-cuts (very complex). For a graph G, we structurally
describe all its quotients by composing them from the quotients of the 3-connected
components in the decomposition. Further, we apply our results to planar graphs,
give a direct proof of the Negami Theorem [288] and describe more insight into the
geometry of quotients of planar graphs.

Chapter 11. We use the structural results of Chapter 10 to construct the following
algorithm. For an input planar graphG and an arbitrary graphH, it tests the existence
of regular covering in FPT time when parameterized with respect to the size of H.
Unlike most FPT algorithms in the area, our algorithm is quite involved. Even with
the full description of all quotients of G, it is not easy to test whether H is one of
them, and the existence of a polynomial-time algorithm remains an open problem. As
special cases, when G is 3-connected, H is 2-connected, or the ratio of sizes of v(G)
and v(H) is an odd integer, we can solve the problem in polynomial time.

52

PART

I

The Partial Representation
Extension Problems

53

54

2 State of The Art for Partial
Representation Extension

2.1 Definitions and Motivation . 56
2.2 Interval Graphs . 59
2.3 Proper and Unit Interval Graphs 62
2.4 k-nested and k-length Interval Graphs 67
2.5 Chordal graphs . 69
2.6 Circle Graphs . 71
2.7 Partial Orientation Extension Problems 75
2.8 Extending Other Types of Partial Representations 86
2.9 Related Restricted Representation Problems 87
2.10 Open Problems . 96

This chapter contains:

• 2.2 and 2.4. An overview of results proved in Chapters 3, 4, and 5.
• 2.3, 2.5, 2.6 and 2.7. We survey results for partial representation extension

of proper interval, unit interval, chordal, circle, comparability, permutation,
function, trapezoid, and proper-circular arc graphs.
• 2.8 Extending Other Types of Partial Representations. We survey results

for partial embedding extension, partial representation extension of contact
representations of planar graphs, and partial visibility extension.
• 2.9 Related Restricted Representation Problems. We describe chronological

orderings, bounded representations, representation sandwich, simultaneous
representations, and Allen algebras from time reasoning.
• 2.10 Open Problems. We conclude with a list of open problems.

http://pavel.klavik.cz/orgpad/repext.html

55

http://pavel.klavik.cz/orgpad/repext.html

Chapter 2. State of The Art for Partial Representation Extension

2.1 Definitions and Motivation

Let C be a class of graphs and Rep be a class of intersection representations. Suppose
that G′ is an induced subgraph of a graph G ∈ C. A partial representation R′ of G is
an intersection representation

{
⟨x⟩′ : x ∈ V (G′)

}
∈ Rep(G′). The vertices of G′ and

the sets of R′ are called pre-drawn. A representation R extends R′ if and only if it
assigns the same sets to the vertices of G′, i.e., ⟨x⟩ = ⟨x⟩′ for every x ∈ V (G′).

Partial Representation Extension. In Part I, we study the following decision
problem generalizing the recognition problem:

Problem: Partial representation extension – RepExt(C,Rep)
Input: A graph G ∈ C and a partial representation R′ ∈ Rep.

Question: Is there a representation R ∈ Rep of G extending R′?

When the class of geometric representations Rep is clear from the context, we may
denote the problem just by RepExt(C). Figure 2.1 compares the recognition problems
and the partial representation extension problems. Figure 2.2 gives an overview the
state-of-art complexity results for the partial representation extension problems.

Let Ext(R′) denote the class of representations in Rep extending R′, i.e., R ∈
Ext(R′) if and only if R ∈ Rep extends R′, and let Ext(R′, G) = Ext(R′) ∩Rep(G).
When the class Rep is not clear from the context, we may also write ExtRep(R′) and
ExtRep(R′, G), respectively. For A ⊆ V (G′), we denote by R′[A] the restriction of the
partial representation R′ to only pre-drawn sets in A.

Motivation. To solve the recognition problem, an arbitrary representation can be
constructed. Solving partial representation extension is harder, and better understand-
ing of the structure of all possible representations is very helpful. This added difficulty
is the well-known phenomenon in architecture in a saying that reconstructing an ex-
isting house is much harder than building a new house from scratch. In mathematics,
this added difficulty is a desirable property since one is forced to improve the struc-
tural understanding of the studied classes to solve this problem; and this structural
understanding can be later applied in attacking other problems.

Recog:

G
?

−→ R

a

b

c

d

G R

a

b

c
d

RepExt:

G+R
′

?
−→ R

a

b

c

d

GG′
R

′

a

b c

Figure 2.1: The graph G is an interval graph, but the partial representation R′ is
not extendible. In all figures, we depict pre-drawn vertices with circles and pre-drawn
sets in bold.

56

2.1. Definitions and Motivation

PROPER INT

O(n+m) [211]

UNIT INT

O(n2) [211, 324]

k-NestedINT

polynomial time [220]

k-LengthINT

NP-hard [219, 221]

INT

O(n+m) [216, 215, 34]

PERM

O(nm) [210]

TRIANGLE

open

TRAPEZOID

O(n5) [243]

FUN

polynomial time [210]

CIRCLE

polynomial time [58]

CHOR

NP-complete [213]

IFA

NP-hard [294]

STRING

NP-hard [237, 314]

HELLY CIRCULAR-ARC

open

UNIT CIRCULAR-ARC

NP-complete [363]

PROPER CIRCULAR-ARC

polynomial time [20]

CIRCULAR-ARC

open

contact representations of PLANAR

NP-hard [55]

belonging

to NP is open

belonging

to NP is open
=

...

}

k + 1
≤ k different lengths

Figure 2.2: Hasse diagram of inclusions of intersection graph classes, together with
the known complexity results for the partial representation extension problems. Notice
that the complexity does not depend on inclusions of graph classes. For instance, if
C′ is a subclass of C and the problem RepExt(C,Rep) can be solved in polynomial
time, it does not in general imply that the problem RepExt(C′,Rep′) can be solved
in polynomial time.

57

Chapter 2. State of The Art for Partial Representation Extension

NP-hard [239](a) linear-time solvable [39, 235, 168, 75](b)

Figure 2.3: (a) Recognizing intersection graphs of homothetic equilateral triangles is
NP-hard. (b) With all bases on one line, we get interval graphs which can be recognized
in linear time.

In Chapter 3, 4, and 5, we give a lot of insight into the structure of all repre-
sentations of interval graphs. The papers [211, 212, 58, 59], described in Sections 2.3
and 2.6 build completely new structural results for unit interval and circle graphs
which might be of independent interest. The complexity of the partial representation
extension problem for circular-arc graphs is the main open problem; and if it is solved
in polynomial time, it will likely lead to new structural results describing all possible
representations.

Partial representation extension belongs to a larger group of restricted represen-
tation problems, see Section 2.9 for more detail.

Homothetic Equilateral Triangles on Two Lines. We conclude this section with
an initial motivation which lead us to introduce the partial representation extension
problems in [216]. Kratochvíl and Pergel [239] studied intersection graphs of homoth-
etic equilateral triangles and proved that their recognition is NP-hard; see Fig. 2.3a.
On the other hand, when bases of all triangles belong to one line, we can ignore the
rest of triangles and we get the well-known interval graphs which can be recognized in
linear time [39]; see Fig. 2.3b. We tried to solve the following (still open) problem of
Pultr: what is the complexity of recognizing when bases of all triangles belong to two
parallel lines; see Fig. 2.4.

Suppose that two lines are horizontal and all equilateral triangles point upwards.
Each intersection representation R partitions V (G) into two subsets T and B such
that the vertices in T are represented by triangles on the top line and the vertices
in B are represented by triangles on the bottom one. So R consists of two interval

RB

RT

R

Figure 2.4: On the left, a representation using two lines. The triangles of RT

are depicted in white, the triangles of RB in gray, and those in B′ are depicted in
bold. On the right, the corresponding interval representation R extending the partial
representation R′B′ .

58

2.2. Interval Graphs

representations RB = R[B] and RT = R[T] together with some intersections in
between. More precisely, if uv ∈ E(G), u ∈ B and v ∈ T , then ⟨u⟩ is high enough to
intersect ⟨v⟩ on the top line.

To simplify the problem, suppose that we would know the partition T and B. To
simplify even further, let a representation RB of G[B] be known. Can we complement
it by a representation RT of G[T]? Let

B′ = {u ∈ B : ⟨u⟩ intersects the top line}.

Positions of triangles corresponding to the vertices in B \ B′ can be ignored in con-
struction of RT . On the other hand, the triangles of B′ restrict RT . For each u ∈ B′,
we can cut the triangle ⟨u⟩ by the top line and obtain a fixed triangle ⟨u⟩′ based at
the top line. We get an interval graph G[T ∪ B′] with a partial representation R′B′ ;
see Fig. 2.4. The complementing representation RT can be constructed if and only if
the partial representation R′B′ is extendible.

2.2 Interval Graphs

In 2011, we have initiated the study of partial representation extension problems by
the class of interval graphs [216]. There have been two natural motivations to start
with interval graphs. As mentioned in Section 1.3.1, this class is the oldest and most
understood class of intersection graphs. Also, there are many structural results and
techniques known for interval graphs. Namely, we can use PQ-trees [39] (described in
Section 3.1) which combinatorially determine all interval representations of an interval
graph. This way we have discovered the most important properties of partial repre-
sentation extension, applicable to other more complex graph classes, without dealing
with technical details.

Therefore, the problem RepExt(INT) is well-understood from the structural and
algorithmic point of view. In particular, we show that a good understanding of the
structure of all representations is essential to solve the problem; unlike recognition for
which an arbitrary representation has to be found. We present the results of [216, 215,
222, 223] in Chapters 3 and 4.

2.2.1 Structural Results

There are two essential structural papers for interval graphs: the characterization
of Fulkerson and Gross [133] and the list of minimal forbidden induced subgraphs
by Lekkerkerker and Boland [249]. We generalize both of these results to partially
represented interval graphs. We note that we allow the intervals to share the endpoints
and to have zero lengths.

Generalizing Fulkerson and Gross. Fulkerson and Gross [133] proved in 1965 the
following characterization. A graph is an interval graph if and only if there exists
an ordering < of its maximal cliques such that for each vertex the cliques containing
this vertex appear consecutively in <. Intervals of the real line have the Helly prop-
erty, so all intervals representing one maximal clique have a common intersection. In

59

Chapter 2. State of The Art for Partial Representation Extension

R

x y

x1 x2 x3 y1 y2 y3

xx1 xx2 xx3 yy1 yy2 yy3

xx1 xx2 xx3

yy1 yy2 yy3

⊳

Figure 2.5: An interval graph consisting of two stars with pre-drawn central vertices.
One of the extending representations is on the left. Any extending representation
places all maximal cliques containing x on the left of all maximal cliques containing y.
Thus, the ordering of the maximal cliques has to extend the partial ordering ▹, given
by the Hasse diagram on the right.

this intersection, we choose one point which we call a clique-point. The ordering is
the left-to-right ordering of the chosen clique-points; see Fig. 2.5. We describe this
characterization in detail in Section 3.1.

In Section 3.2, we generalize this result and characterize extendible partial rep-
resentations. A partial representation gives a partial ordering ▹ which has to be
extended by the ordering < of the maximal cliques of any extending representation;
see Figure 2.5 for an example. In Theorem 3.2.2, we prove that the constraints posed
by ▹ are not only necessary, but also sufficient.

Generalizing Lekkerkerker and Boland. Recall that chordal graphs are graphs
with no induced cycle of length four or more. Alternatively, they are intersection
graphs of subtrees of a tree. Three vertices form an asteroidal triple if there exists a
path between every pair of them avoiding the neighborhood of the third vertex. Aster-
oidal triple-free graphs (AT-FREE) are graphs containing no asteroidal triples. Lekkerk-
erker and Boland [249] characterized interval graphs as INT = CHOR∩AT-FREE. They
described this characterization by the minimal forbidden induced subgraphs given in
Fig. 2.6 which we call Lekkerkerker-Boland obstructions (LB).

We generalize the characterization of Lekkerkerker and Boland [249] to describe
minimal obstruction which make partial representations non-extendible. Each obstruc-
tion consists of a small graph and its non-extendible partial representation. Aside LB
obstructions, we have two trivial obstructions, called SE, and ten infinite classes of
minimal obstructions. The main class, called k-FAT obstructions, has three wrongly
ordered disjoint pre-drawn intervals ⟨xk⟩′, ⟨yk⟩′, and ⟨zk⟩′. The obstruction consists of
a zig-zag structure with k levels where the last level cannot be placed. See Fig. 2.7a and

≥ 1

y

x z

x

y

z

x

y

z≥ 1

x

y

z

≥ 0

Figure 2.6: Five types of LB obstructions which are the minimal forbidden induced
subgraphs of INT. The bold curly lines correspond to induced paths with denoted
minimal lengths. The leftmost obstructions are induced cycles of length four or more.
The remaining four types of obstructions are minimal asteroidal triples (x, y, z) which
are chordal graphs. In all figures, we always depict all edges with normal lines and
some highlighted non-edges with dashed lines.

60

2.2. Interval Graphs

x1

y1

z1
P1

R
′

H

x1 y1 z1
(a)

1-FAT

x2 y2 = z1 x1

z2 = y1t2

P2

P1

R
′

H

x2 y2 z2
(b)

2-FAT

z1

u

x1 y1

R
′

H

z1u

(c)
(1, 1)-CE

Figure 2.7: Three examples of minimal obstructions, each consisting of a graph H
and a non-extendible partial representation R′H . Curly lines denote induced paths
and dashed edges are non-edges. The obstructions (a) and (b) are the first two k-FAT
obstructions, and (c) is the simplest (k, ℓ)-CE obstruction.

b for 1-FAT and 2-FAT obstructions. There are eight other infinite classes derived from
k-FAT obstructions by adding a few vertices and having different vertices pre-drawn.
The last infinite class of (k, ℓ)-CE obstructions consists of a k-FAT obstruction glued
with an ℓ-FAT obstruction and contains only two pre-drawn vertices; see Fig. 2.7c for
a (1, 1)-CE obstruction. We formally define these minimal obstructions in Section 4.1.

Theorem 2.2.1. A partial representation R′ of G is extendible if and only if G and
R′ contain no LB, SE, k-FAT, k-BI, k-FS, k-EFS, k-FB, k-EFB, k-FDS, k-EFDS,
k-FNS and (k, ℓ)-CE obstructions.

Every minimal obstruction contains at most four pre-drawn intervals. Thus, the
following surprising Helly-type result saying that a partial interval representation is
extendible if and only if every quadruple of pre-drawn intervals is extendible by itself
follows as a straightforward corollary:

Corollary 2.2.2. A partial interval representation R′ is extendible if and only if for
every A ⊆ V (G′), |A| ≤ 4, the restricted partial representation R′[A] is extendible.

2.2.2 Algorithmic Results

Our structural results translate into a linear-time certifying algorithm for RepExt(INT).
All other algorithms for the partial representation extension problems [58, 210, 34, 211,
212, 213, 214] are able to certify solvable instances by outputting an extending repre-
sentation. Using the minimal obstructions, we construct the first algorithm for partial
representation extension certifying also non-extendible partial representations.1

Theorem 2.2.3. Assume that the input gives the endpoints in a partial representation
R′ sorted from left to right. Then there exists an O(n+m) certifying algorithm for the
partial representation extension problem, where n is the number of vertices and m is
the number of edges of the input graph. If the answer is “yes”, it outputs an extending
representation. If the answer is “no”, it detects one of the minimal obstructions.

1Formally speaking, a polynomial-time algorithm certifies unsolvable instances by outputting
“no” and by a proof of its correctness. Our algorithm outputs a simple proof that a given partial
representation is non-extendible in terms of a minimal obstruction. This proof can be independently
verified which is desirable.

61

Chapter 2. State of The Art for Partial Representation Extension

To test whether a partial representation R′ is extendible, we use Theorem 3.2.2.
We work with a PQ-tree (Section 3.1) which combinatorially describes all orderings of
the maximal cliques yielding interval representations. We test whether this tree can be
reordered according to ▹. By applying several tricks, we can test this for a specific type
of partial orderings called interval orders (defined in Section 1.3.1) in linear time. If the
answer is “yes”, by following the proof of Theorem 3.2.2, we find a representation R
extending R′. If the answer is “no”, we follow the proof of Theorem 2.2.1 to construct
one of the minimal obstructions.

To obtain the linear-time algorithm, we need some reasonable assumption on
a partial representation which is given by the input. Similarly, most of the graph
algorithms cannot achieve better running time than O(n2) if the input graph is given
by an adjacency matrix instead of a list of neighbors for each vertex. We say that a
partial representation is sorted if it gives all (left and right) endpoints of the pre-drawn
intervals sorted from left to right. We assume that the input partial representation
is given sorted. If this assumption is not satisfied, the algorithm needs additional
time O(k log k) to sort the partial representation where k is the number of pre-drawn
intervals.

Another approach. Bläsius and Rutter [34] describe an alternative linear-time algo-
rithm for RepExt(INT), by solving a more general problem described in Section 2.9.4
using simultaneous PQ-trees. This framework applies to other problems such as si-
multaneous planar embeddings. Consequently their algorithm is quite involved and
gives no understanding of partial representation extension. We note that Bläsius and
Rutter [34] need the same assumption of a sorted partial representation for their linear-
time algorithm.

2.3 Proper and Unit Interval Graphs

These two subclasses of interval graphs are described in Section 1.3.1. We give an
overview of the results for the partial representation extension problems of [211, 212,
323, 324].

2.3.1 Proper Interval Graphs

We sketch the algorithm of [211, 212] showing the following result:

Theorem 2.3.1 (Klavík et al. [211, 212]). The problem RepExt(PROPER INT) can
be solved in time O(n+m), where n is the number of vertices and m is the number of
edges.

Two vertices u and v are called twins if N [u] = N [v]. This is an equivalence
relation and it defines twin classes. In every proper interval representation R of G,
the left-to-right ordering of left endpoints is the same as the left-to-right ordering of
right ones. So we get a left-to-right ordering < of V (G). Further, the vertices of each
twin class appear consecutively in <. The orderings < are characterized as follows.

62

2.3. Proper and Unit Interval Graphs

Lemma 2.3.2 (Roberts [304], Deng et al. [94]). For a connected proper interval graph,
the ordering < is uniquely determined up to local reordering of twin classes and com-
plete reversal.

A component is called located if it has at least one interval pre-drawn, and
unlocated otherwise. The unlocated components can always be placed far from all pre-
drawn intervals, so we can deal with them using the standard linear-time recognition
algorithm [73].

The located components are ordered from left-to-right by an ordering J, oth-
erwise the partial representation is not extendible. Using Lemma 2.3.2, we test for
each located component whether the left-to-right order <′ of pre-drawn intervals is
compatible with < or its reversal (up to local reordering of twin classes). This can be
decided in linear time, concluding our sketch of the proof of Theorem 2.3.1. (We note
that touching pre-drawn intervals ⟨u⟩′ and ⟨v⟩′, having r(u) = ℓ(v), pose additional
contraints which can be easily deal with; see [212, Lemma 2.3] for details.)

Another approach of Bang-Jensen et al. [20] solving RepExt(PROPER INT) in
polynomial time using acyclic local tournaments [94] is described in Section 2.7.6.

2.3.2 Unit Interval Graphs

By [304], PROPER INT = UNIT INT. But the problem RepExt(UNIT INT) is harder
to solve than RepExt(PROPER INT), as illustrated by an example in Fig. 2.8a.

Let PROPER INT Rep be the class of proper interval representations and let
UNIT INT Rep be the class of unit interval ones. By definition, UNIT INT Rep (
PROPER INT Rep. The relation is depicted in Fig. 2.8b. So while PROPER INT =
UNIT INT, their partial representation extension problems are different:

RepExt(PROPER INT) = RepExt(PROPER INT = UNIT INT,PROPER INT Rep)
̸= RepExt(PROPER INT = UNIT INT,UNIT INT Rep) = RepExt(UNIT INT).

a b c

(a)
a

b

c

R

PROPER INT = UNIT INT

PROPER INT Rep

UNIT INT RepExt(R′, G)

= ∅?

(b)

ρ

Figure 2.8: (a) A partial representation which is extendible by the depicted proper
interval representation, but non-extendible by a unit interval representation.
(b) The three classes studied in [211, 212]: the class of proper/unit interval graphs
PROPER INT = UNIT INT, the class of proper interval representations PROPER INT Rep
and its subclass of unit interval representations UNIT INT Rep. The denoted mapping
ρ assigns to a representation the graph it represents. Roberts’ Theorem [304] states
that ρ|UNIT INT Rep is surjective.

63

Chapter 2. State of The Art for Partial Representation Extension

Let Ext(R′, G) denote all proper interval representations of G extending R′.
The problem RepExt(PROPER INT) is solvable if and only if Ext(R′, G) ̸= ∅, but the
problem RepExt(UNIT INT) is solvable if and only if

Ext(R′, G) ∩ UNIT INT Rep ̸= ∅,

In particular, the problem RepExt(UNIT INT) is solvable only when the problem
RepExt(PROPER INT) is solvable.

Required Resolution. Some difference between the problems RepExt(PROPER INT)
and RepExt(UNIT INT) is expected. Unit interval representations deal with precise
positions of endpoints, but only the left-to-right ordering of endpoints matters for
(proper) interval graphs; we call this difference as geometry versus topology.

For instance, recognition algorithms for unit interval graphs need extra work to
certify positive answers by building unit interval representations. Also, the required
resolution for their drawing needs to be considered. In [73], it is proved constructively
that every n-vertex unit interval graph has a representation in the grid of resolution
1
n
: for each ⟨u⟩, we have ℓ(u) = k

n
for some k ∈ Z.

For RepExt(UNIT INT), we want to show that an extending representation, if
it exists, can be described with polynomially-large resolution with respect to the size
of input. Clearly, the grid has to contain endpoints of all predrawn intervals. Let
the endpoints of pre-drawn interval be expressed as irreducible fractions p1

q1
, p2

q2
, · · · , pb

qb
.

Then we define:

ε′ := 1
lcm(q1, q2, . . . , qb)

, and ε := ε′

n
, (2.1)

where lcm(q1, q2, . . . , qb) denotes the least common multiple of q1, . . . , qb.

Lemma 2.3.3 (Klavík et al. [211, 212]). If there exists a unit interval representation
R extending R′, then there exists a unit interval representation R̂ in which all intervals
have endpoints on the ε-grid, where ε is defined by (2.1).

Sketch of Proof. See Figure 2.9 for an overview. We transform R into R̂ by shifting
each interval twice. First, we apply a left shift LS(v) for each interval ⟨v⟩, then we
apply a right shift RS(v) to ⟨v⟩.

We choose LS(v) equal to the distance of ℓ(v) from the closest ε′-grid point on
the left, so 0 ≤ LS(v) < ε′. Notice that original intersections are kept by left shifting,

v1
v5v2

v3
v4

LS

ε
′-grid

RS

ε-grid

Figure 2.9: First, we shift intervals to the left to the ε′-grid. The left shifts of
v1, . . . , v5 are (0, 0, 1

2ε′, 1
3ε′, 0). Then, we shift to the right in the refined ε-grid. Right

shifts have the same relative order as left shifts: (0, 0, 2ε, ε, 0).

64

2.3. Proper and Unit Interval Graphs

but we might introduce new touching pairs of intervals. We remove them by suitable
right shifting in the ε-grid

RS : V (G)→
{
0, ε, 2ε, . . . , (n− 1)ε

}
having the right-shift property: for all u, v ∈ V (G) with r(u) = ℓ(v), RS(u) ≥ RS(v)
if and only if vivj ∈ E(G). So the right-shift property ensures that RS fixes wrongly
introduced touching pairs created by LS while keeping correct intersections.

Construction of such a mapping RS in the key trick in the proof. Notice that if
we relax the image of RS to [0, ε′), then the reversal of LS has the right-shift property,
since it produces the original correct representation R. But the right-shift property
depends only on the relative sizes of the shifts and not on the precise values. Therefore,
we can construct RS from the reversal of LS by keeping the shifts in the same relative
order. If LS(vi) is one of the kth smallest shifts, we set RS(vi) = (k − 1)ε. Since
pre-drawn intervals are never moved, R̂ extends R′. It is easy to check that it is a
correct unit interval representation.

If the partial representationR′ is empty, then the above lemma non-constructively
proves that every unit interval graph has a representation in the grid of resolution 1

n
.

Linear Programming. We can deal with unlocated components separately as before,
using the algorithm of [73]. On the other hand, located components, ordered by J
from left-to-right, restrict each other as depicted in Fig. 2.10. Therefore, we process
components C1 J C2 J · · · J Cc from left to right and try to push each component as
far to the left as possible, to leave maximum space for remaining components. Suppose
that we process the component Ct and let Et−1 be the rightmost endpoint of previously
placed Ct−1, with E0 = −∞.

It is proved in [212] that only two left-to-right orderings of intervals in Ct have
to be considered. Let v1 < · · · < vk be one of them. We solve the following linear
program, where the variable ℓi determines ℓ(vi):

Minimize: Et := ℓk + 1,
subject to: ℓi ≤ ℓi+1, ∀i = 1, . . . , k − 1, (2.2)

ℓi = ℓ(vi), ∀vi ∈ V (G′), (2.3)
ℓi ≥ ℓj − 1, ∀vivj ∈ E(G), vi < vj, (2.4)

ℓi + ε ≤ ℓj − 1, ∀vivj /∈ E(G), vi < vj. (2.5)

u
C1

v
C2

u v

E1 E2

Figure 2.10: The intervals ⟨u⟩ and ⟨v⟩ are pre-drawn. The component C1 can only
be represented with ⟨u⟩ being the right-most interval, since otherwise C1 would block
space for the component C2.

65

Chapter 2. State of The Art for Partial Representation Extension

v1

v2

v3
v4

v5

v6

v7

u0

u1

u2

u3

u4

u5

u6

u7

s

+0 +1 −1− ε see below

Figure 2.11: On the left, a unit interval graph with two pre-drawn intervals. On
the right, the corresponding digraph D with the weights encoded as in the box.
The weights of the bold edges are as follows: w(u0, u2) = ℓ(v2), w(u0, u5) = ℓ(v5),
w(u2, u0) = −ℓ(v2), and w(u5, u0) = −ℓ(v5).

The constraint (2.2) corresponds to the left-to-right ordering <, (2.3) ensures that
R extends R′, and (2.4) and (2.5) ensure correctness of constructed unit interval
representation. We solve two linear programs for each Ct and we use the smaller value
of Et (if both are solvable) in subsequent linear programs for Ct+1.

The above linear programs can be rewritten into a system of difference con-
straints. In optimization, it is well-known that such a linear program can be solved
by applying Bellman-Ford algorithm on a weighted digraph D, see Fig. 2.11 for an
example, and [212] and [71, Chapter 24.4] for details.

Proposition 2.3.4 (Klavík et al. [211, 212]). The problem RepExt(UNIT INT) can
be solved in time O(n2r+nD(r)) where n the number of vertices, r is the size of input
and D(r) is the complexity of dividing numbers of length r.

Left-shifting Algorithm. A faster algorithm solving the above linear program is
described in [211, 212] which leads to solving RepExt(UNIT INT) in time O(n2 +
nD(r)). We relax the condition (2.3) to ℓi ≥ ℓ(vi). We construct the left-most ε-
grid representation R of Ct which simultaneously minimizes all ℓ1, . . . , ℓk; it is proved
in [212, Corollary 4.6] that it always exists. Therefore, the partial representation R′
is extendible if and only if the left-most representation R satisfies ℓi = ℓ(vi), i.e., it
extends R′.

We start with some unit interval representation far enough to the right; it can
be constructed using [73]. We transform it by a series of left shifts, each decreasing
some ℓi by ε while preserving the correctness of the unit interval representation; see
Fig. 2.12a for an example. In [212, Proposition 4.8], it is proved that, assuming ε
is sufficiently small, a representation is the left-most representation if and only if no
interval can be left-shifted. This is proved by showing that an obstruction digraph
H, having (vi, vj) ∈ E(H) if and only if vj has to be left-shifted before vi, is always
acyclic; see Fig. 2.12b.

66

2.4. k-nested and k-length Interval Graphs

v1

v2

v3

v4

v5

v6

v7(a)

(b)

v6

v5

v3

v7

v4

v2

v6

v1

v1

v2

v3

v4

v5

v6

v7

v4

v5

v3

v7

v4

v2

v6

v1

v1

v2

v3

v4

v5

v6

v7

v5

v3

v7

v4

v2

v6

v1

Figure 2.12: (a) An ε-grid representation modified by left-shifting of v6 and v4.
(b) The corresponding obstruction digraphs H for each of the representations. Only
sinks of the obstruction digraphs can be left-shifted. There are two types of edges
called left edges (depicted dotted) and right edges (depicted normally).

To reach the running time O(k2 + kD(r)) for each component, several tricks has
to be employed. Instead of shifting by ε, we use left shifts as long as possible. We also
work in the ε-grid for ε = ε′

n2 . Geometrically, the algorithm computes a Manhattan
walk inside the polytope given by the linear program described before, consisting of
O(k2) steps. For details, see [212].

Synthetic Graphs. In the language of semiorders, which are unit interval orders,
similar linear programs without pre-drawn intervals were studied by Pirlot [295, 296].
For a unit interval representation, its synthetic graph S is obtained from the digraph
depicted in Fig. 2.11 by removing u0 and s. By using weight as in Fig. 2.11, lengths of
shortest paths in S encode informations about relative positions of endpoints between
intervals in every ε-grid representation. For every i < j, the difference ℓ(ui)− ℓ(uj) is
less or equal the length of a shortest path from uj to ui in S. For instance, a shortest
path in Fig. 2.11 from u6 to u1 is u6 → u3 → u4 → u1, so in every unit interval
representation with this ordering of intervals, we have ℓ(u1) ≤ ℓ(u6) − 1 − 2ε. Also,
every obstruction digraph H is a subgraph of the synthetic graph S.

Recently, Soulignac [323, 324] extended synthetic graphs to unit circular-arc rep-
resentations, building a unified framework for many different problems involving unit
circular-arc representations. He derived a faster algorithm solving RepExt(UNIT INT)
in timeO(n2+r). More generally, he solved the problem RepExt(UNIT CIRCULAR-ARC)
in time O(n2 + r), assuming that the circular order of arcs is specified by the in-
put. This assumption cannot be lifted since Zeman [363] proved that the problem
RepExt(UNIT CIRCULAR-ARC) is NP-complete. (The reduction is similar to the one
used in [211, 212, 213, 214] and in the proof of Theorem 2.4.1.)

2.4 k-nested and k-length Interval Graphs

In Chapter 5, we prove the following results for interval graphs of limited nesting and
count of lengths, described in Section 1.3.2.

Hardness of Extending Partial Representations with Two Lengths. In [201],
a polynomial-time algorithm is given for recognizing 2-LengthINT when intervals are
partitioned into two subsets A and B, each of one length, and both G[A] and G[B] are

67

Chapter 2. State of The Art for Partial Representation Extension

connected. This approach might be generalized for partial representation extension,
but we show that removing the connectedness condition makes it hard:

Theorem 2.4.1. The problem RepExt(2-LengthINT) is NP-hard when every pre-
drawn interval is of one length a. It remains NP-hard even when

(i) the input prescribes two lengths a = 1 and b, and
(ii) for every interval, the input assigns one of the lengths a or b.

Also, the problem is W[1]-hard when parameterized by the number of pre-drawn inter-
vals.

Computing Minimal Nesting. We describe a dynamic programming algorithm
for recognizing k-NestedINT, based on MPQ-trees (see 4.2). We show that we can
optimize nesting greedily from the bottom to the top. We compute a so-called minimal
representation for each subtree and we show how to combine them.

Theorem 2.4.2. The minimum nesting number ν(G) can be computed in time O(n+
m) where n is the number of vertices and m is the number of edges. Therefore, the
problem Recog(k-NestedINT) can be solved in linear time.

This result has the following application in the computational complexity of
deciding logic formulas over graphs called FO property testing. Let ϕ be the length of
a first-order logic formula for graphs. By the locality, this formula can be decided in G
in time nO(ϕ). Since it is W[2]-hard to decide it for general graphs when parameterized
by ϕ, it is natural to ask for which graph classes there exists an FPT algorithm running
in time O(nc · f(ϕ)) for some computable function f .

In [138], it is shown that FO property testing is W[2]-hard even for interval
graphs. On the other hand, if an interval graph is given together with a k-length
interval representation, [138] gives an FPT algorithm with respect to the parameters ϕ
and the particular lengths of the intervals. It was not clear whether such an algorithm
is inherently geometric. Recently, Gajarský et al. [136] give a different FPT algorithm
for FO property testing for interval graphs parameterized by ϕ and the nesting k,
assuming that a k-nested interval representation is given by the input. By our result,
this assumption can be removed since we can compute an interval representation of
the optimal nesting in linear time.

Related Results and Research Directions. Since k-NestedINT seem to share
many properties with proper interval graphs, several future directions of research are
immediately offered. Using our results, it is possible to describe minimal forbidden
induced subgraphs [179]. For the computational problems which are tractable for
proper interval graphs and hard for interval graphs, the complexity of the intermediate
problems for k-NestedINT can be studied. In Lemma 5.2.2, we show that k-NestedINT
can be efficiently encoded, similarly to proper interval graphs. See Section 5.4 for more
discussion.

Partial Representation Extension. The problem RepExt(k-NestedINT) is more
involved since a straightforward greedy optimization from the bottom to the top

68

2.5. Chordal graphs

does not work. The described recognition algorithm can be generalized to solve
RepExt(k-NestedINT) in polynomial time [220]. It contrasts with Theorem 2.4.1.
The partial representation extension problems for k-NestedINT and k-LengthINT are
problems for which the geometric version (at most k lengths) is much harder than the
corresponding topological problem (the left-to-right ordering of endpoints of intervals).

2.5 Chordal graphs

In [213, 214], the partial representation extension problems are studied for chordal
graphs and their three subclasses path graphs, interval graphs and proper interval
graphs, in the setting of subtree-in-tree representations; recall Section 1.3.3.

Tree Modifications. It is not completely clear how partial representations should
be defined. A partial representation R′ prescribes subtrees of V (G′) and also specifies
some tree T ′ in which these subtrees are placed. A representation R uses a tree T
which is created by some modification of T ′. In [213, 214], four possible modifications
are considered, leading to different partial representation extension problems:

• Fixed – the tree cannot be modified at all, i.e, T = T ′.
• Sub – the tree can only be subdivided, i.e., T is a subdivision of T ′.
• Add – we can add branches to the tree, i.e., T ′ is a subgraph of T .
• Both – we can both add branches and subdivide, i.e, a subgraph of T is a

subdivision of T ′. In other words T ′ is a topological minor of T .

We denote the problems by RepExt(C,T), where T denotes the type. See Fig. 2.13.
For the classes PROPER INT and INT, we require both T and T ′ to be paths. For
PATH (and implicitly for PROPER INT and INT), we only consider subpaths of T and
T ′ instead of subtrees.

Constructing a representation in a specified tree T ′ is interesting even if no
subtree is pre-drawn, i.e., G′ is empty; this problem is denoted by Recog∗(C,T).
Clearly, the hardness of the Recog∗ problem implies the hardness of the corresponding
RepExt problem.

Complexity Results. The complexity of the Recog∗ and RepExt problems for all
four classes and all four types is studied in [213, 214] and the results are displayed in
Table 2.1.

u

Fixed

u

Sub

u

Add

u

Both

Figure 2.13: The four possible modifications of T ′ with a single pre-drawn vertex u.
The added branches in T are denoted by dots and new vertices of T are denoted by
small circles.

69

Chapter 2. State of The Art for Partial Representation Extension

PROPER INT INT PATH CHOR

F
ix
e
d

S
u
b

A
d
d

B
o
t
h

Recog
∗

RepExt

Recog
∗

RepExt

Recog
∗

RepExt

Recog
∗

RepExt

O(n+m) [214]

NP-complete [214]

O(n+m) [214]

NP-complete [214]

NP-complete [214]

NP-complete [214]

NP-complete [214]

NP-complete [214]

O(n+m) [257, 73]

O(n+m) [214]

O(n+m) [39, 75]

O(n+m) [214]

NP-complete [214]

NP-complete [214]

NP-complete [214]

NP-complete [214]

O(n+m) [257, 73]

O(n+m) [214]

O(n+m) [39, 75]

NP-complete [214]

O(nm) [146, 316]

NP-complete [214]

O(n+m) [311]

NP-complete [214]

O(n+m) [257, 73]

O(n+m) [211, 212]

O(n+m) [39, 75]

O(n+m) [34, 215]

O(nm) [146, 316]

Open

O(n+m) [311]

NP-complete [214]

Table 2.1: The complexity of different problems for the four considered graph classes.

• All NP-completeness results are reduced from the 3-Partition problem. The
reductions are very similar to [211, 212] and the reduction of the proof of Theo-
rem 2.4.1.
• The polynomial cases for INT and PROPER INT are based on the algorithms for

recognition and extension, described in Sections 2.2 and 2.3. Since the space in
T is limited, these algorithms are adapted for the specific problems.

Also some basic parameterized results are described for three parameters: the number
of connected components, the number of pre-drawn subtrees and the size of the tree
T ′; see [213, 214] for details.

Every interval graph has a real-line representation in which all endpoints are
at integer positions. But the result that RepExt(INT,Add) is NP-complete can be
interpreted in the way that extending such representations is NP-complete. (Here, we
require that also the non-pre-drawn intervals have endpoints placed at integer posi-
tions.) On the other hand, the linear-time algorithm for RepExt(PROPER INT,Add)
shows that integer-position proper interval representations can be extended in linear
time.

Topological H-graphs. The above results are related to the following graph classes,
introduced in [31]. Let H be some graph. The class of all topological H-graphs,
denoted H-GRAPH, consists of all intersection graphs of connected subgraphs in some
subdivision of H. We get that INT = K2-GRAPH, CIRCULAR-ARC = K3-GRAPH, and
when T is a tree, T -GRAPH (CHOR.

It was asked in [31] whether, for each fixed H, the class H-GRAPH can be rec-
ognized in polynomial time. If H is part of the input, it follows from the results
in [213, 214] (Table 2.1, the problem Recog∗(CHOR,Sub)) that the recognition prob-
lem of H-GRAPH is NP-complete even when H are trees. The computational com-
plexity of various problems for H-GRAPH was recently considered in [61], including
the following results for the recognition problem:

• For stars Sd = K1,d, the problem Recog(Sd-GRAPH) can be solved in time
O(n4), even when d is a part of the input.

70

2.6. Circle Graphs

• For each fixed tree T , the problem Recog(T -GRAPH) can be solved in polyno-
mial time.
• When H contains the diamond (K4 without an edge) as a minor, then the prob-

lem Recog(H-GRAPH) is NP-complete. This negatively answers the question
of [31].

We note that the second results gives an XP algorithm for Recog∗(CHOR,Sub) when
parameterized by the size of the tree T , which was an open problem in [213, 214].
The computational complexity of the partial representation extension problem for
H-GRAPH remains open.

Problem 2.5.1. What is the complexity of RepExt(CHOR,Sub) when parameterized
by the size of the tree T?

2.6 Circle Graphs

The problem RepExt(CIRCLE) was solved in polynomial time by Chaplick et al. [58,
59]. We first sketch the current state-of-art recognition algorithm based on split de-
composition. Then, we explain how it captures all circle representations which can be
used to solve the partial representation extension problem.

Split Decomposition. Let G be a connected graph. A split of G is a partition V (G)
into four parts A, B, s(A) and s(B), such that:

• For every a ∈ A and b ∈ B, we have ab ∈ E(G).
• There is no edge between s(A) and B ∪ s(B), and between s(B) and A ∪ s(A).
• Split is non-trivial, meaning that both sides of the split have at least two vertices:
|A ∪ s(A)| ≥ 2 and |B ∪ s(B)| ≥ 2.

Fig. 2.14 shows two possible representations of a split. In other words, between A
and B, we have a cut in G which is a complete bipartite graph. Notice that a split
is uniquely determined just by the sets A and B, since s(A) consists of connected
components of G \ (A ∪ B) attached to A, and similarly for s(B) and B. We refer to
this split as the split between A and B.

Split decompositions are used in the current state-of-the-art algorithms for rec-
ognizing circle graphs. If a circle graph contains no split, it is called a prime graph.
The circular word of a circle representation of a prime graph is unique up to reversal
and it can be constructed in polynomial time [135]. There is an algorithm which finds
a split in a graph in linear time [82].

Split decomposition can be used to recognize circle graphs as follows. We define
two graphs GA and GB where GA is a subgraph of G induced by the vertices corre-
sponding to A∪s(A)∪{mA} where the newly introduced marker vertex mA is adjacent
to all the vertices in A and non-adjacent to all the vertices in s(A), and GB is defined
similarly for B, s(B), and mB. We get that G is a circle graph if and only if both GA

and GB are circle graphs.

71

Chapter 2. State of The Art for Partial Representation Extension

A representation R of G can be constructed as follows. We apply the algo-
rithm recursively on GA and GB and construct their representations RA and RB; see
Fig. 2.15. Then we join these representations to construct R. To this end we take
RA and replace ⟨mA⟩ by the representation of B ∪ s(B) in RB. More precisely, let
mAτAmAτ̂A and mBτBmB τ̂B be the circular orderings of RA and RB, respectively.
The constructed R has the corresponding circular ordering τAτB τ̂Aτ̂B. It is easy to see
that R is a correct circle representation of G.

Structure of Representations of Maximal Splits. On the other hand, a repre-
sentation like the one in Fig. 2.14 on the right cannot be constructed by the algorithm
using the split between A andB. The following structural results are derived in [58, 59].
A split of G between A and B is maximal if there exists no split of G between A′ and
B′ such that A ⊆ A′, B ⊆ B′ and |A ∪ B| < |A′ ∪ B′|. We start with an arbitrary
split and we move vertices for s(A) to B and from s(B) to A until a maximal split is
reached. We ignore the third condition, so trivial maximal splits having, say, A = {u}
and s(A) = ∅ are allowed; then u is an articulation in G.

Let R be a circle representation of a maximal split between A and B. It corre-
sponds to a circular word τ = τ1τ2 . . . τ2k where τi, for i odd, consists only of endpoints
of chords in A∪s(A), and τi, for i even, consists only of endpoints of chords in B∪s(B).
Suppose that we cyclically work with the indexes, the following properties are proved
in [58, 59] for A (and hold symmetrically for B):

• For each u ∈ A, the endpoints of u appears once in τi and once in τi+k. Therefore,
u is called a long vertex.
• For each v ∈ s(A), both endpoints of v appear in some τi. Thus, v is called a

short vertex.
• Let u, v ∈ A. If uv /∈ E(G), or there exists a non-trivial path (different from

the edge uv) from u to v with all internal vertices in s(A), then the endpoints of
both u and v appear in the same τi and τi+k.

s(A) A B
s(B)

τA

τ̂B

τ̂A

τB

s(A1)
A1 B1

s(B1)

s(A2)
A2 B2

s(B2)

τA1

τ̂B2

τ̂A2

τ̂B1

τ̂A1

τB2

τA2

τB1

Figure 2.14: Two different representations of G with the split between A and B. The
circular subword τAτ̂A is induced by A∪ s(A), the circular subword τB τ̂B by B∪ s(B),
and similarly on the right.

72

2.6. Circle Graphs

s(A) A

mA

GA

mA

τA

τ̂A

RA

mB

τ̂B τB

RB

B
s(B)

mB

GB

Figure 2.15: The graphs GA and GB together with some constructed representations
RA and RB. By joining these representations, we get the representation shown in
Fig. 2.14 on the left.

Next, it is studied what are all possible representations of a maximal split between
A and B. Inspired by Naji [285, Section IV.4], the following relation ∼ is defined on
A ∪B where x ∼ y means that x and y has to be placed in the same subword τi of τ .
This relation follows from the last property proved in [58, 59]:

• If xy /∈ E(G), then x ∼ y. In particular, x ∼ x.
• If x and y are connected by a non-trivial path with all the inner vertices in
s(A) ∪ s(B), then x ∼ y.

Let ∼ be the transitive closure of the above. We obtain an equivalence relation ∼ on
A∪B. Notice that every equivalence class of ∼ is either fully contained in A or in B.
For instance in Fig. 2.14 on the right, the relation ∼ has four equivalence classes A1,
A2, B1 and B2.

We choose an arbitrary circular ordering Φ1, . . . ,Φℓ of the classes of ∼. Let Gi

be a graph constructed from G by contracting the vertices V (G)\
(
Φi∪s(Φi)

)
into the

marker vertex mi; i.e., Gi is defined similarly to GA and GB above. Let R1, . . . ,Rℓ be
arbitrary representations of G1, . . . , Gℓ. We join these representations as follows. Let
miτimiτ̂i be the circular ordering of Ri. We construct R as the circular ordering

τ1τ2 . . . τℓ−1τℓτ̂1τ̂2 . . . τ̂ℓ−1τ̂ℓ. (2.6)

In Fig. 2.14, we obtain the representation on the left by the circular ordering A1A2B1B2
of the classes of ∼ and the representation on the right by A1B1A2B2. Every such cir-
cular word defines a correct circle representation. In [59, Proposition 1], it is proved
that every circle representation can be constructed as in (2.6) by choosing some rep-
resentations R1, . . . ,Rℓ and some circular ordering of the classes of ∼.

Partial Representation Extension. We sketch the following polynomial-time algo-
rithm for RepExt(CIRCLE) described in [59, Chapter 4], with many details omitted:

Theorem 2.6.1 (Chaplick et al. [58, 59]). The problem RepExt(CIRCLE) can be
solved in polynomial time.

It is easy to deal with disconnected graphs, so we can assume that G is connected.
If G is a prime graph, then it has at most two different representations R and R̂ [135]
where one is reversal of the other. We just need to test whether one of them extends
R′.

73

Chapter 2. State of The Art for Partial Representation Extension

τ
′

i
τ
′

i

R
′

i

mi

mi R̃
′

i

pi

pi

mi?

Figure 2.16: The partial representation R̃′i is less restrictive with respect to the
position of mi. Therefore it might be extendible even when R′i is not.

Otherwise, we find a maximal split between A and B in polynomial time us-
ing [82]. If it is trivial, we deal with the components of the non-trivial side using a
special subroutine. Otherwise, we compute the relation ∼ and the equivalent classes.
We use the partial representation R′ to derive their circular ordering and recurse on
graphs Gi with R′i. Let Φ be a class of ∼ and let Ψ = Φ ∪ s(Φ) be the extended
class where s(Φ) are all components of s(A)∪ s(B) attached to Φ. If no chord of Ψ is
pre-drawn, we can ignore it.

Let τ ′ be the circular word of R′. Let τ ′ = τ ′1 . . . τ
′
k where each τ ′i is a maximal

subwords containing only symbols of one extended class Ψ. By (2.6), each extended
class Ψ corresponds to at most two different maximal subwords, otherwise we reject
the input. Also, if two extended classes Ψ and Ψ̂ each correspond to two different
maximal subwords, then occurrences of these subwords alternate in τ ′. Otherwise we
again reject the input. We distinguish two cases.

Case 1: Some extended class corresponds to two maximal subwords. We can
use it to derive the circular ordering of the classes. We construct the graph Gi as
above. As the partial representation R′i of Gi, we put the word miτ

′
imiτ

′
j where Ψi

corresponds to τ ′i and τ ′j (possibly one of them is empty). We test recursively, whether
each representation R′i of Gi is extendible to a representation of Ri. If yes, we join
R1, . . . ,Rℓ as in (2.6) Otherwise, the algorithm outputs “no”.

Case 2: No extended class corresponds to two maximal subwords. More circular
orderings are possible and the situation is more involved. Suppose that τ ′i corresponds
to an extended class Ψi with the graph Gi. The problem is that τ ′i might be extended
in R either to one of τj or τ̂j in (2.6), or to both of them; and the latter option restricts
the remainder of extended classes as in Case 1. To simulate this choice, we construct
two partial representations of Gi depicted in Fig. 2.16, where the second one is for the
graph Gi∪{pi} where pi is a new neighbor of mi which pins one endpoint of ⟨mi⟩ to be
outside of τ ′i . Clearly, R̂′i is less restrictive. It is proved in [58, 59] that R′ is extendible
if and only if R̂′i is extendible for some extended class Ψi and R′j is extendible for every
other extended class Ψj.

Split Trees. A split decomposition of G works as follows. Consider a split between
A and B. We replace G by the graphs GA and GB defined above. Then we apply the
decomposition recursively on GA and GB, and we stop on prime graphs containing no
splits. We note that by different orders of splits, different decompositions of G may
be constructed. A split decomposition can be computed in linear time [150].

A split decomposition is called minimal if it is constructed by the least number of

74

2.7. Partial Orientation Extension Problems

G

B

s(A) A

mA mB
split

GA GB

12
3

4

5

6 7

8

9

10

1

23

4 5

6

7

8

9

10

G S(a) (b)

Figure 2.17: (a) An example of a split of the graph G. The marker vertices are
depicted in white. The tree edge is depicted by a dashed line. (b) The split tree S of
the graph G.

splits. Suppose that we also stop on degenerate graphs which are complete graphs Kn

and stars Sn = K1,n. Cunningham [79] proved that the minimal split decomposition
of a connected graph stopping on prime and degenerate graphs is unique.

The unique split tree S representing a graph G encodes the minimal split de-
composition. A split tree is a graph with two types of vertices (normal and marker
vertices) and two types of edges (normal and tree edges). We initially put S = G and
modify it according to the minimal split decomposition. If the minimal decomposition
contains a split between A and B in G, then we replace G in S by the graphs GA

and GB, and connect the marker vertices mA and mB by a tree edge (see Fig. 2.17a).
We repeat this recursively on GA and GB; see Fig. 2.17b. Each prime and degenerate
graph is a node of the split tree. A node that is incident with exactly one tree edge is
called a leaf node.

We note that it is not clear how fast the minimal split decompositions and the
split trees can be computed. In [150], this issue is not discussed at all. At this
moment, it is only clear that it can be computed in polynomial time using results
of Cunningham [79]. Also, it should be possible to derive every circle representation
of a connected graph G from the split tree S, but the precise statement is unclear.
Therefore, the following natural problem remains open:

Problem 2.6.2. Is it possible to use split trees S to solve RepExt(CIRCLE)?

2.7 Partial Orientation Extension Problems

In Section 1.3.4, we have described comparability graphs which are graphs whose
edges can be transitively oriented, and their relation to several classes of intersection
graphs: function graphs, permutation graphs, trapezoid graphs, and others. Also,
proper interval and proper circular-arc graphs can be described in the language of
orientations which are local tournaments [94].

In this section, we deal with partial orientation extension problems, first con-
sidered in general by Bang-Jensen et al. [20]. Let orient be a class of admissible
orientations. A partial orientation →′ is an orientation of a subset of edges. An ori-
entation → of all edges extends the partial orientation →′ if the orientation in →′ is
preserved: x→′ y implies x→ y. We study the following computational problem:

75

Chapter 2. State of The Art for Partial Representation Extension

M1

M2

M3

M4 M5

M6

(a) (b)

m1 m2

m3

m4 m5 m6

Figure 2.18: (a) A graph G with a modular partition P. (b) The quotient graph
G/P is prime.

Problem: Partial orientation extension – OrientExt(C, orient)
Input: A graph G ∈ C and a partial orientation →′ ∈ orient of G.

Question: Is there an orientation → ∈ orient of G extending →′?

For instance, let TRANSITIVE be the class of all transitive orientations. It is
proved in [210] that the problem OrientExt(COMP,TRANSITIVE) can be solved in
polynomial time. We also describe its implications for the complexity of the partial
representation extension problems of permutation and function graphs [210] and trape-
zoid graphs [243]. The results concerning partial representations extension of proper
interval and proper circular-arc graphs of [20] are also discussed.

2.7.1 Modular Decomposition and Modular Trees

A module M of a graph G is a set of vertices such that each x ∈ V (G) \ M is
either adjacent to all vertices in M , or to none of them. See Fig. 2.18a for examples.
A module M is called trivial if M = V (G) or |M | = 1, and non-trivial otherwise. If
M and M ′ are two disjoint modules, then either the edges between M and M ′ form
the complete bipartite graph, or there are no edges at all; see Fig. 2.18a. In the former
case, M and M ′ are called adjacent, otherwise they are non-adjacent.

Let P = {M1, . . . ,Mk} be a modular partition of V (G), i.e., each Mi is a module
of G, Mi ∩Mj = ∅ for every i ̸= j, and M1 ∪ · · · ∪Mk = V (G). We define the quotient
graph G/P with the vertices m1, . . . ,mk corresponding to M1, . . . ,Mk where mimj ∈
E(G/P) if and only if Mi and Mj are adjacent. In other words, the quotient graph is
obtained by contracting each module Mi into the single vertex mi; see Fig. 2.18b.

Modular Decomposition. To decompose G, we find some modular partition P =
{M1, . . . ,Mk}, compute G/P and recursively decompose G/P and each G[Mi]. The
recursive process terminates on prime graphs which are graphs containing only trivial
modules. There might be many such decompositions for different choices of P in each
step. In 1960s, Gallai [137] described the modular decomposition in which special
modular partitions are chosen and which encodes all other decompositions.

The key is the following observation. Let M be a module of G and let M ′ ⊆M .
Then M ′ is a module of G if and only if it is a module of G[M]. A graph G is called
degenerate if it is Kn or Kn, and if the distinction is needed, it is called complete and
independent, respectively. We construct the modular decomposition of a graph G in
the following way, see Fig. 2.19a for an example:

76

2.7. Partial Orientation Extension Problems

• If G is a prime or a degenerate graph, then we terminate the modular decompo-
sition on G. We stop on degenerate graphs since every subset of vertices forms
a module, so it is not useful to further decompose them.

• Let G and G be connected graphs. Gallai [137] shows that the inclusion maximal
proper subsets of V (G) which are modules form a modular partition P of V (G),
and the quotient graph G/P is a prime graph; see Fig. 2.18. We recursively
decompose G[M] for each M ∈ P .

• If G is disconnected and G is connected, then every union of connected compo-
nents is a module. Therefore the connected components form a modular parti-
tion P of V (G), and the quotient graph G/P is independent. We recursively
decompose G[M] for each M ∈ P .

• If G is disconnected and G is connected, then the modular decomposition is
defined in the same way on the connected components ofG. They form a modular
partition P and the quotient graph G/P is complete. We recursively decompose
G[M] for each M ∈ P .

An alternative description is that a module M is called strong if for every other module
M ′, either M ∩M ′ = ∅, or M ⊆ M ′ or M ′ ⊆ M . For every graph G, its inclusion
maximal proper subsets of V (G) which are strong modules form the modular partition
P of the modular decomposition.

Modular Tree. We encode the modular decomposition by the modular tree T . The
modular tree T is a rooted tree consisting of nodes connected by directed tree edges.
Nodes are prime and degenerate graphs encountered in the modular decomposition as
quotients and terminal graphs, and we also use the names prime, degenerate, complete,
and independent for them. Leaf nodes correspond to the terminal graphs in the mod-
ular decomposition, and inner nodes are the quotients in the modular decomposition.
A subtree of the modular tree consists of some node and all its descendants. The
subtrees correspond one-to-one to the strong modules of G.

We give a recursive definition. Every modular tree has a root node. If G is a prime
or a degenerate graph, then T consists of a single node G as its root node. Otherwise,
let P = {M1, . . . ,Mk} be the used modular partition of G and let T1, . . . , Tk be the

(a) (b)

Figure 2.19: (a) The graph G from Fig. 2.18 with the modular partitions used in
the modular decomposition. (b) The modular tree T of G, the marker vertices are
colored, the tree edges are dashed.

77

Chapter 2. State of The Art for Partial Representation Extension

modular trees corresponding to G[M1], . . . , G[Mk]. The modular tree T consists of
the disjoint union of T1, . . . , Tk and of the root node G/P with the marker vertices
m1, . . . ,mk, and we connect each mi with the root node of Ti by a directed tree edge.
For an example, see Fig. 2.19b.

The modular tree T captures adjacencies in G since xy ∈ E(G) if and only if the
corresponding vertices in the common ancestor node of T are adjacent. All vertices of
G are in leaf nodes and all inner nodes consist of marker vertices. Each marker vertex
corresponds to some strong module in G. The modular tree T of G is unique, and it
can be computed in linear time [77, 272, 337].

Recognition of Interval Graphs. As we discuss below, the modular decomposition
is a useful tool to work with comparability graphs since it captures all transitive orien-
tations. In Section 1.3.4, we have discussed that INT = co-COMP∩CHOR. Therefore,
modular decomposition can be efficiently applied to interval graphs. Hsu [195] proved
that prime interval graphs have exactly two different interval representations, one re-
versal of the other. Modular decomposition can be used to recognize interval graphs
in linear time, see [169] and the references therein. It is an interesting open problem
whether the partial representation extension problem for interval graphs can be solved
using modular decomposition as well.

2.7.2 Transitive Orientations and Comparability Graphs

We deal with comparability graphs and with the partial orientation extension problem
for transitive orientations. First, we discuss that modular trees capture all transitive
orientations.

Structure of Transitive Orientations. Let → be a transitive orientation of G and
let T be the modular tree. For modules M1 and M2, we write M1 → M2 if x1 → x2
for all x1 ∈ M1 and x2 ∈ M2. Gallai [137] shows the following properties. If M1 and
M2 are adjacent strong modules, then either M1 → M2, or M1 ← M2. The graph
G is a comparability graph if and only if each node of T is a comparability graph.
Every prime comparability graph has exactly two transitive orientations, one being
the reversal of the other.

The modular tree T encodes all transitive orientations as follows. For each prime
node of T , we arbitrarily choose one of the two possible orientations. For each complete
node, we choose one of n! possible orientations. Each independent node has the unique
orientation since it contains no edges. A transitive orientation of G is then constructed
as follows. We orient the edges of leaf nodes as above. For a node N partitioned in
the modular decomposition by P = {M1, . . . ,Mk}, we orient Mi → Mj if and only if
mi → mj in N . It is easy to check that this gives a valid transitive orientation, and
every transitive orientation can be constructed from some transitive orientations of
the nodes of T as described above. Figure 2.20 shows an example.

Figure 2.21 shows how to construct a function representation of the complement
of a comparability graph by combining function representations of all nodes of the
modular tree. By the results of [137, 158], in every function representation, the func-
tions of one strong module always appear consecutively, so they can be replaced by

78

2.7. Partial Orientation Extension Problems

Figure 2.20: A graph G with a partial orientation →′ depicted in bold and its
modular tree T . All edges between the blue and red modules correspond to one
edge in the root node, so their orientations in →′ has to agree, otherwise →′ is not
extendible.

one strip representing the entire module. Therefore, this description allows to con-
struct every function representation R of G by choosing a transitive orientation of G,
choosing a function representation for each node of the modular tree respecting this
orientation, and putting these representations together as in Fig. 2.21.

Extending Partial Orientations. We can use the modular decomposition to find
an extending transitive orientation if it exists. If x →′ y, x ∈ Mx, y ∈ My, and Mx

and My are adjacent strong modules, then necessarily Mx → My in every transitive
orientation extending →′. In the modular tree, we orient the corresponding edge
mx →′ my in the common ancestor node of x and y. If some edge of the modular tree
T is forced to be oriented in two different ways, no extending transitive orientation
exists. So we get a derived partial orientation for each node of T .

It remains to find an extending transitive orientation of all nodes. For indepen-

Figure 2.21: Recall from Section 1.3.4 that, by the equality FUN = co-COMP [158],
each function representation of a graph gives a transitive orientation of the complement
graph. A function representation of G from Fig. 2.20 having the depicted transitive
orientation of G can be constructed as follows. First, we construct a function repre-
sentation for each node of the modular tree giving the depicted transitive orientation.
Then we replace colored strips representing marker vertices by the corresponding func-
tion representations of modules.

79

Chapter 2. State of The Art for Partial Representation Extension

dent nodes, we have no edges. For complete nodes, we test whether there exists a
linear extension of the partially oriented edges. For prime nodes, we have two possible
orientations, one reversal of the other, so we test whether one of them is compatible
with the partially oriented edges.

If the partial orientation of some node is non-extendible, then the partial orienta-
tion→′ of G is not extendible as well. It remains to translate the extending transitive
orientations of the nodes of T into a transitive orientation of G which extends the
partial orientation →′. Figure 2.20 shows an example.

We note that a different approach without the modular decomposition is used
in [210]. Golumbic [154] described an algorithm running in time O((n+m) ·∆) (where
∆ is the maximum degree) which constructs a transitive orientation if it is exists. First,
it chooses an arbitrary edge and orients it in one way. Then it finds all other edges
whose orientation is forced by this choice:

• The orientations u→ v and v → w force u→ w.
• The orientation u→ v, for vw ∈ E(G) and uw /∈ E(G), forces w → v.

After that it chooses arbitrarily an orientation of one of the remaining edges, and again
finds what is forced. It proceed in this way till the entire graph is transitively oriented,
or some edge is forced to be reoriented which means that no transitive orientation
exists. This approach is used in [210] to solve OrientExt(COMP,TRANSITIVE): we
start with the partial orientation, compute which other orientations are forced, and
then proceed with the rest of the algorithm. We note that Golumbic and Shamir [157]
used a similar approach to solve a different problem.

Theorem 2.7.1 (Klavík et al. [210]). The problem OrientExt(COMP,TRANSITIVE)
can be solved in time O((n+m) ·∆) where ∆ is the maximum degree.

Concerning the complexity, this problem can be solved faster using modular
decomposition. The modular decomposition can be computed in linear time [77, 272,
337]. The extending transitive orientation may be computed in linear time as well.
But the bottleneck is checking whether the constructed extending orientation is linear
(which is also needed for recognition of comparability graphs), and the fastest known
algorithm uses matrix multiplication with the complexity O(nω).

2.7.3 Permutation Graphs

Theorem 2.7.1 can be directly used to solve the partial representation extension prob-
lem for permutation graphs. The reason is that different permutation representations
of G (with different orderings of endpoints on two lines) correspond one-to-one to
different transitive orderings of G and G. Recall Section 1.3.4.

Let R′ be a partial permutation representation. Let L′1 be the order of pre-drawn
endpoints on one line. For x, y ∈ V (G′), we order x → y in G or G, if and only if
x <L′1

y. These partial orientations of G and G fully capture R′ and we get the
following:

80

2.7. Partial Orientation Extension Problems

Theorem 2.7.2 (Klavík et al. [210]). A partial permutation representation is ex-
tendible if and only if both partial orientations of G and G are extendible to transitive
orientations. We can test this in time O(n3).

We note that using the results of [272], it should be possible to improve the
running time to O(n+m).

2.7.4 Function Graphs

On the other hand, the situation is much more tricky in the case of function graphs.
Already in 2010, I observed in my bachelor’s thesis that testing whether a partial
orientation can be extended to a transitive orientation is not sufficient; see Fig. 2.22.
The equality FUN = co-COMP is not robust enough since function representations
do not correspond one-to-one to transitive orientations of G. In my bachelor’s thesis
and at several conferences, I asked as an open problem what is the complexity of
RepExt(FUN). It was solved by Krawczyk and Walczak and the following result was
proved in the joined paper [210]:

Theorem 2.7.3 (Klavík et al. [210]). The problem RepExt(FUN) can be solved in
polynomial time.

Extending Partial Representations of Posets. Similarly to co-comparability
graphs, every poset (P,<) has a function representation

{
⟨u⟩ : u ∈ P

}
such that

⟨u⟩ ∩ ⟨v⟩ ̸= ∅ if and only if u, v ∈ P are incomparable (denoted u ∥ v), and ⟨u⟩ is
below ⟨v⟩ if and only if u < v. Every function representation of a poset is a function
representation of the corresponding co-comparability graph with a fixed transitive
orientation.

We study the partial representation extension for function representations of
posets. Let P ′ be the subposet represented by a partial representation. If u < v < w
and u,w ∈ P ′, then necessarily ⟨v⟩ is placed in between of ⟨u⟩′ and ⟨w⟩′. Let ↓ ⟨u⟩′
be the set of all points of [0, 1] × R below ⟨u⟩′, and let ↑ ⟨u⟩′ be the set of all points
above it. For each u ∈ P \ P ′, we get the following restricted region Reg(v) in which
⟨u⟩ has to be represented:

Reg(v) = [0, 1]× R ∩
⋂{
↓ ⟨w⟩′ : v < w,w ∈ P ′

}
∩
⋂{
↑ ⟨u⟩′ : u < v, u ∈ P ′

}
.

u

v

w

x

y ?Reg(y)
R

′G G

u

v

w

x y

u

v

w

x y

Figure 2.22: A function graph G with a non-extendible partial representation R′
since ⟨u⟩′ and ⟨w⟩′ together separate ⟨v⟩′ and ⟨x⟩′. But the corresponding partial
orientation of G is extendible to a transitive orientation.

81

Chapter 2. State of The Art for Partial Representation Extension

u v

y

z

w

x

P

u
v

z

y
Reg(w)

Reg(x)

R
′

u
v

z

y

w

x

R

Figure 2.23: A poset P with a partial representationR′ with depicted regions Reg(w)
and Reg(x). An extending representation R is on the right.

For each v ∈ P ′, let Reg(v) = ⟨v⟩′. For an example, see Fig. 2.23.

Lemma 2.7.4 (Klavík et al. [210]). A partial function representation of a poset P is
extendible if and only if

∀u, v ∈ P , u ∥ v, Reg(u) ∩ Reg(v) ̸= ∅. (2.7)

For instance, in Fig. 2.22, Reg(y) is the depicted infinite region below both ⟨u⟩′
and ⟨w⟩′. The partial representation R′ of the poset given by the orientation of G is
not extendible since Reg(y) ∩ Reg(v) = ∅. Since the regions Reg(u) can be computed
in polynomial time and the property can be easily tested, it is possible to solve the
partial representation extension problem of posets in polynomial time.

In every extending representation, each ⟨u⟩ ⊆ Reg(u), so the condition (2.7)
of non-empty intersections of regions is obviously necessary. For the other direction,
we choose functions in such a way that for every incomparable u, v ∈ P , we have
⟨u⟩∩⟨v⟩ ≠ ∅. Since Reg(u)∩Reg(v) ̸= ∅, we choose some point in it and add it to both
functions. It is not difficult to construct a correct extending function representation
of P ; see [210, Lemma 1] for more detail.

Extending Partial Representations of Functions Graphs. For simplicity, we
work in the complement, so we have a partial function representation R′ of G, and we
ask whether there exists a representation R of G extending R′. The partial represen-
tation R′ defines a partial orientation of G in which, for all pre-drawn x, y ∈ V (G′),
xy ∈ E(G), we have x→′ y if and only if ⟨x⟩′ is below ⟨y⟩′. In other words, precisely
the edges of G′ are oriented according to the partial representation; see Fig. 2.22.

Every extending representation R defines some transitive orientation of G ex-
tending the partial orientation →′. By Lemma 2.7.4, we know that the regions for
this transitive orientations have to satisfy the condition (2.7) for every uv /∈ E(G).
But not every transitive orientation of G must satisfy (2.7). In summary, the partial
representation extension problem of function graphs reduces to the problem of testing
whether there exists a transitive orientation of G extending the partial orientation→′
which satisfies (2.7).

To solve the latter problem, we use the modular decomposition. From →′, we
derive partial orientations →′ of the nodes of the modular tree T . We say that a
subtree of T is pre-drawn if the corresponding strong module contains at least one
pre-drawn vertex. Similarly, a strong module a pre-drawn if its subtree is pre-drawn.

82

2.7. Partial Orientation Extension Problems

Reductions. Three reductions are applied which reduce the graph and the modular
tree, without changing extendibility of the partial representation. The goal is to reduce
the modular tree in such a way that each module has at most two different transitive
orientations extending the partial orientation →′.

• Non-predrawn subtrees are replaced by a single vertex u. If there exists an
extending representation of the reduced graph, we replace ⟨u⟩ by an arbitrary
function representation of the subtree, as in Fig. 2.21. After this transformation,
every inner node corresponds to a pre-drawn subtree.
• For each complete module with two or more non-predrawn children (each being a

singleton leaf node), we remove all but one, called u. If there exists an extending
representation of the reduced graph, we can represent the remaining children in
parallel with ⟨u⟩, right above/below it.
• For each complete module with at least two pre-drawn children and one non-

predrawn child, we remove this non-predrawn child. The argument is similar as
before.

Aside replacing non-predrawn subtrees by single vertices, no reductions are applied on
prime and independent nodes. But this is not needed since they already have at most
two different transitive orientations.

Lemma 2.7.5 (Klavík et al. [210]). After the reductions, every node has at most two
different transitive orientations extending→′. If it has two transitive orientations, one
is the reversal of the other.

See [210, Lemma 3] for more details. Also, every non-singleton strong module has
at least one vertex pre-drawn. Therefore, for any two non-singleton adjacent modules
M1 and M2, the partial representation→′ determines whether M1 →M2, or M2 →M1
in every transitive orientation → extending →′.

Testing (2.7) by a 2-SAT formula. We need to determine possible regions Reg(u),
depending on the chosen transitive orientations of the nodes. Let u ∈ V (G) be a
non-predrawn vertex and let N be the non-singleton node either containing u or being
parent of the singleton leaf node {u}. For every transitive orientation, Reg(u) depends
only on the direction of oriented edges incident with u. But if a pre-drawn vertex v
does not belong to the strong module of N , the direction of the edge uv is determined
by→′. It is proved in [210, Lemma 4] that Reg(u) is fully determined by the transitive
orientation of the node N , so we have at most two possibilities for every Reg(u), and
we can computed them in polynomial time.

We assign a variable xN to every node N of the modular tree having two different
transitive orientations extending →′. We express the constraints (2.7) by a 2-Sat
formula which can be solved in linear time [110, 9]. Therefore, Theorem 2.7.3 is
proved.

Partial Functions. In [210], the following generalization of RepExt(FUN) is also
studied. Let G be a comparability graph. For each u ∈ V (G), a function is prescribed
partially on some interval [a, b] ⊆ [0, 1] called the domain (possibly empty). We ask

83

Chapter 2. State of The Art for Partial Representation Extension

whether these partial functions can be extended to full functions on [0, 1] such that
their graphs define a function representation of G. We get the partial representation
extension problem if the pre-drawn functions are prescribed on [0, 1] while the non-
predrawn ones are prescribed on ∅.

Instead of a graph G, the problem can be again considered for a poset P . By a
suitable generalization of the regions Reg(u), we get the same result as in Lemma 2.7.4:
a representation by partial functions of a poset P is extendible if and only if for every
incomparable u, v ∈ P , we have Reg(u) ∩ Reg(v) ̸= ∅.

To solve the problem for a graph G, we need to decide whether there exists a
transitive orientation of G satisfying this constraint. The key difference is that for two
adjacent vertices, their ordering in P is prescribed if and only if the domains of their
partial functions have non-empty intersection. Therefore, Reg(u) is not determined
by an orientation of one module. By a reduction from 3-Sat, the following is proved
in [210]:

Theorem 2.7.6 (Klavík et al. [210]). The problem of extending representations by
partial functions to full functions on [0, 1] is NP-complete.

2.7.5 Trapezoid Graphs

The first polynomial time algorithm for the partial representation extension prob-
lem of trapezoid graphs was proved in a recent breakthrough was by Krawczyk and
Walczak [243]:

Theorem 2.7.7 (Krawczyk and Walczak [243]). The problem RepExt(TRAPEZOID)
can be solved in time O(n5).

The algorithm is again based on the modular decomposition, but it is much more in-
volved. It uses the same two basic steps as the algorithm for RepExt(FUN) described
in Section 2.7.4.

First, the partial representation extension problem of trapezoid posets P , i.e.,
of posets of interval dimension 2, is studied. Recognition algorithms for trapezoid
posets make use of normalization which is a procedure transforming every represen-
tation of a trapezoid poset into a normalized trapezoid representation satisfying ad-
ditional properties. In every normalized trapezoid representation, the left and right
sides of the trapezoids form a permutation representation of an appropriately defined
2-dimensional poset called the split of P .

The issue with normalization is that a partial trapezoid representation may only
have non-normalized extensions. To solve this, the algorithm first transforms the
partial representation into a normalized one, then solves the partial representation
extension problem for it, and then tries to revert the normalization steps. Conditions
necessary and sufficient for these three steps to succeed are described by a 2-Sat
formula.

The recognition algorithms for trapezoid graphs [264, 63] use the fact that every
transitive orientation of G gives a trapezoid poset, so its choice has no influence on
existence of a trapezoid representation. Similarly as in Fig. 2.22, this is not true for

84

2.7. Partial Orientation Extension Problems

the partial representation extension problem of trapezoid graphs. In the second step,
the question of extending partial trapezoid representations reduces to testing whether
there exists a transitive orientation of G such that the corresponding trapezoid poset
is extendible. This is solved by dynamic programming on the modular tree, where
transitive orientations of each node are found by solving another 2-Sat formula.

2.7.6 Proper Circular-arc Graphs

In this section, we briefly discuss different types of orientations and their partial ori-
entation extension problems, described in [20]. We start with a few definitions:

• An orientation is called acyclic if it contains no directed cycle.
• A tournament is an orientation of a complete graph.
• For an orientation, let N−(v) and N+(v) be the sets of out-neighbors and of

in-neighbors of v, respectively. An orientation is a local tournament if for every
vertex v, the sets N−(v) and N+(v) induce tournaments.
• Further, if N−(v) and N+(v) induce transitive tournaments, then the orientation

is called a locally transitive local tournament.
• If a locally transitive local tournament is complete, it is called locally transitive

tournament.
• An orientation is called an in-tournament if each N+(v) induces a tournament.

In 1982, the seminal paper of Skrien [321] linked, in a different language, existence
of some of these types of orientations to several classes of intersection graphs. He
proved the following characterizations:

• Proper interval graphs are precisely those graphs which can be oriented to an
acyclic local tournament; see also [154].
• Connected proper circular-arc graphs are precisely those connected graphs which

can be oriented to a local tournament which is precisely when it can be oriented
to a locally transitive local tournament; see also [20, Theorem 2.2].
• Chordal graphs are precisely those graphs which can be oriented to an acyclic

in-tournament.
• Trivially perfect graphs are precisely those graphs which can be oriented to a

transitive in-tournament.

Results of Bang-Jensen et al. [20]. They study the partial orientation extension
problems for the mentioned types of orientations and the implications for the partial
representation extension problems of the related classes of intersection graphs. First,
they prove that the partial representation extension problems for local tournaments
and acyclic local tournaments can be solved in polynomial time. The latter result
implies a polynomial-time algorithm for RepExt(PROPER INT) and generalizes the
result of [211], described in Section 2.3.

They show that the partial representation extension problem for proper circular-
arc graphs can be reduced to the partial orientation extension problem for locally
transitive local tournaments which is in general NP-complete. But the particular

85

Chapter 2. State of The Art for Partial Representation Extension

instances rising from partial representations of proper circular-arc graphs can be solved
in polynomial time, so they prove the following:

Theorem 2.7.8 (Bang-Jensen et al. [20]). The RepExt(PROPER CIRCULAR-ARC)
problem can be solved in polynomial time.

In conclusions, they discuss several other types of orientations and present open
problems. In particular the complexity of the partial orientation extension problem for
acyclic in-tournaments, i.e., for chordal graphs, remains open, and solving this problem
might give a different perspective to the partial representation extension problem for
chordal graphs.

Since the paper [20] heavily relies on the language and the techniques for ori-
ented graphs, it is outside the scope of this thesis to present them in more detail
and an interested reader may refer to [321, 20] and the references therein. We note
that there are several different approaches for recognizing proper circular-arc graphs,
see [253] for references. Can these other approaches be generalized to solve the partial
representation extension problem as well. The orientation techniques do not apply to
general circular-arc graphs, but it was observed by Zeman [363] that many difficulties
are shared between proper circular-arc graphs and circular-arc graphs. So a better
understanding of RepExt(PROPER CIRCULAR-ARC) might be fruitful in attacking
the main open problem for partial representation extension discussed in Section 2.10:
the complexity of RepExt(CIRCULAR-ARC).

Problem 2.7.9. Is it possible to generalize some other techniques for recognizing
proper circular-arc graphs to solve RepExt(PROPER CIRCULAR-ARC) in polynomial
time?

2.8 Extending Other Types of Partial Representations

The problem RepExt is defined for intersection representations only. In this section,
we describe similar problems for other types of graph representations and we give
overview of the known results.

Partial Embedding Extension. The similar problems to partial representation
extension were studied even sooner for planar embeddings, where the problems are
called partial embedding extension. Let G be a planar graph and let Rep be a class of
admissible planar embeddings. A partial embedding R′ prescribes a planar embedding
of some subgraph G′ of G, so some vertices and edges of G are pre-drawn. A planar
embedding R ∈ Rep extends R′ if R ∈ Rep(G) and it embeds G′ the same as R′.

Problem: Partial embedding extension – EmbedExt(Rep)
Input: A planar graph G and a partial embedding R′ ∈ Rep.

Question: Is there a representation R ∈ Rep of G extending R′?

As it turned out, the complexity of EmbedExt(Rep) heavily depends on the
class Rep of admissible embeddings. Recall that CURVES denotes the class of all planar

86

2.9. Related Restricted Representation Problems

embeddings where edges are represented by arbitrary curves while STRAIGHTLINE
denotes the class of Fary’s straight-line embeddings where edges are represented by
segments.

The first result for partial embedding extension was proved by Patrignani [292]
in 2006. He proved that the problem EmbedExt(STRAIGHTLINE) is NP-hard by a
nice geometric reduction from planar 3-Sat. See also [273].

On the other hand, Angelini et al. [4] show that EmbedExt(CURVES) can
be solved in linear time. Their algorithm works essentially as follows. Recall the
special role of 3-connected planar graphs from Section 1.4.1, namely Whitney’s Theo-
rem [359] stating that 3-connected planar graphs have unique embedding up to choice
of an outer face. Therefore, partial embedding extension can be easily solved for 3-
connected graphs. In Chapter 7, we describe that every graph can be decomposed
into 3-connected components forming a tree, which is (for 2-connected graphs) mostly
known under the name SPQR trees [95, 96, 97, 167] in the graph drawing community.
To deal with general planar graphs, we first find a solution to the partial embedding
extension problem on each 3-connected component. The difficult part is to join these
partial solutions to extend the partial embedding of the whole graph, which is done
from the bottom to the top of the decomposition tree by dynamic programming.

Kuratowski [245] and Wagner [351] characterized planar graphs as those graphs
which do not contain K5 and K3,3 as minors. This result was extended to partially
embedded planar graphs by Jelínek et al. [200], where a list of minimal forbidden par-
tially embedded minors is constructed. Our characterization of minimal obstructions
for partial representation extension of interval graphs, described in Chapter 4, has a
similar spirit as this result.

Contact Representations of Planar Graphs. Recall contact representations of
planar graphs from Section 1.4.2. Chaplick et al. [55] prove that the partial repre-
sentation extension problems for these contact representations of planar graphs are
NP-hard. The only tractable case is for grid intersection representations when all
pre-drawn vertices belong to one part, i.e., either all are represented by horizontal
segments, or all are represented by vertical ones.

Extending Visibility Representations. A visibility representation R of G is a
collection of sets {⟨u⟩ : u ∈ V (G)} in the plane such that uv ∈ E(G) if and only if there
exists a line of sight between ⟨u⟩ and ⟨v⟩ which is not obstructed by any other set ⟨w⟩.
In the most classical setting, considered in [60], the sets ⟨u⟩ are horizontal segments
in the plane, and such graphs are closely related to planar graphs. The complexity of
extending partial visibility representations is studied in [60]. The problems are mostly
NP-hard but a simple case solvable in polynomial time is also presented.

2.9 Related Restricted Representation Problems

In restricted representation problems, one asks whether there exists a representation
satisfying some additional constraints. For the partial representation extension prob-
lems, the constraints are posed by partial representations. In this section, we describe

87

Chapter 2. State of The Art for Partial Representation Extension

Recog

RepExt SubSet SuperSet

SimRep RepSandwich

BoundRep

Chronolog

For INT and PROPER INT:

Recog

RepExtSimRep

SubSet SuperSet

RepSandwich

BoundRep

Chronolog

For UNIT INT:

Figure 2.24: The Hasse diagrams of different restricted representation problems for
interval graphs. If P ≤ P ′, then the problem P can be solved using the problem P ′.
The problems depicted in green can be solved in polynomial time, the red ones are
NP-complete, and the complexity of SimRep for proper and unit interval graphs is
open.

the main restricted representation problems which are related to RepExt. Figure 2.24
shows an overview of the complexity of the considered restricted representation prob-
lems for interval graphs.

We note that most restricted representation problems were considered for interval
graphs or planar graphs, while some of them were also studied for other graph classes.
For instance, the problems of construction of interval representations with prescribed
lengths of intervals or prescribed lengths of intersections of intervals were studied
in [293, 230]. Many other restricted representation problems are described in [323, 324].

2.9.1 Chronological Ordering

Skrien [322] introduced the following problem for interval graphs, motivated by appli-
cations in archaeology. The input gives a graph G and a partial ordering <′ of the left
and right endpoints of the intervals. The task is to construct an interval representation
R in which the left-to-right ordering of endpoints < called a chronological ordering
extends <′. We denote this problem Chronolog. Skrien [322] gives an algorithm
solving Chronolog in time O(n3).

This problem is not widely known which we believe should change. The pa-
per [322] has over 25 citation in Google Scholar, but most of these cite a different
result of Skrien’s paper [322] which describes 2-LengthINT with the lengths 0 and 1.
To the best of our knowledge, no other results concerning Chronolog are known.
Skrien’s cubic algorithm [322] is based on [322, Theorem 1] which describes necessary
and sufficient conditions for existence of a chronological ordering extending <′ in terms
of a transitive ordering of G (recall from Section 1.3.4 that INT = co-COMP∩CHOR).
This algorithm does not use PQ-trees (see Sections 3.1 and 4.2) or modular trees
(see Section 2.7.1), and it is a natural question whether a faster algorithm could be
constructed using these structural decompositions.

The problem Chronolog was not considered in the situation that some end-
point may share position, but Skrien’s algorithm [322] can likely be modified. In such

88

2.9. Related Restricted Representation Problems

situations, Chronolog generalizes RepExt(INT) since a partial representation R′ is
fully described by its left-to-right ordering of endpoints <′.

Using structural results of Section 2.3, Chronolog can be easily solved for
proper interval graphs in quadratic time. Notice that, unlike the partial representation
extension problems discussed in Section 2.3, Chronolog for unit interval graphs is
the same as Chronolog for proper interval graphs since only a left-to-right ordering
of endpoints is restricted, not precise rational positions of endpoints. Figure 2.24 shows
that Chronolog generalizes most considered restricted representation problems for
interval graphs and proper interval graphs, but it generalizes only Recog for unit
interval graphs, since geometric constraints for unit interval representations cannot be
expressed.

2.9.2 Bounded Representation Problems

The bounded representation problems were first introduced by Klavík et al. [211, 212]
in the context of unit interval graphs. For interval graphs, it is defined as follows. Let
Lv and Rv be two intervals prescribed for each v ∈ V (G). An interval representationR
of G is called a bounded representation if ℓ(v) ∈ Lv and r(v) ∈ Rv for each v ∈ V (G).
The bounded representation problem is the following decision problem:

Problem: Bounded representation – BoundRep(C,Rep)
Input: A graph G ∈ C and intervals Lv and Rv for each v ∈ V (G).

Question: Is there a bounded representation R ∈ Rep(G)?

Again, we just write BoundRep(C) when Rep is clear from the context. The interval
Lv is the left bound of v and the interval Rv is the right bound of v, or in both cases
just simply a bound of v. Bounds are called solvable if there exists a bounded repre-
sentation, and unsolvable otherwise. Figure 2.25 shows two examples of BoundRep
instances. For unit interval graphs, since r(v) = ℓ(v)+1, only Lv needs to be specified.

Relation to Other Problems. Clearly, the bounded representation problems gen-
eralize recognition: if all bounds are set to (−∞,+∞), they pose no restriction at
all. They also generalize the partial representation extension problems by setting the
bounds for pre-drawn vertices as singletons while the bounds for non-predrawn ones
as (−∞,+∞).

Again, assuming no shared endpoints, Chronolog for interval and proper inter-
val graphs generalizes BoundRep(INT) and BoundRep(PROPER INT) as depicted in
Fig. 2.24. The reason is that each collection of bounds gives an interval ordering <′ in
which two bounds are comparable if and only if one is on the left of the other (see Sec-
tion 1.3.1). The bounds are solvable if and only if there exists a chronological ordering
extending <′. So the bounded representation problems are Chronolog for interval
orders <′. Notice that Chronolog does not generalize BoundRep(UNIT INT).

Definitions for Other Classes. Instead of interval graphs, we may consider the
bounded representation problems for several other classes of intersection graphs dis-
cussed in this chapter. For circle and circular-arc graphs (and their subclasses), the

89

Chapter 2. State of The Art for Partial Representation Extension

Lu

Lv

Lw

Rw

Rv

Ru

v u

w

R R

Ru Lw

u w

Figure 2.25: On the left, a bounded representation R of the class INT for the graph
K3. There exists no bounded proper interval representation since ⟨w⟩ is always a
proper subset of ⟨u⟩ and ⟨v⟩. On the right, unsolvable bounds for the same graphs
since ⟨u⟩ cannot intersect ⟨w⟩.

bounds Lv and Rv are two arcs of the circle, restricting the possible endpoints of
chords/circular arcs. For permutation graphs, each Lv is an interval on the bottom
line while Rv on the top line. Similarly for triangle and trapezoid graphs, each ver-
tex might be given three or four intervals as bounds, respectively. These bounded
representation problems generalize the corresponding partial representation extension
problems, and the complexity is mostly open. On the other hand, a reasonable defini-
tion of bounded representations for chordal or function graphs is not clear.

Known Results. The results of [211, 212] described in Section 2.3 are mostly stated
for bounded representations of unit interval graphs instead of partial representation
extension. The original idea was that linear programming can deal with bounds instead
of precise positions of endpoints for free. For a prescribed ordering J, the problem
BoundRep(UNIT INT) can be solved in quadratic time [211, 212, 323, 324]. But when
the ordering J is not known, we get the following:

Theorem 2.9.1 (Klavík et al. [211, 212]). The problem BoundRep(UNIT INT) is
NP-complete.

We also note that the bounds turned out to be essential for the left-shifting algorithm
of [211, 212] in which the values r(Lu) are relaxed to +∞ while the positions ℓ(u) are
simultaneously minimized.

Not much surprising, yet. As discussed in Section 2.3, it was already observed
in [216] that the classes of proper and unit interval graphs behave differently with
respect to the partial representation problem; see Fig. 2.8. In [324, 211, 212], the
problem RepExt(UNIT INT) was solved in quadratic time by linear programming. So
it seemed that this difference is only in some additional numerical problems posed by
unit intervals. That is something expected because even recognition algorithms for
unit interval graphs which construct unit interval representations, such as in [73], has
to do some extra work to compute precise rational positions of endpoints.

This understanding was completely disproved by the paper of Balko et al. [18, 19]
which studies the complexity of the bounded representation problems for interval and
proper interval graphs. The following results are proved:

Theorem 2.9.2 (Balko et al. [18, 19]). The both problems BoundRep(INT) and
BoundRep(PROPER INT) can be solved in polynomial time.

90

2.9. Related Restricted Representation Problems

So the geometric version BoundRep(UNIT INT) is much harder than the topological
version BoundRep(PROPER INT) dealing only with left-to-right orderings of end-
points.

The problem BoundRep(UNIT CIRCULAR-ARC) is NP-complete since already
RepExt(UNIT CIRCULAR-ARC) is NP-complete [363]. Soulignac [323, 324] studies the
restricted version in which the circular ordering of the arcs is prescribed, and proves
that it can be solved in time O(n2 + r) where r is the size of input; see 2.3 for more
detail.

2.9.3 Representation Sandwich Problems

Let C be a class of graphs. Golumbic et al. [157] introduced the graph sandwich
problems in which we are given two graphs G1 and G2 and we ask whether there exists
a graph G ∈ C such that G1 ⊆ G ⊆ G2. In other words, some edges are forced in G,
some edges are forbidden in G, and we ask whether the remaining edges can be chosen
to get a graph in C. For instance, for chordal, interval, permutation, or comparability
graphs, the graph sandwich problems are NP-complete [157].

The paper [19] introduced the representation sandwich problems:

Problem: Representation Sandwich – RepSandwich(C,Rep)
Input: A graph G ∈ C and two sets Av, Bv for each v ∈ V (G).

Question: Is there a representation R ∈ Rep such that Av ⊆ ⟨v⟩ ⊆ Bv

for each v ∈ V (G)?

Also, we consider restricted versions SubSet(C,Rep), and SuperSet(C,Rep). Fur-
ther for SubSet, we put all Av = ∅, and for SuperSet, we put all Bv = U , where
U is an universal set for all sets in representations of Rep. Again, we omit Rep when
clear from the context.

Known Results. It is easy to see that the graph sandwich problems can be re-
duced to the corresponding bounded representation problems if they exist. Therefore,
they can be solved in polynomial time for interval and proper interval graphs. Also,
RepSandwich always generalizes RepExt. See Fig. 2.24.

For unit interval graphs (and similarly for unit circular-arc graphs), we know
that the length of ⟨v⟩ is always one. If Bv for SubSet(UNIT INT), respectively Av

for SuperSet(UNIT INT), already has the length one, then the unit interval ⟨v⟩
is fixed. Therefore, both SubSet(UNIT INT) and SuperSet(UNIT INT) generalize
RepExt(UNIT INT) as depicted in Fig. 2.24. For SuperSet(UNIT INT), the ordering
J of connected components can be derived similarly as for RepExt(UNIT INT) [212,
Theorem 5], so the problem can be solved in quadratic time using [211, 212, 323, 324].
On the other hand, the NP-completeness reduction of Theorem 2.9.1 can be modified
for RepSandwich(UNIT INT) and SubSet(UNIT INT). Except for SimRep(UNIT INT),
this answers the complexity of all problems in Fig. 2.24.

The problem of extending representations of functions graphs by partial func-
tions of Theorem 2.7.6 is generalized by both SubSet(FUN) and SuperSet(FUN), so

91

Chapter 2. State of The Art for Partial Representation Extension

these problems are also NP-complete. The complexity of the representation sandwich
problems remains open for other classes of intersection graphs.

2.9.4 Simultaneous Representations Problems

Let C be a class of graphs and let Rep be a class of intersection representations.
The simultaneous representations problems, introduced by Jampani et al. [197], is the
following decision problem:

Problem: Simultaneous representations – SimRep(C,Rep)
Input: Graphs G1, . . . , Gk ∈ C such that V (Gi) ∩ V (Gj) = I for all i ̸= j.

Question: Do there exist representations R1, . . . ,Rk ∈ Rep such that Ri ={
⟨u⟩i : u ∈ V (Gi)

}
represents Gi and for every u ∈ I we have

⟨u⟩i = ⟨u⟩j for all i, j.

As always, we omit Rep when clear from the context. So representations R1, . . . ,Rk

are simultaneous when they represent the common vertices in I the same; see Fig-
ure 2.26. The requirement that V (Gi)∩V (Gj) = I is sometimes called sunflower in-
tersections [33]. We may also allow arbitrary intersections between V (Gi) and V (Gj)
and require for all u ∈ V (Gi) ∩ V (Gj) that ⟨u⟩i = ⟨u⟩j.

The paper [197] shows that SimRep(PERM) and SimRep(COMP) (for simul-
taneous transitive orientations) can be solved in polynomial time for any number of
graphs, and SimRep(CHOR) is polynomially solvable for k = 2 and NP-complete
when k is a part of the input. For SimRep(INT), the paper [198] gives for k = 2
an O(n2 log n) algorithm which Bläsius and Rutter [34] improve to O(n + m), and
the complexity is open for other values k, even when k is a part of the input. The
problem SimRep(CIRCLE) is NP-complete when k is a part of the input [58, 59] and
the complexity is open even for k = 2. The last reduction can be modified to show
that the problems SimRep(INT) and SimRep(PROPER INT) are NP-complete when k
is a part of the input and the intersections of graphs are arbitrary.

Reducing RepExt to SimRep. For some graph classes, the simultaneous represen-
tations problems are closely related to the partial representation extension problems.
We sketch an easy reduction of RepExt(INT) to SimRep(INT) for k = 2 of Bläsius
and Rutter, see [34, Section 4.1].

a

b

d
c

G1

G2

G3

I

a
b

c

d

R1

a
b

c

d

R2

a
b

c

d

R3

Figure 2.26: An example of three interval graphs with simultaneous representations
assigning the same intervals to I = {a, b, c, d}.

92

2.9. Related Restricted Representation Problems

Let G be a graph and let R′ be a partial interval representation. We set G1 = G
and I = V (G′). Next, onto R′, add a path going from left to right consisting of short
intervals. This represents some interval graph G2. The key part of the reduction is
that G2 has a unique representation up to reversal, so any representation of I has to be
equivalent to R′. Thus R′ is extendible if and only if G1 and G2 can be simultaneously
represented. The linear-time algorithm for RepExt(INT) of Bläsius and Rutter [34],
mentioned in Section 2.2, is based on this reduction.

Such reductions work for some other graph classes including proper interval
graphs, circular-arc graphs, circle graphs, and permutation graphs. A natural question
is how useful are these reductions. Very little is known about the complexity of simul-
taneous representations problems, compared to the partial representation extension
problems (see Fig. 2.2). If SimRep can be solved in polynomial time, we can usually
solve RepExt by a much simple polynomial-time algorithm. Figure 2.24 shows that
we are not aware of any reduction in which SimRep would generalize other restricted
representation problems of Fig. 2.24 such as BoundRep, for which the techniques de-
veloped in solving RepExt may often be directly applied. Also, simpler algorithms for
RepExt imply other results. For instance in Chapter 4, we describe minimal obstruc-
tions for partial representation extension of interval graphs, and a similar structural
understanding of SimRep(INT), for k = 2, is nowhere close to be known.

There are also graph classes for which SimRep cannot be used to solve RepExt.
For unit interval and unit circular-arc graphs, it is not possible to encode precise
rational positions of pre-drawn intervals/arcs by another unit interval or unit circular-
arc graph. Similarly, chordal graphs have many subtree-in-tree representations and a
partial representation cannot be described in this way. In SimRep(CHOR) for k = 2,
we are just given two graphs and we are completely free to build a tree in which both
are simultaneously represented. But in RepExt(CHOR), a partial representation has
to specify a part of the tree in which extending representation is constructed. Such
a reduction is for chordal graphs not possible because SimRep(CHOR) for k = 2 is
solvable in polynomial time [197], but RepExt(CHOR) is NP-complete in all possible
settings [213, 214] (see Table 2.1).

Applying RepExt for Small Intersections. When I is small enough, we can
often test all possible representations of the vertices in I. To solve the simultaneous
representations problem, it remains to decide whether one of these representations of
I can be completed to representations R1, . . . ,Rk of G1, . . . , Gk. If the corresponding
partial representation extension problem can be solved in polynomial time, we can
apply it and get an FPT algorithm for SimRep, parameterized by the size of I.

Let n = v(G1) + · · ·v(Gk), m = e(G1) + · · · + e(Gk) and ℓ = |I|. Such FPT
algorithms can be constructed for the following graph classes:

• For proper interval graphs, in time O((n + m)(2ℓ)!), using Theorem 2.3.1. The
number of proper interval representations of I is bounded by (2ℓ!) which is the
total number of left-to-right orderings of 2ℓ endpoints of ℓ intervals.
• For k-nested interval graphs, in time O(nc(2ℓ)!) for some constant c, using the

result of [220].
• For interval graphs, in time O((n+m)(2ℓ)!), using Theorem 2.2.3.

93

Chapter 2. State of The Art for Partial Representation Extension

• For circle graphs, in time O(nc(2ℓ)!) for some constant c, using Theorem 2.6.1.
We use interval overlap representations of Fig. 1.23.
• For permutation graphs, in time O(n3(ℓ!)2), using Theorem 2.7.2. For ℓ segments

in I, we test all possible orderings of ℓ endpoints on both lines.
• For trapezoid graphs, in time O(n5((2ℓ)!)2), using Theorem 2.7.7. For ℓ trape-

zoids in I, we test all possible orderings of 2ℓ endpoints on both lines.
• For proper circular-arc graphs, in time O(nc(2ℓ)!) for some constant c, using

Theorem 2.7.8.

It is unclear whether a similar result works for function graphs.

2.9.5 Allen Algebras and Interval Satisfiability

Allen algebras [3] play an important role in theory of artificial intelligence and time
reasoning. See [159, 155] for surveys about time reasoning. We have several events
represented by intervals in the timeline. For instance, consider the sentence

“During dinner, Peter reads the newspaper. Afterwards, he goes to bed.”

We have three events: dinner, reading the newspaper, and going to bed. Time reason-
ing studies what information about the timeline can be derived.

Allen Algebra and ISat. Allowing shared endpoints, Allen [3] characterized thir-
teen primitive relations between the events, depicted in Fig. 2.27. A relation is a
union of several primitive relations. For some pairs of events, we specify relations
in which they can occur. For the above sentence, we have ‘reading the newspaper’
during/starting/finishing ‘dinner’ and ‘dinner’ before/meeting ‘going to bed’.

In the interval satisfiability problem, called ISat, we have prescribed relations
for some pairs of events. We ask whether there exists an interval representation of the

x before y

y after x

x meets y

y met-by x

x overlaps y
y overlapped-by x

x starts y

y started-by x

x during y

y includes x
x finishes y

y finished-by x

x equals y

Figure 2.27: Thirteen primitive relations between the thick interval x and the thin
interval y.

94

2.9. Related Restricted Representation Problems

events such that all prescribed relations are satisfied. Vilian and Kautz [347] proved
that ISat is NP-complete. Golumbic and Shamir [159] gave a more simple proof,
using the interval graph sandwich problem [157]. Further, we can ask what additional
relations can be infered from the input. For instance, for the sentence above, we can
infer that ‘reading the newspaper’ before/meeting ‘going to bed’.

We can restrict the ISat problem by allowing only some relations to be used—it
gives 28192 = 2213 different problems. Adding additional relations makes the problems
only harder, and problems solvable in polynomial time imply the same for more re-
stricted problems. Therefore, it suffices to identify maximal subsets of relations for
which ISat is solvable in polynomial time. After twenty years of intense studies, a
dichotomy was proved. The papers [286, 100] describe eighteen maximal subsets of
relations for which ISat is polynomially solvable. Krokhin et al. [244] proved that the
ISat problem is NP-complete for all subsets above them.

Restricted ISat. Golumbic and Shamir [159] considered the restricted version of
ISat in which a relation is prescribed for every pair of events. Again, we can allow
only some relations to be used, and more problems became solvable in polynomial time
for restricted ISat. Further, recognition problems for several classes of intersection
graphs are equivalent with these problems:

• The problem Recog(PROPER INT) is equivalent with the restricted ISat prob-
lem for 2 allowed relations:

– for non-edges: before/after, and
– for edges: overlaps/overlapped-by/meets/met-by/equals.

• The problem Recog(INT) is equivalent with the restricted ISat problem for 2
allowed relations:

– for non-edges: before/after, and
– for edges: the 11 remaining primitive relations.

• The problem Recog(CIRCLE) is equivalent with the restricted ISat problem
for 2 allowed relations; recall Fig. 1.23:

– for non-edges: before/after/during/includes, and
– for edges: overlaps/overlapped-by

Also, recognition of interval orders and other problems can be described in this lan-
guage; see [159].

Relation to RepExt. Similarly, the partial representation extension problems for
proper interval graphs, interval graphs and circle graphs can be reduced to the re-
stricted ISat problem for those two relations together with 13 primitive relations
as singletons. For edges and non-edges incident with a non-predrawn vertices, we
use the same relations. For pairs on pre-drawn vertices, we use the corresponding
primitive relations. So these restricted ISat problems are a natural generalization of
RepExt(PROPER INT), RepExt(INT), and RepExt(CIRCLE), but the complexity
remains open.

95

Chapter 2. State of The Art for Partial Representation Extension

2.10 Open Problems

We conclude this chapter with an overview of the main open problems for the partial
representation extension problems. Further open problems are mentioned in Prob-
lems 2.5.1, 2.7.9, and 3.3.8 and Sections 2.9, 4.8, and 5.4.

Circular-arc Graphs. The main open problem for partial representation extension
is the complexity of RepExt(CIRCULAR-ARC):

Problem 2.10.1. Can the problem RepExt(CIRCULAR-ARC) be solved in polynomial
time?

This problem is very interesting for several reasons. All known polynomial-time
recognition algorithms are quite complex and construct specific types of representa-
tions called normalized representations discussed in Section 2.7.5; see [195, 271, 203].
Can be a partial representation normalized similarly as in the case of trapezoid graphs
in [243]. To solve RepExt(CIRCULAR-ARC), the structure of all representations needs
to be better understood which could lead to a major breakthrough concerning this and
other classes.

Consider the original recognition algorithm of Tucker [342]. It identifies two ba-
sic cases: a biclique case in which V (G) can be partitioned into two cliques, and a
multiclique case in which more maximal cliques are needed. The latter case seems
simpler to generalize for RepExt. So it is natural to concentrate on the biclique case,
in which every circular-arc representation has two points on the circle (corresponding
to the two cliques) such that every arc contains at least one of them. Tucker’s algo-
rithm [342] reduces the biclique case to recognition of a derived permutation graph.
Can this reduction be modified to reduce RepExt(CIRCULAR-ARC) in the biclique
case into RepExt(PERM) which can be solved in polynomial time? We note that in
the case of proper circular-arc graphs, the same two basic cases occur and the biclique
case is reduced to recognition of simpler bipartite permutation graphs [253]. At this
moment, it is not clear whether the last reduction reduction can be modified for partial
representation extension.

Problem 2.10.2. Can the problem RepExt(HELLY CIRCULAR-ARC) be solved in
polynomial time?

Triangle Graphs. Recognition algorithms for this subclass of trapezoid graphs were
described only recently [278, 336]. Can techniques in these algorithms be generalized
for RepExt(TRIANGLE)? We believe that solving of the following open problem
might give a better understanding of triangle graphs.

Problem 2.10.3. Can the problem RepExt(TRIANGLE) be solved in polynomial
time?

String Graphs. Proving that recognition of string graphs is NP-complete was a long
standing open problem [237, 314]. Can the techniques of [314] be applied to partial
representation extension?

96

2.10. Open Problems

Problem 2.10.4. Is the problem RepExt(STRING) NP-complete?

Faster Algorithms. It is natural to ask whether the running time of the currently
best known algorithms can be improved.

Problem 2.10.5. Can the problem RepExt(UNIT INT) be solved in time o(n2 + r)?
Can it be solved in linear time O(n+ r)?

Problem 2.10.6. Can the problem RepExt(PERM) be solved in time O(n+m)?

Problem 2.10.7. Can the problem RepExt(TRAPEZOID) be solved in time o(n5)?

97

Chapter 2. State of The Art for Partial Representation Extension

98

3 Extending Partial Interval
Representations in Linear Time

3.1 PQ-trees and Consecutive Orderings of Maximal Cliques 100
3.2 Characterization of Extendible Partial Representations 102
3.3 The Reordering Problem of PQ-trees 106
3.4 Linear-time Algorithm . 113

This chapter contains:

• 3.1: PQ-trees and Consecutive Orderings of Maximal Cliques.
Fulkerson and Gross [133] described that interval representations corre-
spond to certain linear orderings of maximal cliques of an interval graph
called consecutive orderings. Booth and Lueker [39] described a data struc-
ture called PQ-trees which efficiently stores all consecutive orderings.
• 3.2: Characterization of Extendible Partial Interval Representations.

We show that a partial representation R′ gives a partial ordering ▹ for
maximal cliques such that it is extendible if and only if there exists a con-
secutive ordering of maximal cliques which extends ▹.
• 3.3: The Reordering Problem of PQ-trees. It asks whether a PQ-tree can be

reordered to extend an input partial ordering. We describe two polynomial-
time algorithms: one for general partial orderings and a faster one for in-
terval orderings.
• 3.4: Linear-time Algorithm. We construct a linear-time algorithm for

RepExt(INT) by combining the above results.

http://pavel.klavik.cz/orgpad/repext_int.html

99

http://pavel.klavik.cz/orgpad/repext_int.html

Chapter 3. Extending Partial Interval Representations in Linear Time

3.1 PQ-trees and Consecutive Orderings of Maximal Cliques

In this section, we review well-known properties of interval graphs. First, we describe
the consecutive ordering problem and introduce a data structure to deal with these
orderings called PQ-trees. Then, we describe characterization of interval graphs in
terms of consecutive orderings of maximal cliques.

Consecutive Orderings. An input of the consecutive ordering problem consists of
a set E of elements and restricting sets S1, S2, . . . , Sk ⊆ E. A linear ordering < of E
is called a consecutive ordering if every Si appears consecutively in <: there are no
a < b < c such that a, c ∈ Si and b /∈ Si. The consecutive ordering problem asks
whether there exists a consecutive ordering of E.

For an example, consider the elements E = {a, b, c, d, e, f, g, h} and the restricting
sets S1 = {a, b, c}, S2 = {d, e}, and S3 = {e, f, g}. For instance, the orderings abcdefgh
and fgedhacb are feasible. On the other hand, the orderings acdefgbh (violates S1) and
defhgabc (violates S3) are not feasible.

PQ-trees. A PQ-tree is a tree structure invented by Booth and Lueker [39] for
solving the consecutive ordering problem efficiently. Moreover, it stores all consecutive
orderings for a given input.

The leaves of the tree are in one-to-one correspondence to the elements of E.
The inner nodes are of two types: P-nodes and Q-nodes . The tree is rooted and an
order of the children of every inner node is fixed. Also we assume that each P-node
has at least two children and each Q-node has at least three children. A PQ-tree T
represents one linear ordering <T called frontier , given by the ordering of the leaves
from left to right, see Fig. 3.1.

Every PQ-tree T further represents other consecutive orderings. These orderings
are frontiers of equivalent PQ-trees. A PQ-tree T ′ is equivalent to T if it can be
constructed from T by reordering T which is an application of a sequence of equivalent
transformations of two types: (i) an arbitrary reordering of the children of a P-node,
and (ii) a reversal of the order of the children of a Q-node. For example, the PQ-trees
in Fig. 3.1 are equivalent. All consecutive orderings are frontiers of an equivalence
class of PQ-trees. For instance, the equivalence class in Fig. 3.1 corresponds to the
input sets in the above example.

a b c d e

gf

h

a bcde

gf

h

Figure 3.1: PQ-trees having frontiers abcdefgh and fgedhacb. In all figures, we denote
P-nodes by circles and Q-nodes by rectangles.

100

3.1. PQ-trees and Consecutive Orderings of Maximal Cliques

For the purpose of this thesis, we only need to know the following:

Lemma 3.1.1 (Booth and Lueker [39]). Let E be a set of elements and S1, . . . , Sk ⊆ E.

(a) There exists a unique equivalence class of PQ-trees such that their frontiers cor-
respond to all consecutive orderings of E.

(b) A PQ-tree from this equivalence class can be constructed in time O(e + k + t)
where e is the number of elements of E, k is the number of restricting sets and
t is the sum of cardinalities of restricting sets. If no consecutive ordering exists,
the equivalence class is empty and we detect it in the same running time.

Consecutive Orderings of Maximal Cliques. In Chapters 3, 4 and 5, maximal
cliques are denoted by the letters a to f , and vertices by the remaining letters. Fulk-
erson and Gross [133] proved the following fundamental characterization of interval
graphs in terms of maximal cliques; see Fig. 3.2 for an example.

Lemma 3.1.2 (Fulkerson and Gross [133]). A graph is an interval graph if and only
if there exists a linear ordering < of its maximal cliques such that, for each vertex, the
maximal cliques containing this vertex appear consecutively.

Proof. Consider an interval representation of an interval graph. The consecutive order-
ing < from the statement is obtained by sweeping this representation from left to right.
By the Helly property, the intervals of every maximal clique have a non-empty inter-
section. For all maximal cliques, these intersections are disjoint and ordered from left
to right. In the intersection of the intervals of a maximal clique a, we pick one point
which we call a clique-point cp(a). The left-to-right ordering of these clique-points
gives <. Every vertex appears in consecutive maximal cliques since it is represented
by an interval in the representation.

On the other hand, given a consecutive ordering <, we place the clique-points
from left to right according to < and construct an interval representation by placing

s

t

p

q

r

u v

w

x

y
z

G a b c d e f R1

p
q

r

s
t
u v w x

y

z

f e c d b a R2

y

z

s
t
x v w u

q

r

p

Figure 3.2: An interval graph G and two of its representations with different left-to-
right orderings < of the maximal cliques. Some choices of clique-points are depicted
on the real lines.

a b

c d

e f f e

c d

b a

Figure 3.3: Two equivalent PQ-trees with frontiers a < b < c < d < e < f and
f < e < c < d < b < a, respectively.

101

Chapter 3. Extending Partial Interval Representations in Linear Time

each interval on top of its clique-points and no others. This can be done because the
ordering places the maximal cliques containing each of the vertices consecutively.

Two interval representations are considered the same, if one can be transformed
into the other by continuously changing the intervals while preserving the correctness
of a representation. We note that there is different consecutive orderings of maximal
cliques correspond one-to-one to different interval representations of an interval graph.

The following simple lemma is useful later in proving Theorem 3.2.2:

Lemma 3.1.3. Let G be an interval graph and let S ⊆ V (G) induce a connected
subgraph of G. Then the maximal cliques of G containing at least one vertex of S
appear consecutively in every consecutive ordering < of the maximal cliques of G.

Proof. Consider the interval representation given by < with some choice of clique-
points. The union ⟨S⟩ of the intervals of S is a closed interval, so it is connected. For
every clique a, its clique-point cp(a) is placed on ⟨S⟩ if and only if a contains at least
one vertex from S. Therefore the set of maximal cliques containing at least one vertex
of S appears consecutively, with the remaining cliques on one side or the other.

PQ-trees for Interval Graphs. By combining the above results, Booth and Lueker [39]
constructed the first linear-time recognition algorithm for interval graphs:

Lemma 3.1.4 (Booth and Lueker [39]). The problem Recog(INT) can be solved in
time O(n+m) where n is the number of vertices and m is the number of edges.

Proof. Every chordal graph has at most O(n) maximal cliques of total size O(n+m)
and they can be found in linear time [311]. Since every interval graph is chordal, this
applies to them as well. If this subroutine fails, the input graph G is not an interval
graph.

Otherwise, let E be the set all maximal cliques and for each v ∈ V (G), let
Sv = {a ∈ E : v ∈ a}. By Lemma 3.1.1, we construct the corresponding PQ-tree in
time O(n+m) if it exists. By Lemma 3.1.2, the PQ-tree exists if and only if G is an
interval graph.

In what follows, the elements E of PQ-trees always correspond to maximal cliques
of an interval graph. The constructed PQ-tree describes all different interval represen-
tations which is essential for solving the partial representation extension problem.

3.2 Characterization of Extendible Partial Representations by
Maximal Cliques

In this section, we derive a characterization of extendible partial representations of
interval graphs. A partial representation R′ gives a certain partial ordering ▹. We
show that a representation extending R′ exists if and only if there exists a consecutive
ordering of maximal cliques which extends ▹.

102

3.2. Characterization of Extendible Partial Representations

x y

x1 x2 x3 y1 y2 y3

R

(a)
xx1 xx2 xx3

yy1 yy2 yy3

⊳ x
y

u
v w

R

(b)
xu

xyv

yw

⊳

x

yu
v

w

R

(c)

Figure 3.4: Possible relative positions of pre-drawn intervals ⟨x⟩′ and ⟨y⟩′, and some
examples of the Hasse diagrams of the posed constraints.

(a) All maximal cliques containing x have to be on the left of those containing y.
(b) All maximal cliques containing x have to be on the left of those containing both

x and y, which are on the left of those containing only y.
(c) An inclusion of pre-drawn intervals poses no constraints. A maximal clique

containing only x can be either on the left, or on the right of the maximal cliques
containing both x and y.

Restricting Clique-points. Suppose that there exists a representation R extending
R′. Then R gives some consecutive ordering < of the maximal cliques from left to
right. We want to show that the pre-drawn intervals give constraints in the form of a
partial ordering ▹, defined below. Figure 3.4 illustrates examples of constraints posed
by a pair of pre-drawn intervals.

For a maximal clique a, let P (a) denote the set of all pre-drawn intervals that
are contained in a. For every extending representation R, P (a) restricts the possible
position of the clique-point cp(a) to only those points x of the real line which are
covered in R′ by the pre-drawn intervals of P (a) and no others. We denote the set of
these admissible positions by ↓a. Formally:

↓a=
{
x : x ∈ R and x ∈ ⟨u⟩′ ⇐⇒ u ∈ P (a)

}
;

for examples see Fig. 3.5a. Equivalently, ↓a is defined in [18, 19] as

↓a=
(⋂
u∈P (a)

⟨u⟩′
)
\
(⋃
v /∈P (a)
⟨v⟩′

)
.

We are interested in the extremal points of ↓a. By x(a) (resp. y(a)), we denote
the infimum (resp. the supremum) of ↓a. We use an open interval Ia = (x(a),y(a))
to represent ↓a. We note that this does not imply that ↓a contains all points between
x(a) and y(a); see ↓b in Fig. 3.5. Notice that when P (a) = ∅, then Ia = R.

The Relation ▹. For two distinct maximal cliques a and b, we write a ▹ b if
y(a) ≤ x(b), or in other words, if Ia is on the left of Ib. We put a ▹ a when

R′

u

v

y

x z

(a)

↓a
↓b

↓c
↓d

(b)

Ia Ib

Ic Id

Figure 3.5: (a) Four maximal cliques a, b, c, and d with P (a) = {u, v}, P (b) = {y},
P (c) = {x, y}, and P (d) = {y, z}. The possible positions ↓a, ↓b, ↓c, and ↓d of their
clique-points are illustrated. (b) The corresponding open intervals Ia, Ib, Ic, and Id.

103

Chapter 3. Extending Partial Interval Representations in Linear Time

↓a= ∅. The definition of ▹ is quite natural, since a ▹ b implies that every extending
representation R has to place cp(a) to the left of cp(b). For instance, in Fig. 3.5, we
get that a ▹ b ▹ d and a ▹ c ▹ d, but b and c are incomparable.

All maximal cliques a with ↓a ̸= ∅ can be represented by open intervals Ia. This
representation describes ▹, since a ▹ b if and only if Ia and Ib are disjoint and Ia is on
the left of Ib. Recall from Section 1.3.1 that an ordering is called an interval ordering
if it can be represented by closed intervals in the above manner: a < b if and only if
the interval of a is on the left of the interval of b. We get the following:

Lemma 3.2.1. The relation ▹ is an interval ordering if and only if no maximal
clique a has ↓a= ∅ and there are no two distinct maximal cliques a and b such that
↓a=↓b= {x}.

Proof. When ↓a= ∅, then a ▹ a, so ▹ is not an ordering. Similarly, when ↓a=↓b= {x},
we have a ▹ b ▹ a. Otherwise, ▹ can be represented by the closure of the intervals
Ia, where we add small gaps between touching pairs of right and left endpoints that
belong to distinct intervals.

The reader might be wondering why we use open intervals Ia to represent max-
imal cliques of an interval graph represented by closed intervals. In every interval
representation, its clique-points are strictly ordered from left to right, with no two
sharing their positions. So even when y(a) = x(b), the clique-point cp(a) is always
placed to the left of cp(b). Therefore it is natural to represent the interval orders ▹
by open intervals.

Now, we are ready to prove the main structural theorem of this chapter:

Theorem 3.2.2. A partial representation R′ is extendible if and only if there exists
a consecutive ordering of the maximal cliques that extends ▹.

Proof. A representation R extending R′ gives some consecutive ordering of the maxi-
mal cliques. It is easy to observe that the constraints given by ▹ are necessary, so this
consecutive ordering has to extend ▹. It remains to show the other implication.

To show the other implication, suppose that we have a consecutive ordering < of
the maximal cliques which extends ▹. We construct a representation R extending R′.
We place the clique-points according to < from left to right, in the following greedy
manner. Suppose that we want to place a clique-point cp(a). Let cp(b) be the last
placed clique-point. Consider all the points where the clique-point cp(a) can be placed
and that are to the right of the clique-point cp(b). If there is a single such point, we
place cp(a) there. Otherwise x(a) <y(a), and we take the infimum of all such points
and place the clique-point cp(a) to its right by an appropriate epsilon, for example the
distance of two closest distinct endpoints of pre-drawn intervals divided by n.

We prove by contradiction that this greedy procedure cannot fail; see Fig. 3.6.
Let cp(a) be the clique-point for which the procedure fails. It is not possible that
↓a= ∅, since in this case a ▹ a and < cannot extend ▹. Since cp(a) cannot be placed,
there are some clique-points placed on y(a) or to its right. Let cp(b) be the leftmost
among them. If x(b) ≥y(a), we obtain a ▹ b, which contradicts b < a because cp(b)

104

3.2. Characterization of Extendible Partial Representations

y(a) cp(b)x(b) cp(c)

S

Figure 3.6: An illustration of the proof. The positions of the clique-points cp(b) and
cp(c), the intervals of S are dashed.

was placed before cp(a). Thus, we know that x(b) <y(a). To get contradiction, we
question why the clique-point cp(b) was not placed on the left of y(a).

The clique-point cp(b) was not placed on the left of y(a) because all these
positions were either blocked by some other previously placed clique-points, or they
are covered by some pre-drawn interval not in P (b). There is at least one clique-point
placed to the right of x(b), since otherwise we could place cp(b) at x(b) or right
next to it. Let cp(c) be the right-most clique-point placed between x(b) and cp(b).
Every point between cp(c) and y(a) is covered by a pre-drawn interval not in P (b).
Consider the set S of all the pre-drawn intervals not contained in P (b) intersecting
[cp(c),y(a)] (see the dashed intervals in Fig. 3.6).

Let C be the set of all maximal cliques containing at least one vertex from S.
Since S induces a connected subgraph, by Lemma 3.1.3, all maximal cliques of C
appear consecutively in <. Now, a and c both belong to C, but b does not. Since
c < b, we have a < b, which contradicts our original assumption b < a.

No Single Overlaps. The following results play an important role in Chapter 4.
We say that a pair of intervals Ia and Ib single overlaps if Ia ̸= Ib and either x(a) ≤
x(b) < y(a) ≤ y(b), or x(b) ≤ x(a) < y(b) ≤ y(a). Using Allen algebra
described in Section 2.9.5, two intervals single overlap if they are in the relation
overlaps/overlapped-by/starts/started-by/finishes/finished-by.

Lemma 3.2.3. No pair of intervals Ia and Ib single overlaps.

Proof. Assume without loss of generality that x(a) ≤x(b). If y(a) ≤x(b), then Ia

and Ib are disjoint and do not single overlap. Suppose now that x(a) ≤x(b) <y(a).
Since all intervals of P (a) cover [x(a),y(a)], we get P (a) ⊆ P (b).

The position of y(a) can be defined as a result of two distinct situations:

• If some pre-drawn interval of P (a) ends in y(a), then y(b) ≤ y(a), since the
same pre-drawn interval is contained in P (b).
• Otherwise, there exists a sequence of pre-drawn intervals not contained in P (a)

that covers the whole portion between y(a) and the leftmost right endpoint
of the intervals of P (a). The left endpoints of these intervals are on or to the
right of y(a). Since the left endpoints of the intervals in P (b) are to the left of
y(a), the pre-drawn intervals of the sequence are not contained in P (b). Thus,
y(b) ≤y(a).

In both cases, x(a) ≤x(b) ≤y(b) ≤y(a), so Ib is contained in Ia.

105

Chapter 3. Extending Partial Interval Representations in Linear Time

If no single overlaps are allowed, every pair of intervals is either disjoint, or
one interval is contained in the other (possibly the intervals are equal). This type of
interval orderings is very simple and has not been much studied. We note that graphs
having interval representations with no single overlaps are called trivially perfect. By
examining the above proof, we get the following useful result:

Lemma 3.2.4. If Ia ⊆ Ib, then P (a) ⊇ P (b). Further, strict containments correspond
to strict inclusions.

If Ia and Ib are disjoint, then we only know that at least one of the sets P (a)\P (b)
and P (b) \ P (a) is non-empty. They both might be non-empty, or the sets P (a) and
P (b) might be in inclusion. See Fig. 3.5 for examples.

3.3 The Reordering Problem of PQ-trees

Suppose that T is a PQ-tree and ▹ is a partial ordering of its elements (leaves). We
say that a reordering T ′ of the PQ-tree T is compatible with ▹ if the ordering <T ′

extends ▹, i.e., a ▹ b implies a <T ′ b. In this section, we deal with the following
computational problem:

Problem: The reordering problem – Reorder(T,▹)
Input: A PQ-tree T and a partial ordering ▹.

Question: Is there a reordering T ′ of T compatible with ▹?

3.3.1 The Reordering Problem for General Orderings

A (rooted) subtree of a PQ-tree T consists of a node and all its descendants. The
subtrees of a node N are those subtrees having the children of N as the roots. For
two subtrees Ti and Tj, we write Ti ▹ Tj if and only if there exists a ∈ Ti and b ∈ Tj

such that a ▹ b. For a node N , let T [N] denote the subtree of T with the root N .

Local Solutions. A PQ-tree defines a hierarchical structure on its elements.

Observation 3.3.1. Let S be a subtree of a PQ-tree T . Then the elements of E
contained in S appear consecutively in <T .

We start with a lemma which states the following: If we can solve the reordering
problem locally (inside of some subtree), then this local solution is always correct;
either there exists no solution to the problem at all, or this local solution can be
extended to a solution for the whole tree.

Lemma 3.3.2. Let S be a subtree of a PQ-tree T . If T can be reordered compatibly
with ▹, then every local reordering of the subtree S compatible with ▹ can be extended
to a reordering of the whole tree T compatible with ▹.

106

3.3. The Reordering Problem of PQ-trees

Proof. Let T ′ be a reordering of the whole PQ-tree T compatible with ▹. According to
Observation 3.3.1, all elements contained in S appear consecutively in <T ′ . Therefore,
we can replace this local ordering of S by any other local ordering of S satisfying all
constraints given by ▹ on S. We obtain another reordering of the whole tree T which
is compatible with ▹ and extends the prescribed local ordering of S.

The Reordering Algorithm. We describe the following algorithm:

Proposition 3.3.3. The problem Reorder(T,▹) can be solved in time O(e + m),
where e is the number of elements and m is the number of comparable pairs in ▹.

Proof. The algorithm is the following greedy procedure. We represent the ordering ▹
by a digraph having m edges. We reorder the nodes from the bottom to the root and
modify the digraph by contractions. When we finish reordering a subtree, the order
is fixed and never changed in the future; by Lemma 3.3.2, either this local reordering
will be extendible, or there is no correct reordering of the whole tree at all. When
we finish reordering a subtree, we contract the corresponding vertices in the digraph.
We process a node of the PQ-tree when all its subtrees are already processed and the
digraphs representing them are contracted to single vertices.

For a P-node, we check whether the subdigraph induced by the vertices corre-
sponding to its children is acyclic. If it is acyclic, we reorder the children according
to any topological sort of the subdigraph. Otherwise, there exists a cycle, no feasible
ordering exists and the algorithm returns “no”. For a Q-node, there are two possible
orderings and we check whether one of them is feasible. For an example, see Fig. 3.7.

a b c d e f

a
b

c

d

e

f

T1 T2 T

ab c d e f

T1 d

e

f

T2 T

ab c d e f

T1 T2

T

Figure 3.7: We show from left to right the way in which the reordering algorithm
works. We depict comparable pairs of maximal cliques by directed edges. The pro-
cessed trees are contracted into vertices.

First, we reorder the highlighted P-node on the left. The subdigraph induced by
a, b and c is ordered b → a → c. We contract this subtree T1 into a vertex. Next,
we keep the order of the highlighted Q-node and contract its subtree T2 into a vertex.
When we reorder the root P-node, the algorithm finds a two-cycle between T1 and T2,
and outputs “no”.

107

Chapter 3. Extending Partial Interval Representations in Linear Time

Algorithm 1: Reordering a PQ-tree – Reorder(T,▹)
Require: A PQ-tree T and a partial ordering ▹.
Ensure: A reordering T ′ of T such that <T ′ extends ▹ if it exists.

1: Construct the digraph of ▹.
2: Process the nodes of T from the bottom to the root:
3: for a processed node N do
4: Consider the subdigraph induced by the children of N .
5: if the node N is a P-node then
6: Find a topological sort of the subdigraph.
7: If it exists, reorder N according to it, otherwise output “no”.
8: else if the node N is a Q-node then
9: Test whether the current ordering or its reversal are compatible

with the subdigraph.
10: If at least one is compatible, reorder the node, otherwise output “no”.
11: Contract the subdigraph into a single vertex.
12: return A reordering T ′ of T .

We need to argue the correctness. The algorithm processes the tree from the
bottom to the top. For every subtree S, it finds some reordering of S compatible with
▹. If no such reordering of S exists, the whole tree T cannot be reordered according to
▹. If a reordering of S exists, it is correct according to Lemma 3.3.2. The algorithm
runs in linear time with respect to the size of the PQ-tree and the partial ordering ▹
which is O(e + m). Each edge of the digraph ▹ is processed exactly once before it is
contracted.

We note that the described algorithm works even for a general relation ▹. For
example, ▹ does not have to be transitive (as in the example in Fig. 3.7) or even
acyclic (but in such a case, of course, no solution exists).

3.3.2 The Reordering Problem for Interval Orderings

In this section, we establish a faster algorithm for the reordering problem for a slight
generalization of interval orders. Let E be the set of elements and let

{
Ia = (ℓa, ra) :

a ∈ E
}

be a collection of open intervals. For the purpose of Section 3.4, we also allow
empty intervals with ℓv = rv.

These intervals represent the following relation ▹ on E: we put a ▹ b if and
only if the intervals Ia and Ib do not intersect and Ia is on the left of Ib. If two empty
intervals Ia and Ib share position (so ℓa = ra = ℓb = rb), we get a ▹ b ▹ a. If this
is not the case, as argued in Section 3.2, the relation ▹ is an interval ordering. See
Fig. 3.8 for an example.

Faster Reordering of PQ-trees. Let e be the number of elements of E and let ▹
be an interval order on E represented by {Ia : a ∈ E}. We assume the representation
of ▹ is sorted, which means that we know the order of all endpoints of the open

108

3.3. The Reordering Problem of PQ-trees

a

b

c

d
e

e

dc

ba

Figure 3.8: A collection of open intervals and the Hasse diagram of the interval order
▹ represented by these intervals.

intervals from left to right. In the rest of this section, we show that we can solve
Reorder(T,▹) faster:

Proposition 3.3.4. If ▹ is an interval ordering given by a sorted representation, we
can solve the problem Reorder(T,▹) in time O(e) where e is the number of elements
of T .

For the following, let l be the linear ordering of the endpoints ℓe and re of
the intervals according to their appearance from left to right in the representation.
To ensure that a ▹ b if and only if ra l ℓb, we need to deal with endpoints sharing
position. For them, we place in l first the right endpoints (ordered arbitrarily) and
then the left endpoints (again ordered arbitrarily). For a sorted representation, this
ordering l can be computed in time O(e). For example in Fig. 3.8 we get

ℓa l ℓb l ra l ℓc l rb l ℓd l rc l rd l ℓe l re.

The general outline of the algorithm is exactly the same as before. We process
the nodes of the PQ-tree from the bottom to the root and reorder them according to
the local constraints. Using the interval representation of ▹, we can implement all
steps faster than before.

Informally speaking, the main trick is that we do not construct the digraph
explicitly. Instead, we just work with sets of intervals corresponding to the elements
of subtrees and compare them with respect to ▹ fast. When we process a node with
subtrees with the elements corresponding to sets I1, . . . , Ik ⊆ E which we already
processed before. We test efficiently in time O(k) whether we can reorder these k
subtrees according to ▹. If it is not possible, then the algorithm stops and outputs
“no”. If the reordering succeeds, we put all the sets together I = I1 ∪ I2 ∪ · · · ∪ Ik,
and proceed further. We now describe everything in details.

Comparing Subtrees. Let I1 and I2 be sets of intervals. We say I1 ▹ I2 if there
exist a ∈ I1 and b ∈ I2 such that a ▹ b. We want to show that using the interval
representation and some precomputation, we can decide whether I1 ▹ I2 in constant
time. The following lemma states that we just need to compare the “leftmost” interval
of I1 with the “rightmost” interval of I2; see Fig. 3.9.

Lemma 3.3.5. Suppose that a ▹ b for a ∈ I1 and b ∈ I2. Then for every a′ ∈ I1 with
ra′ l ra and every b′ ∈ I2 with ℓb l ℓb′, it holds that a′ ▹ b′.

Proof. From the definition, a ▹ b if and only if ra l ℓb. We have ra′ l ra l ℓb l ℓb′ ,
and thus a′ ▹ b′.

109

Chapter 3. Extending Partial Interval Representations in Linear Time

a

a
′

b

b
′

Figure 3.9: The normal intervals belong to I1 and the dashed intervals belong to I2.
If a ▹ b, then also a′ ▹ b′.

Using this lemma, we just need to compare a having the leftmost ra to b having
the rightmost ℓb since I1 ▹ I2 if and only if a ▹ b. To simplify the description, these
special endpoints of intervals used for comparisons are called handles. More precisely,
for a set of intervals I, we define a lower handle and an upper handle:

LH(I) = min{rx : x ∈ I} and UH(I) = max{ℓx : x ∈ I}. (3.1)

We note that LH(I)lUH(I) if I is not a clique. Using handles, we can compare sets
of intervals fast. By Lemma 3.3.5, we have:

I1 ▹ I2 if and only if LH(I1) l UH(I2). (3.2)

For an example, see Fig. 3.10.
Throughout the algorithm, we efficiently compute these handles for each pro-

cessed subtree, and we do not need to remember which specific intervals are contained
in the subtree. The handles serve in the same manner as the contraction operation of
digraphs in the proof of Proposition 3.3.3.

Reordering Nodes. We describe fast reordering of the children of a processed node
using the handles. Let I1, . . . , Ik be the sets of intervals corresponding to the subtrees
of this node. Suppose that we know their handles and have them ordered according
to l as in Fig. 3.10. Let l̃ be the ordering l restricted to the handles of I1, . . . , Ik.

A linear ordering < of the sets I1, . . . , Ik is called a topological sort if Ii ▹ Ij

implies Ii < Ij for every i ̸= j. The set Ij is minimal if there is no Ii such that Ii ▹ Ij.
We use minimal elements to characterize all topological sorts. For every topological
sort 1 < · · · < k, the ℓ-th element restricted to {ℓ, ℓ+1, . . . , k} is minimal. We describe
this classical characterization in details since it is important for our algorithm.

Every topological sort can be constructed as follows. We repeatedly detect all
minimal element Ii and always pick one. (For different choices we get different topo-
logical sorts). We stop when all elements are placed in the topological sort. If in some
step no minimal element exists, then no topological sort exists.

I1

I2

I3

UH(I1) LH(I2) UH(I3) LH(I1) =UH(I2) LH(I3)

Figure 3.10: The handles for sets I1, I2 and I3. We have UH(I1) l LH(I2) l
UH(I3) l LH(I1) l UH(I2) l LH(I3). According to (3.2), we get I1 ▹ I2, I2 ▹ I3,
and I1 ̸▹ I3; so the relation ▹ on sets of intervals is not necessarily transitive.

110

3.3. The Reordering Problem of PQ-trees

The following lemma describes minimal elements in terms of the ordering l̃:

Lemma 3.3.6. The set Ij is minimal if and only if there is no lower handle LH(Ii)
for i ̸= j such that LH(Ii)l̃UH(Ij).

Proof. By (3.2), Ii ▹ Ij if and only if LH(Ii)l̃UH(Ij). If there is no such Ii, then Ij

is minimal.

We can use this lemma to identify all minimal elements:

• If the ordering l̃ starts with two lower handles LH(Ii) and LH(Ij), there exists
no minimal element. The reason is that all upper handles are larger, and so both
Ii and Ij are smaller than everything else; specifically, we get Ii ▹ Ij ▹ Ii.
• Otherwise if the first element of the ordering l̃ is LH(Ii), then Ii is the unique

candidate for a minimal element. We just need to check whether there is some
other LH(Ij) smaller than UH(Ii), and if so, no minimal element exists.1
• If l̃ starts with a consecutive group of upper handles, we have several minimal

elements. All Ii’s of these upper handles are minimal elements. If the lower
handle following the group of upper handles is LH(Ij), then Ij is a candidate
for a minimal element. As above, Ij is minimal if there is no other lower handle
smaller than UH(Ij).

When constructing a topological sort, we remove the handles of the picked minimal
elements Ii from l̃ and append Ii to the sort.

Using the above, we can construct the following certifying subroutine for reorder-
ing of a node according to ▹:

Lemma 3.3.7. Suppose that we know l̃ for the handles of the sets I1, . . . , Ik of
subtrees of T1, . . . , Tk of a node of the PQ-tree. We can decide in time O(k) whether
T1, . . . , Tk can be reordered compatibly with ▹, i.e, Ti < Tj if Ti ▹ Tj.

• If the answer is “yes”, we find a reordering of the node.
• If the answer is “no”, for a P-node, we find two subtrees Ti and Tj such that
Ti ▹ Tj ▹ Ti. And for a Q-node, four subtrees Ti, Tj, Ti′, and Tj′ (possibly not
distinct) such that i < j, i′ < j′, Ti ◃ Tj, and Ti′ ▹ Tj′.

Proof. For a P-node, we just need to find any topological sort by repeated removing
of minimal elements in any way. As described, if no minimal element exists at some
point, the ordering l̃ starts with two lower handles LH(Ii) and LH(Ij) such that
Ti ▹ Tj ▹ Ti, so we output “no” with Ti and Tj as a certificate.

For a Q-node, we test whether the current ordering or its reversal are topological
sorts. We iterate through each of the two prescribed orderings, check whether each
element is a minimal element, and then remove its handles from l̃. In both cases, if we
find a correct topological sort, we use it to reorder the children of the node. Otherwise,

1This can be done in constant time if we remember in each moment the positions of two leftmost
lower handles in the ordering, and update this information after removing one of them from l̃.

111

Chapter 3. Extending Partial Interval Representations in Linear Time

for the current ordering, we find that Ii is not minimal because of Ij such that i < j
and Ti ◃ Tj, and similarly for the reversal, we find that Ij′ is not minimal because of
Ii′ such that i′ < j′ and Ti′ ▹ Tj′ . No reordering is possible and the algorithm outputs
“no” together with Ti, Tj, Ti′ and Tj′ as a certificate.

The subroutine clearly runs in time O(k).

The Reordering Algorithm. We are ready to show that our algorithm allows to
find a reordering of the PQ-tree T compatible with an interval order ▹ with a sorted
representation in time O(e):

Proposition 3.3.4. We first deal with details of the implementation. We precompute
the handles for every set of intervals corresponding to a subtree of an inner node of T .
For each leaf, the handles are the endpoints. We process the tree from the bottom to
the root. Suppose that we have an inner node corresponding to the set I of intervals
and it has k children corresponding to I1, . . . , Ik for which we already know their
handles. Then we calculate the handles of I using

LH(I) = min
{
LH(Ii)

}
and UH(I) = max

{
UH(Ii)

}
. (3.3)

This can clearly be computed in time O(e), and we also note for each endpoint a list of
nodes for which it is a handle. Using these list, we can sweep the sorted representation
and compute all orderings l̃ for all inner nodes of T , again in O(e) time.

Using Lemma 3.3.7, we test for each inner node of T with its ordering l̃ whether
its subtrees can be reordered according to ▹. Correctness of the algorithm is proved
the same as in Proposition 3.3.3, based on Lemmas 3.3.5 and 3.3.6.

Concerning the time complexity, we already discussed that we are able to com-
pare sets of intervals using handles in constant time, by Lemma 3.3.5. The precom-
putation of all orderings l̃ takes time O(e). We spend time O(k) in each node with
k children. Thus the algorithm runs in linear time in the size of the tree, which is
O(e).

For a pseudocode, see Algorithm 2. We note that when the orderings l̃ are
constructed for all inner nodes, we do not need to process the tree from the bottom
to the top. We can process them independently in parallel and a reordering T ′ of T
exists if and only if we succeed in reordering every inner node.

We note that by Lemma 3.2.3, we know that interval orderings ▹ rising from par-
tial interval representations R′ further have no single overlaps. It is an open problem
whether this property can be used to further simplify the algorithm:

Problem 3.3.8. Can the linear-time algorithm for Reorder(T,▹) described in Propo-
sition 3.3.4 be simplified when the representation of ▹ contains no single overlaps?

112

3.4. Linear-time Algorithm

Algorithm 2: Reordering a PQ-tree, with an interval ordering – Reorder(T,▹)
Require: A PQ-tree T and an interval ordering ▹ with a sorted representation.
Ensure: A reordering T ′ of T such that <T ′ extends ▹ if it exists.

1: Calculate the handles for each individual leaf of T and initiate an empty list for
each endpoint.

2: Process the nodes of T from the bottom to the root:
3: for a processed node N do
4: Compute the handles of N using (3.3).
5: Add the node N to the lists of the two endpoints which are the handles of N .
6: Iterate the sorted representation and construct all orderings l̃ for all inner nodes
N .

7: Again process the nodes from the bottom to the root:
8: for a processed node N with the ordering l̃ do
9: if the node N is a P-node then

10: Find any topological sort by removing minimal elements from l̃.
11: If it exists, reorder N according to it, otherwise output “no”.
12: else if the node N is a Q-node then
13: Test whether the current ordering or its reversal are topological sorts.
14: Process the prescribed ordering from left to right, check for every element

whether it is minimal and remove its handles from l̃.
15: If at least one ordering is correct, reorder the node, otherwise output “no”.
16: return A reordering T ′ of T .

3.4 Linear-time Algorithm

In this section, we describe an algorithm solving RepExt(INT) in time O(n+m). We
modify the algorithm of Lemma 3.1.4 to test the characterization of Theorem 3.2.2
using Proposition 3.3.4 as a subroutine.

Computed Sorted Representation. First, we show a sorted representation of the
interval order ▹, required by the assumptions of Proposition 3.3.4, can be computed
in linear time:

Lemma 3.4.1. For a sorted partial representation R′, we can compute the sorted
representation of ▹ in time O(n+m).

Proof. We sweep the real line from left to right and compute the sorted representation
of ▹. As stated above, the interval graph has O(n) maximal cliques containing in total
O(n + m) vertices. We compute for every pre-drawn vertex the list of the maximal
cliques containing it, and for every maximal clique a the number |P (a)| of pre-drawn
vertices it contains. We initiate an empty list W , a counter i of pre-drawn intervals
covering the currently sweeped point.

When sweeping, there are two types of events. If we encounter a set of endpoints
of pre-drawn intervals sharing a point, we first process the left endpoints, then we

113

Chapter 3. Extending Partial Interval Representations in Linear Time

update x and y for this point,2 and then we process the right endpoints. If we sweep
over a part, we just update x and y. In details:

• If we encounter a left endpoint ℓu, then we increase the counter i. For every
clique a containing u, we increase its counter. If some clique a has all pre-drawn
intervals placed over ℓu, we add a into the list W of watched cliques.
• If we encounter a right endpoint ru, we decrease the counter of pre-drawn inter-

vals. We ignore all maximal cliques containing u till the end of the procedure,
and naturally we also remove them from W if there are any.
• The update of x and y is done for all cliques a ∈ W such that |P (a)| = i.

Notice that we currently sweep over exactly i pre-drawn intervals, and therefore
we have to sweep over exactly the pre-drawn intervals of P (a). We update x(a)
to the current point or the infimum of the current part if it is not yet initialized.
And we update y(a) to the supremum.

In the end, we output the computed x and y naturally sorted from left to right. If
for some maximal clique a, the value x(a) was not initialized, the clique-point cp(a)
cannot be placed and we output “no”.

We argue that the procedure can be implemented in linear time. We have the
cliques in W partitioned according to the number of predrawn intervals contained
in them. When we sweep over i pre-drawn intervals, there is no a ∈ W such that
|P (a)| > i, and if there are a, b ∈ W such that |P (a)| = |P (b)| = i, then necessarily
P (a) = P (b). But then x(a) = x(b) and y(a) = y(b), so we can ignore b for
the rest of the sweep procedure and set the values x(b) and y(b) according to the
clique a in the end. Thus each update costs O(1). This implementation clearly runs
in O(n+m).

The Algorithm. Let T be the PQ-tree corresponding to the input interval graph
and let ▹ be the interval order obtained from the input partial representation R′.
The partial representation extension algorithm is based on the characterization of
Theorem 3.2.2 which has the following algorithmic reformulation:

Corollary 3.4.2. A partial representation R′ is extendible if and only if the problem
Reorder(T,▹) admits a solution.

Below, we describe the first part of the linear-time certifying algorithm for
RepExt(INT) of Theorem 2.2.3 which solves the problem and certifies “yes” answers.
It proceeds in the following five steps, where the last two steps produce the certificate:

1. Using [311] and Lemma 3.1.1, we find all maximal cliques and construct a PQ-
tree T representing all consecutive orderings of the maximal cliques.

2. We construct the sorted representation of the interval order ▹ by Lemma 3.4.1.

2We also need to update here since it might happen that the interval (x(a),y(a)) is empty for
some maximal clique a. This can happen only if some pre-drawn interval of P (a) is a singleton.

114

3.4. Linear-time Algorithm

3. From Using Proposition 3.3.4, we test whether there is a reordering T ′ of the
PQ-tree T compatible with ▹. By Corollary 3.4.2, the partial representation R′
is extendible if and only if there exists a solution to the reordering problem.

4. As in the proof of Theorem 3.2.2, we place the clique-points from left to right
according to <T ′ on the real line, greedily as far to the left as possible.

5. Using these clique-points, construct a representation R extending R′.

Step 1 is the original recognition algorithm of Lemma 3.1.4. In Step 2, we com-
pute splitting of the real line into parts and construct a sorted representation of ▹.
In Step 3, we apply the algorithm of Proposition 3.3.4. Step 4 is the greedy proce-
dure from the proof of Theorem 3.2.2. In Step 5, we construct intervals representing
the vertices of G \ G′ as in Fig. 3.2; we construct each such interval on top of the
corresponding clique-points. See Algorithm 3 for a pseudocode.

We are ready to prove the first part of Theorem 2.2.3.

Proposition 3.4.3. If the partial representation R is given sorted from left to right,
then the problem RepExt(INT) can be solved in time O(n+m), where n is the number
of vertices and m is the number of edges. We certify the “yes” answers by finding a
representation R extending R′.

Proof. Correctness of the algorithm is implied by Proposition 3.3.4 and Corollary 3.4.2.
Correctness of the constructed certificate follows from the proof of Theorem 3.2.2.

Concerning the complexity, by [311], the total size of all maximal cliques is at
most O(n+m) and the PQ-tree can be constructed in this time by Lemma 3.1.1. Using
Lemma 3.4.1, we construct the sorted representation of ▹ in time O(n+m). According
to Proposition 3.3.4, the PQ-tree can be reordered according to ▹ in time O(n+m).

Algorithm 3: Partial Representation Extension of Interval Graphs – RepExt(INT)
Require: An interval graph G and a partial representation R′.
Ensure: A representation R extending R′ if it exists.

1: Compute maximal cliques and construct a PQ-tree.
2: Sweep R′ from left to right and construct the sorted representation of ▹.
3: Use Algorithm 2 to reorder the PQ-tree according ▹.
4: If any of these steps fails, no representation exists and output “no”.
5: Place the clique-points according to the ordering <T ′ from left to right:
6: for a clique-point cp(a) placed after cp(b) do
7: Compute the infimum of all points of the real line on the right of cp(b) where

cp(a) can be placed.
8: If there is single such point, place cp(a) there.
9: Otherwise place cp(a) by ε on the right of the infimum, where ε is the size of

the smallest part divided by n.
10: Construct R for the remaining intervals on top of the placed clique-points.
11: return A representation R extending R′.

115

Chapter 3. Extending Partial Interval Representations in Linear Time

Finally, the certificate which is a representation R extending R′ is constructed in time
O(n+m).

116

4
Minimal Obstructions for Partial
Representation Extension
of Interval Graphs

4.1 Definition of Minimal Obstructions 118
4.2 MPQ-trees and Basic Tools . 125
4.3 Strategy for Finding Minimal Obstructions 129
4.4 Obstructed Leaves . 131
4.5 Obstructed P-nodes . 131
4.6 Obstructed Q-nodes . 134
4.7 Proofs of the Main Results . 150
4.8 Conclusions . 151

This chapter contains:

• 4.1: Definition of Minimal Obstructions. We formally describe all minimal
obstructions mentioned in Theorem 2.2.1 and prove that they are minimal
and non-extendible.
• 4.2: MPQ-trees and Basic Tools. We introduce MPQ-trees which are an

augementation of PQ-trees described in Section 3.1. Also, we describe basic
tools used in deriving minimal obstructions, namely Sliding Lemma.
• 4.3: Strategy for Finding Minimal Obstructions. We describe our strategy

for the proof that every non-extendible partial representation contains one
of the described obstructions.
• 4.4, 4.5, and 4.6: Three Main Cases. We divide the argument according

to the type of obstructed node. The case of Q-nodes is most involved.
• 4.7: Proofs of Main Results. We prove Theorem 2.2.1 and construct the

linear-time certifying algorithm for RepExt(INT) of Theorem 2.2.3.
• 4.8: Conclusions. We conclude with comments and several open problems.

http://pavel.klavik.cz/orgpad/minobstr.html

117

http://pavel.klavik.cz/orgpad/minobstr.html

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

4.1 Definition of Minimal Obstructions

In this section, we formally define all twelve classes of minimal obstructions which make
a partial interval representation non-extendible. Since the list is long, the description
is quite technical. In the rest of the chapter, we prove that the list is complete.

Definition. Every obstruction consists of a graph H and a non-extendible partial
representation R′H . This obstruction is contained in G and R′ if the following holds:

(i) There exists an injective mapping ϕ : V (H) → V (G) such that uv ∈ E(H) if
and only if ϕ(u)ϕ(v) ∈ E(G). So ϕ(H) is an induced subgraph of G.

(ii) The pre-drawn vetices of H are mapped by ϕ to pre-drawn vertices of G.
(iii) The endpoints in R′H have the same left-to-right order as the endpoints of the

corresponding pre-drawn vertices in R′.

For an example, see Fig. 4.1. If G and R′ contain an obstruction, then R′ is clearly
non-extendible.

We give H by descriptions using finitely many vertices, edges, and induced paths.
For inner vertices of the induced paths, we specify their adjacencies with the remainder
of H. Since these induced paths do not have fixed lengths, each description having
at least one induced path defines an infinite class of forbidden subgraphs H. Unlike
LB obstructions, most classes of minimal obstructions need infinitely many different
descriptions. For instance, each FAT obstruction has k induced paths, and different
values of k need different descriptions.

By Px,y we denote an induced path from x to y; its length is the number of edges.
If H contains an induced path Px,y, and x and y are allowed to be adjacent, then Px,y

can be a single edge. When N [x] = N [y], we allow the length of Px,y to be zero, i.e.,
x = y.

Minimality. An obstruction is minimal if R′H becomes extendible when any vertex
of V (H) is removed or any pre-drawn interval of is made free by removing it from the
partial representation R′H , while keeping the corresponding vertex in V (H).

u1 u2 u3 u4 u5 u6 u7 u8

G

x1 z1 y1
H

ϕ

u1 u5 u8

u3 u6

R
′

x1 y1 z1

R
′

H

Figure 4.1: On top, an interval graph G with a non-extendible partial representation.
This is certified by containing a 1-FAT obstruction H and R′H , depicted on bottom.
Notice that the preimage of u3 is not predrawn and nothing is mapped to u6, which
means that R′ is non-extendible even when we free both ⟨u3⟩′ and ⟨u6⟩′.

118

4.1. Definition of Minimal Obstructions

u = v

x y

H

R
′

H

u = v

u v

x y

H

R
′

H

u
v

Figure 4.2: The SE obstructions, on the left with u = v, on the right with u ̸= v.

4.1.1 List of Minimal Obstructions

In Fig. 2.6, we have already described minimal LB obstructions of [249] with R′H = ∅.
There are eleven other classes of minimal obstructions we describe now. To under-
stand most of this chapter, the reader should carefully read the definition of k-FAT
obstructions (and possibly k-BI obstructions), while the definitions of the remaining
classes can be checked when they appear.

SE obstructions. We start with two simple shared endpoint obstructions which deal
with shared endpoints in R′; see Fig. 4.2. We have two pre-drawn vertices u and
v such that r(u) = ℓ(v) (possibly u = v, so only one interval may be pre-drawn).
Further, there are two non-adjacent vertices x and y, both adjacent to u and v. These
representations cannot be extended because ⟨x⟩ and ⟨y⟩ would need to pass through
r(u) = ℓ(v), but in this case x and y would be adjacent. If u ̸= v, the minimality
requires that ℓ(u) < ℓ(v) = r(u) < r(v).

k-FAT obstructions. The class of forced asteroidal triple obstructions is defined
inductively; the first two obstructions 1-FAT and 2-FAT are depicted in Fig. 2.7a and
b, respectively.

A 1-FAT obstruction consists of three pre-drawn non-adjacent vertices x1, y1 and
z1 such that ⟨y1⟩′ is between ⟨x1⟩′ and ⟨z1⟩′. Further, x1 and z1 are connected by an
induced path P1 and y1 is non-adjacent to the inner vertices of P1. See Fig. 2.7a. These
representations cannot be extended because, for at least one of the inner vertices u of
P1, ⟨u⟩ would intersect ⟨y1⟩′, but then u and y1 would be adjacent.

A k-FAT obstruction (for k > 1) is defined as follows; see Fig. 4.3a. Let Hk−1
be the graph of a (k − 1)-FAT obstruction. To get Hk, we add to Hk−1 two vertices
xk and tk connected by an induced path Pk. Concerning edges, tk is adjacent to all
vertices of Hk−1, except for xk−1. All vertices of Hk−1 are non-adjacent to xk and
to the inner vertices of Pk. We put yk = zk−1 and zk = yk−1. A k-FAT obstruction
has three pre-drawn vertices xk, yk and zk such that ⟨yk⟩′ is between ⟨xk⟩′ and ⟨zk⟩′.
Finally, for k > 1, we allow P1 to be a single edge, so x1 can be adjacent to z1.

We next see that these representations cannot be extended. Without loss of
generality, we assume that ⟨xk⟩′ is to the left of ⟨yk⟩′, which in turn is to the left of
⟨zk⟩′; see Fig. 4.3b. Since the inner vertices of Pk are not adjacent to any vertex of
Hk−1, ℓ(tk) < ℓ(yk)and r(tk) > ℓ(zk). Since xk−1 is not adjacent to tk, ⟨xk−1⟩ is either
to the right or to the left of ⟨tk⟩. If it was to its left, then it would be to the left of
⟨xk⟩′. Since the inner vertices of Pk are not adjacent to any vertex of Hk−1, we would

119

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

xk zk−1 yk−1 xk−1

yk zk

tk

Pk

Hk−1

(a) (b)

xk yk zk

tk

zk−1 yk−1 xk−1

Pk

RH

xk tk

xk−1tk−1

xk−2 tk−2

x2 t2

x1

y1z1

zkyk

Pk

Pk−1

Pk−2

P2

...

RH

(c)

Figure 4.3: (a) A k-FAT obstruction is created from a (k − 1)-FAT obstruction. It
consists of the vertices x1, . . . , xk, t2, . . . , tk, yk, zk, and the induced paths P1, . . . , Pk.
The adjacencies are defined inductively.
(b) In every representation RH , the pre-drawn interval ⟨xk⟩′ together with Pk and tk

forces ⟨xk−1⟩ to be placed on the right of ⟨zk⟩′. Therefore, the induced (k − 1)-FAT
obstruction is forced.
(c) The global zig-zag pattern forced by a k-FAT obstruction, with k nested levels
going across ⟨yk⟩′ and ⟨zk⟩′. It is an obstruction since P1 going from x1 to z1 with all
inner vertices non-adjacent to y1 cannot be placed.

obtain that Hk−1 is disconnected, reaching a contradiction. Therefore, ⟨xk−1⟩ is to the
right of ⟨tk⟩ and, in consequence, to the right of ⟨zk⟩′. In general, ⟨xk−1⟩ is forced to be
placed on the other side of ⟨zk⟩′ = ⟨yk−1⟩′ than ⟨yk⟩′ = ⟨zk−1⟩′. Then, the (k− 1)-FAT
obstruction of Hk−1 is forced. Since 1-FAT is a obstruction, we obtain that k-FAT, for
k > 1, is also an obstruction. The global structure forced by a k-FAT obstruction is
depicted in Fig. 4.3c. The main structural lemma of this chapter, k-FAT Lemma 4.6.3,
explains in which situations these complicated k-FAT obstructions occur.

The remaining nine classes, depicted in Fig. 4.4, are derived from k-FAT ob-
structions. Let Hk denote the graph of a k-FAT obstruction. Except for the class
of (k, ℓ)-CE obstructions, we create the graphs H̃k of the remaining obstructions by
adding a few vertices to Hk. These vertices are pre-drawn, and their positions force
xk, yk and zk to be represented as in their pre-drawn positions in a k-FAT obstruc-
tion. Since partial representations of k-FAT obstructions cannot be extended, partial
representations of these derived classes cannot be extended either.

For k = 1, when one of x1 and z1 is not pre-drawn, we also allow x1 to be adjacent
to z1. Additionally, it is possible that the added vertices already belong to Hk; for
instance, a k-BI obstruction may have u = tk or v = tk. Also, we do not specify
in details the edges between the added vertices and Hk \ {xk, yk, zk}. An accurate
description would be too lengthy and the reader may derive it from Fig. 4.3c. We
finally remark that we also consider all of the obstructions from the list horizontally
flipped.

120

4.1. Definition of Minimal Obstructions

xk yk zk

u v

Hk

H̃k

R
′

H̃k

xk yk zk
u v

k-BI
(a)

xk yk zk

u

Hk

H̃k

R
′

H̃k

xk yk zk

u

k-FS
(b)

xk yk zk

u v

Hk

H̃k

R
′

H̃k

xk yk zk

u v

k-EFS
(c)

xk yk zk

u

Hk

H̃k

R
′

H̃k

xk yk zk

u

k-FB
(d)

xk yk zk

u v

Hk

H̃k

R
′

H̃k

xk yk zk

u v

k-EFB
(e)

xk yk zk

u v

Hk

H̃k

R
′

H̃k

xk yk zk

u v

k-FDS
(f)

xk yk zk

u v w

Hk

H̃k

R
′

H̃k

xk yk zk

u v

w

k-EFDS
(g)

xk yk zk

u v w

Hk

H̃k

R
′

H̃k

xk yk zk

u v

w

k-FNS
(h)

xk = y′ℓ zk = z′ℓ

u

yk = x′

ℓ

Hk H ′

ℓ

H̃k,ℓ

R
′

H̃k,ℓ

xk yk zk

u

(k, ℓ)-CE
(i)

Figure 4.4: Nine classes of obstructions derived from k-FAT obstructions.

k-BI obstructions. The class of blocked intersection obstructions is shown in Fig. 4.4a.
To create H̃k from Hk, we add two vertices u and v adjacent to xk, yk and zk. Then
the partial representation contains four pre-drawn vertices xk, zk, u and v. We have
ℓ(u) ≤ ℓ(v) < r(u) ≤ r(v), ⟨xk⟩′ covering ℓ(v), and ⟨zk⟩′ covering r(u). We allow
u = v.

The minimality further implies that k ≤ 2. The reason is that a k-BI obstruction
with k > 3 contains a smaller (k, 1)-CE obstruction by removing v and freeing ⟨xk⟩′
(this follows from Lemma 4.6.4).

Concerning 1-BI, we allow x1 = z1. We illustrate all distinct obstructions only
for this particular case (k = 1), so that the reader can understand the complexity of
these classes; see Fig. 4.5.

For k = 2, we know by Lemma 4.6.4 that x2 is adjacent to t2. The pre-drawn

121

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

u

x1 y1

H̃1

R′

H̃1

x1

u

(a)

ℓ(x1) ≤ ℓ(u) < r(u) ≤ r(x1)

vu

x1 y1

H̃1

R′

H̃1

x1

u v

(b)

ℓ(u) < ℓ(x1) ≤ ℓ(v) <

r(u) ≤ r(x1) < r(v)

u

x1 z1
y1

H̃1

R′

H̃1

x1

u

z1(c)

ℓ(x1) ≤ ℓ(u) < ℓ(z1) ≤

r(x1) < r(u) ≤ r(z1)

x1 z1

u v

y1

H̃1

R′

H̃1

x1
z1

u v

(d)

ℓ(u) < ℓ(x1) ≤ ℓ(v) < ℓ(z1) ≤

r(x1) < r(u) ≤ r(z1) < r(v)

P1
x1 z1

u

y1

H̃1

R′

H̃1

x1 z1

u

(e)

ℓ(x1) ≤ ℓ(u) ≤ r(x1) <

ℓ(z1) ≤ r(u) ≤ r(z1)

P1x1 z1

u v

y1

H̃1

R′

H̃1

x1 z1
u v

(f)

ℓ(u) < ℓ(x1) ≤ ℓ(v) ≤ r(x1) <

ℓ(z1) ≤ r(u) ≤ r(z1) < r(v)

Figure 4.5: All minimal 1-BI obstructions are depicted. Each gives several 1-BI
obstructions with different R′

H̃1
, since there are several possible orderings of the end-

points satisfying the given inequalities. We have x1 = z1 for (a) and (b), and x1 ̸= z1
otherwise. We have u = v for (a), (c) and (e), and u ̸= v otherwise.

intervals are as follows:

ℓ(x2) ≤ ℓ(u) ≤ r(x2) < ℓ(z2) ≤ r(u) ≤ r(z2), for u = v,
ℓ(u) < ℓ(x2) ≤ ℓ(v) ≤ r(x2) < ℓ(z2) ≤ r(u) ≤ r(z2) < r(v), for u ̸= v.

The position of ⟨u⟩′ and ⟨v⟩′ forces ⟨y2⟩ to be placed between ⟨x2⟩′ and ⟨y2⟩′ in every
extending representation, which forces a 2-FAT obstruction.

k-FS obstructions. The class of forced side obstructions is shown in Fig. 4.4b. To
create H̃k from Hk, we add a vertex u adjacent to yk and zk. The partial representation
contains three pre-drawn vertices xk, yk and u. We have ℓ(yk) ≤ ℓ(u) ≤ r(yk) < r(u),
and ⟨xk⟩′ is on the left of ⟨yk⟩′.

k-EFS obstructions. The class of extended forced side obstructions is similar to that
of k-FS obstructions; see Fig. 4.4c. To create H̃k from Hk, we add u adjacent to xk, yk,
and zk, and v adjacent to yk and zk. The partial representation contains four vertices
yk, zk, u and v pre-drawn as follows:

ℓ(u) < ℓ(v) < ℓ(yk) ≤ r(yk) < ℓ(zk) ≤ r(zk) < r(u) ≤ r(v).

k-FB obstructions. The class of forced betweenness obstructions is similar to k-BI
obstructions with u = v; see Fig. 4.4d. To create H̃k from Hk, we add u adjacent to
yk and zk. The partial representation contains three pre-drawn vertices xk, zk, and u.
We have ℓ(u) < ℓ(zk) ≤ r(u) ≤ r(zk), and ⟨xk⟩′ is pre-drawn on the left of ⟨u⟩′.

122

4.1. Definition of Minimal Obstructions

k-EFB obstructions. The class of extended forced betweenness obstructions is similar
to those of k-BI and k-FB obstructions; see Fig. 4.4e. To create H̃k from Hk, we add
u adjacent to xk, yk and zk, and v adjacent to yk and zk. The partial representation
contains four pre-drawn vertices xk, zk, u, and v. We have

ℓ(u) < ℓ(xk) ≤ r(xk) < ℓ(v) < ℓ(zk) ≤ r(u) ≤ r(zk) < r(v).

k-FDS obstructions. The class of forced different sides obstructions is shown in
Fig. 4.4f. To create H̃k from Hk, we add u adjacent to xk, yk, and zk, and v adjacent
to yk and zk. The partial representation contains three vertices yk, u and v pre-drawn
as follows:

ℓ(u) < ℓ(yk) ≤ ℓ(v) ≤ r(yk) < r(u) ≤ r(v).

k-EFDS obstructions. The class of extended forced different sides obstructions is
similar to that of k-FDS obstructions; see Fig. 4.4g. To the construction of k-FDS, we
further add w adjacent to yk and zk. The partial representation contains four vertices
yk, u, v and w pre-drawn as follows:

ℓ(u) < ℓ(v) < ℓ(yk) ≤ ℓ(w) ≤ r(yk) < r(w) < r(u) ≤ r(v).

k-FNS obstructions. The class of forced nested side obstructions is constructed
similarly to that of k-EFDS obstructions. In this case, zk is pre-drawn instead of yk;
see Fig. 4.4h. In R′

H̃k
, we have

ℓ(u) <
{
ℓ(v), ℓ(w)

}
≤ ℓ(zk) ≤ r(w) < r(u) ≤ r(v),

where ℓ(v) and ℓ(w) are ordered arbitrarily.

(k, ℓ)-CE obstructions. The class of covered endpoint obstructions is created from
a k-FAT obstruction glued to an ℓ-FAT obstruction; see Fig. 4.4i. To create H̃k,ℓ, we
glue Hk to H ′ℓ, with k ≥ ℓ. We put zk = z′ℓ, xk = y′ℓ and yk = x′ℓ, and some other
vertices of these obstructions may also be shared. We add u adjacent to xk, yk, and
zk. The partial representation contains two pre-drawn intervals ⟨zk⟩′ and ⟨u⟩′ such
that ℓ(u) < ℓ(zk) ≤ r(u) ≤ r(zk). These representations cannot be extended because,
if ⟨xk⟩ is placed to the left of ⟨yk⟩, we get a k-FAT obstruction, while if ⟨xk⟩ is placed
to the right of ⟨yk⟩, we get an ℓ-FAT obstruction.

By Lemma 4.6.4, for k > 2, if we swap the positions of ⟨xk⟩′ and ⟨yk⟩′ in a k-FAT
obstruction, we obtain a 1-FAT obstruction. For k > 2, this implies that a minimal
(k, ℓ)-CE obstruction is a (k, 1)-CE obstruction and it is formed by the graph Hk of a
k-FAT obstruction together with an added vertex u. (By a careful analysis, either u
adjacent to all vertices of Hk, or u = tk.) Hence, the only (k, ℓ)-CE obstructions that
are minimal are (k, 1)-CE obstructions and (2, 2)-CE obstructions; in other words,
either ℓ = 1, or k = ℓ = 2. The remaining (k, ℓ)-CE obstructions, where 2 ≥ k ≥ ℓ,
are analysed in Lemma 4.6.6 and depicted in Fig. 4.6.

123

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

z1

u

x1 y1(a)

(1, 1)-CE
z1

u

x1 y1

z1

u

x1 y1

(b)

(2, 1)-CE

t2

x1

x2 y2

z2

u

t2

x1

x2

y2

z2

P ′

1

u

x1

x2

y2

z2

P ′

1

u = t2

(c)

(2, 2)-CE

x1 y′
1

y2 x2t2 t′
2

u

z2

x1 y′
1

y2 x2t2 = t′
2

u

z2

x1 y′
1

y2 x2

t2 u = t′
2

z2

x1 y′
1

y2 x2

t2 = u = t′
2

z2

Figure 4.6: In this figure, for understandability, we omit most non-edges.
(a) There are three minimal (1, 1)-CE obstructions, and they are all finite graphs. The
reason is that if, say, a path P1 was very long, we could replace x1 by an inner vertex
of P1; so such an obstruction would not be minimal.
(b) There are three minimal (2, 1)-CE obstructions. Due to the minimality, P2 is a
path of length at most two. When x2 and t2 are non-adjacent, then P ′1 = y2t2z2 is
a path avoiding N [x2]. When x2 and t2 are adjacent, there are two cases, namely,
u ̸= t2, and u = t2. The path P ′1 is of length at least two.
(c) There are four minimal (2, 2)-CE obstructions, and they are all finite graphs.
Necessarily x2t2 and y2t′2 are edges, and we can choose x2 in such a way that it
is adjacent to y′1 (similarly, y2 is adjacent to x1). There are four different graphs,
because the vertices u, t2 and t′2 might be distinct or not.

4.1.2 Proofs of Non-extendibility and Minimality

We sketch proofs that the defined obstructions are non-extendible and minimal. This
implies the first part of Theorem 2.2.1. We establish the harder implication in Sec-
tions 4.3, 4.4, 4.5, 4.6, and 4.7.

Lemma 4.1.1. Every k-FAT obstruction is non-extendible and minimal.

Proof. We prove the claim by induction. For k = 1, non-extendibility and minimality
are clear. For k > 1, assume that ⟨xk⟩′ is on the left of ⟨yk⟩′, and ⟨yk⟩′ is on the left of
⟨zk⟩′. In every representation of k-FAT, ⟨tk⟩ covers [ℓ(yk), ℓ(zk)]. We know that ⟨xk−1⟩
cannot be on the left of ⟨xk⟩′, since Hk−1 is connected and xk is non-adjacent to all
vertices of Hk−1. Therefore ⟨xk−1⟩ has to be placed on the right of ⟨zk⟩′. We get a
(k − 1)-FAT obstruction, which is non-extendible by the induction hypothesis.

It remains to argue the minimality. If one of ⟨xk⟩′, ⟨yk⟩′ and ⟨zk⟩′ is made free,
we can place them in such a way that ⟨zk⟩ is between ⟨xk⟩ and ⟨yk⟩. This makes the
partial representation extendible: It works for k = 1, and for k > 1, we can place xk−1

124

4.2. MPQ-trees and Basic Tools

on the right of ⟨yk⟩, which makes the induced Hk−1 extendible. If we remove one of
the vertices or induced paths, the argument is similar.

Lemma 4.1.2. The following obstructions are non-extendible and minimal:

• SE, k-FS, k-EFS, k-FB, k-EFB, k-FDS, k-EFDS, and k-FNS obstructions,
• k-BI obstructions for k ≤ 2,
• (k, ℓ)-CE obstructions where either ℓ = 1, or k = ℓ = 2.

Proof. For SE obstructions, the proof is trivial. For the remaining classes (aside k-BI
and (k, ℓ)-CE), we proceed as follows. Non-extendibility follows from the fact that, in
all cases, ⟨yk⟩ is forced to be placed between ⟨xk⟩ and ⟨zk⟩. To show minimality, we
use the minimality of k-FAT obstructions. Then it is easy to show that freeing any
added pre-drawn interval or removing any added vertex results in the possibility of
placing ⟨zk⟩ between ⟨xk⟩ and ⟨yk⟩.

Consider a k-BI where k ≤ 2. Non-extendibility follows from the fact that ⟨yk⟩
has to be placed between ⟨xk⟩′ and ⟨zk⟩′, thus forcing the k-FAT obstruction, which
is non-extendible by Lemma 4.1.1. By removing a vertex or an induced path of Hk,
it becomes extendible as argued in Lemma 4.1.1. By freeing ⟨u⟩′ or ⟨zk⟩′, we can
place ⟨yk⟩ on the right of ⟨zk⟩′ which makes the partial representation extendible.
By freeing ⟨v⟩′ or ⟨xk⟩′, we can place ⟨yk⟩ on the left of ⟨xk⟩′, which also makes it
extendible because k ≤ 2 and x2 is adjacent to t2.

For (k, ℓ)-CE, either ⟨yk⟩ is between ⟨xk⟩ and ⟨zk⟩′ (non-extendible due to the
k-FAT obstruction), or ⟨yℓ⟩ is between ⟨xℓ⟩ and ⟨zℓ⟩′ (non-extendible due to the ℓ-FAT
obstruction). Minimality is also easy: Removing or freeing u allows to place ⟨zk⟩′
between ⟨xk⟩ and ⟨yk⟩, which is extendible. And removing anything from one of the
FAT obstructions allows one of the orderings of ⟨xk⟩ and ⟨yk⟩ to be extendible.

We note that the list of minimal obstructions is unique. Indeed, every minimal
obstruction itself corresponds to a valid input, which cannot be obstructed by a distinct
obstruction due to the minimality. Therefore, it is not possible to construct a smaller
list of minimal obstructions, or to argue that if the partial representation contains a
particular obstruction, then it also contains an additional one.

4.2 MPQ-trees and Basic Tools

In the first part of this section, we describe a generalization of PQ-trees, called MPQ-
trees, by Korte and Möhring [235]. We also prove some simple structural results
concerning MPQ-trees. In the second part, we describe several tools used in finding
minimal obstructions, namely Sliding Lemma for partial interval representations. We
assume that the reader is familiar with Sections 3.1 and 3.2.

4.2.1 MPQ-trees

It is useful to have more information about the way in which the vertices of the interval
graph are related to the structure of the PQ-tree. This additional information is

125

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

a b c d e f

p
q

r

s
t
u v w x

y

z

f e c d b a

y

z

s
t
x v w u

q

r

p

pq
s t

y

r u

v w

x z

py
s t

q

z x

v w

u r

Figure 4.7: On top, two interval representations of an interval graph from Fig. 3.2.
On bottom, the corresponding MPQ-trees, fully describing the structure of these inter-
val representations. These MPQ-trees are augementations of the PQ-trees in Fig. 3.3.

contained in the modified PQ-tree (MPQ-tree), introduced by Korte and Möhring [235].
Their original motivation was to simplify the linear-time algorithm for recognizing
interval graphs of Booth and Lueker [39] (see Lemma 3.1.4). MPQ-trees link positions
of intervals directly to its nodes, which gives a great structural insight into an interval
graph. We note that the same idea is already present in the earlier paper of Colbourn
and Booth [68], in order to study automorphism groups of interval graphs.

Definition. The MPQ-tree is an augmentation of the PQ-tree in which the nodes of
T have assigned subsets of V (G) called sections. To a leaf representing a clique a, we
assign one section s(a). Similarly, to each P-node P , we assign one section s(P). For
a Q-node Q with n children, we have n sections s1(Q), . . . , sn(Q), each corresponding
to one subtree of Q. Let s(Q) = s1(Q) ∪ s2(Q) ∪ · · · ∪ sn(Q).

Recall that T [N] is the subtree of T having the node N as the root. Sections are
defined as follows:

• The section s(a) of a maximal clique a consists of all vertices contained in the
maximal clique a and no other maximal clique.
• The section s(P) of a P-node P consists of all vertices that are contained in all

maximal cliques of T [P] and in no other maximal clique.
• The sections si(Q) of a Q-node Q are more complicated. Let T1, . . . , Tn be the

subtrees of the children of Q. Let x be a vertex contained only in maximal
cliques of T [Q], and suppose that it is contained in maximal cliques of at least
two subtrees of Q. Then x is contained in every section si(Q) such that some
maximal clique of Ti contains x.

Figure 4.7 depicts the sections for the example in Fig. 3.2.
Korte and Möhring [235] state the following properties:

• Every vertex x is placed in sections of exactly one node of T . In the case of a
Q-node, it is placed in consecutive sections of this node.
• For a Q-node Q, if x is placed in a section si(Q), then x is contained in all cliques

of Ti.

126

4.2. MPQ-trees and Basic Tools

• Every section of a Q-node is non-empty. Moreover, two consecutive sections have
a non-empty intersection.
• A maximal clique contains exactly those vertices contained in the sections en-

countered when we traverse the tree from the leaf corresponding to this clique
to the root.

Structure of MPQ-trees. Next, we show several structural properties used in build-
ing minimal obstructions which are quite easy to prove:

Lemma 4.2.1. Let Q be a Q-node. Then si(Q) ̸= sj(Q) for every i ̸= j. Further, if
si(Q) (si+1(Q), then at least one section of Ti is non-empty.

Proof. If si(Q) = sj(Q), then we could exchange Ti and Tj and we would obtain a
valid MPQ-tree for G. Since n ≥ 3, this yields a contradiction with the fact that the
only possible transformation of a Q-node is reverting the order of its children.

For the latter part, let a and b respectively be maximal cliques of a leaf in Ti and
a leaf in Ti+1. Then a \ b ̸= ∅ and every x ∈ a \ b belongs to sections of Ti.

The second part of Lemma 4.2.1 has the following reformulation. Either some
interval starts and some interval ends in si(Q), or some interval belongs to sections
of Ti. Since the assumption cannot hold for s1(Q) and sn(Q), we know that some
intervals belong to sections of T1 and Tn.

For a subtree T of the MPQ-tree, let G[T] be the interval graph induced by the
vertices of the sections of T . For a node N , let G[N] = G[T [N]]. and its subtrees are
the subtrees which have the children of N as the roots. For a (partial) representation
R, we have R[T] = R[G[T]] and R[N] = R[T [N]].

Lemma 4.2.2. Let N be an inner node of an MPQ-tree.

(i) If N is a Q-node, then G[N] is connected.
(ii) If N is a P-node, then G[N] is connected if and only if s(N) is non-empty.

Furthermore, for every child Ti of N , the graph G[Ti] is connected.

Proof. (i) It follows from the facts that the vertices in any section form a clique, and
that any two consecutive sections of N have non-empty intersection.

(ii) The first statement is clear. For the second part, notice that if G[Ti] was not
connected, we could permute the connected components of G[Ti] arbitrarily with the
other children of N . Therefore Ti would not be a child of N , but N would have one
child per each connected component of G[Ti].

Let Q be a Q-node and i < j. Let x and y be two vertices of G[Q], where x is
either in Ti, or si(Q), and y is either in Tj, or sj(Q). A path Px,y is called Q-monotone
if all inner vertices of the path belong to the sections of Q, their leftmost sections
strictly increase, and their rightmost ones strictly increase as well.

Lemma 4.2.3. Let H be an induced subgraph of G[Q] such that x, y ∈ V (H) belong
to one component. Then every shortest path Px,y in H is Q-monotone.

127

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

Proof. It is easy to see that any path from x to y that is not Q-monotone can be
shortened.

Let Q be a Q-node with sections s1(Q), . . . , sn(Q) and u be a vertex, belonging
with Q to a common path from a leaf to the root.

• If u does not belong to sections of T [Q], let s←u (Q) = s1(Q) and s→u (Q) = sq(Q).
• If u ∈ s(Q), let s←u (Q) be the leftmost section of Q containing u and s→u (Q) be

the rightmost one.
• If u belongs to sections of a subtree Ti of Q, we put s←u (Q) = s→u (Q) = si(Q).

If s→u (Q) is on the left of s←v (Q), then we say that u is on the left of v and v is
on the right of u. Also, u and v are on the same side of w if they are both on the left
of w, or both on the right of w. Similarly, v is between u and w if either u is on the
left and w is on the right of v, or u is on the right and w is on the left of v. For a
maximal clique a ∈ Ti, we say that u is on the left of a when s→u (Q) is on the left of
si(Q), and similarly the other relations.

4.2.2 Basic Tools

Recall the definitions and results from Section 8.2. Next, we prove several tools which
we use repeatedly in the proof of Theorem 2.2.1.

Non-adjacencies of Maximal Cliques. Maximal cliques of interval graphs have
the following special property:

Lemma 4.2.4. Let H be a connected subgraph of an interval graph and let c be a
maximal clique with no vertex in V (H). There exists x ∈ c non-adjacent to all vertices
of V (H).

Proof. Consider an interval representation R. It places all intervals of H to one side of
cp(c), say on the left. Let x be the interval of c having the rightmost left endpoint. If
x is adjacent to some vertex y ∈ V (H), then every vertex of c is adjacent to y. Since
c is maximal, it follows that y ∈ c, contradicting the assumption. So x is non-adjacent
to all vertices of V (H).

Sliding Lemma. We introduce some notation. We denote by P ↦→(a) and P ↦→(a)
respectively the subsets of P (a) containing the pre-drawn intervals with left-most
right endpoints, and with right-most left endpoints. If u ∈ P ↦→(a) and v ∈ P ↦→(a),
then ⟨u⟩′ ∩ ⟨v⟩′ = ⋂

w∈P (a) ⟨w⟩
′, thus Ia is a subinterval of ⟨u⟩′ ∩ ⟨v⟩′.

Single overlaps of pre-drawn intervals pose more constraints than containment
(for comparison, see Fig. 3.4b and c). Therefore, single overlaps are more powerful in
building obstructions. The following lemma states that, under some assumptions, we
can turn a containment of pre-drawn intervals into a single overlap of other pre-drawn
intervals; see Fig. 4.8.

Lemma 4.2.5 (Sliding). Let Ia be on the left of Ib, P (a) (P (b) and r ∈ P (b) \P (a).

128

4.3. Strategy for Finding Minimal Obstructions

slide
Ia Ib

r

u

z
Pr,z

(a) a
Pr,z

u

r z

(b)
r

u
z

a

Pr,z

Figure 4.8: (a) With the assumption satisfied, we can slide r to z which covers r(u).
(b) The relative positions in the MPQ-trees of z and r with respect to a are the same.

(i) There exists a pre-drawn interval ⟨z⟩′ on the right of Ia covering r(u), for u ∈
P ↦→(a). Further, there exists an induced path Pr,z from r to z whose vertices are
all pre-drawn and not contained in P (a).

(ii) Consider the smallest subtree having a and the sections containing r. If the root
of this subtree is a P-node, then z and r are contained in the same subtree. If
the root is a Q-node, then z and r appear on the same side of a.

Proof. (i) By the assumptions and the definition of Ia, we get that (y(a), r(u)] is not
empty and all points in (y(a), r(u)] are covered by pre-drawn intervals not in P (a).
Among these intervals, we choose z covering r(u). Since r is also one of these intervals,
we can construct an induced path from r to z, consisting of pre-drawn intervals not
in P (a).

(ii) It follows from the existence of Pr,z not contained in a.

We note that possibly r = z. The above lemma is repeatedly used for construct-
ing minimal obstructions. The general idea is the fact that ⟨r⟩′ properly contained
inside ⟨u⟩′ restricts the partial representation less than ⟨z⟩′ covering r(u). The lemma
says that we can assume that such z exists and use it instead of r.

Flip Operation. We say that we flip the partial representation vertically when we
map every x ∈ R to −x. This reverses the ordering ▹. Clearly, there exists an
obstruction in the original partial representation if and only if the flipped obstruction
is present in the flipped partial representation. The purpose of this operation is to
decrease the number of cases in the proofs.

4.3 Strategy for Finding Minimal Obstructions

In this section, we describe the general strategy to show that every non-extendible
partial representation contains one of the obstructions described in Section 4.1. In the
remaining sections, unless stated otherwise, by a clique, we always mean a maximal
clique.

Recall that we write Ti ▹ Tj if and only if there exist cliques a ∈ Ti and b ∈ Tj

such that a ▹ b. We assume that the reader is familiar with the reordering algorithm
for general orderings, described in Subsection 3.3.1. Suppose that some node cannot
be reordered by this algorithm, and we call this node obstructed. A set of maximal
cliques creates an obstruction if already the ordering of these cliques in ▹ makes the
node obstructed.

129

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

R
′ is non-extendible ⇐⇒

∃ an obstructed node [215]

Lemma 4.4.1

an obstructed leaf: a ⊳ a

Section 4.5
an obstructed P-node
T1 ⊳ · · · ⊳ Tn ⊳ T1

Lemma 4.5.1

T1 ⊳ T2 ⊳ T1

Lemma 4.5.2

at most three cliques
Lemma 4.5.3

Section 4.6

an obstructed Q-node

Lemma 4.6.1

at most three cliques

Lemma 4.6.2

in two subtrees

Section 4.6.3

in three subtrees

Sliding Lemma

4.2.5

k-FAT Lemma

4.6.3

(k, ℓ)-CE Lemma

4.6.5

1-BI
1-FAT

SE

SE

1-FAT

2-FAT
1-BI 2-BI

k-FAT

k-BI

k-FS k-EFS k-FB

k-EFB

k-FDS

k-EFDS

k-FNS

(k, ℓ)-CE

Figure 4.9: Overview of the main steps of the proof, it starts in the middle. The
obtained obstructions are highlighted in gray, and three tools are depicted with high-
lighted borders. The most involved case is in Section 4.6.3.

Strategy. Suppose that a partial representation R′ is non-extendible. By Theo-
rem 3.2.2 and Proposition 3.3.3, we know that there exists an obstructed node in the
MPQ-tree. We divide the argument into three cases, according to the type of this
node: an obstructed leaf (Section 4.4), an obstructed P-node (Section 4.5), and an
obstructed Q-node (Section 4.6). Figure 4.9 shows an overview of the proof.

First, we argue that there exist at most three maximal cliques creating an ob-
struction. Then, we consider their positions in the MPQ-tree and their open intervals
from the definition of ▹. We use tools of Section 4.2 to derive positions of several
pre-drawn intervals forming one of the obstructions.

In Section 4.6.2, we prove a key tool called k-FAT Lemma 4.6.3: If three non-
adjacent vertices xk, yk, and zk are pre-drawn in an order that is different from their
order in the sections of a Q-node, then they induce a k-FAT obstruction. The proof
is done by induction for k, and it explains why complicated obstructions are needed.

130

4.4. Obstructed Leaves

u
v

x1 z1

/∈ P (a)

P1x1

u v

z1

y1

Figure 4.10: A construction leading to a 1-BI obstruction.

4.4 Obstructed Leaves

Suppose that some clique-point a cannot be placed, so ↓a= ∅. In terms of ▹, we get
a ▹ a. Since ▹ is a strict partial ordering, this already makes the partial representation
non-extendible.

Lemma 4.4.1 (The leaf case). If a leaf is obstructed, then G and R′ contain an SE,
or 1-BI obstruction.

Proof. We name the vertices as in the definition of the 1-BI obstructions. Suppose
that the leaf corresponds to a maximal clique a such that ↓a= ∅.

Let u ∈ P ↦→(a) and v ∈ P ↦→(a) (possibly u = v). Since Ia is a subinterval
of ⋂w∈P (a) ⟨w⟩

′ and ↓a= ∅, every point of [ℓ(v), r(u)] is covered by some pre-drawn
interval not contained in P (a). Let ⟨x1⟩′ be one such interval covering ℓ(v) and let
⟨z1⟩′ be one such interval covering r(u) (again, possibly x1 = z1); see Fig. 4.10. Let P1
be a shortest path from x1 to z1 consisting of pre-drawn intervals not in P (a).

We prove that the relative pre-drawn position of u, v, x1, and z1 makes the
partial representation non-extendible. The maximal clique a does not contain any
vertex of P1. Since the vertices of P1 induce a connected subgraph, by Lemma 4.2.4
there exists y1 ∈ a which is non-adjacent to all vertices of P1. Hence, these (at most)
five vertices together with P1 create either a 1-BI obstruction (when ℓ(u) < r(v)), or
an SE obstruction (when ℓ(u) = r(v), for which x = x1 = z1 and we can free it). We
note that this obstruction might not be minimal, in which case we can remove some
vertices and get one of the minimal obstructions illustrated in Fig. 4.2 and 4.5.

4.5 Obstructed P-nodes

If a P-node is obstructed, then it has some subtrees T1, . . . , Tn forming the cycle
T1 ▹ T2 ▹ · · · ▹ Tn ▹ T1. We start by showing that the specific structure of ▹ forces
the existence of a two-cycle, so we can assume that n = 2.

Lemma 4.5.1. If a P-node is obstructed, then it has two subtrees T1 and T2 such that
T1 ▹ T2 ▹ T1.

Proof. The proof is illustrated in Fig. 4.11a. Let T1 ▹ · · · ▹ Tn ▹ T1 be a shortest
cycle for the obstructed P-node. To get a contradiction, we assume n ≥ 3. Since
T1 ▹ T2, there exist a ∈ T1 and b ∈ T2 such that a ▹ b. Similarly, there exist c ∈ T2

131

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

T1
T2

T3

Tn

·
·
·

a

b c

d

(a)

Ic

Id

Ia Ib

a b

cd

T1 T2

(b)

Ic

Ia Id

Ib

Figure 4.11: (a) At the top, a shortest n-cycle of ▹ on the children of a P-node.
At the bottom, the derived positions of the open intervals. (b) At the top, the four
cliques involved in a two-cycle in ▹. The cliques a and c are incomparable, and so are
b and d. At the bottom, one of the four possible configurations of the open intervals.

and d ∈ T3 such that c ▹ d. We know that Ia is on the left of Ib, and Ic is on the left
of Id. We analyze the remaining relative positions.

First, Id is not on the right of Ia, since otherwise T1 ▹ T3 and a shorter cycle
would exist. Additionally, Id is not on the left of Ib, since we would get T3 ▹ T2, and
T2 and T3 would form a two-cycle. According to Lemma 3.2.3, no single overlaps of
open intervals are allowed, so Id necessarily contains both Ia and Ib; see Fig. 4.11a.
Therefore, Ic is on the left of Ia, so T2 ▹ T1 and we get a two-cycle.

We note that an alternative proof follows directly from Lemma 3.3.7.
To create a two-cycle, at most four cliques are enough. Aside from Lemma 3.2.3,

so far we have not used that ▹ arises from a partial interval representation. Next, we
use properties of the MPQ-tree.

Lemma 4.5.2. A two-cycle T1 ▹ T2 ▹ T1 is created by at most three maximal cliques.

Proof. The proof is depicted in Fig. 4.11b. Suppose that this two-cycle is given by four
cliques a, d ∈ T1 and b, c ∈ T2 such that a ▹ b and c ▹ d. Assume for contradiction
that no three of these cliques define the two-cycle, i.e., a and c are incomparable, and
so are b and d. According to Lemma 3.2.3, Ia ⊆ Ic or Ia ⊇ Ic, and analogously for Ib

and Id. In all of the four cases, Ic is on the left of Ib, and Id is on the right of Ia.
We look at the case where Ia ⊆ Ic and Ib ⊆ Id, as in Fig. 4.11b. By Lemma 3.2.4,

we have P (c) ⊆ P (a). Therefore, P (c) contains no vertices from the sections of
T2. Similarly, P (d) ⊆ P (b), and P (d) contains no vertices from the sections of T1.
Therefore P (c) = P (d), which implies Ic = Id, a contradiction. The other cases can
be analyzed similarly.

It remains to put these results together and characterize the possible obstruc-
tions.

Lemma 4.5.3 (The P-node case). If a P-node is obstructed, then G and R′ contain
an SE, 1-FAT, or 1-BI obstruction.

132

4.5. Obstructed P-nodes

Proof. According to Lemma 4.5.1, the obstructed P-node has a two-cycle in ▹. By
Lemma 4.5.2, there are at most three maximal cliques defining this cycle. First assume
that this cycle is defined by two cliques a ∈ T1, b ∈ T2 such that a ▹ b ▹ a. According
to the definition of ▹, this implies that Ia = Ib, both of lenght zero. Therefore
P (a) = P (b). Let u ∈ P ↦→(a) and v ∈ P ↦→(a) (possibly u = v); we have that ⟨u⟩′∩⟨v⟩′
is a singleton. Since a and b are two maximal cliques, there exists x ∈ a \ b and
y ∈ b \ a. We get an SE obstruction.

It remains to deal with the case where three cliques define the two-cycle. Let
a, c ∈ T1 and b ∈ T2 such that a ▹ b ▹ c. We have three non-intersecting intervals
whose left-to-right order is Ia, Ib and Ic. Since Ia and Ic are disjoint, one of the sets
P (a) \P (c) and P (c) \P (a) is non-empty. Without loss of generality, we assume that
P (a) \ P (c) ̸= ∅. Let p ∈ P (a) \ P (c); then p belongs to sections of T1, and as a
consequence p /∈ P (b). Therefore ⟨p⟩′ is on the left of Ib. We distinguish two cases.

Case 1: P (b) \P (c) ̸= ∅. We choose q ∈ P (b) \P (c). Then q belongs to sections
of T2, and ⟨q⟩′ is between ⟨p⟩′ and Ic. In the next paragraph we show that there also
exists r ∈ P (c)\P (b). Then r belongs to sections of T1, and ⟨r⟩′ is on the right of ⟨q⟩′,
as in Fig. 4.12a. By Lemma 4.2.2(ii), G[T1] is connected; let P1 be a shortest path
from p to r in G[T1]. We obtain a 1-FAT obstruction for x1 = p, y1 = q and z1 = r.

It remains to show that such r exists. Suppose for contradiction that P (c) \
P (b) = ∅. Since P (c) (P (b), no vertex of P (c) appears in sections of T1, and we get
P (c) (P (a). Consequently, every pre-drawn interval of P (c) contains [x(a),y(c)].
The position of Ic implies that every point of [x(a),x(c)) is covered by some pre-
drawn interval not contained in P (c). In particular, there exists a path from p to q
consisting of such intervals. Since p belongs to sections of T1 and q belongs to sections
of T2, every path from p to q contains a vertex of the section of the P-node, or of
a section above it; hence, the path contains a vertex belonging to c. We obtain a
contradiction.

Case 2: P (b)\P (c) = ∅. Then there exists r ∈ P (c)\P (b). We again observe that
⟨r⟩′ is on the right of Ib, as depicted in Fig. 4.12b. Furthermore, P (b) ⊆ P (a) ∩ P (c),
so every pre-drawn interval of P (b) contains [x(a),y(c)].

We construct a 1-BI obstruction and we name the vertices as in the definition.

slide slide
Ia Ib Ic

p r

u
v

x1 z1

(b)

P1x1

u v

z1

y1

Ia Ib Ic

p rq

(a)

p

q

r
P1

Figure 4.12: The two cases of the proof of Lemma 4.5.3. (a) Case 1 leads to a 1-FAT
obstruction. (b) Case 2 leads to a 1-BI obstruction.

133

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

Let u ∈ P ↦→(b) and v ∈ P ↦→(b) (possibly u = v). Since p does not necessarily cover
ℓ(v) and r does not necessarily cover r(u), we might not be able to construct a 1-BI
obstruction with x1 = p and z1 = q. We instead use Sliding Lemma 4.2.5. By applying
it (flipped) to Ib, Ia and p, we obtain a pre-drawn interval x1 covering ℓ(v) (possibly
x1 = p). By applying it to Ib, Ic and r, we obtain a pre-drawn interval z1 covering
r(u) (possibly z1 = r). Furthermore, x1 and z1 belong to sections of T1. Since G[T1] is
connected by Lemma 4.2.2(ii), there exists a shortest path P1 from x1 to z1 containing
no vertex of b. By Lemma 4.2.4, there exists y1 ∈ b non-adjacent to all vertices of P1.
We obtain a 1-BI obstruction.

4.6 Obstructed Q-nodes

Suppose that a Q-node with subtrees T1, . . . , Tn is obstructed. Then the two possible
orderings of this Q-node are not compatible with ▹. Notice that at most four cliques
are sufficient to create the obstruction. We next prove that at most three cliques are
already sufficient.

Lemma 4.6.1. If a Q-node is obstructed, there exists an obstruction created by at
most three maximal cliques.

Proof. Suppose that an obstruction is created by four cliques a ∈ Tα, b ∈ Tβ, c ∈ Tγ

and d ∈ Tδ such that α < β, γ < δ, a ▹ b, and c ◃ d. We know that Ia is on the
left of Ib, and Ic is on the right of Id. Notice that the four subtrees Tα, Tβ, Tγ and Tδ

are not necessarily distinct. We classify all possible orderings < of α, β, γ, δ in two
general cases, namely, α ̸= γ and α = γ. In the first case, we may assume without loss
of generality that α < γ. (Otherwise, we apply the flip operation and swap a with c
and b with d in the argument.)

Case 1: α < γ < δ (see Fig. 4.13a). Consider the relative positions of Ic and
Id with respect to Ia. If Id is to the left of Ia, we have d ▹ a ▹ b, and these three
cliques already create an obstruction. If Ic is to the right of Ia, then we get a ▹ c and
c ◃ d, creating an obstruction. If neither happens, then Ic and Id are subintervals of
Ia. Thus c, d ▹ b. If β ≤ γ, we have a ▹ b and b ◃ d, creating an obstruction. If
β > γ, then d ▹ c ▹ b, which also creates an obstruction.

Tα Tγ Tδ

a c d

· · · · · ·

(a)

Ia Ib

Id Ic

Tα = Tγ Tβ = Tδ

a b

c d

· · ·

(b)

Ia Ib

Id Ic

Figure 4.13: Two cases of the proof of Lemma 4.6.1. The Q-node is depicted in the
top, while in the bottom we have the relative positions of the intervals.

134

4.6. Obstructed Q-nodes

Case 2: α = γ (see Fig. 4.13b). If Ic does not intersect Ib, or Id does not intersect
Ia, it is easy to see that three of the cliques already create an obstruction. Suppose
next that these intersections occur. Then d ▹ b. If δ < β or β < δ, it is again easy
to show that three cliques are enough to create an obstruction. It only remains to
consider the case where α = γ < β = δ.

Since the intervals Ic and Ia are non-intersecting, we may assume without loss of
generality that there exists x ∈ P (a) \ P (c). This vertex x belongs to sections of Tα.
Thus x /∈ P (d), and we get that Ia (Id. By Lemma 3.2.4, P (d) (P (a); in particular,
P (d) contains no private pre-drawn interval from sections of Tβ, and all pre-drawn
intervals of sβ(Q) are also contained in sα(Q).

Since P (d)\P (b) = ∅, there exists y ∈ P (b)\P (d) which is contained in sections
of Tβ. We next apply the argument in the previous paragraph, and obtain y /∈ P (c),
Ib (Ic, and P (c) (P (b). Consequently, P (c) contains no private pre-drawn intervals
from sections of Tα, and all pre-drawn intervals of sα(Q) are contained in sβ(Q). We
conclude that P (c) = P (d) and Ic = Id, which gives a contradiction.

In summary, we can assume that a minimal obstruction involves at most three
maximal cliques. These three cliques belong to either two or three different subtrees.

In the rest of the section, many figures describe positions of derived pre-drawn
intervals in sections of the Q-node and its subtrees; for instance Fig. 4.14. Some
of these intervals necessarily belong to sections of the Q-node, since they belong to
maximal cliques of several subtrees; for instance t2 in Fig. 4.14. But for the remaining
intervals, it is not important to distinguish whether they belong to sections of the
Q-node or one of its subtrees, only their relative positions in the Q-node matter; for
instance q and x1 in Fig. 4.14.

4.6.1 Cliques in Two Different Subtrees

In this subsection, we deal with the case where the maximal cliques belong to two
different subtrees.

Lemma 4.6.2 (The Q-node case, Two Subtrees). If at most three cliques creating the
obstruction belong to two different subtrees, then G and R′ contain an SE, 1-FAT,
2-FAT, 1-BI, or 2-BI obstruction.

Proof. The proof is similar to that of Lemma 4.5.3, but more involved. If two maximal
cliques create an obstruction, we can argue as in the first paragraph of the proof of
Lemma 4.5.3, and we obtain an SE obstruction. It remains to deal with the case of
three maximal cliques a, b, and c.

We can assume that a ▹ b ▹ c and that, for some i < j, we have a, c ∈ Ti and
b ∈ Tj. Furthermore, without loss of generality, there exist p ∈ P (a) \ P (c). Since
p belongs to sections of Ti, then p /∈ P (b), and thus ⟨p⟩′ lies to the left of Ib. We
distinguish two cases.

Case 1: P (b) \ P (c) ̸= ∅. Then there exists q ∈ P (b) \ P (c) such that ⟨q⟩′ lies
between ⟨p⟩′ and Ic. Since q is non-adjacent to p, it belongs to sections of either Q or

135

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

slide slide
Ia Ib Ic

p r

u
v

x z

(b)

Ti Tj

x p r z y2

· · ·

t2 x1

P1

si(Q) sj(Q)

Ia Ib Ic

p rq

(a)

Ti Tj

p r q

· · ·

t2 x1

P1

si(Q) s←q (Q)

Figure 4.14: (a) Case 1: The pre-drawn intervals and the situation in the MPQ-tree
for si(Q) (s←q (Q). (b) Case 2: The pre-drawn intervals and the situation when there
exists no path from x to z avoiding the vertices of b.

Tj. Notice that in any case s←q (Q) is on the right of si(Q). Arguing as in Case 1 of
the proof of Lemma 4.5.3, we observe that there exists r ∈ P (c) \ P (b). Furthermore,
it follows that ⟨r⟩′ lies to the right of ⟨q⟩′; see Fig. 4.14a on the left.

If there exists a path P1 from p to r avoiding N [q], we get a 1-FAT obstruction
for x1 = p, y1 = q, z1 = r and P1. By Lemma 4.2.1, we know that si(Q) ̸= s←q (Q).
If si(Q) ̸⊆ s←q (Q), then there exists some w ∈ si(Q) \ s←q (Q). Therefore, P1 = pwr
is such a path. It remains to deal with the case where no such path P1 exists, which
implies that si(Q) (s←q (Q); see Fig. 4.14a on the right.

Consider the set W = si(Q). Let t2 be a vertex of W whose section s→t2 (Q) is
leftmost. Let C be the component of G[Q] \ W containing q. Since s←q (Q) \ W is
non-empty, C consists of the vertices of at least two subtrees of the Q-node. If t2 was
adjacent to all vertices of C, it would be possible to flip the ordering of this component,
contradicting the fact that there are only two possible orderings for Q. Therefore, t2
is not adjacent to all vertices of C. We choose x1 ∈ C \N [t2] whose section s←x1(Q) is
leftmost. Let P1 be a shortest path from q to x1 whose inner vertices are adjacent to
t2. It follows that x2 = p, y2 = q, z2 = r, P2 = x2t2, t2, x1, and P1 define a 2-FAT
obstruction. (By Lemma 4.2.3, all inner vertices of P1 are adjacent to t2.)

Case 2: P (b)\P (c) = ∅. Then there exists r ∈ P (c)\P (b). Since ⟨r⟩′ lies on the
right of Ib, the vertex r is not contained in a and it belongs to sections of Ti. We use
the same approach as in Case 2 of the proof of Lemma 4.5.3. Since P (b) ⊆ P (a)∩P (c),
every pre-drawn interval of P (b) covers [x(a),y(c)]. Let u ∈ P ↦→(b) and v ∈ P ↦→(b)
(possibly u = v).

By applying Sliding Lemma 4.2.5 twice, we get x, z /∈ P (b) such that ⟨x⟩′ covers
ℓ(v) and ⟨z⟩′ covers r(u); see Fig. 4.14b on the left.

Suppose that there exists a path Px,z from x to z avoiding all vertices of b. Let
x1 = x, z1 = z, and P1 be a shortest path from x1 to z1 in G[Q] \ b. By Lemma 4.2.4,
there exists y1 ∈ b non-adjacent to P1. We obtain a 1-BI obstruction.

136

4.6. Obstructed Q-nodes

Suppose next that there is no path Px,z avoiding b. We know that x and z
belong to sections of Ti, since there exist paths Px,p and Pr,z avoiding b, from the
above applications of Sliding Lemma 4.2.5. Since no path Px,z avoiding b exists, we
have si(Q) (sj(Q). As in Case 1, let W = si(Q), and let t2 be a vertex of W whose
section s→t2 (Q) is leftmost (possibly t2 = u or t2 = v). We again infer that t2 is not
adjacent to all vertices of C, where C is the component of G[Q] \W containing b \W .
We choose x1 ∈ C \N [t2] whose section s←x1(Q) is leftmost. Since si(Q) (sj(Q) ⊆ b,
there exists y2 ∈ b non-adjacent to x and z. We get a 2-BI obstruction for x2 = x, y2,
z2 = z, u, v, a shortest path P1 from y2 to x1 in C, and P2 = x2t2. (By Lemma 4.2.3,
all inner vertices of P1 are adjacent to t2.)

4.6.2 k-FAT and (k, ℓ)-CE Lemmas

In this subsection, we give two tools for the case, analyzed in Section 4.6.3, where
the three maximal cliques creating the obstruction belong to three different subtrees.
These tools give insight into the structure of the Q-nodes, and explain the way in
which complex obstructions such as k-FAT and (k, ℓ)-CE obstructions are formed.

k-FAT Lemma. First, we present a useful lemma that allows to locate k-FAT ob-
structions. The key idea of the proof is similar to Case 1 of the proof of Lemma 4.6.2,
but applied inductively for k.

Lemma 4.6.3 (k-FAT). Let Q be a Q-node with children T1, . . . , Tn, and let a, b and
c be three cliques of T [Q] contained respectively in Tα, Tβ and Tγ, for α < β < γ.
Let xk ∈ P (a), yk ∈ P (c) and zk ∈ P (b) be three disjoint pre-drawn intervals such
that ⟨yk⟩′ is between ⟨xk⟩′ and ⟨zk⟩′. Then G[Q] and R′[{xk, yk, zk}] contain a k-FAT
obstruction.

Proof. The proof, illustrated in Fig. 4.15, is by induction. We always denote the
vertices as in the definition of k-FAT obstructions. If we find a 1-FAT or 2-FAT
obstruction, the statement is true. Otherwise, we recurse on a smaller part of the
Q-node, where we find a structure identical to a (k − 1)-FAT obstruction, except for
the fact that the vertex xk−1 is free. Together with some vertices in the remainder of
the Q-node, we obtain a k-FAT obstruction. We next provide the details.

Let k be some yet unspecified integer, determined by the recursion. We want to
argue that G[Q] contains a k-FAT obstruction because the ordering of ⟨xk⟩′, ⟨yk⟩′ and

xk yk zk

Tα Tβ Tγ

xk zk yk

tk

· · · · · ·

Wk

Pkxk

yk

zk

C(xk) N [yk]

Wk

Figure 4.15: On the left, the position of the pre-drawn intervals. In the middle, the
construction of Wk (N [yk] in G[Q]. On the right, the Q-node with the three subtrees
and the intervals of Wk depicted in its sections.

137

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

⟨zk⟩′ is incorrect (in every representation, ⟨zk⟩ is between ⟨xk⟩ and ⟨yk⟩). Suppose that
there exists a path from xk to zk whose inner vertices are non-adjacent to yk. Then
we obtain a 1-FAT obstruction. It remains to deal with the harder situation where no
such path exists.

Let C(xk) be the connected component of G[Q] \ N [yk] containing xk. By our
assumption, zk /∈ C(xk). We denote by Wk the subset of N [yk] containing those
vertices that are adjacent to some vertex of C(xk); see Fig. 4.15, middle. Notice
that the vertices of C(xk) appear only in sections and subtrees to the left of sβ(Q).
Therefore, every vertex of Wk lies in the sections of Q and stretches from the left of
sβ(Q) to sγ(Q); see Fig. 4.15, right. In other words, Wk ⊆ sβ(Q) ∩ sγ(Q) and every
vertex of Wk is adjacent to zk.

Let C be a connected component of G[Q]\Wk. If C contains a vertex from some
section of Q, we call it big. Notice that in this situation C has a vertex contained
in two consecutive sections of Q and their subtrees. Otherwise, C consists of some
vertices of a subtree of Q, and we call it small. The section above a subtree containing
a small component is a subset of Wk. Additionally, if two small components are placed
in two different subtrees, the two sections above these subtrees are different.

The graph G[Q]\Wk is disconnected, as xk and zk belong to different components.
Let us denote the connected component containing yk by C(yk), and the one containing
zk by C(zk). Let tk be a vertex of Wk whose section s→tk

(Q) is leftmost. Let Pk be a
shortest path from xk to tk in G[C(xk)∪{tk}]; see Fig. 4.15, right. We distinguish two
cases.

Case 1: C(yk) ̸= C(zk). This case is very similar to the proof of Lemma 4.6.2; see
Fig. 4.16a. Every vertex of Wk is adjacent to some vertex of C(xk) and to some vertex
of C(yk). Therefore, it is also adjacent to every vertex of C(zk). If C(zk) was big,
then we could reverse its sections in the Q-node, contradicting the fact that there are
only two possible orderings for a Q-node. Therefore, C(zk) is small. Notice that then
C(yk) is not small, since otherwise we would get sβ(Q) = Wk = sγ(Q), contradicting
Lemma 4.2.1. Thus, C(yk) is big.

Let us set yk−1 = zk and zk−1 = yk. The vertex tk is not universal for C(yk);
otherwise, every vertex of Wk would be universal and this would give additional or-
derings of C(yk) in Q. Let xk−1 be a vertex of C(yk) \ N [tk] whose section s←xk−1

(Q)

Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·

Pk Pk−1

C(zk)

C(yk)
(a)

Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·

Pk

C(yk) = C(zk)
(b)

Figure 4.16: (a) In Case 1, there exists a path Pk−1 from xk−1 to yk whose inner
vertices avoid zk. (b) In Case 2, we have C(yk) = C(zk) and such a path might no
longer exist. For instance, every path from xk−1 to yk in C(yk) might use the depicted
interval in the sections of Q, which is also adjacent to zk.

138

4.6. Obstructed Q-nodes

is leftmost. Notice that s←xk−1
(Q) is always the next section to s→tk

(Q). Let Pk−1 be a
shortest path from xk−1 to zk−1 in C(yk). By Lemma 4.2.3, all inner vertices of Pk−1
are adjacent to tk. Since this path lies in C(yk), the inner vertices are non-adjacent to
yk−1, xk and Pk. We have constructed a 2-FAT obstruction.

Case 2: C(yk) = C(zk). In this case, the component C(yk) is big; see Fig. 4.16b.
Therefore, similarly as above, tk is not universal for C(yk). We put yk−1 = zk and
zk−1 = yk. We choose xk−1 ∈ C(yk) \N [tk] in the same way as in Case 1. Notice that
xk−1 is a non-neighbor of yk−1, since otherwise it would be a neighbor of tk. On the
other hand, xk−1 might be adjacent to zk−1 or not. If it is, we get a 2-FAT obstruction
for k = 2 with P1 = xk−1zk−1. If it is not, we proceed as follows.

As before, every shortest path from xk−1 to zk−1 has all inner vertices adjacent to
tk. Since all vertices of C(yk) are non-adjacent to xk and the inner vertices of Pk, every
shortest path satisfies this as well. There exists a shortest path from xk−1 to zk−1 in
C(yk), but we cannot guarantee that the inner vertices of this path are non-adjacent
to yk−1. We solve this issue by applying the entire argument of the proof recursively
to C(yk).

In every representation extending the partial representation, the intervals of
C(xk) form a connected subset of the real line placed to the left of ⟨yk⟩′. There-
fore, ⟨tk⟩ stretches from C(xk) to ⟨zk⟩′, covering ⟨yk⟩′. Thus ⟨xk−1⟩ is placed to the
right of ⟨zk⟩′ = ⟨yk−1⟩′ in every extending representation (see Fig. 4.3b). Again, ⟨yk−1⟩′
has to be placed between ⟨xk−1⟩ and ⟨zk−1⟩′. We assume that ⟨xk−1⟩ is pre-drawn on
the right of ⟨yk−1⟩′ and repeat the same argument for C(yk) and the MPQ-tree re-
stricted to these vertices. The role of xk, yk and zk is played by xk−1, yk−1 and zk−1,
respectively. (The ordering of the pre-drawn intervals is flipped.)

The paragraphs above show the induction step of our proof (by induction on,
say, the number of considered sections of Q). By the induction hypothesis, we find
a (k − 1)-FAT obstruction. By making xk−1 free and adding xk, tk and Pk, we get a
k-FAT obstruction in the original partial representation. Clearly tk is adjacent to the
entire (k − 1)-FAT obstruction with the exception of xk−1, since all further vertices
are contained in a section to the left of s←xk−1

(Q). The reason is that we always use
shortest paths which are Q-monotone by Lemma 4.2.3. By the same reason, they are
non-adjacent to the inner vertices of Pk and to xk, as required.

To make the argument complete, we should check that all the assumptions used
throughout the proof apply recursively, in particular the arguments concerning non-
universality of tk−1 and reversing big components. This is true because both compo-
nents C(yk−1) and C(zk−1) of C(yk) \Wk−1 appear to the left of xk−1, so tk and the
other vertices of Wk are universal for them. This property is preserved throughout
the recursion, so C(yℓ) and C(zℓ) are adjacent to all vertices of Wk,Wk−1, . . . ,Wℓ+1.
Similarly, the rest of the inductive proof can be formalized.

The above proof shows that the structure of a Q-node can be highly complicated,
leading to complicated obstructions such as k-FAT. Actually, k-FAT Lemma 4.6.3 is a
very useful tool because it can be also applied in situations where not all xk, yk, and
zk are pre-drawn, to build other obstructions. Fig. 4.17 shows an example.

139

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

xk zk

u

yk

R
′ xk zk yk

· · · · · ·
⇒

xk zkyk

R̂
′

Figure 4.17: Suppose that we show that a partial representation R′ has three pre-
drawn intervals as on the left, and that there is a vertex yk adjacent to u and non-
adjacent to xk and zk. Then ⟨yk⟩ has to be placed between ⟨xk⟩′ and ⟨zk⟩′ in every
extending representation. Thus, we can assume it is pre-drawn there and obtain a
modified partial representation R̂′. If we further show that xk, yk and zk are placed
in appropriate sections of G[Q] for some Q-node Q, we can apply k-FAT Lemma 4.6.3
and we get a k-FAT obstruction in G[Q] and R̂′[{xk, yk, zk}]. Together with ⟨u⟩′, this
forms a k-BI obstruction in G and R′.

Lemma 4.6.4. Consider a k-FAT obstruction Hk for k > 2. If we swap the positions
of ⟨xk⟩′ and ⟨yk⟩′, then we obtain a new obstruction which contains a 1-FAT obstruction
for x′1 = yk, y′1 = xk, and z′1 = zk. Further, if k = 2 and this does not happen, then x2
is adjacent to t2.

Proof. For k ≥ 3, the graph Hk \N [xk] is connected; in particular, there exists a path
P ′1 = yktk−1zk avoiding N [xk]. For k = 2, there exists the path P ′1 = y2t2z2 avoiding
N [x2], unless x2 is adjacent to t2.

(k, ℓ)-CE Lemma. Suppose that we have the situation in Fig. 4.18. We can easily
show that it yields to a (k, ℓ)-CE obstruction:

Lemma 4.6.5 ((k, ℓ)-CE). Let Q be a Q-node with children T1, . . . , Tn, and let a, b
and c be three cliques of T [Q] contained respectively in Tα, Tβ and Tγ, for α < β < γ.
Let xk ∈ a, yk ∈ c and zk ∈ P (b) be three non-adjacent vertices having a common pre-
drawn neighbor u such that ⟨u⟩′ single overlaps ⟨zk⟩′. Then G[Q]∪{u} and R′[{zk, u}]
contain a (k, ℓ)-CE obstruction, where either ℓ = 1 or k = ℓ = 2.

Proof. By applying k-FAT Lemma 4.6.3 twice, once when ⟨xk⟩ is on the left of ⟨yk⟩
and once when it is on the right, we obtain the (k, ℓ)-CE obstruction. Further, by
Lemma 4.6.4, we get that either ℓ = 1, or k = ℓ = 2.

The proof of the following lemma reveals the structure of the minimal (k, ℓ)-CE
obstructions in detail:

R
′

zk

u

xk yk

Tα Tβ Tγ

xk zk yk

u

· · · · · ·
Pk P ′

ℓ

Figure 4.18: When ⟨u⟩′ single overlaps ⟨zk⟩′, and the vertices xk, yk, and zk are
placed in the MPQ-tree as on the right, we get a (k, ℓ)-CE obstruction.

140

4.6. Obstructed Q-nodes

Lemma 4.6.6. For 2 ≥ k ≥ ℓ, the list of minimal (k, ℓ)-CE obstructions is given in
Fig. 4.6. For k ≥ 3, the minimal (k, ℓ)-CE obstructions have ℓ = 1 and consist of the
graph Hk together with a vertex u, either adjacent to all vertices of Hk, or u = tk.

Proof. The simplest case is when there exist a path Pk from xk to zk avoiding N [yk],
and a path P ′ℓ from yk to zk avoiding N [xk]. Let Pk and P ′ℓ be shortest such paths as
in Fig. 4.18, right. We get a (1, 1)-CE obstruction. By Lemma 4.2.3, the paths Pk and
P ′ℓ are monotone. Therefore, their inner vertices are non-adjacent to each other, with
the possible exception of the last vertices before zk, which can be adjacent or even
identical. Concerning minimality, we can always find one of the three finite (1, 1)-CE
obstructions depicted in Fig. 4.6a. The reason is that when paths Pk and P ′ℓ are long,
we can take as xk and yk one of their inner vertices, making them shorter.

Suppose next that there exists no path Pk from xk to zk avoidingN [yk]. Assuming
that ⟨xk⟩ is placed on the left of ⟨yk⟩, we apply k-FAT Lemma 4.6.3 and we get the
subgraph Hk of a k-FAT obstruction (which is not the complete k-FAT obstruction
because xk and yk are free). Let C(xk), Wk, and tk be defined as in the proof of k-FAT
Lemma 4.6.3.

Case 1: There exists some path P ′ℓ from yk to zk avoiding N [xk]. Let P ′ℓ be a
shortest such path (notice that ℓ = 1). Together with the above subgraph Hk, we
get a (k, 1)-CE obstruction; see Fig. 4.19a. In particular, if some vertex w ∈ Wk is
non-adjacent to xk (possibly w = tk), we can use P ′ℓ = ykwzk.

We note that when k ≥ 3, such a path P ′ℓ necessarily exists, as we can use
P ′ℓ = yktk−1zk, as argued in Lemma 4.6.4. Therefore, the (k, 1)-CE obstructions consist
of the subgraph Hk together with u; assuming minimality, we have that either u is
adjacent to all vertices of Hk, or u = tk. If k = 2, then P ′ℓ might still exist but it might
be longer and might use inner vertices not contained in Hk. Concerning minimality,
we always find one of the three (2, 1)-CE obstructions depicted in Fig. 4.6b. Indeed,
P2 can be assumed to be of length one or two, since otherwise we could use one of its
inner vertices as x2. For length two, we get P ′1 = yktkzk. For length one, we get a path
P ′1 from z2 to y2, and we can assume that y2 is adjacent to x1 (otherwise we could use
as y2 the neighbor of x1 on P1).

Case 2: No such path P ′ℓ exists. By Lemma 4.6.4, necessarily k = 2. We want
to show that there exists a (2, 2)-CE obstruction which we describe in detail.

Notice that all vertices w ∈ Wk are adjacent to xk, yk, and zk, since otherwise

Tα Tβ Tγ

xk zk yk

tk xk−1

· · · · · ·

Pk P ′

ℓ = yktkzk

(a)

Tα Tβ Tγ

xk zk yk

tk
t′ℓ

xk−1

y′ℓ−1
· · · · · ·

Wk

Pk−1 P ′

ℓ−1

C(xk)
C(zk)

C(yk)
(b)

Figure 4.19: (a) Case 1: If there exists a path P ′ℓ from yk to zk avoiding N [xk], then
we get a (k, 1)-CE obstruction. (b) Case 2: We get a (2, 2)-CE obstruction.

141

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

there would exist a path P ′ℓ = ykwzk avoiding N [xk]. Hence the vertices of Wk belong
to sections of Q, covering all subtrees between Tα and Tγ; see Fig. 4.19b. Let C(yk)
and C(zk) be the components of G[Q] \Wk containing yk and zk, respectively. Since
there exists no path P ′ℓ, we obtain that C(xk), C(yk), and C(zk) are pairwise different.
To determine the structure of a (2, 2)-CE obstruction, we apply the argument from
Case 1 of the proof of k-FAT Lemma 4.6.3 symmetrically twice.

Let tk be a vertex of Wk having leftmost section s→tk
(Q) and let t′ℓ be a vertex

of Wk having rightmost section s←t′
ℓ
(Q) (possibly tk = t′ℓ). It is easy to see that C(zk)

is small, otherwise we could flip it and obtain an ordering of the maximal cliques not
compatible with the Q-node.

Similarly as in the proof of k-FAT Lemma 4.6.3, this implies that both C(xk)
and C(yk) are big. Therefore, tk is not universal for C(yk) and t′ℓ is not universal for
C(xk). As in the proof of k-FAT Lemma 4.6.3, we choose xk−1 ∈ C(yk) non-adjacent
to tk and y′ℓ−1 ∈ C(xk) non-adjacent to t′ℓ. There exist paths Pk−1 from xk−1 to yk and
P ′ℓ−1 from y′ℓ−1 to xk. In consequence, we obtain a (2, 2)-CE obstruction.

Regarding minimality, notice that we can assume that y2 is adjacent to x1, and
x2 is adjacent to y′1; otherwise, we could choose as y2 and x2 the neighbors of x1 and
y′1 on the paths P1 and P ′1, respectively. We get the four minimal finite (2, 2)-CE
obstructions that are illustrated in Fig. 4.6c.

4.6.3 Cliques in Three Different Subtrees

When a Q-node Q is obstructed by three maximal cliques a ∈ Tα, b ∈ Tβ and Tγ,
where α < β < γ, the situation is quite complex. Fig. 4.20 gives an overview of the
cases and obstructions obtained in this case.

Lemma 4.6.7. Without loss of generality, we can assume that a ▹ b ◃ c and y(a) ≤
y(c).

Proof. Since a, b and c create an obstruction, b is either a minimal or a maximal
element in ▹ |{a,b,c}. Without loss of generality (using the flip operation), we can
assume that b is maximal, so a ▹ b ◃ c. Since we can swap a and c by reversing the
Q-node, we can assume that y(a) ≤y(c).

Since a ▹ b ◃ c, both Ia and Ic appear on the left of Ib. Since y(a) ≤ y(c),
either Ia contained in Ic, or Ia is on the left of Ic. The first case is easier:

Lemma 4.6.8. If Ia is contained in Ic, then G and R′ contain a (k, ℓ)-CE obstruction,
where ℓ = 1 or 2 ≥ k ≥ ℓ.

Proof. The proof is illustrated in Fig. 4.21. By Lemma 3.2.4, P (c) ⊆ P (a). Since b
is placed between a and c in the Q-node Q, every vertex contained in both a and c is
contained in b as well. Hence P (c) (P (b), and there exists r ∈ P (b) \P (c). Since ⟨r⟩′
is on the right of Ic, it is also on the right of Ia, and thus r /∈ P (a).

Let u ∈ P ↦→(c). We apply Sliding Lemma 4.2.5 to Ic, Ib, and ⟨r⟩′. We get a pre-
drawn interval ⟨zk⟩′ covering r(u), and an induced path Pr,zk

from r to zk consisting

142

4.6. Obstructed Q-nodes

Lemma 4.6.7

a ⊳ b ⊲ c, y(a) ≤ y(c)

Lemma 4.6.8

P (b) \ P (c) 6= ∅

Lemma 4.6.9

P (a) \ P (c) 6= ∅

Lemma 4.6.10

P (a) (P (c)

P (b) (P (c)

Lemma 4.6.11

Lemma 4.6.12

P (a) \ P (c) 6= ∅

Lemma 4.6.13

P (a) (P (c)

(k, ℓ)-CE

k-BI
k-FB

k-EFB

k-FAT
k-FS

k-FNS

k-FDS

k-EFS

(k, 1)-CE

k-FS

(k, 1)-CE

k-FB

k-BI

k-FDS
k-EFDS

Sliding Lemma

4.2.5

k-FAT Lemma

4.6.3

(k, ℓ)-CE Lemma

4.6.5

Ia

Ic

Ib

rIa Ic Ib

Ia Ic Ib

r

Ia Ic Ib

rp

Ia Ic Ib

rq

Ia Ic Ib

q

Ia Ic Ib

q r

Ia Ic Ib

q rxk

Ia Ic Ib

q r
p

Figure 4.20: A summary of Section 4.6.3. The diagram starts in the middle with
Lemma 4.6.7. Inside the cases, we draw the positions of Ia, Ib, Ic, and some pre-drawn
intervals. An arrow at a pre-drawn interval means that it may be further stretched in
the given direction. The obtained obstructions are highlighted in gray, the used tools
have highlighted borders.

of pre-drawn intervals not in P (c). Therefore zk is on the left of c in Q. Since all pre-
drawn intervals of Pr,zk

do not belong to P (c), they are on the right of Ic. Thus they are
also on the right of Ia, which implies that they do not belong to P (a). Consequently,
zk is between a and c in Q.

Let xk ∈ a and yk ∈ c be vertices non-adjacent to zk. By (k, ℓ)-CE Lemma 4.6.5,
xk, yk, zk, and u create a (k, ℓ)-CE obstruction, for ℓ = 1 or 2 ≥ k ≥ ℓ. Notice that
the clique associated to zk is some b′ ̸= b.

The case where Ia is on the left of Ic is further divided into several subcases. In

143

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

slide

Ia

Ic

Ib

r

u

zk

Tα Tβ Tγ

xk r yk

u
zk Pr,zk

· · · · · ·

Figure 4.21: Proof of Lemma 4.6.8. On the left, the pre-drawn intervals. On the
right, their positions in the MPQ-tree.

the next two lemmas, we focus on the situation where P (b) \ P (c) ̸= ∅.

Lemma 4.6.9. If Ia is on the left of Ic, P (b) \P (c) ̸= ∅ and P (a) \P (c) ̸= ∅, then G
and R′ contain a k-FAT, k-BI (k ≤ 2), k-FB, or k-EFB obstruction.

Proof. The proof is illustrated in Fig. 4.22. Let p ∈ P (a) \ P (c) and r ∈ P (b) \ P (c).
Then ⟨p⟩′ is on the left of Ic, and ⟨r⟩′ is on the right of Ic. Clearly, ⟨p⟩′ and ⟨r⟩′ are
disjoint, so p appears in the Q-node on the left of r. Let u ∈ P ↦→(c) and v ∈ P ↦→(c)
(possibly u = v).

If r(u) ≤ r(r), then zk = r. Obviously, zk is between p and c in the Q-node.
Otherwise, P (c) (P (b), and we apply Sliding Lemma 4.2.5 to Ic, Ib, and r. We
obtain a pre-drawn interval ⟨zk⟩′ not contained in P (c) covering r(u), and a path Pr,zk

whose inner vertices are pre-drawn and not contained in P (c). Notice that all of these
pre-drawn vertices are on the right of Ic. Therefore, these vertices are not contained
in P (a). In this case, we also get that zk is between p and c in the Q-node.

Similarly, if ℓ(p) ≤ ℓ(v), then xk = p. Otherwise, we use the flipped version
of Sliding Lemma 4.2.5 to Ic, Ia, and p, which gives a pre-drawn interval ⟨xk⟩′ not
contained in P (c) covering ℓ(v). By a similar argument, in both cases, we show that
xk is on the left of zk in the Q-node.

Let yk ∈ c be a vertex non-adjacent to zk (possibly, yk = u or yk = v). Such
a vertex exists because zk is on the left of c in the Q-node. Notice that yk is also
non-adjacent to xk. Since yk is adjacent to u and v, in every extending representation
⟨yk⟩ is between ⟨xk⟩′ and ⟨zk⟩′. So we can assume that it is pre-drawn in this position
and, by k-FAT Lemma 4.6.3, we get a k-FAT obstruction. Together with u and v (or
possibly only one of them), we get one of the obstructions in Fig. 4.23.

Lemma 4.6.10. If Ia is on the left of Ic, P (b) \ P (c) ̸= ∅ and P (a) (P (c), then G
and R′ contain a k-FAT, (k, 1)-CE, k-FS, k-FDS, k-FNS, or k-EFS obstruction.

slide?slide?
Ia Ic Ib

p r
u v

xk zk

Tα Tβ Tγ

p r yk

u
zkxk

v
Pr,zk

Pp,xk
· · · · · ·

Figure 4.22: Proof of Lemma 4.6.9. On the left, the pre-drawn intervals, with
possible sliding on each side. On the right, their positions in the MPQ-tree.

144

4.6. Obstructed Q-nodes

xk zkyk
u or v

k-FAT
(a)

xk zk

u or v

yk

k-BI
(b)

xk zk

u or v

yk

k-FB
(c)

xk zk
u v

yk

k-EFB
(d)

xk zk
u v

yk

k-BI
(e)

Figure 4.23: The different obstructions obtained in the proof of Lemma 4.6.9. If
ℓ(xk) ≤ ℓ(u) ≤ r(u) ≤ r(zk), we get one of the obstructions (a) to (c). Since zk is in
the Q-node between xk and c, if u or v intersect xk, then they also intersect zk. In
the cases (d) and (e), ℓ(u) < ℓ(xk) and r(zk) < r(v). Since u intersects zk, there are
only two possible obstructions.

Proof. We choose r ∈ P (b) \ P (c) and q ∈ P (c) \ P (a) with leftmost right endpoint.
Then ⟨r⟩′ is on the right of Ic and ⟨q⟩′ is on the right of Ia. We note that q might
be adjacent to r or not, and might belong to P (b) or not. Since P (a) (P (c), we get
from the structure of the Q-node that also P (a) (P (b). Let u ∈ P ↦→(a). Notice that
at least one of q and u belongs to P ↦→(c).

Case 1: u ∈ P ↦→(c). Then r(u) ≤ r(q) and P (c) (P (b); the situation is depicted
in Fig. 4.24a. We apply Sliding Lemma 4.2.5 to Ic, Ib, and r. We get a pre-drawn
interval zk /∈ P (c) covering r(u), and a path Pr,zk

consisting of pre-drawn intervals not
contained in P (c). Therefore, zk is on left of c in the Q-node. Since Ia is on the left

slide
Ia Ic Ib

r

u

zkxk yk
q

(k, 1)-CE
(a)

Tα Tβ Tγ

xk r yk

u q
zk Pr,zk

· · · · · ·

slide
Ia Ic Ib

r = yk

u

s = xkzkũ = q

k-FS
(b)

Tα Tβ Tγ

zk

r
yk

u
ũ = q s = xk

· · · · · ·

slide
Ia Ic Ib

r

u

s = zkykxk q

(k, 1)-CE
(c)

Tα Tβ Tγ

ykrxk

u
qs = zk

· · · · · ·

Figure 4.24: Proof of Lemma 4.6.10. On the left, the pre-drawn intervals. On the
right, their positions in the MPQ-tree. (a) Case 1. (b) Subcase 2A. (c) Subcase 2B.

145

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

of Ic, all vertices of Pr,zk
are also not contained in P (a). Thus zk is on the right of a

in the Q-node.
Choose yk ∈ c non-adjacent to zk. By Lemma 4.2.4, there exists xk ∈ a non-

adjacent to both zk and q. Since zk is between a and c in the Q-node, also xk is
non-adjacent to yk. Since ykqzk is a path avoiding N [xk], by (k, ℓ)-CE Lemma 4.6.5
we obtain a (k, 1)-CE obstruction.

Case 2: q ∈ P ↦→(c). Then r(q) < r(u). First we argue that, without loss of
generality, we can assume that either ⟨q⟩′ and ⟨r⟩′ are disjoint, or ⟨r⟩′ covers r(q).
Suppose that ⟨r⟩′ is contained in ⟨q⟩′. Since q ∈ P ↦→(c), this implies that P (c) (P (b).
By applying Sliding Lemma 4.2.5 to Ic, Ib and r, we obtain a pre-drawn interval r̃ not
in P (c) which covers r(q). We also get a path Pr,r̃ whose vertices are pre-drawn and
not contained in P (c); since Ia is on the left of Ic, they are also not in P (a). Therefore
r̃ is between a and c in the Q-node. Further, r̃ belongs to some clique b̃ for which Ĩ

b

is on the right of Ic. From now on, we work with r̃ as r, and with b̃ as b. Hence the
assumption on the relative positions of ⟨q⟩′ and ⟨r⟩′ holds.

We apply Sliding Lemma 4.2.5 to Ia, Ib and r, and we get a pre-drawn interval
s /∈ P (a) covering r(u). This sliding is weaker that in Case 1: we know that s is on
the right of a, but we do not know its position with respect to c. We distinguish three
subcases according to the relative positions of q and s in the Q-node.

Subcase 2A: s is on the right of q. The situation is depicted in Fig. 4.24b. Let
xk = s and yk = r. If ⟨q⟩′ is on the left of ⟨r⟩′, let zk = q. Otherwise, let zk ∈ c
be a vertex non-adjacent to r, but possibly adjacent to xk. Since in every extending
representation zk is placed on the left of yk, we can apply k-FAT Lemma 4.6.3 to xk,
yk and zk, and get a subgraph Hk. If ⟨q⟩′ is on the left of ⟨r⟩′, then Hk gives a k-FAT
obstruction. If ⟨r⟩′ covers r(q), then Hk together with ũ = q gives a k-FS obstruction.

Subcase 2B: s is on the left of q. We choose xk ∈ a and yk ∈ c non-adjacent
to s; such vertices exist because s is between a and c in the Q-node. By (k, ℓ)-
CE Lemma 4.6.5, we get a (k, ℓ)-CE obstruction for xk, yk, zk = s and u. Notice
that we can construct a path Pyk,zk

from yk to zk avoiding N [xk] by applying Sliding
Lemma 4.2.5 to Ia, Ic, and q. Thus ℓ = 1.

Subcase 2C: ⟨s⟩′ intersects ⟨q⟩′. Notice that ⟨s⟩′ also intersects ⟨r⟩′. Therefore, if
s /∈ P (c), then it appears in the Q-node between a and c. Let zk = s, we get a (k, 1)-
CE obstruction as follows. We choose yk ∈ c non-adjacent to zk. By Lemma 4.2.4,
there exists xk ∈ a non-adjacent to q, yk, and zk. By (k, ℓ)-CE Lemma 4.6.5, we get a
(k, 1)-CE obstruction for xk, yk, zk and u as illustrated in Fig. 4.25a; notice that the
path ykqzk avoids N [xk].

It remains to deal with the situation when s ∈ P (c). Let zk = r. If ⟨q⟩′ intersects
⟨r⟩′, let yk ∈ c be a vertex non-adjacent to r; otherwise let yk = q. By Lemma 4.2.4,
there exists xk ∈ a non-adjacent to q, yk, and zk. In every extending representation,
⟨yk⟩ is placed on the left of ⟨zk⟩′, and ⟨xk⟩ is placed on the left of ⟨yk⟩. Therefore, by
k-FAT Lemma 4.6.3, we get a subgraph Hk of a k-FAT obstruction. Together with u,
v = s, w = q (for yk ̸= q), or possibly some of them, we get a k-FDS, k-EFS, or k-FNS
obstruction; see Fig. 4.25b, c, and d.

146

4.6. Obstructed Q-nodes

xk yk s = zk

u

(k, 1)-CE
(a)

xk

yk r = zkq = w

u
s = v

k-FNS
(b)

xk
r = zkq = yk

u
s = v

k-FDS
(c)

xk
r = zkq = yk

u
s = v

k-EFS
(d)

Figure 4.25: Four possible obstructions obtained in Subcase 2C of the proof of
Lemma 4.6.10. (a) If s /∈ P (c), we get a (k, 1)-CE obstruction. (b) If ⟨q⟩′ intersects
⟨r⟩′, we get a k-FNS obstruction. Recall that the relative order of ℓ(q) and ℓ(s) does
not matter. (c) If ⟨q⟩′ is on the left of ⟨r⟩′ and ℓ(q) ≤ ℓ(s), we get a k-FDS obstruction.
(d) If ⟨q⟩′ is on the left of ⟨r⟩′ and ℓ(s) < ℓ(q), we get a k-EFS obstruction.

The case where P (b) (P (c) is addressed in Lemmas 4.6.12 and 4.6.13. First,
we need an auxiliary result.

Lemma 4.6.11. If Ia is on the left of Ic and P (b) (P (c), there exist q ∈ P (c) \P (b)
and r ∈ P (b) \ P (a) such that ⟨q⟩′ is on the right of Ia and on the left of Ib, and ⟨r⟩′
is on the right of Ia, containing Ic and Ib. Without loss of generality, ⟨q⟩′ covers ℓ(r).

Proof. The proof is depicted in Fig. 4.26. Clearly, there exists q ∈ P (c) \ P (b). Due
to the structure of the Q-node, we also have that q /∈ P (a). Therefore, ⟨q⟩′ is between
Ia and Ib.

Next, we argue that there exists r ∈ P (b) \ P (a). For contradiction, assume
that P (b) (P (a). Let v ∈ P ↦→(b); notice that v contains Ia and Ic. By the flipped
version of Sliding Lemma 4.2.5 applied to Ic, Ib and q, there exists a path consisting
of pre-drawn intervals not contained in P (b) from q to z, where ⟨z⟩′ covers ℓ(v). At
least one interval of this path intersects Ia, so it belongs to P (a). This contradicts the
fact that b is between a and c in the Q-node. Hence, there exists r ∈ P (b) \ P (a).

We choose r having rightmost left endpoint. Clearly, ⟨r⟩′ is on the right of Ia,
and contains Ib and Ic. Suppose that ℓ(r) < ℓ(q). Since r has rightmost left endpoint
among all intervals in P (b)\P (a), and every interval in P (a) has its left endpoint more
to the left, we obtain that r ∈ P ↦→(b). Therefore, we can apply the flipped version of
Sliding Lemma 4.2.5 to Ic, Ib and q. We get a pre-drawn interval q̃ /∈ P (b) covering
ℓ(r), and a path Pq,q̃ from q to q̃ whose vertices are not in b. Therefore, q̃ is on the
right of b in the Q-node. Let c̃ be a maximal clique containing q̃. Since Ic̃ is contained

slide
Ia Ic IbIc̃

q

r

q̃

Tα Tβ Tγ

q

r
q̃

Pr,zk
· · · · · ·

Figure 4.26: Proof of Lemma 4.6.11. On the left, the pre-drawn intervals. On the
right, their positions in the MPQ-tree.

147

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

Ia Ic Ib

xk

r = u

q = yk zk

Tα Tβ Tγ

xk zk

q = yk
r = u

· · · · · ·

Figure 4.27: Proof of Lemma 4.6.12. We derive that ⟨xk⟩′ is on the left of ⟨q⟩′, which
gives a k-FS obstruction based on the positions in the Q-node.

in q̃, it is between Ia and Ib. Therefore, we can work with q̃ and c̃ instead of q and c.
Thus we can assume that ⟨q⟩′ covers ℓ(r).

For P (b) (P (c), we distinguish two cases.

Lemma 4.6.12. If Ia is on the left of Ic, P (b) (P (c), and P (a) \ P (c) ̸= ∅, then G
and R′ contain a k-FS obstruction.

Proof. The proof is illustrated in Fig. 4.27. By Lemma 4.6.11, there exist q ∈ P (c) \
P (b) and r ∈ P (b) \ P (a) such that ⟨q⟩′ covers ℓ(r). Let xk ∈ P (a) \ P (c) and yk = q.
Then ⟨xk⟩′ is on the left of Ic, and therefore also on the left of Ib. Thus xk /∈ P (b).
We infer that xk is on the left of b in the Q-node, so it is non-adjacent to yk. In
consequence, ⟨xk⟩′ is on the left of ⟨yk⟩′. Let zk ∈ b be a vertex non-adjacent to yk.

If zk is adjacent to xk, we get a 1-FS obstruction. Otherwise, in every extending
representation, ⟨zk⟩ is to the right of ⟨yk⟩′. By k-FAT Lemma 4.6.3, we get a subgraph
Hk of a k-FAT obstruction. Together with u = r, this leads to a k-FS obstruction.

Lemma 4.6.13. If Ia is on the left of Ic, P (b) (P (c) and P (a) (P (c), then G and
R′ contain a (k, 1)-CE, k-FB, k-BI, k-FDS, or k-EFDS obstruction.

Proof. Let p ∈ P ↦→(a), and q be the vertex from Lemma 4.6.11. By applying Sliding
Lemma 4.2.5 to Ia, Ic and q, we get a pre-drawn interval s /∈ P (a) covering r(p), and
path Pq,s of intervals not in P (a), so s appears on the right of a in the Q-node. Simi-
larly, as in Case 2 of the proof of Lemma 4.6.10, we distinguish three cases according
to the relative positions of s and q in the Q-node; see Fig 4.28.

Case 1: s is on the left of q. By Lemma 4.2.4, there exists xk ∈ a non-adjacent
to all vertices of Pq,s, in particular non-adjacent to s and q. Let yk = q, zk = s, and
u = p. Clearly, zk is between xk and yk in the Q-node. By (k, ℓ)-CE Lemma 4.6.5 and
the existence of Pyk,zk

, we get a (k, 1)-CE obstruction. Notice that ⟨yk⟩′ can be made
free; see Fig. 4.28a.

Case 2: s is on the right of q. Since q is between b and s in the Q-node, we
get that s /∈ P (b). Let xk = s, zk = q, and u = r, where r is the vertex from
Lemma 4.6.11. There exists yk ∈ b non-adjacent to zk and, by the structure of the
Q-node, also non-adjacent to xk. Since yk is adjacent to p and r, ⟨yk⟩ is between
⟨xk⟩′ and ⟨zk⟩′ in every extending representation. By k-FAT Lemma 4.6.3, we get a
subgraph Hk of a k-FAT obstruction. If r(r) ≤ r(xk), together with u, we obtain a
k-FB or a k-BI obstruction. If r(r) > r(xk), together with u and v = p, we obtain a
k-BI obstruction; see Fig. 4.28b.

148

4.6. Obstructed Q-nodes

Ia Ic Ib

p = u

q = yk s = zkxk

(k, 1)-CE
(a)

Tα Tβ Tγ

xk

s = zk q = ykp = u

· · · · · ·

Ia Ic Ib

p = v

q = zk s = xkyk
r = u

k-FB or k-BI
(b)

Tα Tβ Tγ

yk

s = xk

q = zkr = up = v

· · · · · ·

Ia Ic Ib

p = u

q = ykxk zk
s = v

k-FDS
(c)

Tα Tβ Tγ

xk zk

q = yk
s = vp = u

r = w

· · · · · ·

Ia Ic Ib

p = u

q = yk r = wxk
zk

s = v

k-EFDS
(d)

Figure 4.28: Proof of Lemma 4.6.13. On the left, the pre-drawn intervals. On
the right, their positions in the MPQ-tree. (a) Case 1. (b) Case 2. (c) Case 3, if
ℓ(yk) ≤ ℓ(s). (d) Case 3, if ℓ(yk) > ℓ(s).

Case 3: ⟨s⟩′ intersects ⟨q⟩′. Since s contains Ib, it belongs to P (b). Let yk = q,
u = p, v = s, and w = r; we note that possibly s = r. By Lemma 4.2.4, there exists
xk ∈ a non-adjacent to yk, v, and w. Since xk is adjacent to u, then ⟨xk⟩ is on the left
of ⟨yk⟩′ in every extending representation. Finally, there exists zk ∈ b non-adjacent to
yk. Since zk is adjacent to u, v, and w, we have that ⟨zk⟩ is on the right of ⟨yk⟩′ in
every extending representation.

Since zk is between xk and yk in the Q-node, we can apply k-FAT Lemma 4.6.3,
which gives a subgraph Hk of a k-FAT obstruction. If ℓ(yk) ≤ ℓ(v), together with u
and v, we obtain a k-FDS obstruction; see Fig. 4.28c. If ℓ(yk) > ℓ(v), together with
u, v, and w, we get a k-EFDS obstruction; see Fig. 4.28d.

In summary, we conclude:

Lemma 4.6.14 (The Q-node case, Three Subtrees). If the three cliques creating the
obstruction belong to three different subtrees, then G and R′ contain a k-FAT, k-BI
(k ≤ 2), k-FS, k-EFS, k-FB, k-EFB, k-FDS, k-EFDS, k-FNS, or (k, ℓ)-CE obstruc-
tion (either k = ℓ = 2, or k ≥ ℓ = 1).

Proof. For an overview, see the diagram in Fig. 4.20. The proof follows from Lem-
mas 4.6.7, 4.6.8, 4.6.9, 4.6.10, 4.6.11, 4.6.12, and 4.6.13.

149

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

4.7 Proofs of the Main Results

Now, we are ready to put all results together to prove two main results for partial
representation extension of interval graphs.

Characterization of Minimal Obstructions. We are ready to prove Theorem 2.2.1
which states that a partial representation R′ of G is extendible if and only if G and
R′ contain none of the obstructions described in Section 4.1.

Proof of Theorem 2.2.1. If G and R′ contain one of the obstructions, they are non-
extendible by Lemma 4.1.2. It remains to prove the converse. If G is not an interval
graph, it contains an LB obstruction [249]. Otherwise, G is an interval graph and there
exists an MPQ-tree T for it. By Corollary 3.4.2, we know that a partial representation
R′ is extendible if and only if T can be reordered according to ▹. If it cannot be
reordered, then the reordering algorithm fails in some node of T . If this reordering
fails in a leaf, we get a 1-BI obstruction by Lemma 4.4.1. If it fails in a P-node, we
get an SE, 1-BI, or 1-FAT obstruction by Lemma 4.5.3. And if it fails in a Q-node,
we get one of the obstructions of Section 4.1 by Lemmas 4.6.1, 4.6.2, and 4.6.14.

Next, we show that a partial representation R′ is extendible if and only if every
quadruple of pre-drawn intervals is extendible by itself.

Proof of Corollary 2.2.2. The result follows from the fact that all the obstructions of
Theorem 2.2.1 contain at most four pre-drawn intervals.

Linear-time Certifying Algorithm. Next, we modify the linear-time algorithm of
Proposition 3.4.3 to also certify non-extendible partial representations by described
minimal obstructions. We first show that k-FAT obstructions can be found in linear
time:

Lemma 4.7.1. Suppose that the assumptions of k-FAT Lemma 4.6.3 are satisfied.
Then we can find a k-FAT obstruction in time O(n+m).

Proof. Since the proof of k-FAT Lemma 4.6.3 is constructive, the algorithm follows it.
Let Q be the Q-node. We search the graph G[Q] \ N [yk] from xk to compute C(xk),
and test whether zk belongs to it. If it does, the algorithm stops and outputs 1-FAT.
Otherwise, we compute Wk, choose tk, and store it together with Pk. We choose xk−1
as in the the proof; if si(Q) = s→tk

(Q), then either s←xk−1
(Q) = si+1(Q), or xk−1 belongs

to sections of Ti+1. Then we apply the rest of the algorithm recursively. It is important
that then we can remove C(xk) and Wk from the graph because they are not used in
the remainder of the obstruction.

Since the algorithm searches each vertex and edge of G[Q] \N [yk] at most once
when computing C(xj), we obtain that the algorithm runs in time O(n+m).

Similarly, a (k, ℓ)-CE obstruction can be obtained from (k, ℓ)-CE Lemma 4.6.5
in time O(n + m). Since obstructions are built constructively, we can modify the

150

4.8. Conclusions

algorithm of Proposition 3.4.3 to get a linear-time certifying algorithm for the partial
representation extension problem:

Proof of Theorem 2.2.3. We can assume that G is an interval graph; otherwise we can
find an LB obstruction in time O(n + m) using [255]. We recall the algorithm of
Proposition 3.4.3. We compute the MPQ-tree T and the interval ordering ▹, defined
by the partial representation R′. Using Proposition 3.3.4, we test whether T can
be reordered compatible with ▹ in time O(n + m). By Corollary 3.4.2, the partial
representation R′ is extendible if and only if the reordering is possible.

The algorithm of Proposition 3.3.4 uses Lemma 3.3.7 to reorder nodes of T . If
the reordering is not possible, it fails to reorder some node and the negative answer
is certified by subtrees which create an obstruction (1 clique for a leaf, 2 subtrees for
a P-node, and 4 subtrees for a Q-node). We distinguish three cases according to the
distinct types of obstructed nodes.

Case 1: A leaf cannot be reordered. We output a 1-BI obstruction in time O(n),
by searching the partial representation.

Case 2: A P-node P cannot be reordered. From Lemma 3.3.7, we get directly
a two-cycle Ti ▹ Tj ▹ Ti, ensured by Lemma 4.5.1, and four maximal cliques a, b,
c, and d defining it. By Lemma 4.5.2, one of these maximal cliques can be omitted,
and it can be clearly found in constant time. It remains to output an SE, 1-BI, or
1-FAT obstruction in time O(n+m), by following Lemma 4.5.3. For 1-BI and 1-FAT
obstructions, we find a shortest path in G[P] \N [yk] by searching the graph.

Case 3: A Q-node Q cannot be reordered. From Lemma 3.3.7, we get four sub-
trees with four maximal cliques defining the obstruction and, by following Lemma 4.6.1,
we can reduce it to at most three maximal cliques. An SE obstruction can be com-
puted in time O(n + m). If three maximal cliques are contained in two subtrees, we
follow Lemma 4.6.2 and output one of the obstructions in time O(n+m).

If three maximal cliques belong to three different subtrees, we follow the structure
of the proof of Lemma 4.6.14. In all cases, we derive some vertices somehow placed in
the Q-node and some pre-drawn intervals, which can be easily done in time O(n+m).
Next, we either apply k-FAT Lemma, or (k, ℓ)-CE Lemma to construct the obstruction,
which can be done in time O(n+m) by Lemma 4.7.1.

4.8 Conclusions

In this paper, we have described the minimal obstructions that make a partial interval
representation non-extendible. There are three main points following from the proof:

1. Minimal obstructions for the partial representation extension problem are much
more complicated than minimal forbidden induced subgraphs of interval graphs,
characterized by Lekkerkerker and Boland [249].

2. Nevertheless, it is possible to describe these obstructions using structural results
derived in [215] and in this paper. We show that almost all of these obstructions

151

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

consist of three intervals xk, yk and zk that are forced by the partial represen-
tation to be drawn in an incorrect left-to-right order. This incorrect placement
leads to the complex zig-zag structure of a k-FAT obstruction.

3. The structure of the sections of a Q-node Q can be very intricate. Suppose that
we contract in G[Q] the sections of each subtree Ti into one vertex. Then we
get an interval graph which has a unique interval representation up to flipping
the real line. Such interval graphs have been extensively studied, see for in-
stance [174, 125, 293]. Therefore, our structural results needed to find minimal
obstructions may be of independent interest.

Structural Open Problems. The first open problem we propose is a characteriza-
tion of minimal obstructions for other graph classes. We select those classes for which
polynomial-time algorithms are known [58, 59, 210, 211, 212, 20, 243].

Problem 4.8.1. What are the minimal obstructions for the partial representation
extension problems of the classes CIRCLE, FUN, PERM, TRAPEZOID, PROPER INT,
UNIT INT, k-NestedINT, and PROPER CIRCULAR-ARC?

The second open problem involves bounded representations, described in Sec-
tion 2.9.2.

Problem 4.8.2. What are minimal obstructions making bounds for interval graphs
unsolvable?

Algorithmic Open Problems. We have described a linear-time certifying algorithm
that can find one of the minimal obstructions in a non-extendible partial representa-
tion. There are several related computational problems, suggested by Jan Kratochvíl,
for which the complexity is open:

Problem 4.8.3. What is the computational complexity of the problem of testing whether
a given minimal obstruction is contained in G and R′?

Since a minimal obstruction contains at most four pre-drawn intervals, we can
test over all subsets of at most four pre-drawn intervals whether they form an ob-
struction (say, by freeing the rest of them and testing whether the modified partial
representation is extendible). If k is fixed, we can test whether the subgraph of a given
obstruction is contained in G. Given a triple xk, yk and zk forming a k-FAT obstruc-
tion, the proof of k-FAT Lemma 4.6.3 and the algorithm of Lemma 4.7.1 constructs
it while minimizing k. The approach needs to be changed to check whether they also
form an ℓ-FAT obstruction, for ℓ > k.

The next problem generalizes the partial representation extension problem.

Problem 4.8.4. What is the computational complexity of testing whether at most ℓ
pre-drawn intervals can be freed to make a partial representation extendible R′?

152

4.8. Conclusions

Similar problems are usually NP-complete. On the other hand, we propose the
following reformulation which might lead to a polynomial-time algorithm. Every min-
imal obstruction contains at most four pre-drawn intervals. Let P be the set of pre-
drawn intervals, and let S consist of all subsets of P of size at most four which form an
obstruction. We can clearly compute S in polynomial time. Then the problem above
is equivalent to finding a minimal hitting set of P and S. This problem is in general
NP-complete, but the extra structure given by the MPQ-tree might make it tractable.

Problem 4.8.5. What is the complexity of testing whether it is possible to remove at
most ℓ vertices from an interval graph G to make a partial representation extendible
R′?

This problem is fundamentally different from Problem 4.8.4, in which the partial
representation R′ is modified. In this problem, we modify the graph G itself, changing
its structure. When we remove a pre-drawn vertex, we also remove its pre-drawn
interval from the partial representation. We note that the assumption that G is an
interval graph is important. For general graphs G, the problem is known to be NP-
complete even when R′ = ∅ [251].

153

Chapter 4. Minimal Obstructions for RepExt of Interval Graphs

154

5 Interval Graphs of Limited
Nesting and Count of Lengths

5.1 Extending Partial Representations with Two Lengths 156
5.2 Basic Properties of k-Nested Interval Graphs 157
5.3 Recognizing k-nested Interval Graphs 159
5.4 Conclusions . 169

This chapter contains:

• 5.1 Extending Partial Representations with Two Lengths. We show an NP-
hardness reduction for two lengths, which works even when they are known
and each interval has its lenght prescribed by the input.
• 5.2 Basic Properties of k-nested Interval Graphs. We introduce some defi-

nitions and describe an efficient encoding of k-nested interval graphs using
2n⌈log k + 1⌉ bits. We present cleaned representations minimizing nesting
for a consecutive ordering of maximal cliques and determine which nestings
are forced in every interval representation.
• 5.3 Recognizing k-nested Interval Graphs. We describe a linear-time algo-

rithm for computing an interval representation of minimal nesting based
on dynamic programming on MPQ-trees. We compute triples (α, β, γ) for
each subtree of the MPQ-tree, from bottom to top, linked to minimal inter-
val representations. Formulas for P-nodes and for Q-nodes are described,
computing its triple from the triples of their subtrees.

http://pavel.klavik.cz/orgpad/nest_len_int.html

155

http://pavel.klavik.cz/orgpad/nest_len_int.html

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

5.1 Extending Partial Representations with Two Lengths

The complexity of recognizing k-LengthINT is a long-standing open problem, even for
k = 2. In this section, we show that RepExt(k-LengthINT) is NP-hard even when
k = 2. We adapt the reduction from 3-Partition used in [213, 214, 211, 212] which
is the following computational problem:

Problem: 3-Partition
Input: Integers A1, . . . , A3s and M such that M

2 < Ai <
M
4 and∑

Ai = Ms.
Question: Can Ai’s be split into s triples, each summing to exactly M .

This problem is strongly NP-complete [140], which means that it is NP-complete even
when the input is coded in unary, i.e., all integers are of polynomial sizes.

Theorem 2.4.1. Assume (i) and (ii). For an instance of 3-Partition, the reduction
constructs an interval graph G and a partial representation R′ as depicted in Fig. 5.1.
We claim that R′ can be extended using two lengths of intervals if and only if the
instance of 3-Partition is solvable. We set a = 1 and b = s · (M + 2) − 1. The
partial representation R′ consists of s + 1 disjoint pre-drawn intervals ⟨v0⟩′ , . . . , ⟨vs⟩′
of length a such that ⟨vi⟩′ = [i · (M + 2), i · (M + 2) + 1]. So they split the real line
into s equal gaps of size M + 1 and two infinite regions.

Aside v0, . . . , vs, the graph G contains a vertex w represented by an interval of
length b, adjacent to every vertex in G. Further, for each Ai, the graph G\w contains
P2Ai

(a path with 2Ai vertices) as one component, with each vertex represented by an
interval of length a.

The described reduction clearly runs in polynomial time. It remains to show that
R′ is extendible if and only if the instance of 3-Partition is solvable. The length of
b implies that every extending representation has ⟨w⟩ = [1, s · (M + 2)] to intersect
both ⟨v0⟩′ and ⟨vs⟩′. Therefore, each of the paths P2Ai

has to be placed in exactly one
of the s gaps. In every representation of P2Ai

, it requires the space at least Ai + ε for

v0 v1 v2

w

0 1 9 18

PA1
PA6

PA3
PA4

PA2
PA5

v0

v1

v2

w
PA1

PA2

PA3

PA4

PA5

PA6

Figure 5.1: Suppose that we have the following input for 3-Partition: s = 2,
M = 7, A1 = A2 = A3 = A4 = 2 and A5 = A6 = 3. The associated graph G
is depicted on top, and at the bottom we find one of its extending representations,
giving the 3-partitioning {A1, A3, A6} and {A2, A4, A5}.

156

5.2. Basic Properties of k-Nested Interval Graphs

some ε > 0. Three paths can be packed into the same gap if and only if their three
integers sum to at most M . Therefore, an extending representation R′ gives a solution
to 3-Partition, and vice versa. A similar reduction from BinPacking implies W[1]-
hardness when parameterized by the number of pre-drawn intervals; see [213, 214] for
details.

This reduction can be easily modified when (i) and (ii) are avoided. We add two
extra vertices: w0 adjacent to v0 and ws adjacent to vs, both non-adjacent to w. It
forces the length of w to be in [s · (M + 2)−1, s · (M + 2) + 1), so the length b does not
have to be prescribed. Also, this reduction works even when non-predrawn intervals
do not have lengths assigned.

5.2 Basic Properties of k-Nested Interval Graphs

In this section, we describe basic definitions and properties about nesting in interval
representations and about k-NestedINT.

Definitions. For an interval representation R, the nesting defines a partial ordering
(of intervals. Intervals ⟨u1⟩ , . . . , ⟨uk⟩ form a chain of nested intervals of length k if
⟨u1⟩ (⟨u2⟩ (· · · (⟨uk⟩. By ν(u), we denote the length of a longest chain of nested
intervals ending with ⟨u⟩. We denote ν(R) the length of a longest chain of nested
intervals in R, i.e.,

ν(R) = max
u∈V (G)

ν(u) and ν(G) = min
R

ν(R) = min
R

max
u∈V (G)

ν(u).

For A ⊆ V (G), we denote by G[A] the subgraph of G induced by A. For a represen-
tation R of G, let R[A] be the representation of G[A] created by restricting R to the
intervals of A. And for an induced subgraph H of G, let R[H] = R[V (H)].

Pruning Twins. Two vertices x and y are twins if and only if N [x] = N [y]. The
standard observation is that twins can be ignored since they can be represented by
identical intervals, and notice that this does not increase nesting and the number of
lengths. We can locate all twins in time O(n+m) [311] and we can prune the graph
by keeping one vertex per equivalence class of twins. An interval graph belongs to
k-NestedINT if and only if the pruned graph belongs to k-NestedINT.

Decomposition into Proper Interval Representations. The following equivalent
definition of k-NestedINT is used by Gajarský et al. [136]:

Lemma 5.2.1. An interval graph belongs to k-NestedINT if and only if it has an
interval representation which can be partitioned into k proper interval representations.

Proof. Let R be an interval representation partitioned into proper interval represen-
tations R1, . . . ,Rk. No chain of nested intervals contains two intervals from some Ri,
so the nesting is at most k. On the other hand, let R be a k-nested interval represen-
tation. We label each interval ⟨u⟩ by ν(u); see Fig. 5.2. Notice that the intervals of
each label i ∈ {1, . . . , k} form a proper interval representation Ri.

157

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

1
2

3

1
1
1

1

R

Code:

1ℓ3ℓ2ℓ1r1ℓ1ℓ1ℓ1r1r1r1ℓ2r3r1r

Figure 5.2: We label each interval by the length of a maximal chain of nested intervals
ending in it. We code the graph by the left-to-right sequence of left endpoints ℓ and
right endpoints r together with their labels.

Efficient encoding. An interval graph can be encoded by 2n⌈log n⌉ bits by labeling
the vertices 1, . . . , n and listing the left-to-right ordering of labels of the endpoints.
Proper interval graphs can be encoded more efficiently using only 2n bits: the sequence
of endpoints (ℓ for left one, r for right one), as they appear from left to right. We
generalize it for k-NestedINT.

Lemma 5.2.2. A graph in k-NestedINT can be encoded by 2n⌈log k + 1⌉ bits where n
is the number of vertices.

Proof. See Fig. 1.16b for an example. Let R1, . . . ,Rk be the labeling from the proof
of Lemma 5.2.1. From left to right, we output ℓ or r for each endpoint together with
its labels. This encoding requires ⌈log k + 1⌉ bits per endpoint.

Minimal Forbidden Induced Subgraphs. Interval graphs and the subclasses
k-NestedINT and k-LengthINT are closed under induced subgraphs, so they can be char-
acterized by minimal forbidden induced subgraphs. Lekkerkerker and Boland [249]
describe them for interval graphs, and Roberts [304] proved that 1-NestedINT =
1-LengthINT are claw-free interval graphs. On the other hand, 2-LengthINT have in-
finitely many minimal forbidden induced subgraphs [126] which are interval graphs.
In [179], our results in Section 5.3 are used to describe minimal forbidden induced
subgraphs for k-NestedINT.

Cleaned Representations. We assume that the reader is familiar with consecu-
tive orderings from Section 3.1. For a given consecutive ordering of maximal cliques,
it is easy to construct a representation the number of all nestings called a cleaned
representation.

Lemma 5.2.3. For a given consecutive ordering < of maximal cliques, there exists a
cleaned representation such that if ⟨u⟩ (⟨v⟩, then ⟨u⟩ is nested in ⟨v⟩ in every interval
representation with this consecutive ordering <. We can construct it in time O(n+m).

Proof. We place maximal cliques on the real line according to <. For each v ∈ V (G),
we place ⟨v⟩ on top of the maximal cliques containing v. Let v← be the left-most clique
containing v and v→ be the right-most clique containing v. We place ⟨v⟩ on the left
of v← and on the right of v→.

For a maximal clique a, let u1, . . . , uℓ be all vertices having u←i = a, i.e., all
intervals ⟨ui⟩ start at a. Since there are no twins, we have u→i ̸= u→j for all i ̸= j. We

158

5.3. Recognizing k-nested Interval Graphs

order the left endpoints of ⟨u1⟩ , . . . , ⟨uℓ⟩ exactly as the maximal cliques u→1 , . . . , u→ℓ
are ordered in <. Similarly, let v1, . . . , vℓ′ be all vertices having v→i = a. We order the
right endpoins of ⟨v1⟩ , . . . , ⟨vℓ′⟩ exactly as the maximal cliques v←1 , . . . , v←ℓ′ are ordered
in <.

The constructed interval representation avoids all unnecessary nesting. We get
that ⟨u⟩ (⟨v⟩ if and only if v← < u← ≤ u→ < v→ in which case the nesting is
clearly forced by the consecutive ordering <. The construction clearly runs in time
O(n+m).

Forced Nestings. We use MPQ-trees, see Sections 3.1 and 4.2 for definitions. We
study under which conditions is ⟨u⟩ forced to be nested in ⟨v⟩ in every interval repre-
sentation, and we represent this by a partial ordering (F . We have u (F v if and only
if there there exists a Q-node Q such that s←v (Q) is on the left of s←u (Q) and s→v (Q) is
on the right of s→u (Q).

Lemma 5.2.4. We have ⟨u⟩ (⟨v⟩ for every interval representation if and only if
u (F v.

Proof. If u (F v, then every consecutive ordering contains at least one maximal clique
containing v on the left of all maximal cliques containing u and at least one on the
right, so necessarily ⟨u⟩ (⟨v⟩.

Suppose that there exists a cleaned representation with ⟨u⟩ (⟨v⟩. Therefore,
every maximal clique contaning u also contains v, so u and v appear in sections of
a path from a leaf to the root of the MPQ-tree, and v appears at least as high as
u. Suppose that u ̸(F v. Both u and v do not belong to a same Q-node, otherwise
they could not be nested in a cleaned representation. There is no Q-node on the path
between u and v, above u; possibly u belongs to all sections of one Q-node. Therefore,
we can reorder all these P-nodes to place the subtrees containing u on the side, and
the obtained cleaned representation has ⟨u⟩ (̸ ⟨v⟩.

5.3 Recognizing k-nested Interval Graphs

In this section, we describe a linear-time algorithm for computing minimal nesting
of interval graphs. By Lemma 5.2.3, the problem reduces to finding a consecutive
ordering of maximal cliques which minimizes the nesting of a cleaned representation.
So we want to reorder the MPQ-tree to minimize the nesting, which is done by dynamic
programming from the bottom to the top.

Intuition. We process the MPQ-tree from the bottom to the top, and we optimize the
nesting. Let N be a node of the MPQ-tree and let T1, . . . , Tℓ be its subtrees. Suppose
that we know ν(G[T1]), . . . , ν(G[Tℓ]) from the dynamic programming. Is ν(G[N])
determined? The answer is that almost. Let R1, . . . ,Rℓ be interval representations of
G[T1], . . . , G[Tℓ] minimizing the nesting. We consider two model situations, depicted
in Fig. 5.3:

159

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

w

Rs Ri Rt

+1+0/+1 +0/+1

(a)

u
v

R1, . . . ,Ri−1 Ri Ri+1, . . . ,Rℓ

+0/+1 +0/+1

(b)

Figure 5.3: (a) The nesting ν(G[Ti]), for i ̸= s, t, is always increased by one with
⟨w⟩, but the nestings ν(G[Ts]) and ν(G[Tt]) may or may not be increased by one. (b)
The nesting ν(G[Ti]) may be increased by one with ⟨u⟩ or ⟨v⟩. It might not be possible
to preserve nesting on both sides, for instance when G[Ti] is the disjoint union of K1,3
and K1.

(a) Suppose that N is a P-node with s(N) = {w}. Then G[N] is the disjoint union
of G[T1], . . . , G[Tℓ] together with the universal vertex w. Every interval repre-
sentation of G[N] looks as depicted in Fig. 5.3a. We have two representations
Rs and Rt placed on the left and right sides of ⟨w⟩, respectively, while the re-
maining Ri, for i ̸= s, t, are placed inside ⟨w⟩. Therefore, their nestings ν(G[Ti])
are increased by one with ⟨w⟩. On the other hand, some intervals of Rs and Rt

may stretch out of ⟨w⟩, so the nestings ν(G[Ts]) and ν(G[Tt]) is not necessarily
increased by one. More precisely, the intervals of Rt contained in the left-most
clique and the intervals of Rs are not nested in ⟨w⟩ in a cleaned representation.

(b) Suppose that N is a Q-node and we consider the following simplified situation
depicted in Fig. 5.3b. The graph G[N] consists of G[Ti] together with two uni-
versal vertices u and v, each attached some other part of G[N] non-adjacent to
all vertices of G[Ti]. Then Ri is covered from, say, left by ⟨u⟩ and from right
by ⟨v⟩. The nesting of ν(G[Ti]) is not necessarily increased by one with ⟨u⟩ or
⟨v⟩. More precisely, in a cleaned representation, the intervals of Ri contained in
the left-most clique are not nested in ⟨v⟩ and those contained in the right-most
clique are not nested in ⟨u⟩. It is possible that both sides cannot be optimized
simultaneously.

Therefore, the dynamic programming computes three values for each subtree T , de-
noted as a triple (α, β, γ), which we define formally in the next subsection. We have
α = ν(G[T]). The value β is the increase in the nesting when T is placed on the side,
as in (a); so either β = α, or β = α − 1. The value γ is the increase in the nesting
of one side, subject to the other side being optimized according to β, as in (b). So
always β ≤ γ and either γ = α or γ = α− 1.

5.3.1 Triples (α, β, γ)
For an interval graph G, we define the triple (α, β, γ) as follows. Let Gα, Gβ and Gγ

be the graphs constructed from G as in Fig. 5.4. Let

α = ν(Gα)− 1, β = ν(Gβ)− 1, and γ = ν(Gγ)− 1.

Similarly, for a subtree T of the MPQ-tree, we define its triple as the triple of G[T].
The dynamic algorithm computes triples of all subtrees from the leaves to the root,
and outputs a of the root as ν(G).

160

5.3. Recognizing k-nested Interval Graphs

uα

G

Gα

R

uα

uβ

G

Gβ

R

uβ

uγ vγ

G

Gγ

R

uγ vγ

Figure 5.4: The graphs Gα, Gβ and Gγ with representations, defining the triple
(α, β, γ) of T . The vertices of G are adjacent to the added vertices uα, uβ, uγ , and
vγ , and not to the others. In bottom, we depict the structure of their representations
with R being a representation of G.

Lemma 5.3.1. For every interval graph G, its triple (α, β, γ) satisfies α − 1 ≤ β ≤
γ ≤ α.

Proof. We prove equivalently that ν(Gα)− 1 ≤ ν(Gβ) ≤ ν(Gγ) ≤ ν(Gα). We trivially
know that ν(Gβ) ≤ ν(Gγ) since Gβ is an induced subgraph of Gγ.

The definition of Gα implies that ν(Gα) = ν(G)+1, since in every interval repre-
sentation of Gα, both endpoints of ⟨uα⟩ are covered by attached paths, and therefore a
representationR of G is nested in ⟨uα⟩. Since G is an induced subgraph of Gβ, we have
ν(G) ≤ ν(Gβ), so the inequality ν(Gα)− 1 ≤ ν(Gβ) follows. For an alternative proof,
consider a representation of Gβ minimizing nesting. We modify it to a representation
of Gα by stretching ⟨uβ⟩ into ⟨uα⟩, which increases nesting by at most one, and by
adding the second path attached to ⟨uα⟩. So ν(Gα) ≤ ν(Gβ) + 1.

It remains to show the last inequality that ν(Gγ) ≤ ν(Gα). Consider a repre-
sentation of Gα with minimal nesting, we have G strictly contained inside ⟨uα⟩. By
shifting r(uα) to the left, we get ⟨uγ⟩. By adding ⟨vγ⟩, we do not increase the nesting
and we get a representation of Gγ. So ν(Gγ) ≤ ν(Gα).

Therefore, the triples classify interval graphs into three types; see Fig. 5.5 for
examples.

Corollary 5.3.2. Interval graphs G with ν(G) = k have triples of three types: (k, k−
1, k − 1), (k, k − 1, k) and (k, k, k).

Interpreting Triples. Let (α, β, γ) be the triple for G. We want to argue how the
formal definition relates to the description in the last paragraph of Intuition. We can
interpret the triple of G as increase in the nesting, depending how G is represented
with respect to the rest of the graph. Since α = ν(G), it is easy to understand. Next,
we describe an interpretation for the value β.

Lemma 5.3.3. For every representation of Gβ, we have ν(uβ) ≥ β + 1.

161

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

G

(2, 1, 1)

T

R

G

(2, 1, 2)

T

R

G

(2, 2, 2)

T

R

Figure 5.5: Three interval graphs G with ν(G) = 2, together with MPQ-trees T and
representations R minimizing the nesting.

Proof. We assume that a representation Rβ of Gβ is cleaned; it only decreases nesting.
By the definition of β, there exists a maximal chain of nested intervals of length at
least β + 1. Suppose that its length is at least two. Let R = Rβ[G], and we assume
that ⟨uβ⟩ covers R from the left. If this chain does not end with ⟨uβ⟩, it ends with an
interval of R placed in the right-most maximal clique. Since every other interval of
the chain is nested in ⟨uβ⟩, we replace this end with ⟨uβ⟩, and obtain a chain of nested
intervals of length at least β + 1 ending with ⟨uβ⟩.

In other words, in every representation of G, there exists a chain of length at
least β which is nested in any interval in the rest of the graph which plays the role of
⟨uβ⟩. In Lemma 5.3.5, we show that there exists a representation for which the length
of a longest such chain is exactly β. This links the value β to Fig. 5.3a.

Last, we describe an interpretation for the value γ.
Lemma 5.3.4. For every representation of Gγ, we have

min
{
ν(uγ), ν(vγ)

}
≥ β + 1 and max

{
ν(uγ), ν(vγ)

}
≥ γ + 1.

Proof. We prove this similar as in Lemma 5.3.3. Consider a cleaned representation
Rγ of Gγ. It contains a maximal chain of length at least γ + 1 ending with ⟨x⟩. If
x ̸= uγ and x ̸= vγ, we can replace ⟨x⟩ with both ⟨uγ⟩ and ⟨vγ⟩, so both ν(uγ) ≥ γ+ 1
and ν(vγ) ≥ γ + 1. Otherwise, suppose that, say, x = vγ. Then ν(vγ) ≥ γ + 1 and by
removing ⟨vγ⟩ and the added intervals, we obtain a representation of Rβ with uβ = uγ.
By Lemma 5.3.3, ν(uβ) ≥ β + 1.

Therefore, in every representation of G, there exists a chain of length at least
γ which is nested in any interval in the rest of the graph which plays the role of
either ⟨uγ⟩ or ⟨vγ⟩, while there is a chain of length at least β which in nested in any
interval playing the role of the other one. In Lemma 5.3.5, we show that there exists
a representation for which the lengths of longest such chains are exactly β and γ,
respectively. This links the value γ to Fig. 5.3b.

Minimal Representations. Let (α, β, γ) be a triple of an interval graph G and let R
be a cleaned representation of G with a← and a→ being the leftmost and the rightmost
maximal cliques in its consecutive ordering of maximal cliques. We define:

ν→(R) = max
x∈V (G)\a←

ν(x), and ν←(R) = max
x∈V (G)\a→

ν(x).

162

5.3. Recognizing k-nested Interval Graphs

The representation R of G is minimal if ν(R) = α, ν→(R) = β and ν←(R) = γ.
So a minimal representation R can be used simultaneously in representations of Gα,
Gβ and Gγ to get nestings α + 1, β + 1 and γ + 1, respectively. For instance, all
representations in Fig. 5.5 are minimal.
Lemma 5.3.5. For every interval graph G, there exists a minimal representation R.

Proof. We argue according to the type of the triple of G.
The triple (k, k− 1, k− 1). Let Rγ be a cleaned representation of Gγ minimizing

the nesting, we have ν(Rγ) = k. Since ν(G) = k, we have ν(Rγ[G]) = k as well.
By Lemma 5.3.4, ν(uγ) ≥ k and ν(vγ) ≥ k, so we get equalities. The representation
R = Rγ[G] has ν←(R) = ν→(R) = k − 1 and R is minimal.

The triple (k, k−1, k). Let Rβ be a cleaned representation of Gβ minimizing the
nesting such that ⟨uβ⟩ intersects Rβ[G] from left, we have ν(Rβ) = k. Let R = Rβ[G].
Since ν(G) = k, we have ν(R) = k as well. Similarly as in the proof of Lemma 5.3.3,
we get ν→(R) = k− 1. If uγ = uβ and we add ⟨vγ⟩ with the attached path, we obtain
a representation of Gγ with nesting at least k + 1. Therefore, ν←(R) = k and R is
minimal.

The triple (k, k, k). Let R be a cleaned representation of G minimizing the
nesting, so ν(R) = k. If ν→(R) < k or ν←(R) < k, we can add ⟨ub⟩ and the attached
intervals to obtain a representation of Gb of nesting k, so b = k − 1; a contradiction.
So ν→(R) = ν←(R) = k and R is minimal.

For a representation R, the flipped representation R↔ is created by reversing
the left-to-right order of endpoints of intervals. Notice that ν(R) = ν(R↔), ν→(R) =
ν←(R↔) and ν←(R) = ν→(R↔).
Lemma 5.3.6. For every interval graph G, there exists a cleaned representation R
of G minimizing the nesting such that for every subtree T of its MPQ-tree, R[T] is
minimal or R↔[T] is minimal.

Proof. Let R be a cleaned representation of G minimizing the nesting, and consider
a maximal subtree T for which R[T] is not minimal. By Lemma 5.3.5, there exists
a minimal representation RT of G[T]. If ν→(R[T]) ≤ ν←(R[T]), let R∗T = RT ,
otherwise let R∗T = R↔T . Since R[T] appears consecutively in R, we replace it by R∗T ,
and construct a modified cleaned representation R̂ of G. It remains to argue that for
every subtree T ′ containing T , the representation R̂[T ′] remains minimal; the lemmas
then follows by induction.

We know that R[T ′] is minimal. The modification only changed chains which
start in R∗T . By Lemmas 5.3.4, 5.3.5, we get that ν(R∗T) ≤ ν(R[T]), ν→(R∗T) ≤
ν→(R[T]) and ν←(R∗T) ≤ ν←(R[T]). Therefore, every chain above R[T] extends only
chains with lengths equal or shorter, so R̂[T ′] remains minimal.

Triples for Leaves. Recall that we have no twins. For a leaf L of the MPQ-tree, we
have eitherG[L] having no vertices (when s(L) = ∅), orG[L] ∼= K1 (when s(L) = {w}).
In the former case, the triple of L is equal (0, 0, 0). In the latter case, it is equal (1, 0, 0).

163

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

(1, 0, 0)

(1, 1, 1)

(2, 1, 1)

(2, 2, 2)

(3, 2, 2)

R

Figure 5.6: An MPQ-tree representing G with the computed triples (α, β, γ) (equal
on each level) and a cleaned representation R minimizing nesting. We have ν(G) = 3.

5.3.2 Triples for P-nodes

Let T1, . . . , Tp be the children of a P-node P , with p ≥ 2, with the computed triple
(αi, βi, γi) for each subtree Ti. We compute the triple (α, β, γ) of the subtree T = T [P]
using the following formulas; see Fig. 5.6 for an example:

α =

⎧⎨⎩max{α1, . . . , αp}, if s(P) = ∅,
mins ̸=t max{βs + 1, βt + 1, αi + 1 : i ̸= s, t}, if s(P) = {w}.

β = min
s

max{βs, αi : i ̸= s},
γ = max{α1, . . . , αp}.

Lemma 5.3.7. The formulas compute the triple (α, β, γ) of T [P] correctly.

Proof. This proof also explains how these formulas are formed.
The value α is computed correctly. We know that α = ν(G[T]). If s(P) =

∅, then G[T] is the disjoint union of G[T1], . . . , G[Tp] with αi = ν(G[Ti]), so α =
max{α1, . . . , αp}. Otherwise, we get the situation from Fig. 5.3a.

First, we argue that G[T] has a representation R of nesting α from the formula.
Intervals of all subtrees except for the leftmost subtree Ts and the rightmost subtree
Tt are completely nested inside ⟨w⟩; and we minimize over all possible choices of s ̸= t.
Let Ri be a minimal representation for G[Ti] from Lemma 5.3.5, and we use R↔s for
G[Ts]. For every i ̸= s, t, we get that ν(Ri) = αi is increased by one with ⟨w⟩. For Rs

and Rt, only ν←(R↔s) = βs and ν→(Rt) = βt are increased by one with ⟨w⟩. We get

ν(R) = ν(w) = min
s ̸=t

max{βs + 1, βt + 1, αi + 1 : i ̸= s, t} = α.

On the other hand, consider a representation R of G[T]. There is no chain of
nested intervals containing intervals from two different subtrees Ti and Tj. Let Ri =
R[Ti] and let Rs and Rt be the leftmost and the rightmost of these representations,
respectively. For every i ̸= s, j, the representation Ri has the nesting at least αi, so
ν(R) ≥ αi + 1. By Lemma 5.3.4, we know that ν←(Rs) ≥ βs and ν→(Rt) ≥ βt and
these chains are nested in ⟨w⟩, so ν(R) ≥ max{βs + 1, βt + 1}. So ν(R) ≥ α from the
formula.

The value β is computed correctly. First, we construct a representation Rβ of
Gβ with nesting β + 1. If s(P) = {w}, in every cleaned representation, ⟨w⟩ ̸(⟨uβ⟩,

164

5.3. Recognizing k-nested Interval Graphs

so that every other interval is either nested in both, or in neither. So we can assume
that s(P) = ∅.

When the added intervals are placed on the right of ⟨uβ⟩, intervals of all subtrees
except for a left-most one Ts are completely nested inside ⟨uβ⟩; and we again minimize
over all possible choices of s. Let Ri be a minimal representation of G[Ti], we use R↔s
for G[Ts]. For every i ̸= s, we get that the nesting ν(Ri) = αi is increased by one by
⟨uβ⟩. For Ts, the nesting ν←(R↔s) = βs is increased by one with ⟨uβ⟩. We get

ν(Rβ) = ν(uβ) = min
s

max{βs + 1, αi + 1 : i ̸= s} = β + 1.

For the other implication, consider a cleaned representation of Gβ. Similarly, as above,
we get that the nesting is at least β + 1.

The value γ is computed correctly. We just sketch the argument, it is similar as
above. Let Ri be a minimal representation of G[Ti]. We may choose Ts and Tt, and
use R↔s for Ts. Then only the nesting ν←(R↔s) = βs is increased by one with ⟨vγ⟩ and
only the nesting ν→(Rt) = βt is increased by one with ⟨uγ⟩. But since R↔s is nested
inside ⟨uγ⟩ and Rt is nested inside ⟨vγ⟩, it does not matter and the nestings ν(R↔s)
and ν(Rt) are both increased by one anyway. Therefore, this choice of Ts and Tt is
useless and a constructed representation of Gγ has the nesting max{α1, . . . , αp} + 1.
The other implication is proved similarly as before.

Lemma 5.3.8. For a P-node with p children, the triple (α, β, γ) can be computed in
O(p).

Proof. By Lemma 5.3.1, we always have either βi = αi − 1, or βi = αi. Only in the
former case, we may improve the nesting by choosing s = i or t = i. We call subtrees
Ti with βi = αi − 1 as savable.

For γ and for α with s(P) = ∅, we just find the maximum αi which can be done
in time O(p). For α with s(P) ̸= ∅ and β, we first locate all Ti which maximize αi. If
at least one of them is not savable, say Tj, then α = αj + 1 and β = αj. Otherwise
if all are savable, then the values α and β depend on the number of these subtrees. If
there are at most two, then α = αi, otherwise α = αi + 1. If there is exactly one, then
β = βi, otherwise β = βi + 1.

5.3.3 Triples for Q-nodes

The situation is more complex and the values γ are also required. Let Q be a Q-node
with subtrees T1, . . . , Tq, where q ≥ 3, each with a triple (αi, βi, γi). We want to
compute the triple (α, β, γ) of the subtree T = T [Q]. Since lengths of chains are not
changed by flipping Q, we can fix the left-to-right order of its subtrees as T1, . . . , Tq.
See Fig. 5.7 for an example.

Structure of Chains. Suppose that some cleaned representations R1, . . . ,Rq of
G[T1], . . . , G[Tq] are chosen. Then the corresponding cleaned representation of G[T] is
uniquely determined. What is the structure of chains of nested intervals? Each chain
starts in some subtree Ti and then continues with intervals in s(Q) as follows. If it
contains ⟨x⟩ (⟨y⟩ for x, y ∈ s(Q), then x (F y, so y starts more to the left and ends

165

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

x1

x2

x3
x4

x5

x6

s1(Q) s2(Q) s3(Q) s4(Q) s5(Q) s6(Q) s7(Q) s8(Q)

T1

(2, 1, 1)

T2

(0, 0, 0)
T3 T4

(1, 0, 0)
T5 T6

(1, 0, 0)
T7

(2, 1, 2)

T8

(1, 1, 1)

x1

x3

x2

x5

x4 x6

D

Figure 5.7: On the left, a Q-node Q with eight subtrees. On the right, the DAG D
of forced nestings in s(Q).
• For R∗5 = R5 (depicted), we get ν(x3) = 2, ν(x5) = 3, ν(x4) = 4, and ν(x2) = 5.
• For R∗5 = R↔5 (by flipping T5), we get ν(x3) = 3, ν(x5) = 2, ν(x4) = 3, and
ν(x2) = 4.
The second option minimizes the nesting and it gives the triple (4, 3, 4) for T [Q].

more to the right than x in sections of Q. We represent the relation (F on s(Q) by a
DAG D, having an edge (x, y) if and only if x (F y; see Fig. 5.7 on the right.

Suppose that a chain of nested intervals of s(Q) of lenght ℓ starts with ⟨x⟩. Let
s←x (Q) = ss(Q) and s→x (Q) = st(Q), for some s < t. Then every chain of every Ri

such that s < i < t is nested in ⟨x⟩, so for each Ri, there exists a chain of nested
intervals of length ν(Ri) + ℓ. But there might not be chains of lengths ν(Rs) + ℓ and
ν(Rt) + ℓ. The reason is that only chains in Rs not ending with an interval contained
in the leftmost maximal clique of Rs are nested in ⟨x⟩, and only those of Rt avoiding
the rightmost maximal clique of Rt. So there only exist chains of lengths ν→(Rs) + ℓ
and ν←(Rt) + ℓ.

By Lemma 5.3.5, there exists a minimal representation Ri of G[Ti] with ν(Ri) =
αi, ν→(Ri) = βi and ν←(Ri) = γi; and we can swap the last two nestings with R↔i .
Let R∗i ∈ {Ri,R↔i }. We denote ⃝→i = ν→(R∗i) and ⃝←i = ν←(R∗i).

For each Ti, we choose either R∗i = Ri : ⃝→i = βi,
⃝←i = γi,

or R∗i = R↔i : ⃝→i = γi,
⃝←i = βi.

(5.1)

By combining these chosen representations R∗i for all subtree Ti, we get one of 2q

possible representations R[T]. For each of them, we compute ν(x) for all x ∈ s(Q)
using the following formulas:

ν(x) = max{⃝←s + 1,⃝→t + 1, αi + 1, ν(y) + 1 :
s←x (Q) = ss(Q), s→x (Q) = st(Q), s < i < t and y ∈ PredD(x)

}
,

(5.2)

where PredD(x) denotes the set of all direct predecessors of x in D. These values can
be computed according to a topological sort of D.

Formulas for Triples. The triple (α, β, γ) is determined by minimal nestings of
Gα, Gβ, and Gγ. We study how chains in s(Q) are extended by the added intervals

166

5.3. Recognizing k-nested Interval Graphs

⟨uα⟩, ⟨uβ⟩, ⟨uγ⟩ and ⟨vγ⟩. Further, we consider two copies ⟨uβ←⟩ and ⟨uβ→⟩ of ⟨uβ⟩.
Recall that the left-to-right ordering of the subtrees of Q is fixed. Therefore, ⟨uβ⟩
can intersect R either from left (represented by ⟨uβ→⟩), or from right (represented by
⟨uβ←⟩). Similarly, we assume that ⟨uγ⟩ intersects R from left while ⟨vγ⟩ from right.

We add auxiliary vertices uα, u←β , u→β , uγ and vγ into D and get the following
extended DAG D′:

V (D′) = V (D) ∪ {uα, uβ← , uβ→ , uγ, vγ}
E(D′) = E(D) ∪

{
(x, uα), (y, uβ←), (y, vγ), (z, uβ→), (z, uγ) :

x ∈ s(Q), y ∈ s(Q) \ s1(Q), z ∈ s(Q) \ sq(Q)
}
.

In other words, uα extends every chain in s(Q), but uβ← and vγ extend only those
not ending with an interval in s1(Q), and uβ→ and uγ only those not ending with an
interval in sq(Q).

We compute (α, β, γ) of T [Q] using the following formulas:

α = min
∀R∗i

max
{
α1, . . . , αq, ν(y) : y ∈ PredD′(uα)

}
,

β← = min
∀R∗i

max
{
β1, α2, . . . , αq, ν(y) : y ∈ PredD′(uβ←)

}
,

β→ = min
∀R∗i

max
{
α1, . . . , αq−1, βq, ν(y) : y ∈ PredD′(uβ→)

}
,

β = min{β←, β→},
γ = min

∀R∗i
max

{
α1, . . . , αq, ν(y) : y ∈ PredD′(uγ) ∪ PredD′(vγ)

}
.

Lemma 5.3.9. The formulas compute the triple (α, β, γ) of T [Q] correctly.

Proof. We assume that the left-to-right order of subtrees of Q is fixed, it does not
change nesting. Recall that in a cleaned representation R of G[T], the nesting ν(R)
is determined by representations R[T1], . . . ,R[Tq].

The value α is computed correctly. First, we construct a representation Rα of
Gα with ν(Rα) = ν(uα) = α + 1 for α given by the above formula. We construct 2q

representations for all choices ofR∗i using (5.1), and we use a representation minimizing
the nesting, corresponding to the minimum min∀R∗i in the formula. The choices R∗i
determine a cleaned representation Rα of Gα. Nesting of the intervals of s(Q) is
computed using (5.2) and ν(uα) is equal the length of the longest chain in Rα[G[Q]]
increased by one. The formula for α maximizes over lengths of all chains in Rα[G[Q]].

On the other hand, consider a cleaned representation R of G[T]. We argue that
ν(R) ≥ α for α given by the above formula. By Lemma 5.3.4, the representation R[Ti]
has ν(R[Ti]) ≥ αi and either ν→(R[Ti]) ≥ βi and ν←(R[Ti]) ≥ γi, or ν→(R[Ti]) ≥ γi

and ν←(R[Ti]) ≥ βi. As in the proof of Lemma 5.3.6, by replacing R[Ti] with Ri in
the former case and with R↔i in the latter case, we do not increase the nesting. We
obtain a representation of G[T] of nesting α, so ν(R) ≥ α.

The value β is computed correctly. Concerning β, in every cleaned representation
Rβ of Gβ, either intervals of sq(Q) are not nested in ⟨uβ⟩ (represented by ⟨uβ←⟩), or

167

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

intervals of s1(Q) are not nested in ⟨uβ⟩ (represented by ⟨uβ→⟩). We compute both
possibilities in β← and β→, and use the minimum. The rest of the arguments is similar
as above.

The value γ is computed correctly. Again, the arguments are similar as for α
above, the only difference is that ⟨uα⟩ is replaced by both ⟨uγ⟩ and ⟨vγ⟩.

Unfortunately, formulas do not directly lead to a polynomial-time algorithm since
they minimize over 2q possible choices of R∗i . Next, we prove that these choices can
be done greedily.
Lemma 5.3.10. For each of α, β←, β→ and γ, we can locally choose R∗i minimizing
the value.

Proof. Notice that the choices of R∗i are independent of each other since each R∗i
influences only lenghts of chains starting in R[Ti]. We give a description for α, and it
works similarly for the others.

For each x ∈ s(Q), we compute the length ℓ(x) of a longest chain in s(Q)∪{uα}
starting with ⟨x⟩. Let

ℓ←i = max
x∈s(Q)

s←x (Q)=si(Q)

ℓ(x), and ℓ→i = max
x∈s(Q)

s→x (Q)=si(Q)

ℓ(x),

and let ℓ∗i = 0 if no such x ∈ s(Q) exists. We choose R∗i = Ri if and only if ℓ→i ≥ ℓ←i .
These choices minimize lengths of all chains in a representation of G[T]. For instance,
in Fig. 5.7, we get ℓ←5 = 3 and ℓ→5 = 2, so we choose R∗5 = R↔5 .
Lemma 5.3.11. For a Q-node Q with q children, the triple (α, β, γ) of T [Q] can be
computed in time O(q +mQ), where mQ is the number of edges of G[s(Q)].

Proof. SinceG[s(Q)] is connected, it contains at mostmQ vertices. For every x ∈ s(Q),
we know s←x (Q) and s→x (Q) which we use to compute the DAG D. This can be done
by considering all mQ edges, and testing for each whether the pair is nested. Then,
we construct the extended DAG D′.

For each x ∈ V (D′) and each y ∈ {uα, u
←
β , u

→
β , uγ, vγ}, we compute the length

of a longest path from x to y. This can be done in linear time for all vertices x by
processing D′ from the top to the bottom. For each Ti, we choose greedily R∗i as
described in the proof of Lemma 5.3.10. We compute the triple (α, β, γ) using the
above formulas. The total running time is O(q +mQ).

5.3.4 Construction of Linear-time Algorithm

We use the above results to prove that ν(G) can be computed in linear time:

Theorem 2.4.2. For an interval graph G, we compute its MPQ-tree in time O(n +
m) [235]. Then we process the tree from the leaves to the root and compute triples
(α, β, γ) for every node, as described above. We output α of the root which is the
minimal nesting number ν(G). By Lemmas 5.3.7 and 5.3.9, this value is computed
correctly. By Lemmas 5.3.8 and 5.3.11, the running time of the algorithm is O(n +
m).

168

5.4. Conclusions

x y z w

u G

u

x
y

z

w

R x w

u
y z

T

Figure 5.8: On the left, a proper interval graph G, i.e., ν(G) = 1. In the middle, an
example of an extending representation R with ν(R) = 2, and its nesting is optimal
since ⟨x⟩′ (⟨u⟩′. Further, in every extending representation, ⟨x⟩′ (⟨y⟩ or ⟨y⟩ (⟨u⟩′.
On the right, the corresponding MPQ-tree T .

5.4 Conclusions

In this thesis, we have introduced k-nested interval graphs which is a new hierarchy
of graph classes between proper interval graphs and interval graphs. The presented
understanding is already much greater than understanding of k-length interval graphs
reached after more than 35 years of their research. We have presented a relatively
simple recognition algorithm based on dynamic programming and minimal represen-
tations. Other research directions immediately open. In [179], our results are used to
derive minimal forbidden induced subgraphs of k-NestedINT.

Problem 5.4.1. Which structural properties and characterizations of proper interval
graphs generalize to k-nested interval graphs?

Problem 5.4.2. Which computational problems solvable efficiently for proper interval
graphs can be solved efficiently for k-nested interval graphs as well?

The second problem is interesting for computational problems which are harder
for general interval graphs. One example is deciding first-order logic properties which
is W[2]-hard for interval graphs [138], but can be solved in FPT for k-nested interval
graphs [136].

Partial Representation Extension. While this part deals with the partial represen-
tation extension problems, they were not discussed in Chapter 5 at all. The presented
results can be used as a prerequisite to attack the problems RepExt(k-NestedINT).
In [220], they are used to find an extending interval representation of minimal nest-
ing in polynomial time, by a much more involved dynamic programming than in the
recognition algorithm of Section 5.3. Can the structural results of Chapters 4 and 5
and [179] be joined to get a structural characterization of extendible partial represen-
tations of k-nested interval graphs?

Problem 5.4.3. Is it possible to characterize minimal obstructions for partial repre-
sentation extension of k-nested interval graphs?

A partial representation R′ poses three restrictions:

(i) Some pre-drawn intervals can be nested in each other which increases the nesting.
(ii) The consecutive ordering has to extend ▹ which restricts the possible shuffling

of subtrees.

169

Chapter 5. Interval Graphs of Limited Nesting and Count of Lengths

(iii) Some subtrees can be optimized differently depending on the side they are at-
tached.

The problem is difficult since we have to deal with them simultaneously. For an
example, see Fig. 5.8.

RepExt for k-length Interval Graphs. In Theorem 2.4.1, we prove that the prob-
lem RepExt(k-LengthINT) is NP-hard for k ≥ 2. Are these problems NP-complete?
The natural idea would be to apply a similar shifting procedure as in the proof of
Lemma 2.3.3. But to use such an approach, we first need to restrict k different lengths
in every extending representation.

Problem 5.4.4. Does RepExt(k-LengthINT) belong to NP, for every k ≥ 2?

170

PART

II

Extending Algebraic Properties
of Graphs

171

172

6 Overview of Algebraic
Properties of Graphs

6.1 Outline . 174
6.2 3-connected Reduction . 175
6.3 Automorphism Groups of Planar Graphs 177
6.4 Graph Isomorphism Problem . 186
6.5 Graph Isomorphism Problem Restricted by Lists 188
6.6 Regular Graph Covers . 191

This chapter contains:

• 6.1: Outline. We describe which algebraic properties are studied.
• 6.2: 3-connected Reduction. We introduce the 3-connected reduction which

generalizes connected components and block trees, and decomposes graphs
into 3-connected components. All described results are proved in Chapter 7.
• 6.3: Automorphism Groups of Planar Graphs. We describe results about

automorphism groups of restricted classes of graphs and in particular of
planar graphs. The inductive Jordan-like characterization of the automor-
phism groups of planar graphs is proved in Chapter 8.
• 6.4: Graph Isomorphism Problem. Known complexity results are discussed.
• 6.5: Graph Isomorphism Problem Restricted by Lists. Lubiw [260] proved

that this generalization of the graph isomorphism problem is NP-complete.
We describe results for variety of graph classes and graph parameters proved
in Chapter 9.
• 6.6: Regular Graph Covers. We describe motivations for regular graph cov-

ers, survey several related problems and describe structural results proved
in Chapter 10 and algorithmic results proved in Chapter 11.

http://pavel.klavik.cz/orgpad/algebraic_properties.html

173

http://pavel.klavik.cz/orgpad/algebraic_properties.html

Chapter 6. Overview of Algebraic Properties of Graphs

6.1 Outline

In Part II, we study algebraic properties related to symmetries of graphs described by
automorphism groups, and we study them from both the structural and computational
points of view. For a graph G, a bijection π : G → G is called an automorphism if
uv ∈ E(G) ⇐⇒ π(u)π(v) ∈ E(H). The automorphism group of G, denoted Aut(G),
consists of all automorphisms of G.

In mathematics and computer science, study of symmetries is important because
many objects are highly regular and can be simplified and understood using symme-
tries. For instance, groups help in designing large computer networks [106, 365]. The
well-studied degree-diameter problem asks, given integers d and k, to find a maximal
graph X with diameter d and degree k. Such graphs are desirable networks hav-
ing small degrees and short distances. Currently, the best constructions are highly
symmetrical graphs made using groups [281].

Below, we give an outline of this chapter and of Part II:

Section 6.2. We describe the 3-connected reduction which decomposes a graph into its
3-connected components. It is based on our papers [118, 119]. It is the main structural
tool of Part II: we study algebraic properties of 3-connected graphs and then combine
these findings for general graphs. The results are presented in Chapter 7.

Section 6.3. We describe the automorphism groups of trees, interval graphs, permu-
tation graphs and circle graphs, based on [202, 224, 225]. Then, we give an overview of
the first inductive Jordan-like characterizations of the automorphism groups of planar
graphs proved in our papers [217, 218], which we present in Chapter 8.

Section 6.4. We describe the known results for the famous graph isomorphism prob-
lem, denoted GraphIso. For graph G and H, it asks whether there exists an isomor-
phism π : G→ H satisfying uv ∈ E(G) ⇐⇒ π(u)π(v) ∈ E(H).

Section 6.5. We present a generalization called list restricted graph isomorphism, first
introduced by Lubiw [260]. For each vertex v ∈ V (G), we are given a list L(v) ⊆ V (H)
of possible images. In Chapter 9, we prove many results concerning the complexity of
list restricted graph isomorphism for variety of graph classes and graph parameters,
based on our paper [209].

Section 6.6. Graph covering is a topological notion of local similarity between two
graphs G and H. It is given by a covering projection p from the big graph G to the
small graph H. In Chapters 10 and 11, we study regular graph covering in which
the covering projection is given by a semiregular subgroup Γ of Aut(G) such that
H ∼= G/Γ, and H is called a quotient of G. In Chapter 10, we fully describe the
behaviour of regular graph covering with respect to 1-cuts and 2-cuts in G, i.e., with
respect to the 3-connected reduction. Based on these structural resuls, in Chapter 11,
we construct an FPT algorithm for regular covering testing for planar inputs G. The
presented results are based on our papers [118, 119, 120]. Also, in Section 6.6.6, we
define the properties (P1), (P2), (P3), and (P3∗) for a graph class C, used in many
places of Part II.

174

6.2. 3-connected Reduction

6.2 3-connected Reduction

It is well known that a disconnected graph can be decomposed into its connected com-
ponents. Similarly, every connected graph forms a tree of 2-connected blocks joined
by articulations called block tree (see Section 7.3 for details). Therefore, many prob-
lems for general graphs may be solved separately for each block of each connected
components, and then the results are joined together.

6.2.1 Atoms, Reduction Series and Reduction Tree

In Chapter 7, we describe a generalization called the 3-connected reduction which
decomposes a graph into 3-connected components. Below, we describe only simplified
definitions, see Chapter 7 for precise ones.

Atoms. In Section 7.4, we introduce the important definition of an atom. Atoms
are inclusion-minimal subgraphs with respect to 1-cuts and 2-cuts which cannot be
further simplified. Atoms are essentially paths, cycles, stars, or 3-connected graphs.
We distinguish three types of atoms:

• Proper atoms are inclusion-minimal subgraphs separated by a 2-cut inside a
block.
• Dipoles are formed by the sets of all parallel edges joining two vertices.
• Block atoms are blocks which are leaves of the block tree, or stars of all pendant

edges attached to a vertex. The central block is never a block atom.

Our definition of atoms is quite technical, so that it works nicely with respect to regular
graph covering studied in Chapters 10 and 11.

Reduction. The 3-connected reduction, described in Section 7.5, forms a reduction
series of graphs G = G0, G1, . . . , Gr. The graph Gi+1 is constructed from Gi by
replacing all atoms of Gi by colored edges of two types: directed and undirected. The
colors encode the isomorphism classes of atoms while the edge types encode symmetry
types of atoms. In this process, we remove details from the graph but preserve its
overall structure. The terminal graph in the series, denoted by Gr, contains no atoms
and it is called a primitive graph. We prove that it is either very simple (essentially
K2 or a cycle), or essentially a 3-connected graph.

Reduction Tree. The 3-connected reduction decomposes a graph G into atoms and
a primitive graph. The decomposition process is captured by a reduction tree. It is
a rooted tree having the primitive graph as a root. The remaining nodes correspond
to atoms encountered in the reduction. Each node corresponding to some atom A is
attached to the edge e in another node such that e replaces A in the reduction.

6.2.2 Change in Automorphism Groups

It is well-known that the automorphism group Aut(G) preserves the central block or
central articulation of G (see Section 7.3). Similarly, the central block plays a key

175

Chapter 6. Overview of Algebraic Properties of Graphs

role in every regular covering projection p : G → H. The reason is that p is non-
trivial only on this central block; the remaining blocks are isomorphically preserved
in H. Therefore, the atoms and the 3-connected reduction are defined with respect to
the central block or articulation, so that it is preserved in the primitive graph. The
reduction captures important information about symmetries and regular quotients of
G.

More precisely, the reduction from Gi to Gi+1 is defined in such a way that an
induced reduction epimorphism Φi : Aut(Gi) → Aut(Gi+1) possesses nice properties;
see Proposition 7.6.1. We can describe the change of the automorphism group explicitly
using Φi:

Proposition 6.2.1. If Gi is reduced to Gi+1, then

Aut(Gi+1) ∼= Aut(Gi)/Ker(Φi).

The 3-connected reduction behaves nicely with respect to planar graphs. As
described in Sections 1.4.1 and 8.1, the automorphism groups of 3-connected pla-
nar graphs are spherical groups. Similarly, the regular quotients of 3-connected pla-
nar graphs can be easily understood using classical results from geometry (see Sec-
tion 10.4). In Chapters 8 and 10, we use the 3-connected reduction to describe the
automorphism group and the regular quotients of planar graphs, respectively.

6.2.3 Relation to Previous Works

Seminal papers by Mac Lane [265] and Trakhtenbrot [340] introduced this idea of
decomposition into 3-connected components. It was further extended in [344, 188,
191, 78, 352, 27]. This decomposition can be represented by a tree whose nodes are
3-connected graphs, and this tree is known in the literature mostly under the name
SPQR tree [95, 96, 97, 167].

The novelty of our reduction is in the following three key differences with respect
to the aforementioned results:

1. The previous results apply the reduction only to 2-connected graphs. Our re-
duction is applied to all connected graphs, so we also reduce parts separated by
1-cuts. One advantage is that it captures the entire decomposition of a connected
graph by one unified tree, making many results more transparent. Other reasons
are mentioned in Section 7.3. A disadvantage is that the definition of atoms is
more involved.

2. The reduction is augmented by colored edges (encoding different isomorphism
classes of the corresponding atoms) which are undirected or directed (encoding
different symmetry types of atoms). This allows to capture the changes in the
automorphism group as described in Proposition 6.2.1. Some of these ideas
also appear in [13]. Further, a third type of halvable edges in introduced in
Chapters 10 and 11 to capture semiregular subgroups and regular quotients.

3. Unlike SPQR trees, the reduction tree is rooted, having a primitive graph as
the root. Without this, the automorphism group cannot be captured by the
reduction tree. The reason is that every automorphism fixes the primitive graph.

176

6.3. Automorphism Groups of Planar Graphs

We give a more detailed comparison in Section 7.8. Also, the 3-connected reduction
is completely described in Chapter 7, without referencing results from the mentioned
papers (aside algorithmic results of [191, 167]). Therefore, the reader can get the full
understanding just by reading Chapter 7.

6.3 Automorphism Groups of Planar Graphs

Automorphism groups of graphs can be studied from the structural and complexity
points of view. Frucht’s Theorem [131] states that for every finite abstract group Ψ,
there exists a graph G such that Aut(G) ∼= Ψ; so automorphism groups of graphs are
universal. It is interesting to study which automorphism groups can be realized by
restricted graph classes, and we give an overview in Section 6.3.1.

The following definitions are described in [224, 225]. For a graph class C, let
Aut(C) be the class of all abstract groups which can be realized as automorphism
groups of C, i.e.,

Aut(C) =
{
Ψ : ∃G ∈ C,Aut(G) ∼= Ψ

}
.

We call C universal if every finite abstract group is in Aut(C), and non-universal
otherwise.

The complexity point of view is related to the following computational problem:

Problem: Computing automorphism group – AutGroup
Input: A graph G.

Output: Permutations π1, . . . , πk of V (G) generating Aut(G).

This problem is closely related to the graph isomorphism problem, as discussed in
Section 6.4.

6.3.1 Restricted Graph Classes and Jordan-like Characterizations

Figure 6.1 depicts graph classes with understood automorphism groups studied in
this thesis. Below, we sketch descriptions of these automorphism groups using group
products, defined in Section 7.2.

Trees. The oldest characterization of automorphism groups of restricted graphs is
from 1869 by Jordan [202] who characterized the automorphism groups of trees:

Theorem 6.3.1 (Jordan [202]). The class Aut(TREE) is defined inductively as follows:

(a) {1} ∈ Aut(TREE).
(b) If Ψ1,Ψ2 ∈ Aut(TREE), then Ψ1 ×Ψ2 ∈ Aut(TREE).
(c) If Ψ ∈ Aut(TREE), then Ψ ≀ Sn ∈ Aut(TREE).

Since every tree T has a center fixed by Aut(T), we may work with rooted trees T . We
construct Aut(T) from the bottom to the root. For an arbitrary vertex v ∈ V (T), the

177

Chapter 6. Overview of Algebraic Properties of Graphs

automorphism group of T restricted to v and its descendants is build as follows. The
root v is fixed while isomorphic classes of subtrees can be arbitrarily permuted. The
direct product in (b) constructs the automorphisms that act independently on non-
isomorphic subtrees, while the wreath product in (c) constructs the automorphisms
that permute n isomorphic subtrees.

Intersection Graphs. Recently, we have characterized automorphism groups of
several classes of intersection graphs in the papers [224, 225] with Zeman. These papers
study algebraic properties of intersection graphs and form a link between Parts I and II
of this thesis. In the rest of this section, we state the results and describe the main
ideas.

The paper [225, Section 3] describes a geometric interpretation of automor-
phisms. Let G be a graph with all representations Rep(G). The automorphism group
Aut(G) induces an action on Rep(G). Each automorphism π ∈ Aut(G) transforms
an intersection representation R ∈ Rep(G) into another intersection representation
π(R) ∈ Rep(G) by permuting the sets in R according to π. There are two types of
automorphism in Aut(G).

• When R = π(R), then π belong to the stabilizer of R and we call it an au-
tomorphism of R. Often, for a suitable definition of Rep(G), stabilizers of all
representaions are the same and they form a (normal) subgroup of Aut(G) de-
noted Aut(R). Usually, Aut(R) is easy to understand.
• When π transforms R into another representation π(R), it is called a morphism

of R. Understanding the structure of all representations may help with describ-
ing possible morphisms. When Aut(R) is a normal subgroup of Aut(G), then
the quotient Aut(G)/Aut(R) is the group of all morphisms.

For well-behaved classes of intersection graphs such as interval graphs, we can
use the structure of all representations to characterize the automorphism groups. All
representations are described by trees whose nodes correspond to parts of the graph
G, e.g., MPQ-trees, split trees, modular trees. It is proved in [224, 225] that these
trees capture the automorphism groups. Then we can apply Jordan’s bottom-up ap-
proach to describe the groups inductively, and we call such inductive characterizations
Jordan-like. The difference is that the root node N is some graph with some Aut(N).

CATERPILLAR PROPER INT co-BIP

TREE

PSEUDOFOREST

OUTERPLANAR

BIP PERM INT CLAW-FREE

SERIES-PARALLEL

PLANAR

PERM

CIRCLE CHOR
FUN

co-4-DIM

TRAPEZOID

IFA

universal

non-universal

Figure 6.1: Hasse diagram of graph classes with understood automorphism groups.

178

6.3. Automorphism Groups of Planar Graphs

Therefore, possible permutations of isomorphic subtrees are restricted by Aut(N),
which limits possible group products.

Interval Graphs. Recall MPQ-trees from Sections 3.1 and 4.2. It is proved in [225,
Lemma 4.3] that MPQ-trees capture automorphism groups of interval graphs. If an
interval graph G has an MPQ-tree T , then Aut(T) ∼= Aut(G)/Aut(R). So the auto-
morphism group of T captures all morphisms and it can be constructed inductively
from the bottom to the top, similarly as in Theorem 6.3.1. For a P-node P , we
may arbitrarily permute vertices of s(P) and arbitrarily permute isomorphic subtrees,
so the automorphism group can be constructed using operations (b) and (c) from
Theorem 6.3.1. For a symmetric Q-node Q, we may reverse it which corresponds
to swapping some intervals in s(Q) and some subtrees, so it can be described by a
semidirect product with C2 and again can be realized by (b) and (c). Therefore, the
following is proved:
Theorem 6.3.2 (Klavík and Zeman [224, 225]). The following equalities hold:

(i) Aut(INT) = Aut(TREE),
(ii) Aut(connected PROPER INT) = Aut(CATERPILLAR),

Concerning (i), this equality is not well known. It was stated by Hanlon [174]
without a proof in the conclusion of his paper from 1982 on enumeration of interval
graphs. The structural analysis based on MPQ-trees explains this equality and further
solves an open problem of Hanlon: for a given interval graph, to construct a tree with
the same automorphism group. Without PQ-trees, this equality is surprising since
these classes are very different. Caterpillars which form their intersection have very
restricted automorphism groups. The result (ii) follows from the known properties of
proper interval graphs (see Section 2.3) and (i).

As in Section 3.1, two interval representations are the same if and only if they
have the same left-to-right consecutive ordering of maximal cliques. Geometrically,

a b c d e f

f e c d b a

f e d c b a

a b d c e f

πQ

πP πQ

πP

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Figure 6.2: An interval graph with four different representations R1, . . . ,R4. The
MPQ-tree consists of a symmetric Q-node and a P-node, similarly as in Fig. 4.7. The
action of two morphisms πQ and πP corresponding to the reversal of the Q-node and
swapping two children of the P-node is depicted. The stabilizer Aut(R) ∼= S3

2.

179

Chapter 6. Overview of Algebraic Properties of Graphs

the automorphism group Aut(R) of an interval representation R consists of auto-
morphisms which permute twins (represented by identical intervals), so it is a direct
product of symmetric groups. It is a normal subgroup of Aut(G). Figure 6.2 shows
that morphisms Aut(G)/Aut(R) of interval representations can be understood from
the MPQ-tree. If a symmetric Q-node is reversed, it corresponds to a reflection of a
symmetric part of a representation. For P-nodes, we can permute arbitrarily isomor-
phic parts of a representation.

Permutation Graphs. Recall the modular decomposition and the modular trees
from Section 2.7.1. For a graph G with a modular tree T , it is again proved in [224, 225]
that Aut(G) ∼= Aut(T), so the modular decomposition captures all automorphisms.
But for general graphs or even comparability graphs G, this is not helpful. The
reason is that for a prime node N , the group Aut(N) may be arbitrary. We cannot
hope for any inductive characterization since comparability graphs and even posets
are universal [30, 338]. In other words, the stabilizer of a transitive orientation of a
comparability graph may be isomorphic to an arbitrary group.

The situation is very different for permutations graphs. Since PERM = COMP∩
co-COMP, it is proved in [225, Lemma 6.6] that for a prime permutation graph G,
Aut(G) is a subgroup of C2

2. The following Jordan-like characterization is proved:

Theorem 6.3.3 (Klavík and Zeman [225]). The class Aut(PERM) is described induc-
tively as follows:

(a) {1} ∈ Aut(PERM),
(b) If Ψ1,Ψ2 ∈ Aut(PERM), then Ψ1 ×Ψ2 ∈ Aut(PERM).
(c) If Ψ ∈ Aut(PERM), then Ψ ≀ Sn ∈ Aut(PERM).
(d) If Ψ1,Ψ2,Ψ3 ∈ Aut(PERM), then (Ψ4

1 ×Ψ2
2 ×Ψ2

3) oC2
2 ∈ Aut(PERM).

In comparison to Theorem 6.3.1, there is the additional operation (d) which
shows that Aut(TREE) (Aut(PERM). Geometrically, the group C2

2 in (d) is generated
by the horizontal and vertical reflections of a symmetric permutation representation;

6

5

4

3

2

1

4

2

6

1

5

3

4

2

6

1

5

3

6

5

4

3

2

1

3

5

1

6

2

4

1

2

3

4

5

6

1

2

3

4

5

6

3

5

1

6

2

4

ϕv

ϕh ϕv

ϕh

Figure 6.3: A symmetric prime permutation graph G with Aut(G) ∼= C2
2, generated

by two reflections.

180

6.3. Automorphism Groups of Planar Graphs

m

m̂

11
2

2

3

3
4 4

5

5

6

6

m

m̂

11
6

6

5

5
4 4

3

3

2

2

m̂

m

44
5

5

6

6
1 1

2

2

3

3

m̂

m

44
3

3

2

2
1 1

6

6

5

5

ϕm ϕ⊥

ϕ⊥ ϕm

Figure 6.4: For a symmetric prime circle graph, the stabilizer of m is generated by
two depicted reflections.

see Fig. 6.3. Also, the automorphism groups of bipartite permutation graphs (denoted
BIP PERM) are characterized in [225].

Circle Graphs. Recall the split decomposition and the split trees from Section 2.6.
The characterization of the automorphism groups of circle graphs is most involved.
Again, automorphism groups are captured by the minimal split decomposition. For
the split tree T corresponding to a connected graph G, it is proved in [224, 225] that
Aut(G) ∼= Aut(T). Every automorphism of T preserves the center T so we may assume
that T is rooted and has a root node.

We apply the bottom-up Jordan’s approach on T . Let N be a node with attached
subtrees. If N is not a root node, we may only permute the attached subtrees according
to the stabilizer of the marker vertex m of N which attaches N towards the root. But
when N is the root node, nothing has to be stabilized, so we are more free to permute
subtrees. Degenerate graphs are easy to deal with. Using geometry, it is proved in [225,
Lemmas 5.5 and 5.6] that for a prime circle graph G, Aut(G) is a subgroup of Dn and
the stabilizer of a vertex is a subgroup of C2

2 as depicted in Fig. 6.4.
We get the following characterization of the automorphism groups of connected

circle graphs where Σ is the class of all stabilizers of connected circle graphs:

Theorem 6.3.4 (Klavík and Zeman [224, 225]). Let Σ be the class of groups defined
inductively as follows:

(a) {1} ∈ Σ.
(b) If Ψ1,Ψ2 ∈ Σ, then Ψ1 ×Ψ2 ∈ Σ.
(c) If Ψ ∈ Σ, then Ψ ≀ Sn ∈ Σ.
(d) If Ψ1,Ψ2,Ψ3,Ψ4 ∈ Σ, then (Ψ4

1 ×Ψ2
2 ×Ψ2

3 ×Ψ2
4) oC2

2 ∈ Σ.

Then Aut(connected CIRCLE) consists of the following groups:

• If Ψ ∈ Σ, then Ψ ≀ Cn ∈ Aut(connected CIRCLE).
• If Ψ1,Ψ2 ∈ Σ, then

(Ψ2n
1 ×Ψn

2) oDn ∈ Aut(connected CIRCLE), ∀n odd.

181

Chapter 6. Overview of Algebraic Properties of Graphs

• If Ψ1,Ψ2,Ψ3 ∈ Σ, then

(Ψ2n
1 ×Ψn

2 ×Ψn
3) oDn ∈ Aut(connected CIRCLE), ∀n even.

The automorphism group of general (disconnected) circle graphs are easily de-
scribed by Theorem 7.2.1. The inductive Jordan-like characterization of the automor-
phism groups of planar graphs, derived in Chapter 8, works in similar two steps. First,
we characterize stabilizers corresponding to automorphism groups of subtrees. Then,
we combine them with the automorphism group of a primitive graphs in the root node.

Universal Graph Classes. Figure 6.1 depicts several graph classes for which the
automorphism groups are known to be universal. Proofs mostly directly follow from
GI-hardness reductions. To show that GraphIso is equally hard for a graph class C as
for all graphs, the reduction encodes all graphs into graphs from C. These reductions
usually preserve the automorphism groups. Therefore, Frucht’s Theorem [131] implies
universality of Aut(C). In Section 9.2, we define these reductions more formally and
give an overview of reductions for many graph classes.

Open Problems. In [225, 56, 345], it is proved that 4-DIM is universal and its
GraphIso is GI-complete. The reduction in [225] is fairly simple, to construct G′, it
replaces every edge of G by a path of length 8. As usual, the non-trivial part is to prove
that G′ ∈ 4-DIM for every graph G. On the other hand, since the automorphism groups
of permutation graphs are non-universal by Theorem 6.3.3 and the graph isomorphism
problem can be solved in linear time by combining [67, 326, 272], we have the following
natural open problem:

Problem 6.3.5. What is the complexity of GraphIso for 3-DIM? Is Aut(3-DIM)
universal?

The second open problem involved the automorphism groups of circular-arc
graphs; see also 2.10. We note that the complexity of GraphIso is open for circular-
arc graphs.

Problem 6.3.6. What is Aut(CIRCULAR-ARC)?

Recall H-GRAPH from Section 2.5. Chaplick et al. [61] prove that H-GRAPH are
universal if H contains as a minor the multigraph

M = .

We note that these H-GRAPH generalize CIRCULAR-ARC.

6.3.2 Babai’s Characterization

In 1960’s, there were several generalizations of Frucht’s Theorem [132, 313] proving
universality of the automorphism groups for graphs of many restricted properties: for
a fixed chromatic number, for k connected graphs, for k-regular graphs, etc. The
notable exceptions were trees, characterized in Theorem 6.3.1, and 3-connected planar

182

6.3. Automorphism Groups of Planar Graphs

graphs, characterized by Mani [268] (see Section 8.1). In 1969, Turán asked for a
characterization of the automorphism groups of planar graphs.

Babai was a student of Turán and worked on this problem. In 1972, Babai [10]
proved that no planar graph has the automorphism group isomorphic to the group of
quaternions, proving non-universality of Aut(PLANAR). In 1973, Babai [11, Corollary
8.12] described a characterization of the automorphism groups of planar graphs; see
Section 8.4 for the exact statement.

As we describe in Section 8.1, the automorphism groups of 3-connected planar
graphs are spherical groups. Babai’s characterization [11] describes the automorphism
groups of k-connected planar graphs, where k < 3, are constructed by wreath products
of the automorphism groups of (k + 1)-connected planar graphs and of stabilizers of
k-connected graphs. Babai points out in [11, p. 69] that his characterization is not
inductive:

“For the case of planar graphs, we determine the groups occuring in the
Main Theorem, as abstract groups (up to isomorphism). [. . .] It cannot be,
however, considered as a characterization by recursion of the automorphism
groups of the planar graphs, since the group construction refers to the
action of the constituents of the wreath products.”

Babai’s characterization has several further disadvantages. The statement is
very long, separated into multiple cases and subcases. More importantly, is not clear
precisely which abstract groups belong to Aut(PLANAR). The used language is com-
plicated, very difficult for non-experts in permutation group theory and in graph sym-
metries.

In [13, p. 1457–1459], Babai gives a more understandable overview of two key
ideas (automorphism groups of 3-connected planar graphs, and 3-connected reduction),
with his characterization only sketched as “a description of the automorphism groups
of planar graphs in terms of generalized wreath products of symmetric groups and
polyhedral groups.” Babai also states an easy consequence:

Theorem 6.3.7 (Babai [13]). If G is planar, then the group Aut(G) has a subnormal
chain

Aut(G) = Ψ0 ◃Ψ1 ◃ · · · ◃Ψm = {1}

such that each quotient group Ψi−1/Ψi is either cyclic or symmetric or A5.

This theorem describes Aut(G) only very roughly, by stating its building blocks.
For comparison, an easy consequence of our characterization (Theorem 6.3.8) describes
these building blocks more precisely and also states how they are “put together” in
Aut(G). In particular, the composition of the action of a spherical group Σ with a
stabilizer of a vertex in a planar graph depends on the action of Σ on vertices and
edges of the associated 3-connected planar graph. To describe it in detail is not an
easy task, and we do it in a standalone paper [218]; see Tables 8.1, 8.2, and 8.3. Our
characterization also describes “geometry” of the automorphism groups in terms of
actions on planar graphs around every 1-cut and 2-cut.

183

Chapter 6. Overview of Algebraic Properties of Graphs

The class of planar graphs is of great importance, and thus we are convinced
that a more detailed and transparent description of their symmetries is of an interest.
These reasons led us to write the papers [217, 218] which describes Aut(PLANAR) more
understandably, in more detail.

6.3.3 The Jordan-like Characterization

Let G be a planar graph. If it is disconnected, then Aut(G) can be constructed from
the automorphism groups of its connected components (Theorem 7.2.1). Therefore, in
the rest of the paper, we assume that G is connected.

In Chapter 8, we describe an involved inductive Jordan-like characterization of
Aut(connected PLANAR). We apply the reduction series on G and obtain the reduction
tree T which captures Aut(G). If G is planar, then all nodes of T , corresponding to
atoms and the primitive graph, are either very simple or 3-connected. From geometry,
their automorphism groups are either spherical groups, or direct products of symmetric
groups (see Section 8.1). Our characterization combines these automorphism groups
and describes the automorphism groups of planar graphs without referring to planarity,
as a simple recursive process which builds them from a few standard groups. A short
version of our main result reads as follows:

Theorem 6.3.8. Let G be a connected planar graph with the reduction series G =
G0, . . . , Gr. Then Aut(Gr) is a spherical group and Aut(Gi) ∼= Ψi oAut(Gi+1), where
Ψi is a direct product of symmetric, cyclic and dihedral groups.

We characterize Aut(connected PLANAR) in two steps. First, similarly as in The-
orem 6.3.1, we describe in Theorem 8.2.1 an inductive characterization of stabilizers of
vertices of planar graphs, denoted Fix(PLANAR). It is the class of groups closed under
the direct product, the wreath product with symmetric and cyclic groups and semidi-
rect products with dihedral groups. In Theorem 8.2.10, we give Aut(connected PLANAR)
precisely as the class of groups

(Ψm1
1 × · · · ×Ψmℓ

ℓ) o Aut(H),

where Ψi ∈ Fix(PLANAR) and H is a 3-connected planar graph with colored vertices
and colored, possibly oriented, edges. The group Aut(H) acts on the factors of the
direct product Ψm1

1 × · · · × Ψmℓ
ℓ in the natural way, permuting the isomorphic fac-

tors, following the action of H on the vertices and edges of H; for more details, see
Section 8.2.

In Section 8.3, we apply this Jordan-like characterization to describe the auto-
morphism groups of 2-connected planar graphs, outerplanar graphs and series-parallel
graphs. and of the following subclasses of planar graphs.

6.3.4 Quadratic-time Algorithm

Explicit algorithms for computing automorphism groups of restricted graph classes are
quite rare. Colbourn and Booth [68] describe linear-time algorithms computing per-
mutation generators of trees, interval graphs and outerplanar graphs. The papers [224,

184

6.3. Automorphism Groups of Planar Graphs

225] describe a linear-time algorithm for permutation graphs and a polynomial-time
algorithm for circle graphs. Luks’s algorithm [263] and other algorithms for graph
isomorphism based on group theory compute automorphism groups; see Section 6.4.

The graph isomorphism problem of planar graphs was attacked in papers [188,
192]. Finally, linear-time algorithms were described by Hopcroft and Wong [194], and
by Fontet [130]. As we explain in Section 8.5, the fundamental difficulty is deciding
isomorphism of 3-connected (colored) planar graphs in linear time. The idea in [194]
is to modify both graphs by a series of reductions ending with colored platonic solids,
cycles, or K2. This is a seminal paper used by many other computer science algorithms
as a black box; e.g., [252, 279, 207, 206]. Unfortunately, full versions of [130, 194] were
never published.

Colbourn and Booth [68] propose the idea to modify the algorithm of [194] for
computing the automorphism groups of planar graphs in linear time. The following is
stated in [68, p. 223]:

“Necessarily we will only be able to sketch our procedure. A more com-
plete description and a proof of correctness would require a more thorough
analysis of the Hopcroft-Wong algorithm than has yet appeared in the
literature.”

To the best of our knowledge, no such algorithm was ever described in detail. We note
that it is not possible to use the result of [194] as a black box for computing generators
of the automorphism group, since one has to check carefully that the applied reductions
preserve the automorphism group. (Or that the change of the automorphism group is
under control, similarly as in Proposition 7.6.4.)

By combining the results of [130, 194] and [270], the best previously known
polynomial-time algorithm computing generators the automorphism group of a planar
graph runs in time O(n4). In Section 8.5, we describe a quadratic-time algorithm
based on our structural description of the automorphism groups of planar graphs.

Theorem 6.3.9. There exists a quadratic-time algorithm which computes generators
of Aut(G) of an input planar graph G in terms of group products of symmetric and
spherical groups and of permutation generators.

Visualization of Symmetries. As one of the applications of graph symmetries,
drawing of planar graphs maximizing the symmetries of the picture were studied
in [103, 186, 184, 185]. Disadvantage of this approach is that even though the auto-
morphism group Aut(G) of a planar graph G might be huge, it is possible to highlight
only a small fraction of its symmetries; usually just a dihedral or cyclic subgroup.
Even if we would consider drawing on the sphere, one can only visualize a spherical
subgroup of Aut(G). Based on our structural decomposition of Aut(G), we propose
in Section 8.6 a different spatial visualization which allows to capture the entire auto-
morphism group, and thus visualize our characterization.

185

Chapter 6. Overview of Algebraic Properties of Graphs

6.4 Graph Isomorphism Problem

For graphs G and H, a bijection π : G → H is called an isomorphism if uv ∈
E(G) ⇐⇒ π(u)π(v) ∈ E(H); so an automorphism of G is an isomorphism G → G.
Graphs G and H are isomorphic, denoted G ∼= H, if there exists an isomorphism from
G to H.

Problem: Graph isomorphism – GraphIso
Input: Graphs G and H.

Question: Is there an isomorphism π : G→ H?

The problem GraphIso obviously belongs to NP, and no polynomial-time algo-
rithm is known. It is a prime candidate for an intermediate problem with complexity
between P and NP-complete. There are threefold evidences that GraphIso is unlikely
to be NP-complete: equivalence of existence and counting [12, 270], GraphIso belongs
to coAM, so the polynomial-hierarchy collapses if GraphIso is NP-complete [152, 318],
and GraphIso can be solved in quasipolynomial time [14]. For a survey, see [13]. Let
GI be the class of all decision problem which have a polynomial-time reduction to
GraphIso.

The graph isomorphism problem is solved efficiently for various restricted graph
classes and parameters, see Fig. 6.5.

Combinatorial Algorithms. A prime example is the linear-time algorithm for test-
ing graph isomorphism of (rooted) trees. It is a bottom-up procedure comparing sub-
trees. This algorithm is very robust and captures all possible isomorphisms. For many
other graph classes, graph isomorphism reduces to graph isomorphism of labeled trees:
for planar graphs [191, 189, 194], interval graphs [262], circle graphs [195], and per-
mutation graphs [67, 326]. Involved combinatorial arguments are used to solve graph

Trees

Planar graphs

Bounded genus
graphs

Graphs with

forbidden minors

Bounded treewidth
graphs

Graphs with forbidden
topological subgraphs

Cubic graphs

Bounded degree
graphsGraphs with bounded

rankwidth

ListIso ∈ P ListIso is open

ListIso is

NP-complete

Figure 6.5: Important graph classes for which the graph isomorphism problem can
be solved in polynomial time. Our complexity results for the list restricted graph
isomorphism problem proved in Chapter 9 are depicted.

186

6.4. Graph Isomorphism Problem

isomorphism for bounded genus graphs [252, 122, 279, 206] and bounded treewidth
graphs [37, 256].

Algorithms Based on Group Theory. The graph isomorphism problem is closely
related to group theory, in particular to computing generators of automorphism groups
of graphs. Assuming that G and H are connected, we can test G ∼= H by computing
generators of Aut(G ∪̇H) and checking whether there exists a generator which swaps
G and H. For the converse relation, Mathon [270] proved that generators of the
automorphism group can be computed using O(n3) instances of graph isomorphism.

Therefore, GraphIso can be attacked by techniques of group theory. A prime
example is the seminal result of Luks [263] which uses group theory to solve GraphIso
for graphs of bounded degree in polynomial time. If G has bounded degree, its auto-
morphism group Aut(G) may be arbitrary, but the stabilizer Aute(G) of an edge e is
restricted. Luks’ algorithm tests GraphIso by an iterative process which determines
Aute(G) in steps, by adding layers around e.

Group theory can be used to solve GraphIso of colored graphs with bounded
sizes of color classes [134] and of graphs with bounded eigenvalue multiplicity [15, 108].
Miller [280] solved GraphIso of k-contractible graphs (which generalize both bounded
degree and bounded genus graphs), and his results are used by Ponomarenko [298] to
show that GraphIso can be decided in polynomial time for graphs with excluded
minors. Luks’ algorithm [263] for bounded degree graphs is also used by Grohe and
Marx [163] as a subroutine to solve GraphIso on graphs with excluded topological
subgraphs. The recent breakthrough of Babai [14] heavily uses group theory to solve
the graph isomorphism problem in quasipolynomial time.

Is Group Theory Needed? One of the fundamental problems for understanding
the graph isomorphism problem is to understand in which cases group theory is really
needed, and in which cases it can be avoided.1 For instance, for which graph classes
can GraphIso be decided by the classical algorithm called k-dimensional Weisfieler-
Leman refinement (k-WL)? (Described in Section 9.9.)

Ponomarenko [298] used group theory to solve GraphIso in polynomial time
on graphs with excluded minors. Robertson and Seymour [307] proved that a graph
G with an excluded minor can be decomposed into pieces which are “almost embed-
dable” to a surface of genus g, where g depends on this minor. Recently, Grohe [162]
generalized this to show that for G, there exists a treelike decomposition into almost
embeddable pieces which is automorphism-invariant (every automorphism of G in-
duces an automorphism of the treelike decomposition). Using this decomposition, it
is possible to solve graph isomorphism in polynomial time and to avoid group the-
ory techniques. In particular, k-WL can decide graph isomorphism on graphs with
excluded minors where k depends on the minor.

It is a long-standing open problem whether the graph isomorphism problem for
bounded degree graphs, and in particular for cubic graphs, can be solved in polynomial
time without group theory. It is known that k-WL, for any fixed k, cannot decide graph
isomorphism on cubic graphs [46]. Very recently, fixed parameter tractable algorithms

1Ilya Ponomarenko in personal communication.

187

Chapter 6. Overview of Algebraic Properties of Graphs

for graphs of bounded treewidth [256] and for graphs of bounded genus [206] were
constructed. On the other hand, the best known parameterized algorithm for graphs
of bounded degree is the XP algorithm of Luks [263], and it is a major open problem
whether an FPT algorithm exists.

6.5 Graph Isomorphism Problem Restricted by Lists

In this thesis, we propose a different approach to show limitations of techniques used
to attack the graph isomorphism problem described in Section 6.4. We study its
generalization called list restricted graph isomorphism (ListIso) defined below which
is NP-complete for general graphs.

Implications for GraphIso. The study for ListIso allows to classify the re-
sults for the graph isomorphism problem. An algorithm for GraphIso is called
robust if it can be modified to solve ListIso while preserving the complexity.
(Say, it remains a polynomial-time algorithm, fixed parameter tractable algo-
rithm, etc.)

We understand that the notions of modified algorithms and of robustness are
vague. For instance, if an algorithm B is created from A by completely replacing
A with B, is B still a modification of A? At this moment, a precise definition of
robustness is unclear, but the reader may understand it intuitively, similarly as a
statement: “The proof of the result X is created by a modification of a proof of a
result Y .” Robustness is not used in any formal statement mentioned in this thesis.
The purpose of this section and of Chapter 9 is to give more insight into this notion
in the context of the graph isomorphism problem.

We show that many combinatorial algorithms for graph isomorphism are robust.
On the other hand, hardness results for ListIso imply non-existence of robust algo-
rithms for GraphIso. In particular, we show that ListIso is NP-complete for cubic
graphs, so no robust algorithm for cubic graph isomorphism exists, unless P = NP.
Similarly, no robust FPT algorithm for graph isomorphism of graphs of bounded degree
exists.

Known Results. In 1981, Lubiw [260] introduced the computational problems Lis-
tIso and ListAut. Let G and H be graphs, and the vertices of G be equipped with
lists: each vertex u ∈ V (G) has a list L(u) ⊆ V (H). We say that an isomorphism
π : G → H is list-compatible if, for all vertices u ∈ V (G), we have π(u) ∈ L(u); see
Fig. 6.6a. A list-compatible isomorphism π : G → G is called a list-compatible auto-
morphism. The existence of a list-compatible isomorphism is denoted by G L−→ H.

Problem: List restricted graph isomorphism – ListIso
Input: Graphs G and H, and the vertices of G are equipped by

lists L(u) ⊆ V (H).
Question: Is there a list-compatible isomorphism π : G→ H?

188

6.5. Graph Isomorphism Problem Restricted by Lists

G H

{1,2,3,4,5}

{2,3} {2,3} {3} {3,4,5}

1

2 3 4 5
(a)

{2,3}

{2,3}

{3}

{3,4,5}

2

3

4

5
(b)

Figure 6.6: (a) Two isomorphic graphs G and H with no list-compatible isomorphism.
(b) It does not exist because there is no perfect matching between the lists of the leaves
of G and the leaves of H.

Problem: List restricted graph automorphism – ListAut
Input: A graph G with vertices equipped with lists L(u) ⊆ V (G).

Question: Is there a list-compatible automorphism π : G→ G?

These two problems are polynomially equivalent (see Lemma 9.1.3). Lubiw [260]
proved the following surprising result:

Theorem 6.5.1 (Lubiw [260]). The problems ListIso and ListAut are NP-complete.

Moreover, she even proved even following stronger result:

Theorem 6.5.2 (Lubiw [260]). Deciding whether a graph has a fixed-point free invo-
lutory automorphism is NP-complete.

Unfortunately, even though the paper [260] has over 50 citations in Web of Sci-
ence and about 150 citations in Google Scholar, the problem ListIso was not further
studied. We believe that one of the reasons is that the definition of ListIso and The-
orem 6.5.1 was overshadowed by a simple statement of Theorem 6.5.2. For instance,
Babai [13] only describes Theorem 6.5.2. This line of research was further followed
by Lalonde [246] who showed that it is NP-complete to decide whether a bipartite
graph has an involutory automorphism exchanging the parts. Also, see [129] for an
alternative description using star systems.

We read the paper [260] already in 2012. We have independently rediscovered
ListIso while studying the computational complexity of regular graph covers, de-
scribed in Chapters 10 and 11. As one subroutine of the algorithm of Theorem 6.6.3,
we solve ListIso on 3-connected planar and projectively planar graphs. We noticed
that [260] contains the definition of ListIso only in 2016 when we started studying
the computational complexity of ListIso in general.

We note that other computational problems restricted by lists are frequently
studied. List coloring, introduced by Vizing [348], is NP-complete even for planar
graphs [241] and interval graphs [31]. List H-homomorphisms, having a similar setting
as ListIso, were also considered; see [181, 83, 64].

It was suggested by an anonymous reviewer that unlike for GraphIso, for which
the role of graphs G and H is symmetric, the role of G and H in ListIso is asymmetric,
and thus the ListIso problem is closer to the H-homomorphism problem. We argue

189

Chapter 6. Overview of Algebraic Properties of Graphs

that this is not the case, ListIso is symmetric as well. Given lists L(u) ⊆ V (H) for
each u ∈ V (G), we derive the corresponding lists L−1(w) ⊆ V (G) for each w ∈ V (H):

L−1(w) =
{
u : u ∈ V (G), w ∈ L(u)

}
.

An isomorphism π : G → H is list-compatible with L, if and only if the isomor-
phism π−1 : H → G is list-compatible with L−1. Actually, we could work with both
lists simultaneously. The similarity of ListIso and GraphIso also follows from the
fact that many combinatorial algorithms for GraphIso can be modified for ListIso
without any difficulty.

In Chapter 9, we study the complexity of ListIso for various restricted graph
classes, an overview of our results in given in Fig. 6.5. We also consider special in-
stances called ColoredGraphIso in which both graphs G and H are colored and
we ask for existence of a color-preserving isomorphism, denoted G c−→ H. Unlike Lis-
tIso, the ColoredGraphIso problem is a well-known problem which is polynomial-
time equivalent to GraphIso.

6.5.1 Our Results

We revive the study of list restricted graph isomorphism. The goal is to determine
which techniques for GraphIso translate to ListIso. We believe that ListIso is
a very natural computational problem, as evidenced by its application in [118, 120].
Further, its hardness results prove non-existence of robust algorithms for the graph
isomorphism problem itself. For instance, it is believed that no NP-complete problem
can be solved in quasipolynomial time. Therefore, Babai’s algorithm [14] cannot be
robust, i.e., it cannot be modified to solve ListIso in quasipolynomial time. To solve
GraphIso efficiently (say, in polynomial time), one necessarily has to apply some
non-robust techniques which does not generalize to ListIso.

The described algorithms for ListIso are a straightforward modification of pre-
viously known algorithms for the graph isomorphism problem. The main point of
Chapter 9 is not to develop new algorithmic techniques, but to classify known tech-
niques for GraphIso from a different viewpoint. This viewpoint is the robustness of
algorithms with respect to ListIso, and our results give an insight into its meaning.

We prove the following three informal results in Chapter 9; see Fig. 6.5 for an
overview:

Result 6.5.1. GI-completeness results for GraphIso with polynomial-time reductions
using vertex-gadgets imply NP-completeness for ListIso.

For many classes C of graphs, it is known that GraphIso is equally hard for them
as for general graphs, i.e., it is GI-complete. For instance, GraphIso is GI-complete for
bipartite graphs, split and chordal graphs [262], chordal bipartite and strongly chordal
graphs [346], trapezoid graphs [335], comparability graphs of dimension 4 [224], grid
intersection graphs [345], line graphs [358], and self-complementary graphs [69].

The polynomial-time reductions are often done in a way that all graphs are en-
coded into C, by replacing each vertex with a small vertex-gadget. (The constructions

190

6.6. Regular Graph Covers

are quite simple, and the non-trivial part is to prove that the constructed graph be-
longs to C.) As we prove in Theorem 9.2.1, such reductions using vertex-gadgets also
translate to ListIso: they imply NP-completeness of ListIso for C. For instance,
ListIso is NP-complete for all graph classes mentioned above (Corollary 9.2.3).

Result 6.5.2. The problem ListIso can be solved in polynomial-time for trees, planar
graphs, interval graphs, circle graphs, permutation graphs, bounded genus graphs and
bounded treewidth graphs.

As a by-product, our paper gives an overview of the main combinatorial tech-
niques involved in attacking the graph isomorphism problem. These combinatorial
techniques for GraphIso are often robust and translate to ListIso in a straightfor-
ward way. Moreover, we can describe them more naturally with lists.

For example, the bottom-up linear-time algorithm for testing graph isomorphism
of (rooted) trees translates to ListIso in Theorem 9.4.1, since it captures all possible
isomorphisms. The key difference is that the algorithm for ListIso finds perfect
matchings in bipartite graphs, in order to decide whether lists of several subtrees
are simultaneously compatible; see Fig. 6.6b. We use the algorithm of Hopcroft and
Karp [187], running in time O(

√
nm).

The algorithms for graph isomorphism of planar, interval, permutation and cir-
cle graphs based on tree decompositions and translate to ListIso, as we show in
Theorems 9.5.3, 9.6.1, 9.6.2, and 9.6.3. Even more involved algorithms for graphs
isomorphism of bounded genus and bounded treewidth graphs translate to ListIso
in Theorems 9.7.1 and 9.8.5. The complexity for graphs with bounded rankwidth and
graphs with excluded minors remains open, see Conclusions for details.

See Section 9.9 for discussions of k-WL and why it does not help in solving
ListIso.

Result 6.5.3. The problem ListIso is NP-complete for 3-regular colored graphs with
all color classes of size at most 8 and with all lists of size at most 3.

This result contrasts with two fundamental results using group theory techniques
to solve graph isomorphism in polynomial time for graphs of bounded degrees [263]
and bounded color classes [134]. Therefore, no robust algorithm solving graph isomor-
phism for these graph classes exists. In general, our impression is that group theory
techniques do not seem to translate to ListIso since list-compatible automorphisms of
a graph G do not form a subgroup of Aut(G). In Theorem 9.3.3, we prove Result 6.5.3
by describing a non-trivial modification of the original NP-hardness reduction of Lu-
biw [260].

6.6 Regular Graph Covers

The notion of covering originates in topology as a notion of local similarity of two
topological spaces. For instance, consider the unit circle and the real line. Globally,
these two spaces are not the same, they have different properties, different fundamen-
tal groups, etc. But when we restrict ourselves to a small part of the circle, it looks the

191

Chapter 6. Overview of Algebraic Properties of Graphs

u

v

w x

y

x

y

u

v

w

p

u

v

w x

y

G H

Figure 6.7: A regular covering projection p from a graph G to one of its quotients
H. For every vertex v ∈ V (G), the image p(v) is written in the circle.

same as a small part of the real line; more precisely the two spaces are locally homeo-
morphic, and thus they share the local properties. The notion of covering formalizes
this property of two spaces being locally the same.

Suppose that we have two topological spaces: a big one G and a small one H.
We say that G covers H if there exists an epimorphism called a covering projection
p : G → H which locally preserves the structure of G. For instance, the mapping
p(x) = (cosx, sin x) from the real line to the unit circle is a covering projection. The
existence of a covering projection ensures that G looks locally the same as H; see
Fig. 6.7.

In Chapters 10 and 11, we study coverings of graphs in a more restricting version
called regular covering, for which the covering projection is described by a semiregular
action of a group. We say that G regularly covers H and H is a (regular) quotient
of G, if there exists a semiregular subgroup Γ of Aut(G) such that G/Γ ∼= H; see
Section 10.1 for the formal definition.

6.6.1 Motivations for Regular Graph Covering

Suppose that G covers H and we have some information about one of the objects.
How much knowledge does translate to the other object? It turns out that quite a lot,
and this makes covering a powerful technique with many diverse applications. The
big advantage of regular coverings is that they can be efficiently described and many
properties easily translate between the objects. We sketch some applications now. See
also [151].

Powerful Constructions. The reverse of covering called lifting can be applied to
small objects in order to construct large objects of desired properties. For instance,
the well-known Cayley graphs are large objects which can be described easily by a few
elements of a group. Let G be a Cayley graph generated by elements g1, . . . , ge of a
group Γ. The vertices of G correspond to the elements of Γ and the edges are described
by actions of g1, . . . , ge on Γ by left multiplication; each gi defines a permutation on
Γ and we put edges along the cycles of this permutation. See Fig. 6.8 for examples.
Cayley graphs were originally invented to study the structure of groups [52].

In the language of regular coverings, every Cayley graph G can be described as
a lift of a one vertex graph H with e loops and half-edges attached labeled g1, . . . , ge.
Regular covers can be viewed as a generalization of Cayley graphs where the small
graph H may contain more than one vertex. For example, the famous Petersen graph

192

6.6. Regular Graph Covers

1234

2134

3124

4123

1423

2413

3412

4312

1342

2341

3241

4231

3214
4132

1324

2143

3421

4213
1432

2314

3142

4321

1243

2431

1 1 12 2 23 3 34 4 4

τ1,2 τ1,3 τ1,4

1234

2134 2143

1243

3412

3421 4321

4312

1324

3124 3142

1342

2314 2341

32413214

2413

42134231

2431

14231432

4132 4123

1 1 12 2 23 3 34 4 4

τ1,2 τ2,3 τ3,4

Figure 6.8: Two Cayley graphs created by different generators of the symmetric
group S4 of all four-element permutations. By τi,j , we denote the transposition of i
and j.

can be constructed as a lift of a two-vertex graph H in Fig. 6.9a. These two vertices
are necessary as it is known that Petersen graph is not a Cayley graph. Figure 6.9b
shows a simple construction [274, 350] of the Hoffman-Singleton graph [182] which is
a 7-regular graph with 50 vertices and diameter 2; see Fig. 6.10.

The Petersen and the Hoffman-Singleton graphs are extremal graphs for the
degree-diameter problem: given integers d and k, find a maximal graph G with di-
ameter d and degree k. In general, the size of G is not known. Many currently best
constructions were obtained using the covering techniques [281].

Further applications employ the fact that nowhere-zero flows, vertex and edge
colorings, eigenvalues and other graph invariants lift along a covering projection. Two
main applications of constructions of lifts are the solution of the Heawood map col-

0
1 2

C5

(a)

0

1

2 3

4
{(k, k2) : ∀k ∈ C5}

(1, 0) (2, 0)

(b)

Figure 6.9: (a) A construction of the Petersen graph by lifting with the group C5.
(b) By lifting the described graph with the group C2

5, we get the Hoffman-Singleton
graph depicted in Fig. 6.10. The five parallel edges are labeled (0, 0), (1, 1), (2, 4),
(3, 4) and (4, 1).

193

Chapter 6. Overview of Algebraic Properties of Graphs

Figure 6.10: The figure is from Wikipedia. The Hoffman-Singleton graph G which
is a 7-regular graph with 50 vertices and diameter 2. A surprisingly simple description
of G is given in Fig. 6.9b which can be used to derive properties of G.

oring problem [303, 165] and constructions of arbitrarily large highly symmetrical
graphs [28].

Models of Local Computation. These and similar constructions have many prac-
tical applications in designing highly efficient computer networks [106, 2, 21, 47, 48,
50, 166, 365], since these networks can be efficiently described/constructed and have
many strong properties. In particular, networks based on covers of simple graphs allow
fast parallelization of computation as described e.g. in [36, 5, 6].

Simplifying Objects. Regular coverings can be also applied in the opposite way, to
project big objects onto smaller ones while preserving some properties. One way is
to represent a class of objects satisfying some properties as quotients of the universal
object of this property. For instance, this was used in the study of arc-transitive cubic
graphs [153], and the key point is that universal objects are much easier to work with.
This idea is commonly used in fields such as the theory of Riemann surfaces [113] and
theoretical physics [205].

6.6.2 Structural Results

In Chapter 10, we fully describe the behaviour of regular covering with respect to
1-cuts and 2-cuts in G. It is closely related to the behaviour of 1- and 2-cuts under a
semiregular action of a subgroup of the automorphism group Aut(G) of G. For 1-cuts,
it is quite simple since Aut(G) fixes the central block. But the behaviour of regular
covering on 2-cuts is complex. The main result Theorem 6.6.1 describes all possible

194

6.6. Regular Graph Covers

quotients of some graph class if we understand quotients of 3-connected graphs in
this class. It can be applied to planar graphs and it is used in Section 10.4 and in
Chapter 11.

Expansions. Let G be a graph with a reduction series G = G0, . . . , Gr from Chap-
ter 7. We aim to investigate how the knowledge of regular quotients of Gi+1 can be
used to construct all regular quotients of Gi. To do so, we introduce the reversal of the
reduction called the expansion. If Hi+1 = Gi+1/Γi+1, then the expansion produces Hi

by replacing colored edges back by atoms. To do this, we have to understand how reg-
ular covering behaves with respect to atoms. Inspired by Negami [288], we show that
each proper atom/dipole has three possible types of quotients that we call an edge-
quotient, a loop-quotient and a half-quotient. The edge-quotient and the loop-quotient
are uniquely determined but an atom may have many non-isomorphic half-quotients.

The constructed quotients contain colored edges, loops and half-edges corre-
sponding to atoms. Each half-edge in Hi+1 is created from a halvable edge if an
automorphism of Γi+1 fixes this halvable edge and exchanges its endpoints. Roughly
speaking, the regular covering projection cuts the edge in half. The following theorem
is our main result and it describes every possible expansion of Hi+1 to Hi:

Theorem 6.6.1. Let Gi+1 be a reduction of Gi. Every quotient Hi of Gi can be
constructed from some quotient Hi+1 of Gi+1 by replacing each edge, loop and half-
edge of Hi+1 by the subgraph corresponding to the edge-, the loop-, or a half-quotient
of an atom of Gi, respectively.

Suppose that some regular quotient of the primitive graph Gr is chosen, so Hr =
Gr/Γr. The above theorem allows to describe all regular quotients H of G rising from
Hr, as depicted in the diagram in Fig. 6.11.

Direct Proof of Negami Theorem. In 1988, Negami [288] proved that a connected
graph H has a finite regular planar cover G if and only if H is projective planar. If
the graph G is 3-connected, then Aut(G) is a spherical group (Sections 1.4.1 and 8.1).
Therefore the conjecture can be easily proved using geometry, since a quotient of the
sphere is either the disk, the sphere, or the projective plane. The hard part of the
proof is to deal with graphs G containing 1-cuts and 2-cuts (Section 10.4).

Negami considered a minimal counterexample. In his proof, an essence of the
crucial notion of an atom appears. A regular covering projection can behave on an

−→

←−

−→

←−

−→

←−

−→

←−

−→

←−

−→

←−

−
→

−
→

−
→

−
→

−
→

G = G0 G1 · · · Gi Gi+1 · · · Gr

H0 H1 · · · Hi Hi+1 · · · Hr

Γ0 Γ1 Γi Γi+1 Γr

reduction

expansion

Figure 6.11: The reduction is on top, the expansion is on bottom. It holds that
Hi = Gi/Γi and Γi is a group extension of Γi+1.

195

Chapter 6. Overview of Algebraic Properties of Graphs

atom in three different ways, and this understanding can be used to make the minimal
counterexample smaller which forces a contradiction. In comparison, our work goes
further and structurally describes all possible quotients H of a planar graph G. Quo-
tients of 3-connected planar graphs can be described geometrically; see Section 10.4.
Therefore, Theorem 6.6.1 describes all quotients of planar graphs.

6.6.3 Regular Covering Testing

Despite all described applications in Section 6.6.1, the computational complexity of
regular covering was not yet studied. In this thesis, we initiate the study of the
following computational problem.

Problem: RegularCover
Input: Connected graphs G and H.

Question: Does G regularly cover H?

For a fixed graph H, the computational complexity of RegularCover was
first asked as an open problem by Abello et al. [1]: “Are there graphs H for which
the problem of determining if an input graph G is a regular cover of H is NP-hard?”
Currently, no NP-hardness reduction is known for RegularCover, even when H is
a part of the input.

The main algorithmic result shows that if G is planar, there exists no such
graph H for which RegularCover is NP-complete. We use the complexity notation
f = O∗(g) which omits polynomial factors. We establish the following FPT algorithm:

Theorem 6.6.2. For planar graphs G, the RegularCover problem can be solved
in time O∗(2e(H)/2).

6.6.4 Related Computational Problems

We discuss other computational problems related to RegularCover. The notion of
regular covers builds a bridge between two seemingly different problems: Cayley graph
recognition and the graph isomorphism problem.

Covering Testing. The complexity of general covering was widely studied before,
pioneered by Bodlaender [36] in the context of networks of processors in parallel com-
puting. Abello et al. [1] introduced the H-Cover problem which asks for an input
graph G whether it covers a fixed graph H. Unless H is very simple, the problem
turned out to be mostly NP-complete, the general complexity is still unresolved but
the papers [240, 117] show that it is NP-complete for every r-regular graph H where
r ≥ 3. For a survey of the complexity results, see [121].

We try to understand how much the additional algebraic structure of regular
covering changes the computational complexity. For planar inputs G, the change is
significant: the problem H-Cover remains NP-complete for several small fixed graphs
H (such as K4, K5) [29], while RegularCover can be solved in polynomial time for
every fixed graph H by Theorem 6.6.2.

196

6.6. Regular Graph Covers

G

p

H

Figure 6.12: The truncated dodecahedron G with 60 vertices (depicted in green) is
a planar Cayley graph of the group A5. It regularly covers the depicted one-vertex
graph H. The blue edges (depicted with circles) forming a perfect matching are cut
by the regular covering projection p in half, and correspond to a half-edge in H.

Cayley Graphs Testing. If the graph H consists of a single vertex with attached
loops and half-edges, then RegularCover corresponds to Cayley graph recognition
whose computational complexity is widely open. No hardness results are known and
a polynomial-time algorithm is known only for recognition of circulant graphs [107].
In contrast, if H consists of a vertex with three half-edges attached, then G covers H
if and only if G is a cubic 3-edge-colorable graph, so H-Cover is NP-complete [183].

The reader may notice that Theorem 6.6.2 gives a polynomial-time algorithm for
recognize planar Cayley graphs. The input is a k-regular planar graph G, for k ≤ 5.
We test RegularCover for all graphs H which a single vertex of degree k. The
graph G is a Cayley graph if and only if it covers at least one of these graphs H.
Unfortunately, finite planar Cayley graphs G are very limited: either G is a cycle, or
G is 3-connected. Therefore, Aut(G) is a spherical group, and G is either finite (with
v(G) ≤ 120), representing one of the sporadic groups (for instance, Fig. 6.12), or very
simple (a cycle, a prism, an antiprism, e.g.).

Graph Isomorphism Problem. The other extreme is when both graphs G and
H have the same size, for which RegularCover is the famous graph isomorphism
problem described in Section 6.4. Since RegularCover generalizes GraphIso, we
cannot hope to solve it in polynomial time (unless solving GraphIso as well). It is nat-
ural to ask which results and techniques for GraphIso translate to RegularCover.
Our results show that some technique for 3-connected decomposition translate, but
the RegularCover problem is significantly more involved.

197

Chapter 6. Overview of Algebraic Properties of Graphs

Theoretical motivation for studying the graph isomorphism problem is very sim-
ilar to RegularCover. For practical instances, one can solve GraphIso very
efficiently using various heuristics. But a polynomial-time algorithm working for
all graphs is not known and it is very desirable to understand the complexity of
GraphIso. It is known that testing graph isomorphism is equivalent to testing isomor-
phism of general mathematical structures [178]. The notion of isomorphism is widely
used in mathematics when one wants to show that two seemingly different structures
are the same. One proceeds by guessing a mapping and proving that this mapping
is an isomorphism. The natural complexity question is whether there is a better al-
gorithmic way to derive an isomorphism. Similarly, regular covering is a well-known
mathematical notion which is algorithmically interesting and not understood.

Computing Automorphism Groups. A regular covering is described by a semireg-
ular subgroup of the automorphism group Aut(G). Since a good understanding of
Aut(G) is needed to solve RegularCover, it is closely related to AutGroup. See
Sections 6.3 and 6.4.

Homomorphisms and CSP. Since regular covering is a locally bijective homomor-
phism, we give an overview of complexity results concerning homomorphisms. Hell and
Nešetřil [180] studied the problem H-Hom which asks whether there exists a homo-
morphism between an input graph G and a fixed graph H. Their celebrated dichotomy
result for simple graphs states that the problem H-Hom is polynomially solvable if H
is bipartite, and it is NP-complete otherwise. Homomorphisms can be described in the
language of constraint satisfaction (CSP), and the famous dichotomy conjecture [116]
claims that every CSP is either polynomial-time solvable, or NP-complete.

6.6.5 Other Covering Problems

We introduce and discuss several other problems related to (regular) graph covering.

Lifting and Quotients. In the RegularCover problem, the input gives two graphs
G and H. For the following problems, the input specifies only one graph and we ask
for existence of the other graph:

Problem: RegularLifting
Input: A connected graph H and an integer k.

Question: Does there exist a graph G regularly covering H
such that |G| = k|H|?

Problem: RegularQuotient
Input: A connected graph G and an integer k.

Question: Does there exist a graph H regularly covered by G
such that |H| = |G|

k
?

198

6.6. Regular Graph Covers

Concerning RegularLifting, the answer is always positive. The theory of cov-
ering describes a technique called voltage assignment which can be applied to generate
all k-folds G. We do not deal with lifting in Chapters 10 and 11, but there are nev-
ertheless many interesting computational questions with applications. For instance,
is it possible to generate efficiently all (regular) lifts up to isomorphism? (This is
non-trivial since different voltage assignments might lead to isomorphic graphs.) Or,
does there exists a lift with some additional properties?

Concerning RegularQuotient, by Theorem 6.5.2, this problem is NP-complete
even for the fixed k = 2. (We ask for existence of a half-quotient H of G which is
equivalent to existence of a fixed-point free involution in Aut(G).) This hardness re-
duction can be easily generalized for every fixed even k, but the complexity remains
open for odd values of k.

The reduction of Theorem 6.5.2 is from 3-satisfiability, each variable is repre-
sented by a variable gadget which is an even cycle attached to the rest of the graph.
Each cycle has two possible regular quotients, either the cycle of half length (obtained
by the 180◦ rotation), or the path of half length with attached half-edges (obtained
by a reflection through opposite edges), corresponding to true and false values, re-
spectively. These variable gadgets are attached to clause gadgets, and a quotient of
a clause gadget can be constructed if and only if at least one literal of the clause is
satisfied. This reduction does not imply NP-completeness for the RegularCover
problem since the input also gives a graph H, so one can decode the assignment of the
variables from it. See also Section 9.3.

k-Fold Covering. To simplify the RegularCover problem, instead of fixing H,
we can fix the ratio k = |G|/|H|. (When G covers H, then k is an integer.) We get
the following two problems for general and regular graph covers, respectively:

Problem: k-Fold(Regular)Cover
Input: Connected graphs G and H such that |G| = k|H|.

Question: Does G (regularly) cover H?

For k = 1, both problems are equivalent to GraphIso. Bodlaender [36] proved
that the k-FoldCover problem is GI-hard for every fixed k. The same reduction also
works for k-FoldRegularCover, see Lemma 11.1.3. Chaplick et al. [57] proved
NP-completeness of 3-FoldCover and their reduction can be easily modified for all
k > 3.

The complexities of 2-FoldCover and k-FoldRegularCover for all k ≥ 2
are open and very interesting. We note that for k = 2, every covering is a regular
covering, so the problems 2-FoldRegularCover and 2-FoldCover are identical,
and NP-hardness of 2-FoldCover would imply NP-hardness for RegularCover
as well. On the other hand, if k-FoldRegularCover is not NP-complete for any
value k, the k-FoldRegularCover problems would be natural generalizations of
GraphIso.

199

Chapter 6. Overview of Algebraic Properties of Graphs

6.6.6 Three Properties

Let C be a class of connected multigraphs. By C/Γ we denote the class of all regular
quotients of graphs of C (note that C ⊆ C/Γ). For instance, when C is the class of
planar graphs, then the class C/Γ is, by Negami Theorem [288], the class of projective
planar graphs. We define the following three properties of C:

(P1) The classes C and C/Γ are closed under taking subgraphs and under replacing
connected components attached to 2-cuts by edges.

(P2) For a 3-connected graph G ∈ C, all semiregular subgroups Γ of Aut(G) can be
computed in polynomial time. Here by semiregularity, we mean that the action
of Γ has no non-trivial stabilizers of the vertices. See Section 10.1.

(P3) Let G and H be 3-connected graphs of C/Γ, possibly with colored and directed
edges, and the vertices of G be equipped with lists. We can decide ListIso of
G and H in polynomial time. (Where the list-compatible isomorphism respects
orientations and colors of edges.)

As we prove in Lemma 11.5.1, these three properties are tailored for the class of planar
graphs. (The proof of the property (P3) is non-trivial, following from Theorem 9.5.3.)
The main reason to state (P1) to (P3) is to make explicitely clear which properties of
planar graphs are necessary for our algorithm.

Since ListIso is NP-complete in general, we also use the restricted version with
only ColoredGraphIso to highlight places where ListIso can be avoided:

(P3∗) Let G and H be 3-connected graphs of C/Γ, possibly with colored and directed
edges, and the vertices of G and H are colored. We can decide Colored-
GraphIso of G and H in polynomial time.

6.6.7 The Meta-algorithm

Chapter 11 studies the complexity of regular covering testing, based on our structural
results described in Chapter 10. We establish the following algorithmic result:

Theorem 6.6.3. Let C be a class of graphs satisfying (P1) to (P3). There exists an
FPT algorithm for RegularCover for C-inputs G in time O∗(2e(H)/2).

Since the assumptions (P1) to (P3) are satisfied for planar graphs (Lemma 11.5.1),
we get Theorem 6.6.2. Notice that if the input graph G is 3-connected, using our as-
sumptions the RegularCover problem can be trivially solved, by enumerating all
its regular quotients and testing graph isomorphism with H. Babai [11] proved that
to solve graph isomorphism, it is sufficient to solve graph isomorphism for 3-connected
graphs. We wanted to generalize this result to regular covers, but handling 2-cuts is
very complicated and we need the assumptions (P2) and (P3).

On the graph G, we apply the reduction series of Chapter 7. When the reductions
reach a 3-connected graph, the natural next step is to compute all its quotients; there
are polynomially many of them according to (P2). What remains is the most difficult
part: to test for each quotient whether it corresponds to H after expansion. The

200

6.6. Regular Graph Covers

structural results of Chapter 10 describe all possible expansions of these quotients.
The issue is that there may be exponentially many different ways to expand the graph,
all described in Theorem 6.6.1. Therefore, we have to test in a clever way whether it is
possible to reach H. Our algorithm consists of several subroutines, most of which we
can perform in polynomial time. Only one subroutine (finding a certain “generalized
matching”) we have not been able to solve in polynomial time; see Section 11.4.

This slow subroutine can be avoided in some cases:

Corollary 6.6.4. If G is a 3-connected graph, if H is a 2-connected graph, or if
k = |G|/|H| is odd, then the meta-algorithm of Theorem 6.6.3 can be modified to run
in polynomial time.

Corollary 6.6.5. Let C be a class of graphs satisfying (P1), (P2), and (P3∗). There
exists an algorithm listing for C-inputs G all their regular quotients, with a polynomial-
time delay.

Theorem 6.5.2 implies that to solve the RegularCover problem in general,
one has to work with both graphs G and H from the beginning. Our algorithm starts
only with G and tries to match its quotients to H only in the end.

201

Chapter 6. Overview of Algebraic Properties of Graphs

202

7 3-connected Reduction

7.1 Definition of Extended Graphs . 204
7.2 Group Theory and Automorphism Groups of Graphs 205
7.3 Block Trees and Their Automorphisms 212
7.4 Structural Properties of Atoms . 216
7.5 Reduction Series and Reduction Trees 222
7.6 Reduction Epimorphism . 224
7.7 Polynomial-time Algorithms . 230
7.8 Comparison with Previous Results 232

This chapter contains:

• 7.1: Definition of Extended Graphs. We define extended graphs with half-
edges used in Part II.
• 7.2: Group Theory and Automorphism Groups of Graphs. An overview of

the main concepts from group theory.
• 7.3: Block Trees and Their Automorphisms. Block trees decompose graphs

into 2-connected subgraphs. They capture automorphism groups.
• 7.4: Structural Properties of Atoms. We introduce atoms which are 3-

connected components of the reduction.
• 7.5: Reduction Series and Reduction Trees. We describe the reduction series

which replaces atoms by colored edges. It is captured by the reduction tree.
• 7.6: Reduction Epimorphism. We describe changes in automorphism groups

by reductions, with a group epimorphism Φi : Aut(Gi)→ Aut(Gi+1).
• 7.7: Polynomial-time Algorithms. We describe algorithms for computing

the reduction series and the reduction tree.

http://pavel.klavik.cz/orgpad/3conn_reduction.html

203

http://pavel.klavik.cz/orgpad/3conn_reduction.html

Chapter 7. 3-connected Reduction

7.1 Definition of Extended Graphs

In this section, we introduce extended graphs, used in Chapters 7, 8, 10, 11 and in
Section 9.5.

The concept of regular graph covering, studied in Chapters 10 and 11, comes
from topological graph theory where graphs are understood as 1-dimensional CW-
complexes. This means that edges are represented by real open intervals, vertices are
points, and the topological closure of an edge e is either a closed interval, or a simple
cycle. In the first case, e joins two different vertices u and v incident to e. In the
second case, e is incident just to one vertex v and e is a loop based at v. When one
considers regular quotients of graphs, a third type of “edges” may appear [267]. For
a non-trivial involution swapping the end-vertices of an edge e, the regular covering
projection maps e to an “edge” whose one end is incident to a vertex while the other
is free. Its topological closure is homeomorphic to a half-closed interval, and we call
it a half-edge.

Definition of Extended Graphs. An extended multigraph G (or just a graph G) is
a tuple (H ,V , ι, λ), where

• H is a set of half-edges,
• V is a set of vertices,
• ι : H → V is a partial function of incidence, and
• λ : H →H is an involution, pairing half-edges.

The set of edges E is formed by orbits of λ of size 2, while orbits of size 1 form
standalone half-edges.

Each edge {h, λh} is one of the four kinds:

• a standard edge if ι(h) ̸= ι(λh),
• a loop if ι(h) = ι(λh),
• a pendant edge where exactly one of ι(h) and ι(λh) is not defined, and
• a free edge where both ι(h) and ι(λh).

For (standalone) half-edges h, we have h = λh and it is called a free half-edge when
ι(h) = ι(λh) is not defined. Standalone half-edges are mostly called half-edges and we
do not distinguish between h and the orbit {h} of size one.1 See Fig. 7.1a.

Unless the graph is K2, we remove all vertices of degree 1 while keeping both half-
edges (one with ι not defined). Assuming that the original graph contains no pendant
edges, this removal does not change the automorphism group. A pendant edge attached
to v is called a single pendant edge if it is the only pendant edge attached to v. Most
graphs considered in this and the following chapters are assumed to be connected, so
they contain no free edges and half-edges. (Sometimes we consider subgraphs which
may be disconnected and may contain them.)

1When the distinction is needed, some papers call the elements of H as darts or arcs while
standalone half-edges are called half-edges or semiedges.

204

7.2. Group Theory and Automorphism Groups of Graphs

h

λh

(a)

v

u

standard

edge

h λh

u = v

loop

h

λh

u

pendant

edge

h

λh

free edge

h = λh

u

(standalone)

half-edge

h = λh

free

half-edge

(b) undirected edge directed edge halvable edge

Figure 7.1: (a) Four kinds of edges and two kinds of half-edges are depicted. We
highlight two half-edges composing each edge by a small gap, omitted in the remaining
figures. To distinguish pendant edges from standalone half-edges, we end the latter
by a half-circle.
(b) Three possible types for standard edges and loops (pendant edges are always
undirected). We note that only halvable edges may be projected to standalone half-
edges which corresponds to cutting the middle circle in half, explaining the symbol for
half-edges.

When we work with several graphs, we use H(G), V (G), and E(G) to denote
the sets of half-edges, vertices and edges of G, respectively. We denote |H(G)| by
h(G), |V (G)| by v(G), |E(G)| by e(G). When G contains no standalone half-edges,
clearly h(G) = 2e(G).

Also, we consider graphs with colored edges and with three different edge types
(directed edges, undirected edges and a special type called halvable edges used only
in Chapters 10 and 11, see Fig. 7.1b). It might seem strange to consider such general
objects. But when we apply reductions, we replace parts of the graph by edges and
the colors encode isomorphism classes of replaced parts. Even if G is simple, the more
general colored multigraphs are naturally constructed in the process of reductions.

7.2 Group Theory and Automorphism Groups of Graphs

In this section, we introduce key notions from group theory and properly define auto-
morphism groups in the language of extended graphs.

7.2.1 Introduction to Group Theory

We quickly describe the main concepts from group theory and permutation group
theory which are relevant for this thesis. For the undefined concepts and results, the
reader is referred to [312]. For a visual introductory textbook, see [51].

We denote groups by Greek letters as for instance Ψ or Γ. Slightly abusing the
notation, each group Ψ = (Ψ, ·) consists of a set Ψ of elements and a binary operation
· : Ψ×Ψ→ Ψ which is associative and has a neutral element (denoted by 1 or id) and
inverse elements. Group elements usually represent invertible transformations of some
object (for instance, automorphisms of a graph) and the operation · is the composition.
When written ψ · σ, we first apply ψ and then σ. Figure 7.2 depicts Cayley graphs

205

Chapter 7. 3-connected Reduction

Figure 7.2: Cayley graphs of the groups of symmetric transformations of a fan (the
group is isomorphic to C6) and of an equilateral triangle (the group is isomorphic to
D3).

of symmetric transformations of two geometric objects. For a group Ψ, a subgroup
Σ consists of a subset of elements which is closed under the group operation, and we
denote this by Σ ≤ Ψ.

We use the following notation for some standard families of groups:

• Sn for the symmetric group of all n-element permutations,
• Cn for the cyclic group of integers modulo n,
• Dn for the dihedral group of the symmetries of a regular n-gon so |Dn| = 2n, and
• An for the alternating group of all even n-element permutations.

We note that D1 ∼= C2 and D2 ∼= C2
2.

Group Actions. A group Ψ acts on a set S in the following way. Each element g ∈ Ψ
permutes the elements of S, and the action is described by a mapping · : Ψ× S → S
where 1 ·x = x and (gh) ·x = g · (h ·x). Usually, actions satisfy further properties that
arise naturally from the structure of S. In this thesis, by a group we usually mean a
group of automorphisms of a graph acting on the set of half-edges.

For an action of Ψ on a set S, an orbit [x] of x ∈ S is {ψ(x) : ψ ∈ Ψ} ⊆ S.
It follows that the orbits partition the set S. For x ∈ S, the stabilizer Stab(x) is
the subgroup {ψ : ψ ∈ Ψ, ψ(x) = x} of Ψ. For A ⊆ S, we distinguish the point-
wise stabilizer {ψ : ψ ∈ Ψ, ψ(x) = x,∀x ∈ A} and the set-wise stabilizer {ψ : ψ ∈
Ψ, ψ(A) = A}. The action is called semiregular if it has no non-trivial stabilizers, i.e.,
if ψ(x) = x, then ψ = id.

Suppose that a group Σ acts on two sets A and B. We say that the actions are
equivariant if there exists an equivariant map ϕ : A→ B which is a bijection and for
every σ ∈ Σ, we have ϕ(σ(x)) = σ(ϕ(x)). Equivariance is an equivalence relation on
orbits of the action of a group Σ, consisting of equivalent classes of equivariant orbits.

206

7.2. Group Theory and Automorphism Groups of Graphs

Group Quotients. If Σ ≤ Ψ, then Σ defines left cosets ψΣ = {ψ · σ : σ ∈ Σ} and
right cosets Σψ = {σ · ψ : σ ∈ Σ}. One can imagine a coset as a shifted copy of the
subgroup. All cosets are of equal size |Σ| and the both types of cosets partition the
elements of Ψ.

We would like to define the quotient group Ψ/Σ in which each element corre-
sponds to one coset of Σ and the group operation is defined accordingly. This works
only in the case when the left and the right cosets are equal, i.e., for each ψ ∈ Ψ, we
have ψΣ = Σψ. A subgroup satisfying this equality is called normal, denoted Σ E Ψ.
The operation which produces Ψ/Σ from Ψ is called factorization and Ψ is called an
group extension of Σ by Ψ/Σ.

Simple Groups. The following idea was invented by Jordan. If Σ E Ψ, then we can
understand Ψ by studying two smaller groups: the subgroup Σ and the quotient group
Ψ/Σ. We repeat the same idea on both of these groups, till they cannot be further
simplified, and such groups are called simple groups. We obtain a composition series

Ψ = Σ0 ▹ Σ1 ▹ · · · ▹ Σm = {1},

such that each quotient group Σi−1/Σi is simple. We can imagine these simple quotient
groups as building blocks which construct Ψ; they play the role of prime numbers for
groups.

The celebrated classification of finite simple groups describes all building blocks
for finite groups. Therefore, it describes the structure of all finite groups. But this
description gives just a part of information, since it is not clear how these building
blocks are “put together” to form more complex groups. This is called the group
extension problem. The problem to describe all extensions of a group Σ by Ψ/Σ is in
general a hard problem. Below, we discuss when these extension can be described by
semidirect products.

Group Homomorphism. For groups Ψ,Σ, a group homomorphism is a mapping of
Φ : Ψ→ Σ such that

Φ(ψ1 · ψ2) = Φ(ψ1) ·Φ(ψ2), ψ1, ψ2 ∈ Ψ.

Each homomorphism Φ : Ψ → Σ defines two important subgroups: the kernel
Ker(Φ) E Ψ and the image Im(Φ) ≤ Σ. A surjective homomorphism Φ is called
epimorphism and satisfies Im(Φ) = Σ.

Homomorphism Theorem states that for every homomorphism Φ : Ψ→ Σ,

Im(Φ) ∼= Ψ/Ker(Φ);

see Fig. 7.3. It states that each homomorphism Φ can be decomposed into two simpler
homomorphisms: the quotient homomorphism Φq : Ψ → Ψ/Ker(Φ) (which is surjec-
tive) and the embedding homomorphism Φe : Ψ/Ker(Φ)→ Σ (which is injective). The
quotient homomorphism Φq compresses each coset of Ker(Φ) into a single group ele-
ment of Ψ/Ker(Φ). The embedding homomorphism isomorphically maps Ψ/Ker(Φ)
into Im(Φ).

207

Chapter 7. 3-connected Reduction

K
er(Φ

)
Ψ

1 2

Φ : Ψ → Σ

Im
(Φ
)

Σ

U/Ker(f)

Φ
q : Ψ

→

Ψ
/K
er(Φ

) Φ
e
: Ψ

/K
er
(Φ

)
→

Σ

1
2

Figure 7.3: Homomorphism Φ can be decomposed in two parts: the quotient homo-
morphism Φq and the embedding homomorphism Φe.

Overview of Group Products. Group products may be used to construct larger
groups from smaller ones, which allows to describe certain group extensions. There
are two basic approaches. External group products combine two groups Ψ and Σ into
a new larger group whose elements are pairs (ψ, σ) for all ψ ∈ Ψ and σ ∈ Σ. Internal
group products describe an existing group Ψ by combining its subgroups.

Group products are often used to construct automorphism groups of graphs from
automorphism groups of simpler graphs, e.g., the results described in Section 6.3.1.
Also, in group theory, these products are often illustrated on graphs; see [312, 51].
For all of these products, if their groups are given in terms of permutation generators
(and for external semidirect products, also generators of the image of ϕ), we can easily
compute permutation generators of the product as well.

Direct Products. The external direct product Ψ×Σ has the Cartesian product Ψ×Σ
equal the elements and the operation defined as

(ψ1, σ1) · (ψ2, σ2) = (ψ1 · ψ2, σ1 · σ2).

In other words, Ψ× Σ consists of several identical copies of Ψ, each corresponding to
one element of Σ, and vice versa. By Ψk, we denote the direct product of k groups Ψ.
See Fig. 7.4 on the left.

Alternatively, a group Γ may be described by the internal direct product of normal
subgroups Ψ,Σ E Γ which are complementary, meaning Ψ∩Σ = {1} and ⟨Ψ ∩ Σ⟩ = Γ.
This condition implies that each γ ∈ Γ is equal to ψ · σ for unique ψ ∈ Ψ and σ ∈ Σ.

Semidirect Products. The direct product can be generalized by the semidirect
product, and we first describe the external semidirect product. Given two groups Ψ
and Σ, and a group homomorphism ϕ : Σ → Aut(Ψ), we construct the semidirect

208

7.2. Group Theory and Automorphism Groups of Graphs

C
3

2
= C

2

2
× C2 C

2

2
⋊C2

Figure 7.4: On the left, the direct product C2
2 × C2, consisting of two copies of C2

2,
depicted in yellow. On the right, the semidirect product C2

2 oϕ C2, consisting of two
different copies of C2

2 depicted in yellow (ϕ(0) = id) and orange (ϕ(1) exchanging the
role of red and blue edges in C2).

product Ψ oϕ Σ as follows. The elements are the Cartesian product Ψ × Σ and the
operation is

(ψ1, σ1) · (ψ2, σ2) = (ψ1 · ϕ(σ1)(ψ2), σ1 · σ2).

In some statements, we omit ϕ, but it is always described in the proofs. The au-
tomorphism group Aut(Ψ) consists of all “isomorphic copies” of Ψ. Similarly as for
the direct product, Ψ oϕ Σ consists of several copies of Ψ, each corresponding to one
element of Σ. But these copies are only isomorphic, not identical, and the mapping ϕ
chooses one isomorphic copy of Ψ for each σ ∈ Σ. To define the group operation on
Ψ oϕ Σ correctly, ϕ has to be a group homomorphism. See Fig. 7.4 on the right.

For the internal semidirect product, we again have two complementary subgroups,
but only one has to be normal. Let Γ be a group with complementary subgroups Ψ E Γ
and Σ ≤ Γ. Then Γ can be constructed as Ψ o Σ. For the quotient Γ/Ψ, we have the
normal subgroup Ψ. Therefore, the group extension Γ of Ψ by Γ/Ψ can be described
by the semidirect product if and only if there exists a subgroup Σ ≤ Γ which is
complementary to Ψ. (We always have Σ ∼= Γ/Ψ.)

This may be applied to a group homomorphism Φ : Γ→ Υ to construct Γ from
Ker(Φ) and from the complementary subgroup Σ ≤ Γ; see Fig. 7.5a. (It always follows
that Φ|Σ : Σ → Im(Φ) is an isomorphism.) We use this approach for the reduction
epimorphism Φi in the proof of Proposition 7.6.4.

Wreath Products. In permutation group theory, a special type of semidirect prod-
ucts, called a wreath product, is often used. Suppose that Σ acts on {1, . . . , n}. The
wreath product Ψ ≀ Σ is a shorthand for the semidirect product Ψn oϕ Σ where ϕ is
defined naturally by

ϕ(σ) = (ψ1, . . . , ψn) ↦→ (ψσ(1), . . . , ψσ(n)).

In this thesis, we always have Σ = Sn or Σ = Cn with the natural action {1, . . . , n}.
In other words, we have n copies of Ψ and Σ permutes their indexes according to its
action on {1, . . . , n}. Figure 7.5b shows an example. For more details, see [51, 312].

209

Chapter 7. 3-connected Reduction

Φ

Γ

Υ

Im(Φ)

idKer(Φ
)

Σ

id

(a)

Ψ

ΨΨ

Ψ

Ψ Ψ(b) Ψ ≀ C6

Figure 7.5: (a) The group Γ can be constructed from Ker(Φ) and Im(Φ) by a
semidirect product if and only if there exists a subgroup Σ ≤ Γ complementary to
Ker(Φ). (b) The wreath product Ψ ≀ C6 is the semidirect product Ψ6 o C6 such that
the elements of C6 permute indexes in Ψ6 as depicted.

Robinson [308] introduced generalized wreath product to describe automorphism
groups of graphs by combining automorphism groups of their 2-connected blocks;
see Section 7.3. The group Σ acts on {1, . . . , n} and has k orbits [x1], . . . , [xk] of size
ℓ1, . . . , ℓk. Let Ψ1, . . . ,Ψk be arbitrary groups, one for each orbit. Then the generalized
wreath product

(Ψ1, . . . ,Ψk) ≀ Σ = (Ψℓ1
1 × · · · ×Ψℓk

k) oϕ Σ,

where ϕ(σ) permute indexes in the same way as σ acts on 1, . . . , n. When two orbits
[xi] and [xj] are equivariant, then ℓi = ℓj and the generalized wreath product can be
simplified. We merge [xi] and [xj] in the action of Σ and use the group Ψi × Ψj for
this merged orbit.

All semidirect products described in Section 6.3.1 are generalized wreath prod-
ucts. On the other hand, the semidirect products of the Jordan-like characterization of
the automorphism groups of planar graphs, described in Chapter 8, are more involved
and cannot be expressed using these generalized wreath products.

7.2.2 Automorphism Groups of Extended Graphs

An automorphism π is fully described by a permutation πh : H(G)→H(G) preserv-
ing edges and incidences between half-edges and vertices, i.e., πh(λh) = λπh(h) and
πh(ι(h)) = ι(πh(h)) (where either both, or none are defined). Thus, πh induces two
permutations πv : V (G) → V (G) and πe : E(G) → E(G) connected together by the
very natural property πe(uv) = πv(u)πv(v) for every uv ∈ E(G). Since we mostly
consider connected graphs with at least one half-edge, the action of an automorphism
π on the vertex set is induced by the action of π on half-edges. If G is a simple, then
π is determined by the action on the vertices, as is expected. In most situations, we
omit subscripts and simply use π(u) or π(uv).

We similarly define isomorphisms π : G → H between different graphs G and
H, and we denote existence of an isomorphism by G ∼= H.

In addition, for colored graphs with three edge types, we require that automor-
phisms and isomorphisms always preserves the colors, the edge types and the direction
of oriented edges.

210

7.2. Group Theory and Automorphism Groups of Graphs

Automorphism Groups. All automorphisms of G form a group called the automor-
phism group of G, denoted by Aut(G). Each element π ∈ Aut(G) acts on G, permutes
its vertices, edges and half-edges while it preserves edges and incidences between the
half-edges and the vertices.

The orbit [v] of a vertex v ∈ V (G) is the set of all vertices {π(v) | π ∈ Ψ}, and
the orbits [h] of a half-edge h ∈H(G) and [e] of an edge e ∈ E(G) are defined similarly
as {π(h) | π ∈ Ψ} and {π(e) | π ∈ Ψ}. Similarly, we consider stabilizers of vertices,
edges, half-edges, and point-wise and set-wise stabilizers. We discuss semiregularity
in the context of regular graph covers in Section 10.1.

Automorphism Groups of Disconnected Graphs. To illustrate the power of
group products, we prove that the automorphism group of a graph can be constructed
by direct and wreath products from automorphism groups of its connected components,
due to Jordan [202]. Also, describing this simple proof in detail is helpful, because
similar arguments are later used proofs of Proposition 7.6.4 and Lemma 10.3.4.

Theorem 7.2.1 (Jordan [202]). If G1, . . . , Gn are pairwise non-isomorphic connected
graphs and G is the disjoint union of ki copies of each Gi, then

Aut(G) ∼= Aut(G1) ≀ Sk1 × · · · × Aut(Gn) ≀ Skn .

Proof. Since the action of Aut(G) is independent on non-isomorphic components, it is
clearly the direct product of factors, each corresponding to the automorphism group
of one isomorphism class of components. It remains to show that if G consists of k
isomorphic components H1, . . . , Hk of a connected graph H, then

Aut(G) ∼= Aut(H) ≀ Sk.

An example is given in Fig. 7.6.
For i > 1, let σ1,i be an arbitrarily chosen isomorphism from H1 to Hi, and we

put σ1,1 = id and σi,j = σ1,jσ
−1
1,i . Observe that each isomorphism from Hi to Hj can

1

2

3

4

G Aut(G)

1
2

3
4

2
1

3
4

1
2

4
3

2
1

4
3

3
4

1
2

3
4

2
1

4
3

1
2

4
3

2
1

Figure 7.6: On the left, the graph G consisting of two copies of K2, together with
the action of three generators of Aut(G). On the right, the Cayley graph of Aut(G) ∼=
C2

2 oC2 ∼= C2 ≀ S2. It is not C3
2 since applying the green generator exchanges the roles

of the red and blue generators.

211

Chapter 7. 3-connected Reduction

be decomposed into σi,j and some automorphism of Hj. Let π ∈ Aut(G). It can
be decomposed into a composition µ · σ of two automorphisms. The automorphism
σ permutes the components as in π, so when π(Hi) = Hj, then σ|Hi

= σi,j. The
automorphism µ maps each component Hi to itself, so µ|Hi

= π|Hi
· σ−1

i,j . We have
π = µ · σ since

µ|Hi
· σ|Hi

= π|Hi
· σ−1

i,j σi,j = π|Hi
.

The automorphisms µ can be bijectively identified with the elements of Aut(H)k and
the automorphisms σ with the elements of Sk.

Let π, π′ ∈ Aut(G). Consider the composition µ · σ · µ′ · σ′, we want to swap
σ with µ′ and rewrite this as a composition µ · µ̂ · σ̂ · σ. Clearly the components are
permuted in π ·π′ exactly as in σ ·σ′, so σ̂ = σ. On the other hand, µ̂ is not necessarily
equal µ′. Let µ′ be identified with the vector (µ′1, . . . , µ′k) ∈ Aut(H)k. Since µ′ is
applied after σ, it acts on the components permuted according to σ. Therefore µ̂ is
constructed from µ′ by permuting the coordinates of its vector by σ:

µ̂ = (µ′σ(1), . . . , µ
′
σ(k)).

This is precisely the definition of the wreath product, so Aut(G) ∼= Aut(H) ≀ Sk.

7.3 Block Trees and Their Automorphisms

The block tree T of G is a tree defined as follows. Consider all articulations in G
and all maximal 2-connected subgraphs which we call blocks (with bridge-edges and
pendant edges also counted as blocks). The block tree T is the incidence graph between
articulations and blocks. For an example, see Fig. 7.7.

7.3.1 Properties of Automorphisms

Let π ∈ Aut(G). Every block B is mapped to a block π(B) and every articulation u is
mapped to an articulation π(u) while the incidencies between blocks and articulations
are preserved by π. Therefore, we get the following well-known fact:

G T

Figure 7.7: On the left, an example graph G with depicted blocks. On the right, the
corresponding block tree T is depicted, rooted at the central block. The white vertices
correspond to the articulations and the colored vertices to the blocks.

212

7.3. Block Trees and Their Automorphisms

Lemma 7.3.1. Every automorphism π ∈ Aut(G) induces a unique automorphism π′ ∈
Aut(T). More precisely, this correspondence π ↦→ π′ defines a group homomorphism
Φ : Aut(G)→ Aut(T).

Central Articulations or Blocks. For a tree, its center is either the central vertex
or the central pair of vertices of a longest path, depending on the parity of its length.
For the block tree T , all leaves are blocks and each longest path is of an even length.
Therefore, T has a central vertex which is either a central articulation, or a central block
of G. Since every automorphism of a tree preserves its center, we get the following
property:

Lemma 7.3.2. Every automorphism π ∈ Aut(G) preserves the central articulation or
the central block of G.

We orient the edges of the block tree T towards the central vertex, so the block
tree becomes rooted. A subtree of the block tree is defined by any vertex different
from the central vertex acting as the root and by all its predecessors. Every block B
which is not the root is directed in T towards one articulation which we call the outer
articulation. The other articulations in B are called the inner articulations. If T has
a central block B, then B only contains inner articulations.

Let T1, . . . , Tk be the subtrees attached to the central vertex, corresponding to
subgraphs G1, . . . , Gk. We can relate Aut(G) and Aut(T) in the following way:

Lemma 7.3.3. Let π′ ∈ Aut(T) be the automorphism induced by π ∈ Aut(G), i.e,
π′ = Φ(π). If π′(Ti) = Tj, then Gi

∼= Gj.

7.3.2 Characterization of Automorphism Groups

The generalized wreath products were used by Robinson [308] to construct automor-
phism groups of connected graphs from automorphism groups of their blocks, gener-
alizing Jordan’s Theorem 7.2.1. Below, we sketch the main ideas since we generalize
them in the rest of this chapter.

Let G be a connected graph. We want to determine Aut(G) from the block
tree T and from the automorphism groups Aut(B) of its blocks B. The issue is that
for a block B, not every automorphism has to be extendable to an automorphism
of Aut(G). For instance, the central block B in Fig. 7.7 has the 60◦ rotation as an
automorphism which cannot be extended to an automorphism of G since attached
subtrees are non-isomorphic.

This issue can be resolved by a suitable coloring of articulations of B. We
color two inner articulations the same if and only if their subtrees are isomorphic; see
Fig. 7.8a. Further, if B is not a central block, we color the outer articulation by a
special color. We consider only the color-preserving automorphism group Aut(B).

Lemma 7.3.4. Every color-preserving automorphism of B can be extended to an au-
tomorphism of G.

213

Chapter 7. 3-connected Reduction

B(a) (b)
T ′

u

S

Figure 7.8: (a) The central block B from Fig. 7.7 with colored vertices according to
the isomorphism classes of attached subtrees. We have Aut(B) ∼= D3.
(b) We represent an articulation u with attached subtrees by a star S with colored
pendant edges. We have Aut(S) ∼= S2 × S3.

Proof. Let π ∈ Aut(B). We construct π′ ∈ Aut(G) extending π as follows. If B is not
the central block, then outside the subtree of B, we put π′ = id. This choice is correct
since Aut(B) stabilizes the outer articulation. It remains to define π′ on the subtrees
attached to B.

Let u1, . . . , uk be one vertex-orbit of Aut(B) consisting of articulations having
subtrees T1, . . . , Tk attached. Since these vertices have the same color, we have Ti

∼= Tj.
Similarly as in the proof of Theorem 7.2.1, we choose arbitrary isomorphisms σ1,i from
Ti to Tj, and put σ1,1 = id and σi,j = σ1,jσ

−1
1,i . If π(ui) = uj, we define π′|Ti

= σi,j. It
is easy to prove that π′ ∈ Aut(G).

Inductive Description. Similarly to Jordan’s characterization of automorphism
groups of trees (Theorem 6.3.1), we construct the automorphism group of G from the
leaves to the root of T . We need to describe how to construct the automorphism group
of a subtree assuming that we know automorphism groups of children subtrees. We
need to deal with three cases: a subtree T ′ of a block, a subtree T ′ of an articulation,
and the root vertex. In the first two cases, we only consider the stabilizer of the outer
articulations denoted Fix(T ′). In the third case, the central block B (if it exists) has no
outer articulation, so each automorphism of B may be extendable to an automorphism
of G. The induction starts with the stabilizers of outer articulations for all leaf blocks
of T .

Case 1: A subtree T ′ of a block B. We know stabilizers of attached subtrees
of all inner articulations. We color the articulations of B as described above and
let Aut(B) be the color-preserving automorphism group. To highlight that Aut(B)
stabilizes the outer articulation, we denote it by Fix(B). Let [u1], . . . , [uk] be the orbits
of inner articulations of Aut(B), with attached subtrees T ′1, . . . , T ′k. Following a similar
argument as in the proofs of Lemma 7.3.4 and Theorem 7.2.1, we get that Fix(T ′) is
the following generalized wreath product:

Fix(T ′) ∼=
(
Fix(T ′1), . . . ,Fix(T ′k)

)
≀ Fix(B).

Case 2: A subtree T ′ of an articulation u. This case is even simpler. We have
several subtrees attached to u for which we know stabilizers. The action of Fix(T ′) is
independent on each isomorphism class of attached subtrees, so we get several factors
combined by the direct product. Each factor corresponds to one isomorphism class

214

7.3. Block Trees and Their Automorphisms

which can be arbitrarily permuted. Suppose that we have k isomorphism classes, each
consisting of ℓi subtrees T ′i . We get the same result as in Jordan’s Theorem 7.2.1:

Fix(T ′) ∼= Fix(T ′1) ≀ Sℓ1 × Fix(T ′2) ≀ Sℓ2 × · · · × Fix(T ′k) ≀ Sℓk
.

But this case is also conceptually interesting for the rest of this chapter. Suppose
that we would like to color the vertex u to encode isomorphism classes of the attached
subtrees, to get a similar result as in Lemma 7.3.4 for blocks. Since multiple subtrees
may be attached, we would have to use multiple colors with multiplicities on u. Instead,
we choose to represent u with attached subtrees by a star S having u in the center
and a pendant edge for each attached subtree. Then we color these pendant edges and
obtain the color-preserving automorphism group Aut(S), for which a similar result
as Lemma 7.3.4 holds; see Fig. 7.8b. To unify our approach, we represent outer
articulations of a block B by attached colored single pendant edges. (Another reason
becomes more apparent in Chapter 10.)

Case 3A: The central articulation. Same as Case 2.
Case 3B: The central block B. Similar as Case 1, but no outer articulation has

to be stabilized. Therefore, we use Aut(B) instead of Fix(B) and we get:

Aut(G) ∼=
(
Fix(T ′1), . . . ,Fix(T ′k)

)
≀ Aut(B).

7.3.3 Why Not Just 2-connected Graphs?

In many situations, only connected graphs may be considered since the problems
for disconnected graphs can be solved independently on each connected component.
Similarly, block trees are used to reduce problems for connected graphs to problems for
2-connected graphs. For instance, Whitney [359] characterized planar graphs exactly
as graphs whose blocks are planar. Similarly, graph isomorphism and computation of
automorphism groups of graphs can be solved by graph isomorphism and computation
of automorphism groups of their blocks.

In the rest of this chapter, we describe the tree decomposition of a connected
graph in terms of 3-connected components, generalizing block trees. This decompo-
sition captures automorphism groups and it is a non-trivial modification of previous
results described in Section 6.2.3, e.g., [265, 340, 191, 95]. One of the key differences
is that we assume connected graphs, but all previous results start with 2-connected
graphs. We prefer starting with only connected graphs for the following reasons.

1. We can capture the full decomposition with only one tree, instead of having a
tree for each block.

2. As illustrated, the automorphism group Aut(G) acts differently on the central
articulation or block than on the attached subtrees to it. Therefore, we would
need to work differently with the tree corresponding to the central block (if it ex-
ists) than with the trees corresponding to the remaining blocks. This unification
makes Chapter 8 more understandable.

3. The original motivation for building our decomposition was the study of regular
graphs covers. The issue is that regular quotients of 2-connected graphs are con-
nected graphs but might not be 2-connected. Therefore, we cannot divide both

215

Chapter 7. 3-connected Reduction

graphs G and H into blocks and work separately with them. This is described
in more details in Chapters 10 and 11.

7.4 Structural Properties of Atoms

In this section, we introduce special inclusion-minimal subgraphs of G called atoms,
also called 3-connected components. We investigate their structural properties with
respect to the automorphism groups.

7.4.1 Definition and Basic Properties of Atoms

Let B be one block of G, so B is a 2-connected graph. Two vertices u and v form
a 2-cut U = {u, v} if B \ U is disconnected. We say that a 2-cut U is non-trivial if
degB(u) ≥ 3 and degB(v) ≥ 3.

Lemma 7.4.1. Let U be a 2-cut and let C be a component of B \ U . Then U is
uniquely determined by C.

Proof. If C is a component of B \ U , then U has to be the set of all neighbors of C
in B. Otherwise B would not be 2-connected, or C would not be a component of
B \ U .

The Definition. We first define a set P of subgraphs of G called parts which are
candidates for atoms:

• A block part is a subgraph of G induced by the vertices of the blocks of a subtree
of the block-tree, non-isomorphic to a pendant edge.
• A proper part is a subgraph S of G defined by a non-trivial 2-cut U of a block
B. The subgraph S consists of a connected component C of G \ U (not B \ U)
together with u and v and all edges between {u, v} and C. In addition, we
require that S does not contain the central block/articulation. Therefore, S
consists a subgraph of B together with the vertices of the blocks of subtrees of
all block-trees attached to C.
• A dipole part is any dipole defined as follows. Let u and v be two distinct vertices

of degree at least three joined by at least two parallel edges. Then the subgraph
induced by u and v is called a dipole.

The inclusion-minimal elements of P are called atoms. We distinguish block atoms,
proper atoms and dipoles according to the type of the defining part. Block atoms are
either stars of pendant edges called star block atoms, or pendant blocks possibly with
single pendant edges attached to them called non-star block atoms. Also each proper
atom is a subgraph of a block, together with some single pendant edges attached to
it. Notice that a dipole part is by definition always inclusion-minimal, and therefore
it is an atom. For an example, see Fig. 7.9. The above concepts of a proper atom and
dipoles have their counter-parts in the literature, they are called pseudo-bricks and

216

7.4. Structural Properties of Atoms

block atoms proper atoms dipoles

Figure 7.9: An example of a graph with denoted atoms. The white vertices belong
to the boundary of some atom, possibly several of them.

bonds, respectively [352]. Some of the following properties and results can be found
in literature, see [340, 344, 191, 78, 352] for instance.

We use the topological notation to denote the boundary ∂A and the interior Å
of an atom A. If A is a dipole, we set ∂A = V (A). If A is a proper or block atom, we
put ∂A equal to the set of vertices of A which are incident with an edge not contained
in A. For the interior, we use the standard topological definition Å = A \ ∂A where
we only remove the vertices ∂A, the edges adjacent to ∂A are kept in Å as pendant
edges.

Note that |∂A| = 1 for a block atom A, and |∂A| = 2 for a proper atom or dipole
A. The interior of a star block atom or a dipole is a set of free edges. Observe for a
proper atom A that the vertices of ∂A are exactly the vertices {u, v} of the non-trivial
2-cut used in the definition of proper parts. Also the vertices of ∂A of a proper atom
are never adjacent in A. Further, no block or proper atom contains parallel edges;
otherwise a dipole would be its subgraph, so it would not be inclusion minimal.

Remark. We define atoms with respect to the central block/articulation. It could be
defined with respect to an arbitrary block/articulation of the block tree, and this is
used later in this thesis.

7.4.2 Structure of Primitive Graphs and Atoms

We characterize the possible structure of atoms and primitive graphs, which explains
why they are also called 3-connected components. For star block atoms and dipoles,
their structure is clear by the definition. So it remains to describe the structure of
non-star block atoms and proper atoms.

Primitive Graphs. A graph is called primitive if it contains no atoms. The following
lemma characterizing primitive graphs can be alternatively obtained from the well-
known theorem by Trakhtenbrot [340].2

2We consider K1 with an attached single pendant edge as a graph with a central articulation.

217

Chapter 7. 3-connected Reduction

Lemma 7.4.2. Let G be a primitive graph. If G has a central block, then it is a
3-connected graph, a cycle Cn for n ≥ 2, or K2, or can be obtained from the afore-
mentioned graphs by attaching single pendant edges to at least two vertices. If G has
a central articulation, then it is K1, possible with a single pendant edge attached.

Proof. The graph G has a central block/articulation. All blocks attached to it have to
be single pendant edges, otherwise G would contain a block atom. If G has a central
articulation u, after removing all pendant edges, we get a single vertex u, so G is K1,
possibly with a single pendant edge with free ends attached. If G has a central block,
after removing all pendant edges, we get the 2-connected graph B consisting of only
the central block. We argue that B is one of the stated graphs.

Now, let u be a vertex of the minimum degree in B. If deg(u) = 1, the graph
B has to be K2, otherwise it would not be 2-connected. If deg(u) = 2, then either
the graph B is a cycle Cn, or u is an inner vertex of a path connecting two vertices
x and y of degree at least three such that all inner vertices are of degree two. But
then this path is an atom, a contradiction. Finally, if deg(u) ≥ 3, then every 2-cut is
non-trivial, and since B contains no atoms, it has to be 3-connected.

Clearly, the graphs mentioned in the statement are primitive; see Fig. 7.10.

Structure of Non-star Block Atoms. We call a graph essentially 3-connected
if it is a 3-connected graph possibly with some single pendant edges attached to it.
Similarly, a graph is called essentially a cycle if it is a cycle possibly with some single
pendant edges attached to it. Similarly to the characterization of primitive graphs
in Lemma 7.4.2, non-star block and proper atoms are either very simple, or almost
3-connected:

Lemma 7.4.3. Every non-star block atom A is either K2 with an attached single
pendant edge, essentially a cycle, or essentially 3-connected.

Proof. Clearly, the described graphs are possible non-star block atoms. Since A does
not contain any smaller block atom, then A is 2-connected graph, possibly with some
single pendant edges attached. By removing all single pendant edges, we get a 2-
connected graph B, otherwise A contains a smaller block part, which is a smaller
block part in G as well.

u B B B

Figure 7.10: A primitive graph with a central articulation is K1, and with a central
block is either K2, Cn, or a 3-connected graph, in all these cases with possible single
pendant edges attached to it.

218

7.4. Structural Properties of Atoms

Let u be a vertex of the minimum degree in B. We have deg(u) > 0, otherwise
B = K1 and A = K2. If deg(u) = 1, the graph B has to be K2, otherwise it would
not be 2-connected. If deg(u) = 2, then either the graph B is a cycle Cn, or u is
an inner vertex of a path connecting two vertices x and y of degree at least three
such that all inner vertices are of degree two. But then this path determines a proper
atom in B which is also a proper atom in G, a contradiction. Finally, if deg(u) ≥ 3,
then every 2-cut is non-trivial, and since B contains no proper atoms, it has to be
3-connected.

Structure of Proper Atoms. Let A be a proper atom with ∂A = {u, v}. We define
the extended proper atom A+ as A with the additional edge uv.

Lemma 7.4.4. For every proper atoms A, the extended proper atom A+ is either
essentially a cycle, or essentially 3-connected.

Proof. Clearly, the described graphs are possible extended proper atoms A+. Notice
that A+ consists a 2-connected graph, possibly with single pendant edges attached,
otherwise A contains a smaller block part. By removing all single pendant edges, we get
a 2-connected graph B+, otherwise A+ contains a smaller block part. Let ∂A = {u, v},
we have deg(u) ≥ 2 and deg(v) ≥ 2 in A+ (and their degrees are preserved in B+).

Let w be a vertex of the minimum degree in B+. We have deg(w) > 1, otherwise
A again contains a smaller block part. If deg(w) = 2, then either the graph B+ is a
cycle Cn, or w is an inner vertex of a path connecting two vertices x and y of degree at
least three such that all inner vertices are of degree two. But then this path is a proper
atom in A+. It corresponds to a proper atom in the original graph since the edge uv
in A+ corresponds to some path in G, so we get a contradiction with the minimality
of A. Finally, if deg(w) ≥ 3, then every 2-cut is non-trivial, and since B+ contains no
atoms, it has to be 3-connected.

For all atoms A, single pendant edges are always attached to Å.

Lemma 7.4.5. Let A be an essentially 3-connected graph, and we construct B from A
by removing the single pendant edges of A. Then Aut∂A(A) is a subgroup of Aut∂B(B).

Proof. These single pendant edges behave like markers, giving a 2-partition of V (G)
which Aut∂A(A) has to preserve.

7.4.3 Non-overlapping Atoms

Our goal is to replace atoms by edges, and so it is important to know that the atoms
cannot overlap too much. The reader can see in Fig. 7.9 that the atoms only share
their boundaries. This is true in general, and we are going to prove it in two steps.

Lemma 7.4.6. The interiors of distinct atoms are disjoint.

219

Chapter 7. 3-connected Reduction

Å ∩ Å′Å Å′

W ′ W

G \ (Å ∪ Å′)

Å ∩ Å′Å Å′

W ′ W

G \ (Å ∪ Å′)

Figure 7.11: We depict the vertices of ∂A in black and the vertices of ∂A′ in white.
In both cases, we find a subset of A belonging to P (highlighted in gray).

Proof. For contradiction, let A and A′ be two distinct atoms with non-empty inter-
sections of Å and Å′. First suppose that one of them, say A, is a block atom. Then
A corresponds to a subtree of the block-tree which is attached by an articulation u to
the rest of the graph. If A′ is a block atom then it corresponds to some subtree, and
we can derive that A ⊆ A′ or A′ ⊆ A. If A′ is a dipole, then it is a subgraph of a block,
and thus subgraph of A. If A′ is a proper atom, it is defined with respect to some
block B. If B belongs to the subtree corresponding to A, then A′ ⊆ A. Otherwise,
a subtree of blocks containing A is attached to A′, so A ⊆ A′. In both cases, we get
contradiction with the minimality. Similarly, if one of the atoms is a dipole, we can
easily argue contradiction with the minimality.

The last case is that both A and A′ are proper atoms. Since the interiors are
connected and the boundaries are defined as neighbors of the interiors, it follows that
both W ′ = A ∩ ∂A′ and W = A′ ∩ ∂A are nonempty. We have two cases according to
the sizes of these intersections depicted in Fig. 7.11.

If |W | = |W ′| = 1, then W ∪W ′ is a 2-cut separating Å ∩ Å′ which contradicts
the minimality of A and A′. If, without loss of generality, |W | = 2, then there is no
edge between Å \ (Å′ ∪W ′) and the remainder of the graph G \ (Å ∪ Å′). Therefore,
Å \ (Å′ ∪W ′) is separated by a 2-cut W ′ which again contradicts the minimality of A.
We note that in both cases the constructed 2-cut is non-trivial since it is formed by
vertices of non-trivial cuts ∂A and ∂A′.

Next we show a stronger version of the previous lemma which states that two
atoms can intersect only in their boundaries.

Lemma 7.4.7. Let A and A′ be two atoms. Then A ∩ A′ = ∂A ∩ ∂A′.

Proof. We already know from Lemma 7.4.6 that Å∩ Å′ = ∅. It remains to argue that,
say, Å∩∂A′ = ∅. If A′ is a block atom, then ∂A′ is the articulation separating A. If A
contains this articulation as its interior, it also contains A′ as its interior, contradicting
Å ∩ Å′ = ∅. Similarly, if A is a block atom, then A′ has to be contained in Å or vice
versa which again contradicts Å ∩ Å′ = ∅.

It remains to argue the case when both A and A′ are proper atoms or dipoles.
Let ∂A = {u, v} and ∂A′ = {u′, v′}. First we deal with dipoles. When A is a dipole, it
holds since Å contains no vertices. If A′ is a dipole and A is a proper atom with u′ ∈ Å,
then also the edges of A′ belong to A and A′ (A, contradicting the minimality.

220

7.4. Structural Properties of Atoms

Å Å′

u′ u

v v′

Å Å′

u′ u

vv′

Å Å′

u′ u

vv′

w′

Figure 7.12: An illustration of the main steps of the proof of Lemma 7.4.7.

We conclude with the remaining case that both A and A′ are proper atoms.
Recall that ∂A is defined as neighbors of Å in G, and that ∂A′ are neighbors of Å′ in
G. The proof is illustrated in Fig. 7.12.

Suppose for contradiction that Å∩ ∂A′ ̸= ∅ and let u′ ∈ Å. By definition, u′ has
at least one neighbor in Å′, and since Å ∩ Å′ = ∅, this neighbor does not belong to
Å. Therefore, without loss of generality, we have u ∈ Å′ and uu′ ∈ E(G). Since A is
a proper atom, the set {u′, v} is not a 2-cut, so there is another neighbor of u in Å,
which has to be equal v′. Symmetrically, u′ has another neighbor in Å′ which is v. So
∂A ⊆ Å′ and ∂A′ ⊆ Å. If ∂A = Å′ and ∂A′ = Å, the graph is K4 (since the minimal
degree of cut-vertices is three) which contradicts existence of 2-cuts and atoms. If for
example Å ̸= ∂A′, then ∂A′ does not cut a subset of Å, so there exists w′ ∈ Å which
is a neighbor of Å′, which contradicts that ∂A′ cuts Å′ from the rest of the graph.

7.4.4 Symmetry Types of Atoms

We distinguish two symmetry types of atoms which describe how symmetric each atom
is. For an atom A, we denote by Aut∂A(A) the setwise stabilizer of ∂A. If A is a block
atom, then it is by definition symmetric. Let A be a proper atom or dipole with
∂A = {u, v}. Then we distinguish the following two symmetry types, see Fig. 7.13:

• A symmetric atom A. There exists an automorphism in Aut∂A(A) which ex-
changes u and v.
• An asymmetric atom A. The atom A which is not symmetric.

When an atom is reduced, we replace it by an edge carrying the type. Therefore
we work with multigraphs with two edge types: undirected edges and directed edges.
For these multigraphs, we naturally consider only the automorphisms which preserve
these edge types and of course the orientation of directed edges, and we use this
generalized definition to define symmetry types of their atoms.

u v u v

symmetric atoms

u v

u v

an asymmetric atom

u v

Figure 7.13: The two symmetry types of atoms and the corresponding edge types
which we use in the reduction.

221

Chapter 7. 3-connected Reduction

Action of Automorphisms on Atoms. We show a simple lemma which states how
automorphisms behave with respect to atoms.

Lemma 7.4.8. Let A be an atom and let π ∈ Aut(G). Then the following holds:

(a) The image π(A) is an atom isomorphic to A. Further π(∂A) = ∂π(A) and
π(Å) = π̊(A).

(b) If π(A) ̸= A, then π(Å) ∩ Å = ∅.
(c) If π(A) ̸= A, then π(A) ∩ A = ∂A ∩ ∂π(A).

Proof. (a) Every automorphism permutes the set of articulations and non-trivial 2-
cuts. (Recall the definition from the first paragraph of Section 7.4.1.) So π(∂A)
separates π(Å) from the rest of the graph. It follows that π(A) is an atom, since
otherwise A would not be an atom. And π clearly preserves the boundaries and the
interiors.

For the rest, (b) follows from Lemma 7.4.6 and (c) follows from Lemma 7.4.7.

It follows that every automorphism π ∈ Aut(G) gives a permutation of atoms
and Aut(G) induces an action on the set of all atoms.

7.5 Reduction Series and Reduction Trees

In this section, we describe structural properties of reduction series. The reduction
initiates with a graph G and produces a sequence of graphs G = G0, G1, . . . , Gr. To
produce Gi+1 from Gi, we find the collection of all atoms A in Gi and replace each of
them by an edge of the corresponding type. We stop after r steps when a primitive
graph Gr containing no further atoms is reached. We call this sequence of graphs
starting with G and ending with a primitive graph Gr as the reduction series of G.

Definition of Reduction. The reduction produces a series of graphs G = G0, . . . , Gr,
by replacing atoms with colored edges encoding isomorphism classes and by edge types
encoding symmetry types of atoms.

Remark: In what follows, we work with multigraphs with colored directed and
undirected edges. For every automorphism/isomorphism, we require that it pre-
serves colors, edge types and direction of oriented edges.

We note that the results established in Section 7.4 transfer to colored graphs and
colored atoms without any problems.

For a graph Gi, we find the collection of all atoms A. Two atoms A and A′

are isomorphic if there exists an isomorphism which maps ∂A to ∂A′. We obtain
isomorphism classes for the set of all atoms A of Gi such that A and A′ belong to the
same class if and only if A ∼= A′. To each isomorphism class, we assign one new color
not yet used in the graph. The graph Gi+1 is constructed from Gi by replacing each
atom in A by an edge as follows:

222

7.5. Reduction Series and Reduction Trees

G0

red.

G1

Figure 7.14: On the left, we have a graph G0 with three isomorphism classes of
atoms, each having four atoms. The dipoles and the block atoms are symmetric and
the proper atoms are asymmetric. We reduce G0 to G1 which is an eight cycle with
single pendant edges, with four black undirected edges replacing the dipoles, four gray
undirected edges replacing the block atoms, and four white directed edges replacing
the proper atoms. The reduction series ends with G1 since it is primitive. Notice the
consistent orientation of the directed edges.

• A block atom A with ∂A = {u} is replaced by a pendant edge attached to u of
the color assigned to the isomorphism class containing A.
• A proper atom or a dipole A with ∂A = {u, v}, which is symmetric or assym-

metric, is replaced by a new undirected or directed edge uv, respectively, of the
color assigned to the isomorphism class containing A. It remains to say that for
each isomorphism class of asymmetric atom, we consistently choose an arbitrary
orientation of the directed edges replacing these atoms.

For an example of the reduction, see Fig. 7.14.
According to Lemma 7.4.7, the replaced interiors of the atoms of A are pairwise

G1

Figure 7.15: The reduction tree for the reduction series in Fig. 7.14. The root is the
primitive graph G1 and each leaf corresponds to one atom of G0.

223

Chapter 7. 3-connected Reduction

disjoint, so the reduction is well defined. We stop in the step r when Gr is a primitive
graph containing no atoms. (Recall Lemma 7.4.2 characterizing all primitive graphs.)

Also, in general, the central block/articulation does not have to be preserved
and one has to define atoms in all steps of the reduction with respect to the same
block/articulation.

Reduction Tree. For every graphG, the reduction series corresponds to the reduction
tree which is a rooted tree defined as follows. The root is the primitive graph Gr, and
the other nodes are the atoms obtained during the reductions. If a node contains a
colored edge, it has the corresponding atom as a child. Therefore, the leaves are the
atoms of G0, after removing them, the new leaves are the atoms of G1, and so on. For
an example, see Fig. 7.15.

7.6 Reduction Epimorphism

In this section, we study changes in automorphism groups done by reductions. When
Gi is reduced to Gi+1, Aut(Gi+1) certainly may differ from Aut(Gi). But the reduction
is done right and important information of Aut(Gi) is preserved in Aut(Gi+1). This is
formally described by a reduction epimorphism Φi : Aut(Gi)→ Aut(Gi+1).

Definition of Reduction Epimorphism. We describe algebraic properties of the
reductions, in particular how the groups Aut(Gi) and Aut(Gi+1) are related. There
exists a natural mapping Φi : Aut(Gi) → Aut(Gi+1) called reduction epimorphism
which we define as follows. Let π ∈ Aut(Gi). For the common vertices and edges of
Gi and Gi+1, we define Φi(π) exactly as in π. If A is an atom of Gi, then according
to Lemma 7.4.8a, π(A) is an atom isomorphic to A. In Gi+1, we replace the interiors
of both A and π(A) by the edges eA and eπ(A) of the same type and color. We define
Φi(π)(eA) = eπ(A). It is easy to see that each Φi(π) ∈ Aut(Gi+1).

For purpose of Section 10.3.1, we also define Φi on the half edges. Let eA = uv
and let hu and hv be the half-edges composing eA, and similarly let hπ(u) and hπ(v) be
the half-edges composing eπ(A). Then we define Φi(π)(hu) = hπ(u) and Φi(π)(hv) =
hπ(v).

7.6.1 Properties of Reduction Epimorphism

First, we prove that the mapping Φi is indeed an epimorphism:

Proposition 7.6.1. The mapping Φi : Aut(Gi)→ Aut(Gi+1) is a group epimorphism,
i.e., Φi is a surjective group homomorphism.

Proof. First, we argue that Φi is a group homomorphism. Clearly, Φi(id) = id. Let
π, σ ∈ Aut(Gi). We need to show that Φi(σπ) = Φi(σ)Φi(π). This is clearly true
outside the interiors of the atoms. Let A be an atom. By the definition, Φi(σπ) maps
eA to eσ(π(A)) while Φi(π) maps eA to eπ(A) and Φ(σ) maps eπ(A) to eσ(π(A)). So the
equality holds everywhere and Φi is a group homomorphism.

224

7.6. Reduction Epimorphism

It remains to show that Φi is surjective. Let π′ ∈ Aut(Gi+1), we want to extend
π′ to π ∈ Aut(Gi) such that Φi(π) = π′. We just describe this extension on a single
edge e = uv. If e is an original edge of G, there is nothing to extend. Suppose that e
was created in Gi+1 from an atom A in Gi. Then ê = π′(e) is an edge of the same color
and the same type as e, and therefore ê is constructed from an isomorphic atom Â of
the same symmetry type. The automorphism π′ prescribes the action on the boundary
∂A. We need to show that it is possible to define an action on Å consistently:

• A is a block atom: The edges e and ê are pendant, attached by articulations u
and u′. We define π on Å by an isomorphism σ from A to Â which takes ∂A to
∂Â.
• A is an asymmetric proper atom/dipole: By the definition, the orientation of e

and ê is consistent with respect to π′. Since Å is isomorphic to the interior of Â,
we define π on Å according to one such isomorphism σ.
• A is a symmetric proper atom/dipole: Let σ be an isomorphism of A and Â.

Either σ maps ∂A exactly as π′, and then we can use σ for defining π. Or we
compose σ with an automorphism of A exchanging the two vertices of ∂A. (We
know that such an automorphism exists since A is symmetric.)

So Φi is a surjective mapping.

The above statement is an example of a phenomenon known in permutation
group theory. Interiors of atoms behave as blocks of imprimitivity in the action of
Aut(Gi). It is well-known that the kernel of the action on the imprimitivity blocks is
a normal subgroup of Aut(Gi).

Using Proposition 7.6.1, we can describe change in the automorphism group done
by the 3-connected reduction. We are ready to prove Proposition 6.2.1 which states
that Aut(Gi+1) ∼= Aut(Gi)/Ker(Φi):

Proposition 6.2.1. By Proposition 7.6.1b, Φi is surjective. By the Homomorphism
Theorem, Aut(Gi+1) ∼= Aut(Gi)/Ker(Φi).

Corollary 7.6.2. We have Aut(Gr) = Aut(G0)/Ker(Φr−1 ◦Φr−2 ◦ · · · ◦Φ0).

Proof. We have already proved that Aut(Gi+1) = Aut(Gi)/Ker(Φi). This equality
easily follows from group theory.

We can also describe the structure of Ker(Φi):

Lemma 7.6.3. The group Ker(Φi) is the direct product ∏A∈A Fix(∂A) where Fix(∂A)
is the point-wise stabilizer of Gi \ Å in Aut(Gi).

Proof. According to Lemma 7.4.6, the interiors of the atoms are pairwise disjoint,
so Ker(Φi) acts independently on each interior. Thus we get Ker(Φi) as the direct
product of actions on each interior Å which is precisely Fix(∂A).

225

Chapter 7. 3-connected Reduction

Alternatively, Fix(∂A) can be defined as the point-wise stabilizer of ∂A in Aut∂A(A).
(So Fix(∂A) ≤ Aut∂A(A) and it is a proper subgroup if and only if A is symmetric.)
Let A1, . . . , As be pairwise non-isomorphic atoms in Gi, appearing with multiplicities
m1, . . . ,ms. According to Lemma 7.6.3, we get

Ker(Φi) ∼= Fix(∂A1)m1 × · · · × Fix(∂As)ms .

For the example of Fig. 7.14, we have Ker(Φ0) ∼= C8
2 × C4

2 × S4
4.

7.6.2 Semidirect Product

Our aim is to investigate when

Aut(Gi) ∼= Ker(Φi) o Aut(Gi+1). (7.1)

Let A be an atom with ∂A = {u, v}. If A is symmetric, there exists some automor-
phism of A exchanging u and v. If A is a symmetric dipole, one can always find an
involution exchanging u and v. This is not true when A is a symmetric proper atom.
Figure 7.16a gives an example of a symmetric proper atom with no involution exchang-
ing the two vertices of the boundary. When all symmetric proper atoms have such
involutions, we derive (7.1). Figure 7.16b explains that this assumption is necessary.

Proposition 7.6.4. Suppose that every symmetric proper atom A of Gi with ∂A =
{u, v} has an involutory automorphism τ exchanging u and v. Then the following
holds:

u v

(a)

u v

A Gi+1

π′

e1

e2

e3

e4

e5

e6

(b)

Φi

Aut(Gi)

Aut(Gi+1)
∼= D6

idKer(Φi)

Ψ

π′

Φ
−1

i
(π′)

π

π2

Figure 7.16: (a) An example of a symmetric proper atom A with no involution
exchanging u and v. There are two automorphisms which exchange u and v, one
rotates the four-cycle formed by white directed edges by one clockwise, the other one
counterclockwise. The set-wise stabilizer of {u, v} is C4.
(b) On the left, the graph Gi+1 having colored edges e1, . . . , e6 corresponding to copies
A1, . . . , A6 of A. On the right, the groups Aut(Gi) and Aut(Gi+1) ∼= D6 with the
homomorphism Φi. While the rotations in Aut(Gi+1) can be easily extended, consider
the depicted reflection π′. Let π ∈ Aut(Gi) such that Φi(π) = π′. The automorphism
π|A1 is one of the two automorphisms of A exchanging u and v described in (a), and
similarly π|A4 . Therefore, π2 ̸= id (since π2|A1 ̸= id and π2|A4 ̸= id) while (π′)2 = id,
and only π4 = id. Therefore, no complementary subgroup Ψ ≤ Aut(Gi) exists and
Aut(Gi) cannot be constructed using the semidirect product (7.1).

226

7.6. Reduction Epimorphism

(a) There exists Ψ ≤ Aut(Gi) such that Φi(Ψ) = Aut(Gi+1) and Φi|Ψ is an isomor-
phism.

(b) Aut(Gi) ∼= Ker(Φi) o Aut(Gi+1).

Proof. (a) In the proof of Proposition 7.6.1, we have described how to extend π′ ∈
Aut(Gi+1) to π ∈ Aut(Gi) such that Φi(π) = π′. To establish (a), we need to do this
consistently for entire Aut(Gi+1), in such a way that these extensions form a subgroup
Ψ which is isomorphic to Aut(Gi+1).

Let e1, . . . , eℓ be colored edges of one orbit of the action of Aut(Gi+1) such that
these edges replace isomorphic atoms A1, . . . , Aℓ in Gi; see Fig. 7.17 for an overview.
We divide the argument into three cases:

Case 1: The atom A1 is a block atom: Let u1, . . . , uℓ be the articulations such that
∂Ai = {ui}. Choose arbitrarily isomorphisms σ1,i from A1 to Ai such that σ1,i(u1) = ui,
and put σ1,1 = id and σi,j = σ1,jσ

−1
1,i . If π′(ei) = ej, we set π|Åi

= σi,j|Åi
. Since

σi,k = σj,kσi,j, ∀i, j, k, (7.2)

the composition of the extensions π1 and π2 of π′1 and π′2 is defined on the interiors of
A1, . . . , Aℓ exactly as the extension of π′2π′1. Also, by (7.2), an identity π′kπ′k−1 · · · π′1 =
id is extended to an identity.

Case 2: The atom A1 is an asymmetric proper atom or dipole: Let ei = uivi. We
approach it exactly as in Case 1, just we require that σ1,i(u1) = ui and σ1,i(v1) = vi.

Case 3: The atom A1 is a symmetric proper atom or a dipole: For each ei,
we arbitrarily choose one endpoint as ui and one as vi. Again, we arbitrarily choose
isomorphisms σ1,i from A1 to Ai such that σ1,i(u1) = ui and σ1,i(v1) = vi, and define
σi,j = σ1,jσ

−1
1,i .

We further consider an involution τ1 of A1 which exchanges u1 and v1. (Such an
involution exists for symmetric proper atoms by the assumptions, and for symmetric
dipoles by the definition.) Then τ1 defines an involution of Ai by conjugation as
τi = σ1,iτ1σ

−1
1,i . It follows that

τj = σi,jτiσ
−1
i,j , and consequently σi,jτi = τjσi,j, ∀i, j.

A1

A2

A3

u1

u2

u3

σ1,1 = id

σ1,2

σ1,3

A1

A2

u1 v1

u2 v2

τ1

σ1,2 σ̂1,2

Figure 7.17: Case 1 is demonstrated on the left for ℓ = 3, the respective block atoms
are A1, A2 and A3. Case 3 is demonstrated on the right for ℓ = 2. An involution
τ1 ∈ Fix(∂A1) transposes u1 and v1.

227

Chapter 7. 3-connected Reduction

We put σ̂i,j = σi,jτi = τjσi,j which is an isomorphism mapping Ai to Aj such that
σ̂i,j(ui) = vj and σ̂i,j(vi) = uj. In the extension, we put π|Åi

= σi,j|Åi
if π′(ui) = uj,

and π|Åi
= σ′i,j|Åi

if π′(ui) = vj.
Aside (7.2), we get the following additional identities:

σ̂i,k = σj,kσ̂i,j, σ̂i,k = σ̂j,kσi,j, and σi,k = σ̂j,kσ̂i,j, ∀i, j, k. (7.3)

We just argue the last identity:

σ̂j,kσ̂i,j = τk(σj,kσi,j)τi = τkσi,kτi = τkτkσi,k = σi,k,

where the last equality holds since τk is an involution. It follows that the composition
π2π1 is correctly defined as above, and it maps identities to identities.

We have described how to extend the elements of Aut(Gi+1) on one edge-orbit,
and we apply this process repeatedly to all edge-orbits. The set Ψ ≤ Aut(Gi) consists
of all these extensions π from every π′ ∈ Aut(Gi+1). It is a subgroup by (7.2) and
(7.3), and since the extension π′ ↦→ π is injective, Ψ ∼= Aut(Gi+1).

(b) By (a), we know that Ker(Φi) E Aut(Gi) has a complement subgroup Ψ
isomorphic to Aut(Gi+1). This already proves that Aut(Gi) has the structure of the
internal semidirect product.

We give more insight into its structure by describing it as an external semidirect
product, similarly as in the proof of Theorem 7.2.1. Each element of Aut(Gi) can be
written as a pair (π′, σ) where π′ ∈ Aut(Gi+1) and σ ∈ Ker(Φi). We first apply the
extension π ∈ Ψ of π′ and permute Gi, mapping interiors of the atoms as blocks. Then
σ permutes the interiors of the atoms, preserving the remainder of Gi.

It remains to understand how composition of two automorphisms (π′, σ) and
(π̂′, σ̂) works. We get this as a composition of four automorphisms σ̂ ◦ π̂ ◦ σ ◦ π, which
we want to write as a pair (τ, ρ). Therefore, we need to swap π̂ with σ. This clearly
preserves π̂, since the action σ̂ on the interiors does not influence it; so we get τ = π̂◦π.

But σ is changed by this swapping. According to Lemma 7.6.3, we get σ =
(σ1, . . . , σs) where each σi ∈ Fix(∂Ai)mi . Since π preserves the isomorphism classes
of atoms, it acts on each σi independently and permutes the isomorphic copies of Ai.
Suppose that A and A′ are two isomorphic copies of Ai and π(A) = A′. Then the
action of σi on the interior of A corresponds after the swapping to the same action on
the interior of A′ = π(A). This can be described using the semidirect product, since
each π defines an automorphism of Ker(Φi) which permutes the coordinates of each
Fix(∂Ai)mi , following the action of π′ on the colored edges of Gi+1.

For the example in Fig. 7.14, Ker(Φ0) ∼= C4
2 × C4

2 × S4
4, so

Aut(G1) ∼= C2
2 and Aut(G0) ∼= (C4

2 × C4
2 × S4

4) oC2
2.

We note that the semidirect product in

Aut(Gi) ∼= Ker(Φi) o Aut(Gi+1)

228

7.6. Reduction Epimorphism

cannot be rewritten as the generalized wreath product of Robinson [308] (see Sec-
tion 7.2). The reason is that we apply an involution τ on a symmetric atoms in Gi

when the corresponding edge in Gi+1 is reflected (i.e., its half-edges are exchanged).
So the action of Aut(Gi) on atoms of Gi is not a simple permutation. We note that
Babai [11] uses a different generalization of the wreath product but his characterization
is not inductive; see Sections 6.3.2 and 8.4.

7.6.3 Inductive Characterization

Similarly as in the case of connected components (Jordan’s Theorem 7.2.1) and block
trees (Section 7.3.2), we show that the reduction tree can be used to inductively
describe automorphism groups of graphs from the automorphism groups of their 3-
connected components. We need to deal with more cases and the products, if they
even exist, get more involved. In particular, for Proposition 7.6.4, we need the exis-
tence of involutory automorphism exchanging boundaries of symmetric proper atoms,
otherwise Aut(G) may not be expressible by semidirect products. This inductive char-
acterization is applied in Chapter 8 to describe the Jordan-like characterization of the
automorphism groups of planar graphs.

Expanded Atoms. Consider the reduction tree of a connected graph G. For an
atom A in Gi, let A∗ denote the subgraph of G corresponding to the node A and all
its descendants in the reduction tree. In other words, A∗ is the fully expanded atom
A. Let Fix(∂A∗) be the point-wise stabilizer of ∂A∗ = ∂A in Aut∂A∗(A∗).

Fixers of Expanded Atoms. We relate Fix(∂A) and Fix(∂A∗) similarly as in Propo-
sition 7.6.4. Let Φ : Fix(∂A∗) → Fix(∂A) be the reduction epimorphism Φ : π∗ ↦→ π
defined as follows. For π∗ ∈ Fix(∂A∗), the automorphism π = Φ(π∗) maps the com-
mon parts of A and A∗ the same while π maps the colored edges in A as π∗ maps the
expanded atoms in A∗. Note that

Φ = (Φ0 ◦Φ1 ◦ · · · ◦Φi)|Fix(∂A∗).

Similarly as in the proof of Lemma 7.6.3, we have Ker(Φ) ∼=
∏Fix(∂Â∗). Assuming

that all symmetric (expanded) atoms have involution exchanging boundaries, exactly
as in Proposition 7.6.4b, we can prove

Fix(∂A∗) ∼= Ker(Φ) o Fix(∂A). (7.4)

Similarly as in the proof of Jordan’s Theorem 7.2.1, we describe the semidirect
product in (7.4) in more detail. The group Ker(Φ) consists of all automorphisms
which fix A and only act non-trivially on interiors of all expanded atoms Â∗. Each
automorphism π∗ ∈ Fix(A∗) can be written as a composition σ · π′ of two automor-
phisms. First, the automorphism σ ∈ Ker(Φ) acts on interiors of all Â∗. Then, the
automorphism π′ acts on A∗ as π ∈ Fix(A) acts on A, and π′ maps interiors of Â∗
exactly as π maps the corresponding colored edges. When we compose σ1 · π′1 · σ2 · π′2,
we want to swap π′1 with σ2 to write the resulting automorphism in the form σ · π′,
which is done by the semidirect product. In the proof of Proposition 7.6.4a, we explain
how to define the correspondence π ↦→ π′ consistently.

229

Chapter 7. 3-connected Reduction

Inductive Characterization. Let G be a connected graph. We want to describe
Aut(G) from the reduction tree T and the automorphism groups of the atoms and
of the primitive graph is the 3-connected reduction of G. As in Section 7.3.2, we
construct the groups from the bottom to the root. The equation (7.4) describes how
to construct Fix(∂A∗) when we know Fix(∂Â∗) for all atoms Â represented by colored
edges in A. To describe this product in more detail, we may distinguish different types
of atoms.

For dipoles and star block atoms, Fix(∂A∗) may be constructed by direct prod-
ucts and wreath products with symmetric groups from Fix(∂Â∗) of all atoms Â; see
Lemma 8.2.3 for details. For non-star block atoms and proper atoms, the situation is
more complex. If nothing in known about G, the semidirect product is determined by
the edge-orbits in A. (Which are fixed, which are reflected; see 8.2.)

The last step is with in the root, with the primitive graph Gr. Again, we have
the reduction epimorphism Φ : Aut(G)→ Aut(Gr) where Φ = Φr−1 ◦Φr−2 ◦ · · · ◦Φ0.
Since Aut(G) does not have to stabilize anything in Gr, we have the semidirect product
with Aut(Gr) instead.

Aut(G) ∼= Ker(Φ) o Aut(Gr). (7.5)

Even in the case of planar graphs, it is involved to describe all possible combinations
of edge-orbits in Aut(Gr) (see Tables 8.1, 8.2, and 8.3 of [218]).

7.7 Polynomial-time Algorithms

Last, we prove that the reduction series and the corresponding reduction tree can be
computed in polynomial time for a graph G belonging to a graph class C satisfying
(P1) and (P3∗).

Simplified Reduction and Reduction Tree. The reduction series is called simpli-
fied if it is done without colored and oriented edges. Similarly, the simplified reduction
tree contains no colored and oriented edges. The results from Section 7.6 no longer
hold, but the simplified reduction may be applied for other reasons. For instance, it
capture all geometric representations of planar graphs, so it can be applied for graph
drawing; it corresponds to the SPQR trees [95, 96, 97, 167].

Lemma 7.7.1. The simplified reduction series and the simplified reduction tree can
be computed in time O(n+m).

Proof. We just describe how to compute the simplified reduction tree. First, we divide
the graph G into blocks and articulations in time O(n + m) using DFS [190]. Then,
we run the linear-time algorithm of [191, 167] to compute 3-connected components of
each block. The reduction tree can be easily constructed.

In the rest of the section, we deal with the complexity of computing the non-
simplified reduction series and reduction tree.

Testing Graph Isomorphism for Primitive Graphs and Atoms.

230

7.7. Polynomial-time Algorithms

Lemma 7.7.2. If primitive graphs G and G′ belong to C satisfying (P3 ∗), then we can
test G ∼= G′ in polynomial time.

Proof. In both graphs, we replace single pendant edges with colored vertices. If G and
G′ are K1, or K2, the problem is trivial. If they are cycles, we use the standard cycle
isomorphism algorithms. If they are 3-connected, we test G ∼= G′ using (P3∗).

Lemma 7.7.3. For every atoms A and A′ of a graph G belonging to C satisfying (P1)
and (P3 ∗), we can test A ∼= A′ in polynomial time.

Proof. If both A and A′ are dipoles and star block atoms, we can test A ∼= A′ trivially in
polynomial time. If they are non-star block atoms, by Lemma 7.4.3 they are either K2
with attached single pendant edge, or essentially a cycle, or essentially 3-connected.
The first two possibilities can be solved trivially, so we assume that A and A′ are
essentially 3-connected. Let B and B′ be the 3-connected graph created from A and
A′ by removing pendant edges, where existence of pendant edges is coded by colors of
V (B) and V (B′), and we further color ∂B and ∂B′ by a special color. We have A ∼= A′

if and only if there exists a color-preserving isomorphism between B and B′ which can
be tested using (P3∗). When A and A′ are proper atoms, we proceed similarly on
extended proper atoms, using Lemma 7.4.4.

Computing Symmetry Types of Atoms.

Lemma 7.7.4. For a dipole A, we can determine its symmetry type in linear time.

Proof. The symmetry type depends only on the quantity of distinguished types of
the parallel edges. We have directed edges from u to v, directed edges from v to
u, undirected edges and halvable edges. We call a dipole balanced if the number of
directed edges in the both directions is the same. The dipole is symmetric if and only
if it is balanced. This clearly can be tested in linear time.

Lemma 7.7.5. For a proper atom A of C satisfying (P1), (P2), and (P3 ∗), we can
determine its symmetry type in polynomial time.

Proof. Let ∂A = {u, v}. By Lemma 7.4.4, A+ is either essentially a cycle (which is
easy to deal with), or an essentially 3-connected graph. Let B be the 3-connected
graph created from A+ by removing pendant edges, where existence of pendant edges
is coded by colors of V (B). By (P1), both A+ and B belong to C. We apply (P3∗) on

u v

A+

u v

B

c

−→ u v

B

Figure 7.18: For the depicted atom A, we test using (P3∗) whether B c−→ B. In
this case yes, so A is either symmetric, or halvable.

231

Chapter 7. 3-connected Reduction

two copies of B. In one copy, we color u by a special color, and v by another special
color. In the other copy, we swap the colors of u and v. Using (P3∗), we check whether
there exists a color-preserving automorphism which exchanges u and v; see Fig. 7.18.
The atom A is symmetric if and only if such an automorphism exists.

Computing Reduction Series and Reduction Tree.

Lemma 7.7.6. If a graph G belongs to C satisfying (P1) and (P3 ∗), then the reductions
series G = G0, . . . , Gr and the reduction tree can be computed in polynomial time.

Proof. To compute Gi+1 from Gi, we find all atomsA in Gi andA′ in G′i, compute their
isomorphism classes by Lemma 7.7.3 and assign new colors to them. By Lemmas 7.7.4
and 7.7.5, we compute symmetry types of these atoms. We end up with a primitive
graph Gr containing the atoms. The reduction tree can be easily constructed and the
algorithm runs in polynomial time.

Alternatively, we apply Lemma 7.7.1 and just compute the missing colors and
symmetry types of atoms from the leaves to the root of the simplified reduction tree,
using Lemmas 7.7.3, 7.7.4, and 7.7.5.

Deciding Graph Isomorphism. The following result is usually credited to Babai [11]:

Lemma 7.7.7 ([11]). If graphs G and G′ belong to C satisfying (P1) and (P3 ∗), we
can test G ∼= G′ in polynomial time.

Proof. Using Lemma 7.7.6, we simultaneously apply reduction series on both G and
G′ in polynomial time, using identical colors for isomorphic atoms in Gi and G′i. We
end up with two primitive graphs Gr and G′r and we test their isomorphism using
Lemma 7.7.2.

7.8 Comparison with Previous Results

We conclude this chapter by comparison of the described 3-connected reduction and
reduction trees with previously known results. We have postponed this discussion till
the end of this chapter, so we have the necessary definitions.

Rooted versus Unrooted Decompositions. Many decompositions in graph theory
and computer science are unrooted. At first, choosing a root seems arbitrary. For
instance, the standard definition of block trees is unrooted. Similarly, SPQR trees are
usually unrooted (for instance, see their description in Wikipedia). In this chapter,
we have explained that having a root is necessary to work with automorphism groups
and related algebraic properties.

Further, this is not imposing a root into an unrooted structure. Algebra reveals
that these decompositions should be rooted. Decompositions which repeatedly divide
graph into two pieces (such as MacLane’s [265] description of 3-connected reduction
or the split decomposition described in Section 2.6) have these pieces on equal setting.

232

7.8. Comparison with Previous Results

The advantage of our definition of the reduction series that naturally distinguishes
them. Atoms are clearly completely different objects than the reduced graph Gi+1
created from Gi by replacing atoms with edges. The difference is that the structure
of the primitive graph, being the root node of the reduction tree, is preserved in Gi+1
but it is not contained in replaced atoms. This distinction is clear when working with
automorphism groups. (A similar phenomenon occurs for the rooted split tree created
by the minimal split decomposition of [79] described in Section 2.6, and we believe it
should be further investigated.)

SPQR Trees. The 3-connected decomposition was rediscovered in the graph drawing
community under the name SPQR trees [95, 96, 97, 167] while ignoring many of
previous results. The papers mostly cite the algorithm of Hopcroft and Tarjan [191]
and the paper of MacLane [265]. We believe that other papers, e.g. [340, 344, 78, 352],
deserve to be more widely known.

SPQR trees are mostly applied to planar graphs but they also work for general
graphs. We quickly sketch the main ideas of [95]. Ignoring Q, they are reduction trees
with three types of nodes:

• Series nodes S correspond to paths.
• Parallel nodes P correspond to dipoles.
• Rigid nodes R correspond to 3-connected graphs.

In [95], SPQR trees are defined in the context of s, t-graphs in which the graph G re-
mains planar when the edge st is added into the drawing. Such graphs correspond to
proper or dipole parts in our definitions, and the added edge creates A+. (Lemma 7.4.4
states that proper atoms are S and R.) The decomposition is done in [95] in the oppo-
site order than our decomposition, by finding maximal disjoint pieces and decomposing
each recursively.

The problem is that different papers often define SPQR trees differently. For
instance, it is unclear what are precisely the nodes. Some papers allow arbitrary cycles,
other reduce it non-canonically to several nodes isomorphic to K3. In [167], some nodes
are collapsed back together, in relation to the results of MacLane [265]. SPQR trees
are often unrooted, while other papers add an arbitary root in the beginning (to start
with an s, t graph). These descriptions are not precise enough to capture all fine details
of automorphism groups and regular graph covers.3

On the other hand, SPQR trees certainly deserve a credit. The graph drawing
community greatly popularized this idea. It is used in many papers studying restricted
planar embeddings and other problems. Also, an error in the original linear-time
algorithm of Hopcroft and Tarjan [191] was discovered and fixed in [167]. An efficient
tested implementation of SPQR trees is programmed in [167] and it is available in the

3While working on [118], we had to rework the definition of atoms and of the reduction for several
times just because some details were later broken. For instance, originally, we wanted to restrict our-
selves to 2-connected graphs, as well, but it did not capture regular graph covers. Unfortuntaly, this
process of creating a mathematical definition cannot be described in this thesis (or most mathematical
papers).

233

Chapter 7. 3-connected Reduction

graph drawing library AGD. As usual, many great ideas in mathematics and computer
science are rediscovered.

Connected versus 2-connected Graphs. To the best of our knowledge, our reduc-
tion tree is the only tree for 3-connected reduction which applies on connected graphs
instead of 2-connected graphs. In Sections 6.2.3, 7.3.3, and 10.1, we comment advan-
tages of this unified approach. What are the disadvantages? The definition of atoms
in Section 7.4 is involved. But after working out the basic results in Sections 7.4.2
and 7.4.3, atoms become quite easy to use. Our decomposition has five different ob-
jects: proper atoms, dipoles, star and non-star block atoms, and primitive graphs.
But they serve a different purpose, e.g., behave differently with respect to automor-
phism groups; see Chapter 8. So it is natural to analyze these five cases separately. In
comparison, there is not much difference between S and R nodes of the SPQR trees.

4-connected Reduction. We conclude with an open problem. We have described
the way how to reduce a graph to a 3-connected one while preserving its essential
structural information. This approach is highly efficient for planar graphs since many
problems are much simpler for 3-connected planar graphs; for instance planar embed-
dings, automorphism groups or regular graph covers. Suppose that we would like to
push our results further, say to toroidal or projective planar graphs. The issue is that
3-connectivity does not restrict them much. Is it possible to apply some “4-connected
reduction”, to reduce the input graphs even further? Suppose that one would gener-
alize proper atoms to be inclusion minimal parts of the graph separated by a 3-cut.
Would it be possible to replace them by triangles?

234

8
Jordan-like Characterization
of Automorphism Groups
of Planar Graphs

8.1 Automorphism Groups of 3-connected Planar Graphs 236
8.2 The Jordan-like Characterization 238
8.3 Applications of Jordan-like Characterization 256
8.4 Comparison with Babai’s Characterization 261
8.5 Quadratic-time Algorithm . 264
8.6 Conclusions . 266

This chapter contains:

• 8.1: Automorphism Groups of 3-connected Planar Graphs.
We describe spherical groups and the geometry of automorphism groups of
planar graphs. We also characterize automorphism groups of planar atoms
and primitive graphs.
• 8.2: The Jordan-like Characterization. We give the first inductive charac-

terization of the automorphism groups of planar graphs. First, we charac-
terize the stabilizers as the class of groups closed under 5 group products.
Then, we combine the stabilizers with spherical groups.
• 8.3: Applications of Jordan-like Characterization. We describe automor-

phism groups of 2-connected planar graphs, outerplanar graphs, and series-
parallel graphs.
• 8.4: Comparison with Babai’s Characterization. We compare the Jordan-

like inductive characterization with Babai’s characterization [11] from 1975.
• 8.5: Quadratic-time Algorithm. Our characterization implies a quadratic-

time algorithm for computing automorphism groups of planar graphs.
• 8.6: Conclusions. We describe open problems and a spacial visualization

of the automorphism groups of planar graphs.

http://pavel.klavik.cz/orgpad/geom_aut_groups.html

235

http://pavel.klavik.cz/orgpad/geom_aut_groups.html

Chapter 8. Automorphism Groups of Planar Graphs

8.1 Automorphism Groups of 3-connected Planar Graphs

In this section, we review geometric properties of automorphism groups of 3-connected
planar graphs. They are based on Whitney’s Theorem [359] stating that 3-connected
planar graphs have unique embeddings onto the sphere. Using these properties, we
describe possible automorphism groups of planar atoms and primitive graphs.

Spherical Groups. A group is spherical if it is the group of the isometries of a tiling
of the sphere. The first class of spherical groups are the subgroups of the automorphism
groups of the platonic solids. Their automorphism groups are S4 for the tetrahedron,
S4 × C2 for the cube and the octahedron, and A5 × C2 for the dodecahedron and the
icosahedron; see Fig. 1.27. The second class of spherical groups is formed by four
infinite families, namely Cn, Dn, Cn ×C2, and Dn ×C2, n ≥ 2. They act as groups of
automorphism of n-sided prisms.

Maps. A (spherical) map M is a 2-cell decomposition of the sphere S. A map is
usually defined by a 2-cell embedding of a connected graph i : G ↪→ S. The connected
components of S \ i(G) are called faces of M. So it corresponds to spherical embed-
dings, defined in Section 1.4. An automorphism of a map is an automorphism of the
graph preserving the incidences between vertices, edges, and faces. Clearly, Aut(M) is
one of the spherical groups and with the exception of paths and cycles, it is a subgroup
of Aut(G). As a consequence of Whitney’s theorem [359] we have the following.

Theorem 8.1.1. Let M be the map given by the unique 2-cell embedding of a 3-
connected graph into the sphere. Then Aut(G) ∼= Aut(M).

Geometry of Automorphisms. It is not possible to capture Aut(G) of a planar
graph G as isometries of a planar embedding, even when G is 3-connected, since
isometries of a planar embedding form a subgroup of a dihedral group. But recall from
Section 1.4.1 that Mani [268] proved that for every 3-connected planar graph G, there
exists a polyhedron P such that Aut(G) coincides with the group of isometries of P .
Since P can be drawn symmetrically onto the sphere, each isometry of P correspond
to some isometry of the sphere, so automorphisms in Aut(G) can be geometrically
viewed as isometries of the sphere with G drawn onto it, and this is essential for the
Jordan-like characterization in for Section 8.2. In particular, we have:

Theorem 8.1.2. Let G be a 3-connected graph. Then Aut(G) is isomorphic to one of
the spherical groups.

We recall some basic definitions from geometry [331, 287]. An automorphism of a
3-connected planar graph G is called orientation preserving, if the respective isometry
preserves the global orientation of the sphere. It is called orientation reversing if it
changes the global orientation of the sphere. A subgroup of Aut(G) is called orien-
tation preserving if all its automorphisms are orientation preserving, and orientation
reversing otherwise. We note that every orientation reversing subgroup contains an
orientation preserving subgroup of index two. (The reason is that the composition of
two orientation reversing automorphisms is an orientation preserving automorphism.)

236

8.1. Automorphism Groups of 3-connected Planar Graphs

Stabilizers. Let u ∈ V (G). The stabilizer of u in Aut(G) is a subgroup of a dihedral
group and it has the following description in the language of isometries. If Stab(u) ∼=
Cn, for n ≥ 3, it is generated by a rotation of order n that fixes u and the opposite
point of the sphere, and fixing no other point of the sphere. The opposite point of
the sphere may be another vertex or a center of a face. If Stab(u) ∼= Dn, it consists of
rotations and reflections fixing a circle passing through u and the opposite point of the
sphere. Each reflection always fixes either a center of some edge, or another vertex.
When Stab(u) ∼= D1 ∼= C2, it is generated either by a 180◦ rotation or by a reflection.

Let e ∈ E(G). The stabilizer of e in Aut(G) is a subgroup of C2
2. When Stab(e) ∼=

C2
2, it contains the following three non-trivial isometries. First, the 180◦ rotation

around the center of e and the opposite point of the sphere that is a vertex, center
of an edge, or center of an even face. Next, two reflections orthogonal to each other
which fix circles through u and the opposite point of the sphere. When Aut(G) ∼= C2,
it is generated by only one of these three isometries.

8.1.1 Automorphism Groups of Planar Primitive Graphs and Atoms

Theorem 8.1.2 allows us to describe possible automorphism groups of planar atoms
and primitive graphs which appear in the reduction tree for a planar graph G. First,
we describe the automorphism groups of planar primitive graphs.

Lemma 8.1.3. The automorphism group Aut(G) of a planar primitive graph G is a
spherical group.

Proof. Recall that a graph is essentially 3-connected if it is a 3-connected graph with
attached single pendant edges to some of its vertices. If G is essentially 3-connected,
then Aut(G) is a spherical group from Theorem 8.1.2. Since the family of spheri-
cal groups is closed under taking subgroups, the subgroup of color- and orientation-
preserving automorphism is spherical as well. If G is K1, K2 or Cn with attached
single pendant edges, then Aut(G) is a subgroup of C2 or Dn.

Next, we deal with the automorphism groups of planar atoms. Let A be a planar
atom. Recall that Aut∂A(A) is the set-wise stabilizer of ∂A, and Fix(∂A) is the point-
wise stabilizer of ∂A. The following lemma determines Aut∂A(A); see Fig. 8.1 for
examples.

Lemma 8.1.4 ([119], Lemma 5.3). Let A be a planar atom.

(a) If A is a star block atom, then Aut∂A(A) = Fix(∂A) which is a direct product of
symmetric groups.

(b) If A is a non-star block atom, then Aut∂A(A) = Fix(∂A) and it is a subgroup of
a dihedral group.

(c) If A is a proper atom, then Aut∂A(A) is a subgroup of C2
2 and Fix(∂A) is a

subgroup of C2.
(d) If A is a dipole, then Fix(∂A) is a direct product of symmetric groups. If

A is symmetric, then Aut∂A(A) = Fix(∂A) o C2. If A is asymmetric, then
Aut∂A(A) = Fix(∂A).

237

Chapter 8. Automorphism Groups of Planar Graphs

u

A

Fix(A) ∼= S2 × S3

Aut∂A(A) ∼= S2 × S3

u

A

Fix(A) ∼= D6

Aut∂A(A) ∼= D6

u v

A

Fix(A) ∼= C2

Aut∂A(A) ∼= C
2

2

u v

A

Fix(A) ∼= S
2

2

Aut∂A(A) ∼= S
2

2
⋊C2

Figure 8.1: An atom A together with its groups Fix(∂A) and Aut∂A(A). From left
to right, a star block atom, a non-star block atom, a proper atom, and a dipole.

Proof. (a) The edges of each color class of the star block atom A can be arbitrarily
permuted, so Aut∂A(A) = Fix(∂A) which is a direct product of symmetric groups.

(b) For the non-star block atom A, the boundary ∂A = {u} is stabilized. We
have one vertex in both Aut∂A(A) and Fix(∂A) fixed, thus the groups are the same.
By Lemma 7.4.3, we have that A is either a essentially a cycle, K2 with attached single
pendant edges, or essentially 3-connected, so Aut∂A(A) is a subgroup of Dn where n
is the degree of u.

(c) Let A be a proper atom with ∂A = {u, v}. By Lemma 7.4.4, A+ is either
essentially a cycle, or essentially 3-connected. The first case is trivial, so we deal with
the latter case. Since Aut∂A(A) preserves ∂A, we have Aut∂A(A) = Aut∂A+(A+), and
Aut∂A+(A+) fixes in addition the edge uv. Because A+ is essentially 3-connected,
Aut∂A+(A+) corresponds to the stabilizer of uv in Aut(M) for a map M of A+. But
such a stabilizer is a subgroup of C2

2. Since Fix(∂A) stabilizes the vertices of ∂A, it is
a subgroup of C2.

(d) For an asymmetric dipole, we have Aut∂A(A) = Fix(∂A) which is a direct
product of symmetric groups. For a symmetric dipole, we can permute the vertices in
∂A, so we get the semidirect product with C2.

Last, we argue that every planar symmetric atom A has an involutory automor-
phism exchanging ∂A, so the assumptions of Proposition 7.6.4 are always satisfied for
planar graphs.

Lemma 8.1.5. For every planar symmetric proper atom A with ∂A = {u, v}, there
exists an involutory automorphism exchanging u and v.

Proof. Since Aut∂A(A) is a subgroup of C2
2, all elements are involutions.

8.2 The Jordan-like Characterization

The automorphism groups of planar graphs are constructed using Theorem 7.2.1 from
the automorphism groups of its connected components. It remains to deal with the
automorphism groups of connected planar graphs. We describe them in this section,
using the results of Chapter 7 and Section 8.1, thus proving the main result of this chap-
ter. We show that Aut(connected PLANAR) can be described by a semidirect product
series composed from few basic groups. In Subsection 8.2.1, we prove Theorems 6.3.7

238

8.2. The Jordan-like Characterization

and 6.3.8 as an easy consequence of our previous results. In Subsection 8.2.2, we give
a Jordan-like characterization of all point-wise stabilizers of a vertex, or of a pair of
vertices, in the automorphism groups of connected planar graphs. In Subsection 8.2.3,
we describe all possible compositions of actions of spherical groups with the stabilizers
described in Subsection 8.2.2.

8.2.1 Characterization by Semidirect Product Series

First, we prove Theorems 6.3.7 and 6.3.8 which can be viewed as a rough approximation
of the main result.

Proof of Theorem 6.3.7. We define an epimorphism Θi : Aut(G) → Aut(Gi) by Θi =
Φ0 ◦ · · · ◦ Φi−1, for i = 1, . . . , r − 1. We have Ker(Θr−i) > Ker(Θr−i−1) and since
all the Ker(Θr−i) are normal in Ker(Θr), we can write Ker(Θr−i) ◃ Ker(Θr−i−1). By
definition, Θr−i = Θr−i−1 ◦Φr−i. Therefore, Ker(Θr−i)/Ker(Θr−i−1) ∼= Ker(Φr−i), for
i = 1, . . . , r − 1. By Lemmas 7.4.2 and 8.1.4, Ker(Φr−i) is isomorphic to a direct
product of symmetric, cyclic, and dihedral groups. Moreover, Aut(G)/Ker(Θr−1) ∼=
Aut(Gr). By Lemma 8.1.3 Aut(Gr) is isomorphic to a spherical group. We have a
subnormal chain Aut(G) = Ψ0 ◃Ψ1 ◃ · · ·◃Ψr−1 = 1, where Ψi = Ker(Θr−i) such that
Ψi/Ψi+1 is a product of the required groups. By Jordan-Hölder theorem there exists
a refinement satisfying the statement of the above subnormal chain.

Proof of Theorem 6.3.8. The primitive graph Gr has Aut(Gr) isomorphic to a spher-
ical group by Lemma 8.1.3. By Lemma 8.1.5, we can apply Proposition 7.6.4 and
Aut(Gi) ∼= Ker(Φi) o Aut(Gi+1). By Lemma 7.6.3, the kernel Ker(Φi) is the direct
product of the groups Fix(∂A) for all atoms A in Gi. Each of these groups is isomor-
phic to either to a cyclic, or to a dihedral group, or to a direct product of symmetric
groups.

Theorems 6.3.7 and 6.3.8 impose some necessary conditions fulfilled by the au-
tomorphism groups of a planar graph. On the other hand, not every abstract group
satisfying these conditions is isomorphic to the automorphism group of some planar
graph. First, Aut(Gi+1) admits an induced action on the groups Fix(∂A), where A
ranges through all atoms of Gi. In particular, the sizes of orbits of Aut(Gi+1) are
reflected in Aut(Gi), since an orbit of length m gives rise to m copies of Fix(∂A),
for some atom A. For instance, if Aut(Gr) ∼= Cn, then every orbit is of size 1, or
n. Therefore, the possible powers of Fix(∂A) in Ker(Φr−1) are restricted. Applying
Theorem 6.3.8 repeatedly, we can construct Aut(G) recursively, starting in the root of
the reduction tree and terminating its leaves.

8.2.2 Fixer of the Boundary of an Expanded Atom

In the remainder of this section, we use the approach of Section 7.6.3.

Fix(connected PLANAR) =
{
Fix(∂A∗) : A is an atom

of the reduction tree of a planar graph
}
.

239

Chapter 8. Automorphism Groups of Planar Graphs

Equivalently, Fix(connected PLANAR) consists of all point-wise stabilizers of a vertex,
or of a pair of vertices, in the automorphism groups of connected planar graphs.

Theorem 8.2.1. The class Fix(connected PLANAR) is defined inductively as follows:

(a) {1} ∈ Fix(connected PLANAR).
(b) If Ψ1,Ψ2 ∈ Fix(connected PLANAR), then Ψ1 ×Ψ2 ∈ Fix(connected PLANAR).
(c) If Ψ ∈ Fix(connected PLANAR), then Ψ ≀ Sn,Ψ ≀ Cn ∈ Fix(connected PLANAR).
(d) If Ψ1,Ψ2,Ψ3 ∈ Fix(connected PLANAR), then

(Ψ2n
1 ×Ψn

2 ×Ψn
3) oDn ∈ Fix(connected PLANAR), ∀n odd.

(e) If Ψ1,Ψ2,Ψ3,Ψ4,Ψ5 ∈ Fix(connected PLANAR), then

(Ψ2n
1 ×Ψn

2 ×Ψn
3 ×Ψn

4 ×Ψn
5) oDn ∈ Fix(connected PLANAR), ∀n ≥ 4, even.

(f) If Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6 ∈ Fix(connected PLANAR), then

(Ψ4
1 ×Ψ2

2 ×Ψ2
3 ×Ψ2

4 ×Ψ2
5 ×Ψ6) oC2

2 ∈ Fix(connected PLANAR).

We prove this theorem in a series of lemmas below. We note that the homomor-
phisms defining the semidirect products in the operations (d), (e), and (f) are specified
in the proofs of Lemmas 8.2.4, 8.2.7, 8.2.8, and 8.2.9.

Lemma 8.2.2. The class Fix(connected PLANAR) is closed under operations (a)–(f).
Further, every such group can be realized by a block atom, by a proper atom, or by a
dipole, in arbitrarily many non-isomorphic ways.

Proof. It is clear for (a) and Fig. 8.2 shows the constructions for the operations (b)–
(f). Concerning the second part, for every group Ψ, arbitrarily many non-isomorphic
atoms A such that Ψ ∼= Fix(∂A) can be constructed. For instance, we can do it by
replacing edges of a realization of Ψ by suitable rigid planar graphs (having no non-
trivial automorphisms) consistently with the action of Ψ. Similarly, if some group can
be realized by, say block atom, we can attach the corresponding pendant edge to some,
say, rigid proper atom which preserves the group.

In the rest of this section, we prove that each group in Fix(connected PLANAR)
arises by using operations (b)–(f) repeatedly. Similarly as in Section 7.6.3, we prove
this by induction according to the depth of the reduction tree. Let A be an atom in
Gi+1, with each colored edge corresponding to some atom Â in Gi which is expanded to
Â∗. The expanded atom A∗ is constructed from A by replacing all colored edges with
expanded atoms Â∗. By induction hypothesis, we assume that the groups Fix(∂Â∗)
can be constructed using (a)–(f).

Lemma 8.1.4 describes the group Fix(∂A), depending on the type of the atom A.
Also, Lemma 8.1.5 generalizes to planar symmetric expanded atoms Â∗. Therefore,
every planar symmetric atom Â has an involution τ̂ ∗ ∈ Aut∂Â∗(Â∗) swapping the
boundary ∂A∗. Therefore, we get (7.4).

240

8.2. The Jordan-like Characterization

u v

A

Ψ1 ×Ψ2

Ψ1

Ψ2

(b)

u v

A

Ψ4
⋊ S4

Ψ

(c)

u

A

Ψ6
⋊C6

Ψ

u

A

(Ψ10

1
×Ψ5

2
×Ψ5

3
)⋊D5

(d)

Ψ1

Ψ2 Ψ3

u

A

(Ψ12

1
×Ψ6

2
×Ψ6

3
×Ψ6

4
×Ψ6

5
)⋊D6

(e)

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

u

A

(Ψ4

1
×Ψ2

2
×Ψ2

3
×Ψ2

4
×Ψ2

5
×Ψ6)⋊C

2

2

Ψ1

Ψ2 Ψ3

Ψ4

Ψ5

Ψ6

(f)

Figure 8.2: Constructions for the operations (b)–(f), every colored edge corresponds
to an atom Â with Fix(∂Â) isomorphic to the denoted group. In (d), we have three
equivariant classes of edge-orbits in the action of Dn when n is odd. In (e), we have
two further equivariant classes of edge-orbits in the action of Dn when n ≥ 4 is even.
In (f), there is one extra equivariant class consisting of one edge-orbit in the action of
D2 = C2

2, generated by two reflections.

Below, we divide the proof into several lemmas, according to the type of A, and
further simplify (7.4) to get the operations (b) to (f). Suppose that two edge-orbits
of A, corresponding to expanded atoms Â∗1 and Â∗2, respectively, are equivariant in
Fix(∂A). Then using (b), we can construct Fix(∂Â∗1) × Fix(∂Â∗2) and work with it,
using distributivity, as with one group in (7.4). Therefore, we need to identity all
equivariance classes of edge-orbits in Fix(∂A).

The following two types of edge-orbits are considered. An edge-orbit of size k is
called fixed, denoted k, if the corresponding half-edges form two orbits of size k. An
edge-orbit of size k is called reflected, denoted k↔, if the corresponding half-edges form
one orbit of size 2k. We distinguish different geometric actions on the set of half-edges
H(A), so a fixed edge-orbit of size k is non-equivariant with a reflected orbit of size k.

Dipoles and Star Block Atoms.

Lemma 8.2.3. Let A be a star block atom or a dipole. Then Fix(∂A∗) can be con-
structed from the groups Fix(∂Â∗), using operations (b) and operations (c) for sym-
metric groups, where Â ranges through all atoms corresponding to colored edges in
A.

241

Chapter 8. Automorphism Groups of Planar Graphs

Proof. The edges of the same type (for dipoles, we have undirected, directed in one way,
directed in the other way) and color can be arbitrarily permuted. By Lemma 8.1.4,
the action of Fix(∂A) has ℓ orbits, each consisting of all colored edges of one color and
of the same type and orientation. These orbits have sizes m1, . . . ,mℓ, so Fix(∂A) ∼=
Sm1 × · · · × Smℓ

. Colored edges in these orbits correspond to atoms Â1, . . . , Âℓ.
Since Fix(∂A∗) acts independently on the atoms corresponding to each orbit

of colored edges in Fix(∂A), each orbit contributes by one factor and Fix(∂A∗) is
the direct product of these factors. The atoms corresponding to each orbit can be
arbitrarily permuted, thus each factor is isomorphic to Fix(∂A∗i) ≀ Smi

.

Proper Atoms.

Lemma 8.2.4. Let A be a proper atom. Then Fix(∂A∗) can be constructed from the
groups Fix(∂Â∗), using operations (b) and operations (d) for D1 ∼= C2, where Â ranges
through all atoms corresponding to colored edges in A.

Proof. By Lemma 8.1.4, we know that Fix(∂A) is a subgroup of C2. If Fix(∂A) ∼= C1,
then Fix(∂A∗) can be easily constructed only using (b). Otherwise, Fix(∂A) ∼= C2.
Then the non-trivial automorphism π ∈ Fix(∂A) corresponds to a reflection through
∂A. Therefore, Fix(∂A) has some edge-orbits of colored edges of size two, and at most
two types of edge-orbits of colored edges of size one, as depicted in Fig. 8.3:

• Edge-orbits of type 2. We have ℓ1 equivariant edge-orbits of size two, whose edges
are reflected to each other by π. The colored edges in these orbits correspond to
atoms A1, . . . , Aℓ1 .
• Edge-orbits of type 1. We have ℓ2 equivariant edge-orbits of size one, in which

both half-edges forming each edge are fixed by π, together with the incident
vertices. The colored edges in these orbits correspond to atoms B1, . . . , Bℓ2 .
• Edge-orbits of type 1↔. We have ℓ3 equivariant edge-orbits of size one, in which

the half-edges forming each edge are exchanged by π. Therefore, these half-
edges belong to one orbit, the incident vertices also belong to one orbit and

A1

A2

A3

A1

A2

A3

A4 A5

A4 A5

B1 B2

C1 C2π C∗

1
C∗

2 τ∗

Figure 8.3: On the left, the action of Fix(∂A) is generated by the reflection π.
Observe that π acts differently on the edges corresponding to B1 and B2 (π fixes
them) than on the edges corresponding to C1 and C2 (π reflects them). Therefore, in
Fix(∂A∗), we compose π with an involution τ∗ reflecting C∗1 and C∗2 , depicted on the
right.

242

8.2. The Jordan-like Characterization

the corresponding edges are reflected by π. The colored edges in these orbits
correspond to (necessarily) symmetric atoms C1, . . . , Cℓ3 . Let τ ∈ Aut∂C1(C1)×
· · · × Aut∂Cℓ3

(Cℓ3) be an involution which exchanges the boundaries of each of
these atoms (ensured by Lemma 8.1.5), and τ ∗ be a corresponding involution in
Aut∂C∗1

(C∗1)× · · · × Aut∂C∗
ℓ3

(C∗ℓ3).

We need to distinguish two equivariant classes of edge-orbits of size one since
the reflection π behaves differently with respect to them. For size one, fixed, two
half-edges also form orbits of size one. On the other hand, for size one, reflected, both
half-edges belong to the same orbit of size one. In π∗, the boundaries of B∗i are fixed,
but the boundaries of C∗i are swapped, by applying τ ∗ on C∗i . To be able to distinguish
these two cases in A, it is important to consider automorphisms on half-edges instead
of edges.

To construct Fix(∂A∗), we put

Ψ1 =
ℓ1∏

i=1
Fix(∂A∗i), Ψ2 =

ℓ2∏
i=1

Fix(∂B∗i), Ψ3 =
ℓ3∏

i=1
Fix(∂C∗i)

using (b). Then it easily follows that

Fix(∂A∗) ∼= (Ψ2
1 ×Ψ2 ×Ψ3) oϕ C2, (8.1)

where ϕ is the homomorphism defined as

ϕ(0) = id, ϕ(1) = (α1, α
′
1, α2, α3) ↦→ (α′1, α1, α2, τ

∗ · α3),

α1 ∈ Ψ1, α′1 ∈ Ψ′1 ∼= Ψ1, α2 ∈ Ψ2, and α3 ∈ Ψ3. So Fix(∂A∗) can be constructed using
(b) and (d) (since D1 ∼= C2).

We note that semidirect product in (8.1) can be further simplified into (Ψ2
1 ×

Ψ3) oϕ C2 × Ψ2 since ϕ acts trivially on the coordinate corresponding to Ψ2. So the
operation (d) for D1 ∼= C2 could be simplified. We use this simplification in Section 8.3.

Non-star Block Atoms. Now, we deal with non-star block atoms A which are the
most involved. By Lemma 8.1.4, we know that Fix(∂A) is a subgroup of a dihedral
group, so it is isomorphic either to Cn, or to Dn. By Lemma 7.4.3, A is either K2 with
an attached pendant edge, essentially a cycle, or essentially 3-connected. In the first
two cases, Fix(∂A) is a subgroup of C2. If Fix(∂A) is not isomorphic to a subgroup
of C2, then A is necessarily an essentially 3-connected graph.

Lemma 8.2.5. Let A be a non-star block atom with Fix(∂A) ∼= Cn. Then Fix(∂A∗)
can be constructed from the groups Fix(∂Â∗), using operations (b), operations (c) for
Cn, and operations (d) for D1 ∼= C2, where Â ranges through all atoms corresponding
to colored edges in A.

Proof. When Fix(∂A) ∼= C1, it has no non-trivial automorphism and Fix(∂A∗) can
be constructed using only (b). When Fix(∂A) ∼= C2, it has a single non-trivial auto-
morphism π which is either a reflection or a 180◦ rotation around ∂A. In the case of

243

Chapter 8. Automorphism Groups of Planar Graphs

60◦

u

A

A1
A1A1

A1

A1

A1

A2

A2A2

A2

A2
A2B

v

(a)

72◦

u

A
(b)

A1

A1

A1

A1

A1

A1

A1

A1

A1

A1

B1

B1B1

B1

B1

C1

C2

C1

C2

C1

C2

C1

C2

C1

C2

D

Figure 8.4: (a) An example of a non-star block atom A with Fix(∂A) ∼= C6 generated
by the 60◦ rotation through u and v. We have two orbits of colored edges of size 6,
whose edges correspond to atoms A1 and A2. Further, the vertex v has attached a
single pendant edge, corresponding to a block atom B.
(b) On the left, an example of a non-star block atom A with Fix(∂A) ∼= D5 consisting
of five rotations by multiples of 72◦ and five depicted reflections. On the right, the
view from above, with colored edges labeled by the corresponding atoms. Different
types of edge-orbits are depicted with different types of edges. We have ℓ1 = ℓ2 = 1
and ℓ3 = 2.

the 180◦ rotation, there is at most one edge-orbit of size 1 which is either fixed (for a
pendant edge), or reflected (for a normal edge). Further, we proceed similarly as in
the case of a proper atom in Lemma 8.2.4 to prove that Fix(∂A∗) can be constructed
using (b) and (d).

Suppose that Fix(∂A) ∼= Cn for some n ≥ 3. Recall that A is essentially 3-
connected. The situation is depicted in Fig. 8.4a. The group Fix(∂A) is the stabilizer
of the unique vertex u in ∂A. Recall from Section 8.1 that in the language of isometries
its action is generated by a rotation around u and the opposite point of the sphere.
Therefore, every edge-orbit of Fix(∂A) is of size one or n. All the edge-orbits of size
n are equivariant. Suppose that the action of Fix(∂A) consists of ℓ equivariant edge-
orbits of colored edges of size n. The colored edges in these edge-orbits correspond to
atoms A1, . . . , Aℓ.

The opposite point of the sphere is a vertex v or the center of a face. (Since
n ≥ 3, it cannot contain the center of an edge.) In the former case, there might be an
edge-orbit of size one consisting of a single pendant edge attached to v, and suppose
that this pendant edge corresponds to a block atom B. In the later case, there is no
edge-orbit of size one.

Let Ψ = Fix(∂A∗1)× · · · × Fix(∂A∗ℓ), we can construct it using (b). Then we get

Fix(∂A∗) ∼= Ψ ≀ Cn × Fix(∂B∗),

where Fix(∂B∗) = {1} if no edge-orbit of size one exists. So we construct Fix(∂A∗)
using (b) and (c).

It remains to deal with dihedral groups. First, we determine the possible counts
of equivariant classes of edge-orbits.

244

8.2. The Jordan-like Characterization

Lemma 8.2.6. Let A be a non-star block atom with Fix(∂A) ∼= Dn.

• If n is odd, then all edge-orbits of type n are equivariant and all edge-orbits of
type n↔ are equivariant.
• If n is even, then there are at most two equivariant classes of edge-orbits of types

n and n↔.

Proof. The statement clearly holds for n = 1, so in what follows, we assume n ≥ 2.
Recall from Section 8.1 that in the language of isometries the action of Fix(∂A) consists
of n rotations and n reflections. Each rotation fixes only ∂A and the opposite point of
the sphere, and each reflection fixes a circle containing ∂A and the opposite point. Let
r be the rotation by 360◦/n, then all rotations are id, r, r2, . . . , rn−1. Let f1, f2, . . . , fn

be the reflections as their planes are ordered cyclically, perpendicular to the axis of
the rotations; see Fig. 8.5. These reflections are cyclically linked by the conjugation
fi+2 = r−1fir. The key distinction is that for n odd, all reflections are conjugate of each
other, but for n even, we get two conjugacy classes f1, f3, . . . , fn−1 and f2, f4, . . . , fn.

Let e be an edge belonging to a fixed/reflected edge-orbit [e] of size n. The
rotation r does not stabilize any edge in [e], so each edge is stabilized by some reflection.
From the geometry, [e] = {e, r · e, r2 · e, . . . , rn−1e}. Suppose that e is stabilized by fi.
Then r · e is stabilized by fi+2, r2 · e by fi+4, and so on.

When n is odd, each reflection stabilizes exactly one edge in [e]; see Fig.8.5 on
the left. Therefore, two edge-orbits [e] and [e′] of size n, both fixed or reflected, are
equivariant: the edges in [e] and [e′] having the same stabilizer can be matched.

When n is even, only one conjugacy class of reflections stabilizes edges in [e], each
stabilizing ri · e and ri+n/2 · e. When two edge-orbits [e] and [e′] of size n, both fixed or
reflected, are stabilized by the same conjugacy class of reflections, they are equivariant.
Therefore, we get at most two equivariant classes of both fixed and reflected edge-orbits
of size n.

rr

r

r

r

f1

f2

f3f4

f5

f1

f2

f3 f4

f5

r

r

r

r

r

r

f1

f2

f3
f4

f5

f6

f1

f2

f3
f4

f5

f6

Figure 8.5: Two block atoms A with Fix(∂A) ∼= Dn in the view from above, with
n = 5 on the left and n = 6 on the right. The rotation r and the reflections f1, . . . , fn

are denoted. On the left, each edge of an edge-orbit of size n is stabilized by exactly
one reflection. On the right, each pair of opposite edges of an edge-orbit of size n is
stabilized by exactly one reflection from one of the conjugacy classes f1, f3, . . . , fn−1
and f2, f4, . . . , fn.

245

Chapter 8. Automorphism Groups of Planar Graphs

To specify the semidirect products in (d) and (e), we describe the action of Dn

on an edge-orbit [e] of size n. The rotation r maps rk ·e to rk+1 ·e. When the reflection
fi stabilizes e′ ∈ [e], then it swaps r · e′ with r−1 · e′, r2 · e′ with r−2 · e′, and so on; it
fixes e′ and for n even also rn/2 · e′. The reflection fi+1 swaps r · e′ with e′, r2 · e′ with
r−1 · e′, r3 · e′ with r−2 · e′, and so on. As stated, the reflection fi+2 stabilizes r2 · e′,
and so on.

Let h and h′ be the half-edges corresponding to e. Consider 2n half-edges cor-
responding to edges in [e]. In the action of ⟨r⟩, they form two orbits {h, r · h, r2 ·
h, . . . , rn−1 · h} and {h′, r · h′, r2 · h′, . . . , rn−1 · h′} of size n. When [e] is fixed, these
two orbits are preserved in the action of Dn. When [e] is reflected, each reflection fk

swaping ri · e with rj · e swaps ri · h with rj · h′ and ri · h′ with rj · h, so we get one
orbit of half-edges of size 2n in the action of Dn. We note that the action of Dn on an
edge-orbit of size 2n is the same as the action on the half-edges corresponding to n↔.

When Fix(∂A) ∼= D1 ∼= C2, we use Lemma 8.2.5. We start with an easier case of
Fix(∂A) ∼= Dn, for n ≥ 3, odd.

Lemma 8.2.7. Let A be a non-star block atom with Fix(∂A) ∼= Dn for n ≥ 3 and odd.
Then Fix(∂A∗) can be constructed from the groups Fix(∂Â∗), using operations (b), and
operations (d), where Â ranges through all atoms corresponding to colored edges in A.

Proof. As it is described in the proof of Lemma 8.2.6, the group Fix(∂A) ∼= Dn consists
of n rotations and n reflections; see Fig. 8.4b. It acts semiregularly on the angles of the
map and all edge-orbits are of size one, n, or 2n. By Lemma 8.2.6, all fixed/reflected
edge-orbits of size n are equivariant and Fix(∂A) acts on them as described below
Lemma 8.2.6.

• Edge-orbits of type 1. The opposite point of the sphere either contains a vertex
v, or the center of a face. In the former case, there might be at most one edge-
orbit of size one, consisting of a single pendant edge attached to v corresponding
to a block atom D. In the latter case, no edge-orbit of size one exists.
• Edge-orbits of type n. We have ℓ2 equivariant fixed edge-orbits of colored edges

of size n, corresponding to atoms B1, . . . , Bℓ2 .
• Edge-orbits of type n↔. We have ℓ3 equivariant reflected edge-orbits of colored

edges of size n, corresponding to necessarily symmetric atoms C1, . . . , Cℓ3 . Let
τ ∗i ∈ Aut∂C∗i

(C∗i) be an involution exchaning ∂C∗i , ensured by Lemma 8.1.5.
• Edge-orbits of type 2n. We have ℓ1 equivariant edge-orbits of colored edges of

size 2n, corresponding to atoms A1, . . . , Aℓ1 .

We put

Ψ1 =
ℓ1∏

i=1
Fix(∂A∗i), Ψ2 =

ℓ2∏
i=1

Fix(∂B∗i), Ψ3 =
ℓ3∏

i=1
Fix(∂C∗i).

It follows that

Fix(∂A∗) ∼= (Ψ2n
1 ×Ψn

2 ×Ψn
3) oϕ D2n × Fix(∂D∗),

246

8.2. The Jordan-like Characterization

60
◦

u

A

A1

A1

A1

A1A1

A1

A1

A1

A1

A1 A1

A1

B1

B1

B1

B1

B1

B1

C1C1

C1C1

C1

C1

D1

D1D1

D1

D1 D1

E1

E1

E1

E1

E1E1

F

Figure 8.6: On the left, an example of a non-star block atom A with Fix(∂A) ∼= D6
consisting of 6 rotations by multiples of 60◦ and six depicted reflections. On the
right, the view from above, with colored edges labeled by the corresponding atoms.
Different types of edge-orbits are depicted with different types of edges. We have
ℓ1 = ℓ2 = ℓ3 = ℓ4 = ℓ5 = 1.

where Fix(∂D∗) = {1} if there is no edge-orbit of size one. The homomorphism ϕ is
defined based on the description of the action of D2n below Lemma 8.2.6. It permutes
the coordinates of Ψ2n

1 regularly as D2n acts on half-edges of a reflected edge-orbit of
size n. It permutes the coordinates in Ψn

2 and Ψn
3 following the action on the edges of

fixed and reflected edge-orbits of size n, respectively. For the edges of reflected edge-
orbits corresponding to C∗i , when half-edges are swapped by an element π ∈ Fix(∂A),
the involution τ ∗i is used in the action of π∗ ∈ Fix(∂A∗) on the corresponding atoms
C∗i . Therefore, Fix(∂A∗) can be constructed using (b) and (d).

Next, we deal with the case Fix(∂A) ∼= Dn, for n ≥ 4 and even.
Lemma 8.2.8. Let A be a non-star block atom with Fix(∂A) ∼= Dn for n ≥ 4, even.
Then Fix(∂A∗) can be constructed from the groups Fix(∂Â∗), using operations (b), and
operations (e), where Â ranges through all atoms corresponding to colored edges in A.

Proof. As it is described in the proof of Lemma 8.2.6, the group Fix(∂A) ∼= Dn consists
of n rotations and n reflections; see Fig. 8.6. It acts semiregularly on the angles of
the map and all edge-orbits are of size one, n, or 2n. By Lemma 8.2.6, there are at
most two equivariant classes of fixed/reflected edge-orbits of size n and Fix(∂A) acts
on them as described below Lemma 8.2.6.

• Edge-orbits of type 1. Exactly as in the proof of Lemma 8.2.7, there is at most
one edge-orbit of size one, consisting of a single pendant edge corresponding to
a block atom F .
• Edge-orbits of type n. We have two equivariant classes of ℓ2 and ℓ4 fixed

edge-orbits of colored edges of size n, corresponding to atoms B1, . . . , Bℓ2 and
D1, . . . , Dℓ4 , respectively.

247

Chapter 8. Automorphism Groups of Planar Graphs

• Edge-orbits of type n↔. We have two equivariance classes of ℓ3 and ℓ5 reflected
edge-orbits of colored edges of size n, corresponding to necessarily symmetric
atoms C1, . . . , Cℓ3 and E1, . . . , Eℓ5 . Let τ ∗i ∈ Aut∂C∗i

(C∗i) be an involution ex-
changing ∂C∗i and let τ̂ ∗i ∈ Aut∂E∗i

(E∗i) be an involution exchanging ∂E∗i , ensured
by Lemma 8.1.5.
• Edge-orbits of type 2n. We have ℓ1 equivariant edge-orbits of colored edges of

size 2n, corresponding to atoms A1, . . . , Aℓ1 .

We put

Ψ1 =
ℓ1∏

i=1
Fix(∂A∗i), Ψ2 =

ℓ2∏
i=1

Fix(∂B∗i), Ψ3 =
ℓ3∏

i=1
Fix(∂C∗i),

Ψ4 =
ℓ4∏

i=1
Fix(∂D∗i), Ψ5 =

ℓ5∏
i=1

Fix(∂E∗i).

It follows that

Fix(∂A∗) ∼= (Ψ2n
1 ×Ψn

2 ×Ψn
3 ×Ψn

4 ×Ψn
5) oϕ D2n × Fix(∂F ∗),

where Fix(∂F ∗) = {1} if there is no edge-orbit of size one. The homomorphism ϕ is
defined based on the description of the action of D2n below Lemma 8.2.6. It permutes
the coordinates of Ψ2n

1 regularly following the action of D2n on half-edges of a reflected
edge-orbit of size n. It permutes the coordinates in Ψn

2 , Ψn
3 , Ψn

4 , and Ψn
5 in the same

way as the edges of two equivariance classes of fixed and reflected edge-orbits of size n,
respectively. For the edges of reflected edge-orbits corresponding to C∗i and E∗i , when
half-edges are swapped by an element π ∈ Fix(∂A), the involutions τ ∗i and τ̂ ∗i are used
in the action of π∗ ∈ Fix(∂A∗) on the corresponding atoms C∗i and E∗i , respectively.
Therefore, Fix(∂A∗) can be constructed using (b) and (e).

It remains to deal with the last case of Fix(∂A) ∼= D2 ∼= C2
2 which may have the

most involved structure of edge-orbits.

Lemma 8.2.9. Let A be a non-star block atom with Fix(∂A) ∼= D2 ∼= C2
2. Then

Fix(∂A∗) can be constructed from the groups Fix(∂Â∗), using operations (b) and (f),
where Â ranges through all atoms corresponding to colored edges in A.

Proof. As it is described in the proof of Lemma 8.2.6, the group Fix(∂A) ∼= D2 ∼= C2
2

is generated by two reflections (1, 0) and (0, 1) through ∂A, orthogonal to each other.
Composition of these two reflections forms the 180◦ rotation (1, 1) through ∂A and
the opposite point of the sphere. (We identified the geometric transformations with
the elements of the elementary abelian group of order 4.) Therefore, every edge-orbit
of Fix(∂A) is of size one, two, or four, and we describe them below; see Fig. 8.7 for an
example.

• Edge-orbits of type 1 and of type 1↔. The rotation (1, 1) and the reflections (1, 0)
and (0, 1) stabilize, aside ∂A, the opposite point of the sphere which contains
either a vertex, or the center of an edge, or the center of a face.

248

8.2. The Jordan-like Characterization

(1, 1)

(1, 0) (0, 1)

u

180◦

A

F

A1 A1

A1 A1

A2 A2

A2 A2

A3 A3

A3 A3

B1

B1

C1

C1

C2

C2

D1 D1

E1 E1E2 E2

(1, 0)

(0, 1)

A

Figure 8.7: On the left, an example of a non-star block atom A with Fix(∂A) ∼= C2
2

generated by two depicted reflections. On the right, the view from above, with colored
edges labeled by the corresponding atoms, the central edge corresponds to an atom
F . Different types of edge-orbits are depicted with different types of edges. We have
ℓ1 = 3, ℓ2 = ℓ4 = 1 and ℓ3 = ℓ5 = 2.

– If they stabilize the center of a face, there is no edge-orbit of size 1.
– If they stabilize a vertex v, there might be a fixed edge-orbit of size 1

consisting of a single pendant edge attached at v. We deal with it using (b)
as in the proofs of Lemmas 8.2.5, 8.2.7 and 8.2.8, and we put Ψ6 = {1} and
τ ∗6 = id.

– If they stabilize the center of an edge e, then [e] is a reflected edge-orbit
of size 1. Let F be a symmetric atom corresponding to the colored edge e
and we put Ψ6 = Fix(∂F ∗). By Lemma 8.1.5, there exists an involution τ6
exchanging ∂F , and let τ ∗6 be a corresponding involution in Aut∂F ∗(F ∗).

• Edge-orbits of type 2 and of type 2↔. By Lemma 8.2.6, there are at most two
equivariant classes of fixed/reflected edge-orbits of size 2, one class stabilized by
(1, 0) and the other one by (0, 1).

– There are ℓ2 equivariant edge-orbits of colored edges fixed by the reflection
(1, 0). These colored edges correspond to atoms B1, . . . , Bℓ2 .

– There are ℓ3 equivariant edge-orbits of colored edges reflected by (1, 0).
These colored edges correspond to symmetric atoms C1, . . . , Cℓ3 . Let τ ∗3 ∈
Fix(∂C∗1)× · · · × Fix(∂C∗ℓ3) be an involution exchanging their boundaries.

– There are ℓ4 equivariant edge-orbits of colored edges fixed by the reflection
(0, 1). These colored edges correspond to atoms D1, . . . , Dℓ4 .

– There are ℓ5 equivariant edge-orbits of colored edges reflected by (0, 1).
These colored edges correspond to symmetric atoms E1, . . . , Eℓ3 . Let τ ∗5 ∈
Fix(∂E∗1)× · · · × Fix(∂E∗ℓ5) be an involution exchanging their boundaries.

• Edge-orbits of type 4. The group Fix(∂A) acts regularly on edge-orbits of size
four. Suppose we have ℓ1 equivariant edge-orbits of colored edges of size four,

249

Chapter 8. Automorphism Groups of Planar Graphs

and these colored edges correspond to atoms A1, . . . , Aℓ1 .

We put

Ψ1 =
ℓ1∏

i=1
Fix(∂A∗i), Ψ2 =

ℓ2∏
i=1

Fix(∂B∗i), Ψ3 =
ℓ3∏

i=1
Fix(∂C∗i),

Ψ4 =
ℓ4∏

i=1
Fix(∂D∗i), Ψ5 =

ℓ5∏
i=1

Fix(∂E∗i).

It easily follows that

Fix(∂A∗) ∼= (Ψ4
1 ×Ψ2

2 ×Ψ2
3 ×Ψ2

4 ×Ψ2
5 ×Ψ6) oϕ C2

2.

Assuming that (1, 0) reverses the edge e6, the homomorphism ϕ is defined by

ϕ(1, 0) = (π1, π
′
1, π

′′
1 , π

′′′
1 , π2, π

′
2, π3, π

′
3, π4, π

′
4, π5, π

′
5, π6) ↦→

(π′1, π1, π
′′′
1 , π

′′
1 , π2, π

′
2, τ
∗
3 · π3, τ

∗
3 · π′3, π′4, π4, π

′
5, π5, τ

∗
6 · π6),

ϕ(0, 1) = (π1, π
′
1, π

′′
1 , π

′′′
1 , π2, π

′
2, π3, π

′
3, π4, π

′
4, π5, π

′
5, π6) ↦→

(π′′1 , π′′′1 , π1, π
′
1, π

′
2, π2, π

′
3, π3, π4, π

′
4, τ
∗
5 · π5, τ

∗
5 · π′5, π6),

where τ ∗6 = id if e6 does not exist. Therefore, Fix(∂A∗) can be constructed using (b)
and (f).

We are ready to prove the Jordan-like characterization of Fix(connected PLANAR).

Proof of Theorem 8.2.1. Lemma 8.2.2 describes constructions. We prove the opposite
implication by induction according to the depth of the subtree of a reduction tree. Let
A be an atom and suppose that the subtrees rooted at all its children can be realized
by (b) to (f). By Lemmas 8.2.3, 8.2.4, 8.2.5, 8.2.7, 8.2.8, and 8.2.9, also Fix(∂A∗) can
be realized by (b) to (f).

8.2.3 Composition of Spherical groups with Fixers

It remains to deal with the root of the reduction tree, corresponding to the primitive
graph Gr. In comparison with atoms, Aut(Gr) does not have to stabilize any vertex or
edge, unlike Fix(∂A) which stabilizes ∂A. Therefore, all spherical groups are available
for Aut(Gr). Now, we are ready to prove the main result of this chapter, classifying
Aut(connected PLANAR).

Theorem 8.2.10. Let H be a planar graph with colored vertices and colored (possi-
bly oriented) edges, which is either 3-connected, or K1, or K2, or a cycle Cn. Let
m1, . . . ,mℓ be the sizes of the vertex- and edge-orbits of the action of Aut(H). Then
for all choices Ψ1, . . . ,Ψℓ ∈ Fix(connected PLANAR), we have

(Ψm1
1 × · · · ×Ψmℓ

ℓ) o Aut(H) ∈ Aut(connected PLANAR),

where Aut(H) permutes the factors of Ψm1
1 × · · · × Ψmℓ

ℓ following the action on the
vertices and edges of H.

250

8.2. The Jordan-like Characterization

H

Ψ1

Ψ2

H

Ψ1

Ψ2

Ψ3

Ψ4

Ψ3

Ψ4

Figure 8.8: On the left, a 3-connected planar graph H obtained from the cube, with
only three front faces depicted. We have Aut(H) ∼= C2 × S4 and its action *432 in
Table 8.1. Different orbits are shown in different colors: there are two vertex-orbits
(of sizes 8 and 6) and two edge-orbits (of sizes 24 and 12).
On the right, H is modified by attaching single pendant edges of different colors for
each vertex-orbit. For arbitrary choices of Ψ1, Ψ2, Ψ3, Ψ4 ∈ Fix(connected PLANAR),
we can expand H to H∗ with Aut(H∗) ∼= (Ψ24

1 ×Ψ12
2 ×Ψ8

3 ×Ψ6
4) o (C2 × S4). Notice

that some automorphisms of Aut(H) reflect some white edges and the corresponding
automorphism in Aut(H∗) reflect the expanded atoms corresponding to these edges
by τ∗2 .

On the other hand, every group of Aut(connected PLANAR) can be constructed
in the above way as

(Ψm1
1 × · · · ×Ψmℓ

ℓ) o Σ,

where Ψ1, . . . ,Ψℓ ∈ Fix(connected PLANAR) and Σ is a spherical group.

Proof. Let H be a graph satisfying the assumptions; for an example, see Fig. 8.8. First,
we replace colors of the vertices of H with colored single pendant edges attached to
them. Using Lemma 8.2.2, we choose arbitrary pairwise non-isomorphic extended
atoms A∗1, . . . , A∗ℓ such that Fix(∂A∗i) ∼= Ψi, and we replace the corresponding colored
edges with them. If the edge-orbit replaced by A∗i consists of undirected edges, we
assume that A∗i are symmetric atoms, and let τ ∗i ∈ Aut∂A∗i

(A∗i) be an involution
exchanging ∂A∗i . If it consists of directed edges, we assume that A∗i are asymmetric
atoms placed consistently with the orientation. We denote this modified planar graph
by H∗.

Exactly as in the proof of Proposition 7.6.4b, we get that

Aut(H∗) ∼= (Ψm1
1 × · · · ×Ψmℓ

ℓ) oϕ Aut(H).

An automorphism π∗ ∈ Aut(H∗) permutes the extended atoms exactly as π ∈ Aut(H)
permutes the colored edges. If π reflects an edge representing a symmetric atom A∗i ,
then π∗ reflects A∗i using τ ∗i .

For the other implication, let G be a planar graph. We apply the reduction
series and obtain a primitive graph Gr. By Lemma 8.1.3, we know that Aut(Gr) is
a spherical group. Suppose that we have ℓ edge-orbits of colored edges in the action
of Aut(Gr). Suppose that their sizes are m1, . . . ,mℓ and their colored edges corre-
spond to expanded atoms A∗1, . . . , A∗ℓ . By Theorem 8.2.1, we know that Fix(∂A∗i) ∈

251

Chapter 8. Automorphism Groups of Planar Graphs

Fix(connected PLANAR). Further, for symmetric expanded atoms A∗i , by Lemma 8.1.5,
there exists an involution τ ∗i exchanging ∂A∗i . We proceed exactly as in the proof of
Proposition 7.6.4 and we obtain

Aut(G) ∼=
(
Fix(∂A∗1)m1 × · · · × Fix(∂A∗ℓ)mℓ

)
oϕ Aut(Gr).

8.2.4 Possible Lengths of Orbits

To describe the groups realizable as automorphism groups of connected planar graphs,
we need to understand what are the possible restrictions on sizes mi of the orbits of
Aut(G) in a 3-connected planar graph G. (When G is K1, K2 or a cycle Cn, we get
more restricted orbits than in the case of 3-connected planar graphs G. For instance,
the wheel Wn is 3-connected and contains all orbits of Cn.) We investigate possible
actions of spherical groups Σ realized as groups of isometries of polytopes projected
onto the sphere.

In [218], the following characterization of possible equivariance classes of orbits
given in Tables 8.1, 8.2, and 8.3 is proved. These tables are organized as follows.
Each row of the table corresponds to a distinguished (parametrized) spherical group Σ
described using the notation of Conway and Thurston [70]. There are fourteen types
of actions, several small special cases are discussed separately. The second column
describes Σ as an abstract group and the third column gives the order of Σ.

The fourth column gives the numbers of equivariance classes of point-orbits of
Σ. By c · ab, we denote that there are c equivariance classes of point-orbits of size
a, each class of size b. For instance, in the second row of Table 8.1, the fourth entry
contains 48∞, 2 · 24∞,121,81,61. This means that there are infinitely many mutually
equivariant point-orbits of size 48, three infinite equivariant classes of point-orbits of
size 24, and single point-orbits of sizes 12, 8, and 6.

The fifth and sixth columns describe equivariance classes of vertex- and edge-
orbits of Σ, respectively. In the second row of Table 8.1, there are two options for
sequences of possible vertex- and edge-orbits:

either 48, 2 · 24, 12, 8, 6 and 48, 2 · 24, 2 · 24↔, −↔,
or 48, 2 · 24, −, 8, 6 and 48, 2 · 24, 2 · 24↔, 12↔.

The multiplicity of orbits in equivariance classes is not displayed. The difference
between the two cases comes from the fact that the unique point-orbit of size 12 is
either a vertex-orbit or an edge-orbit. The subscript ↔ means that the edge-orbit is
reflexive. Similarly as in the proofs in Section 8.2.2, we distinguish edge-orbits which
are fixed (the corresponding half-edges form two orbits of the same size), depicted as
c ·a, and which are reflected, denoted as c ·a↔ (the corresponding half-edges form one
orbit of the double size).

252

8.2.
T

he
Jordan-like

C
haracterization

Action Σ |Σ| Point-orbits Vertex-orbits Edge-orbits

*532 A5 × C2 120 120∞,60∞,301,201,121 120, 60, 30, 20, 12
120, 60, −, 20, 12

120, 60, 60↔, −↔
120, 60, 60↔, 30↔

*432 S4 × C2 48 48∞, 2 · 24∞,121,81,61 48, 2 · 24, 12, 8, 6
48, 2 · 24, −, 8, 6

48, 2 · 24, 2 · 24↔, −↔
48, 2 · 24, 2 · 24↔, 12↔

*332 S4 24 24∞,12∞,61,42 24, 12, 6, 4
24, 12, −, 4

24, 12, 12↔, −↔
24, 12, 12↔, 6↔

*22n Dn × C2, 4n (4n)∞, 2 · (2n)∞,n2,21 4n, 2 · 2n,n,2 4n, 2 · 2n, 2 · 2n↔,n↔
n ≥ 3, odd

*22n
Dn × C2, 4n (4n)∞, 3 · (2n)∞, 2 · n1,21

4n, 3 · 2n, 2 · n, 2
4n, 3 · 2n, n, 2
4n, 3 · 2n, −, 2

4n, 3 · 2n, 3 · 2n↔, −↔
4n, 3 · 2n, 3 · 2n↔, n↔

4n, 3 · 2n, 3 · 2n↔, 2 · n↔
n ≥ 4, even

*222
D2 × C2 8 8∞, 3 · 4∞, 3 · 21

8, 3 · 4, 3 · 2
8, 3 · 4, 2 · 2
8, 3 · 4, 2
8, 3 · 4, −

8, 3 · 4, 3 · 4↔, −↔
8, 3 · 4, 3 · 4↔, 2↔
8, 3 · 4, 3 · 4↔, 2 · 2↔
8, 3 · 4, 3 · 4↔, 3 · 2↔

= C3
2

Table 8.1: Part 1 of the list of all possible types of lengths of orbits in Theorem 8.2.10.

253

C
hapter

8.
A

utom
orphism

G
roups

of
P

lanar
G

raphs

Action Σ |Σ| Point-orbits Vertex-orbits Edge-orbits

532 A5 60 60∞,301,201,121 60, 30, 20, 12
60, −, 20, 12

60, −↔
60, 30↔

432 S4 24 24∞,121,81,61 24, 12, 8, 6
24, −, 8, 6

24, −↔
24, 12↔

332 A4 12 12∞,61,42 12, 6, 4
12, 6, 4

12, −↔
12, 6↔

22n Dn, 2n (2n)∞,n2,21 2n,n,2 2n↔,n↔
n ≥ 3, odd

22n
Dn,

2n (2n)∞, 2 · n1,21
2n, 2 · n, 2
2n, n, 2
2n, −, 2

2n, −↔
2n, n↔

2n, 2 · n↔
n ≥ 4, even

222 D2 = C2
2 4 4∞, 3 · 21

4, 3 · 2
4, 2 · 2
4, 2
4, −

4, −↔
4, 2↔
4, 2 · 2↔
4, 3 · 2↔

Table 8.2: Part 2 of the list of all possible types of lengths of orbits in Theorem 8.2.10.

254

8.2.
T

he
Jordan-like

C
haracterization

Action Σ |Σ| Point-orbits Vertex-orbits Edge-orbits

3*2 A4 × C2 24 24∞,12∞,81,61 24, 12, 8, 6
24, 12, 8, −

24, 12, 12↔, −↔
24, 12, 12↔, 6↔

2*n D2n, n ≥ 3 4n (4n)∞, (2n)∞, (2n)1,21 4n, 2 · 2n, 2
4n, 2n, 2

4n, 2n, 2n↔

4n, 2n, 2 · 2n↔

2*2 D4 8 8∞,4∞,41,21

8, 2 · 4, 2
8, 4, 2
8, 2 · 4, −
8, 4, −

8, 4, 4↔, −↔
8, 4, 2 · 4↔, −↔
8, 4, 4↔, 2↔
8, 4, 2 · 4↔, 2↔

*nn Dn, 2n (2n)∞,n∞,12 2n,n,1 2n,n,n↔
n ≥ 3, odd

*nn Dn, 2n (2n)∞, 2 · n∞,12 2n, 2 · n,1 2n, 2 · n, 2 · n↔
n ≥ 4, even

*22 D2 = C2
2 4 4∞, 2 · 2∞,12 4, 2 · 2,1 4, 2 · 2, 2 · 2↔,1↔

nn Cn, n ≥ 3 n n∞,12 n,1 n

22 C2 n 2∞,12 2,1 2,1↔
nx C2n, n ≥ 3 2n (2n)∞,21 2n,2 2n

2x C4 4 4∞,21 4, 2
4, −

4, −↔
4, 2↔

n* Cn × C2, 2n (2n)∞,n∞,21 2n,n,2 2n,n,n↔
n ≥ 3

2* C2 × C2 4 4∞,2∞,21 4, 2 · 2
4, 2

4, 2, 2↔
4, 2, 2 · 2↔

Table 8.3: Part 3 of the list of all possible types of lengths of orbits in Theorem 8.2.10.

255

Chapter 8. Automorphism Groups of Planar Graphs

8.3 Applications of Jordan-like Characterization

In this section, we apply the Jordan-like characterization of Theorems 8.2.1 and 8.2.10
to describe automorphism groups of several important subclasses of planar graphs.
First, we determine possible atoms, and primitive graphs and their automorphism
groups. Then we determine possible stabilizers similarly as in the proof of Theo-
rem 8.2.1, however, only some of the group products appear. Lastly, we combine these
stabilizers together with spherical groups which are representable by primitive graphs,
again only some of the (possibly restricted) cases of Table 8.1 may happen. In what
follows, for a subclass C of planar graphs, we set

Fix(C) =
{
Fix(∂A∗) : A is an atom of the reduction tree of a graph in C

}
.

For instance, consider the class of all trees (TREE). The only primitive graph
is K1 (with a single pendant edge attached), so its automorphism group is trivial.
All atoms are block atoms (either star block atoms or K2 with a single pendant edge
attached). Therefore, the stabilizers are determined by Lemma 8.2.3. The class is
closed under the direct product and the wreath product with symmetric groups. Since
K1 has the trivial automorphism group, we get that the automorphism groups of trees
are same as are the vertex-stabilizers of trees, so we get the Jordan’s characterization;
see Theorem 6.3.1.

8.3.1 Automorphism Groups of 2-connected Planar Graphs

Denote the class of 2-connected planar graphs by 2-connected PLANAR. Consider the
reduction tree of a 2-connected planar graph. There are no block atoms since all the
atoms are proper or dipoles. Note that Fix(2-connected PLANAR) consists of all point-
wise stabilizers of edges in 2-connected planar graphs. The reason is that for a proper
atom/dipole A with ∂A = {u, v}, we may consider the extended atom A+ constructed
from A by adding the edge uv, and the corresponding expanded extended atom (A+)∗.
Then Fix(∂A∗) is the point-wise stabilizer of the edge uv in Aut∂(A+)∗((A+)∗).

Lemma 8.3.1. The class Fix(2-connected PLANAR) is defined inductively as follows:

(a) {1} ∈ 2-Fix(2-connected PLANAR).
(b) If Ψ1,Ψ2 ∈ Fix(2-connected PLANAR), then

Ψ1 ×Ψ2 ∈ Fix(2-connected PLANAR).

(c) If Ψ ∈ Fix(2-connected PLANAR), then

Ψ ≀ Sn ∈ Fix(2-connected PLANAR).

(d) If Ψ1,Ψ2,Ψ3 ∈ Fix(2-connected PLANAR), then

(Ψ2
1 ×Ψ2) oC2 ∈ Fix(2-connected PLANAR).

256

8.3. Applications of Jordan-like Characterization

Proof. The constructions are explained in Fig. 8.2b, c, d. For the other implication,
we argue exactly as in the proof of Theorem 8.2.1. We apply induction according to
the depth of the reduction tree. Let A be an atom with colored edges corresponding
to proper atoms/dipoles Â. We assume that Fix(∂Â∗) can be constructed using the
operations (a)–(d). Since A is a proper atom or a dipole, only Lemmas 8.2.3 and 8.2.4
apply, so the operations (b), (c), (d) are sufficient. For (d), we use the simplification
described below the proof of Lemma 8.2.4.

Notice that the operations (c) and (d) are restrictions of (c) and (d) from Theo-
rem 8.2.1 to Sn and D1 ∼= C2, respectively. Also, the class Fix(2-connected PLANAR)
is more rich than the class Aut(TREE), characterized by Jordan (Theorem 6.3.1) em-
ploying the operations (a)–(c). Therefore,

Aut(TREE) (Fix(2-connected PLANAR) (Fix(connected PLANAR).

Finally, we deal with a primitive graph in the root of the reduction tree. We easily
modify the characterization in Theorem 8.2.10. There are two key differences. First, we
use the class Fix(2-connected PLANAR) instead of Fix(connected PLANAR). Second,
we only consider edge-orbits since there are no single pendant edges in primitive graphs,
i.e., no expanded block atoms attached to their vertices.

Theorem 8.3.2. The class Aut(2-connected PLANAR) consists of the following groups.
Let H be a planar graph with colored (possibly oriented) edges, which is either 3-
connected, or K2, or a cycle Cn. Let m1, . . . ,mℓ be the sizes of the edge-orbits of the
action of Aut(H). Then for all choices Ψ1, . . . ,Ψℓ ∈ Fix(2-connected PLANAR), we
have

(Ψm1
1 × · · · ×Ψmℓ

ℓ) o Aut(H) ∈ Aut(2-connected PLANAR),

where Aut(H) permutes the factors of Ψm1
1 × · · · × Ψmℓ

ℓ following the action on the
edges of H.

On the other hand, every group of Aut(2-connected PLANAR) can be constructed
in the above way as

(Ψm1
1 × · · · ×Ψmℓ

ℓ) o Σ,

where Ψ1, . . . ,Ψℓ ∈ Fix(2-connected PLANAR) and Σ is a spherical group.

Proof. The reduction tree of a 2-connected planar graph contains only proper atoms
and dipoles, and the primitive graph cannot be K1. The proof proceeds as in Theo-
rem 8.2.10, the only difference is that we use Lemma 8.3.1 instead of Theorem 8.2.1.

8.3.2 Automorphism Groups of Outerplanar Graphs

Let G be a connected outerplanar graph with the reduction series G = G0, . . . , Gr.
All graphs Gi are outerplanar. Since no 3-connected planar graph is outerplanar, Gr

is by Lemma 7.4.2 either K1, K2, or a cycle Cn (possibly with a single pendant edge
attached). So, Aut(Gr) is a subgroup of a dihedral group.

Next, we describe possible atoms encountered in the reduction:

257

Chapter 8. Automorphism Groups of Planar Graphs

• Star block atoms. We have arbitrary star block atoms.
• Non-star block atoms. Each non-star block atomA is outerplanar. By Lemma 7.4.3,
A is either K2 or Cn with single pendant edges attached. Therefore, Fix(∂A) is
a subgroup of C2.
• Proper atoms. For a proper atom A with ∂A = {u, v}, the extended proper atom
A+ is an outerplanar graph having an embedding with the edge uv in the outer
face. Therefore, by Lemma 7.4.4, A is a non-trivial path, so Fix(∂A) ∼= C1.
• Dipoles. For a dipole A with ∂A = {u, v}, the extended dipole A+ (with the edge
uv) has an embedding such that the edge uv belong to the outer face. Therefore,
assuming that G contains no parallel edges, A consists of exactly two edges,
one corresponding to an edge of G, and the other to a proper atom. Again,
Fix(∂A) ∼= C1.

Lemma 8.3.3. Fix(connected OUTERPLANAR) = Aut(TREE).

Proof. By induction, when A is a proper atom or a dipole, we get that Fix(∂A∗) is
the direct product of Fix(∂Â∗) of the attached extended block atoms. Alternatively,
it can be argued that each 2-connected outerplanar graph G has Aut(G) a subgroup
of Dn. Unless G is a cycle, Aut(G) stabilizes the outer face.

We use the same approach as in the proof of Theorem 8.2.1. Only Lemmas 8.2.3,
7.4.4 for C1, and 8.2.5 for subgroups of C2 apply. For a block atom A with Fix(∂A) ∼=
C2, there might be either an edge-orbit of type 1 consisting of a pendant edge cor-
responding to a block-atom B, or an edge-orbit of type 1↔ consisting of an edge
corresponding to a proper atom or a dipole C. In the latter case, Fix(∂C∗) is just the
direct product of extended block atoms attached in C∗, so the reflection in Fix(∂A) just
swaps them, while at most one is fixed. Therefore, Fix(connected OUTERPLANAR) is
defined inductively by the operations (a)–(c) from Theorem 6.3.1.

By adapting the proof of Theorem 8.2.10, we get the following:

Theorem 8.3.4. The class Aut(connected OUTERPLANAR) consists of the following
groups:

(i) If Ψ ∈ Fix(connected OUTERPLANAR), then

Ψ ≀ Cn ∈ Aut(connected OUTERPLANAR).

(ii) If Ψ1,Ψ2 ∈ Fix(connected OUTERPLANAR), then

(Ψ2n
1 ×Ψn

2) oDn ∈ Aut(connected OUTERPLANAR), ∀n odd.

(iii) If Ψ1,Ψ2,Ψ3 ∈ Fix(connected OUTERPLANAR), then

(Ψ2n
1 ×Ψn

2 ×Ψn
3) oDn ∈ Aut(connected OUTERPLANAR), ∀n even.

Moreover, Aut(connected OUTERPLANAR) = Aut(PSEUDOTREE).

258

8.3. Applications of Jordan-like Characterization

T

T

TT

T

(i)

T2 T1

T1

T2

T1

T1

T2

T1T1

T2

T1

T1

T2

T1

T1

(ii)

T2 T1

T3

T1

T2

T1

T3

T1T2
T1

T3

T1

T2

T1

T3

T1

(iii)

Figure 8.9: Construction of the automorphism groups from Theorem 8.3.4, for
Fix(∂T) ∼= Ψ and Fix(∂Ti) ∼= Ψi.

Proof. We have PSEUDOTREE (connected OUTERPLANAR and all these automor-
phism groups are already realized by pseudotrees, see Fig. 8.9. Therefore, we get that
Aut(connected OUTERPLANAR) = Aut(PSEUDOTREE).

For the other direction, consider the primitive graph Gr associated to G. We
assume that Gr is a cycle, otherwise it is trivial. We get three cases leading to different
automorphism groups from the statement: (i) Aut(Gr) ∼= Cn, for n ̸= 2, (ii) Aut(Gr) ∼=
Dn, for n odd, (iii) Aut(Gr) ∼= Dn, for n even.

In the case (i), we have only edge-orbits of type n corresponding to block atoms
A1, . . . , Aℓ, so Ψ = Fix(∂A∗1)× · · · × Fix(∂A∗ℓ) and Aut(Gr) ∼= Ψ ≀ Cn.

In the case (ii), we have edge-orbits of types 2n, n, n↔, each forming one
equivariant class of orbits; see Lemma 8.2.6. We define Ψ1, Ψ2, and Ψ3 exactly as in
the proof of Lemma 8.2.7. However, since Fix(∂A∗) of a proper atom or a dipole A is
the direct product of Fix(∂Â∗) of the attached extended block atoms Â∗, we can place
these factors into Ψ1 and Ψ2. Therefore, Aut(Gr) ∼= (Ψ2n

1 ×Ψn
2) oDn.

In the case (iii), the argument is similar as in (ii), but we have two equivari-
ance classes of edge-orbits of type n and of type n↔. Thus we adapt the proof of
Lemma 8.2.8 instead.

We get Aut(OUTERPLANAR) = Aut(PSEUDOFOREST), and their characteriza-
tion follows from from Theorem 7.2.1,

8.3.3 Automorphism Groups of Series-Parallel Graphs

Let G be a connected series-parallel graph with the reduction series G = G0, . . . , Gr.
All graphs the graphs Gi remain series-parallel since each 1-cut and 2-cut is introduced
in the composition of the graph using one or the other operation. The only exception
is Gr, where we allow Gr = K1. Since no 3-connected planar graph is series-parallel,
Gr is by Lemma 7.4.2 again either K1, K2, or a cycle Cn, with attached single pendant
edges. So, Aut(Gr) is a subgroup of a dihedral group.

Next, we describe possible atoms encountered in the reduction:

• Star block atoms. Star block atoms may be arbitrary.

259

Chapter 8. Automorphism Groups of Planar Graphs

(i)

Ψ
Ψ1

Ψ2

Ψ3

(ii)

Ψ1

Ψ2Ψ3

(iii)

Ψ1

Ψ2Ψ3 Ψ1 Ψ2

Ψ3

Figure 8.10: Construction of the automorphism groups from Theorem 8.3.6. We
get three possible combinations of edge-orbits in (iii), leading to different semidirect
products with Dn.

• Non-star block atoms. Each non-star block atom A is a series-parallel graph. By
Lemma 7.4.3, we get that A is either K2 or a cycle with attached single pendant
edges, so Fix(∂A) is again a subgroup of C2.
• Proper atoms. For a proper atom A, the extended proper atom A+ is a series-

parallel graph. Therefore, by Lemma 7.4.4, A is a path, so Fix(∂A) ∼= C1.
• Dipoles. Dipoles may be arbitrary.

Lemma 8.3.5. Fix(connected SERIES-PARALLEL) = Fix(2-connected PLANAR).

Proof. We use the same approach as in the proof of Theorem 8.2.1. Since the groups
Fix(∂A) of encountered atoms A are restricted, by Lemmas 8.2.3, 8.2.4, and 8.2.5, the
groups Fix(∂A∗) can be constructed using (a)–(d) of Lemma 8.3.1. We note that each
non-star block atom A with Fix(∂A) ∼= C2 has at most one edge-orbit of size 1, which
is either of type 1, or of type 1↔.

By adapting the proof of Theorem 8.2.10, we get the following:

Theorem 8.3.6. The class Aut(connected SERIES-PARALLEL) consists of the follow-
ing groups:

(i) If Ψ ∈ Fix(connected SERIES-PARALLEL), then

Ψ ≀ Cn ∈ Aut(connected SERIES-PARALLEL).

(ii) If Ψ1,Ψ2,Ψ3 ∈ Fix(connected SERIES-PARALLEL), then

(Ψ2n
1 ×Ψn

2 ×Ψn
3) oDn ∈ Aut(connected SERIES-PARALLEL), ∀n odd.

(iii) If Ψ1,Ψ2,Ψ3 ∈ Fix(connected SERIES-PARALLEL), then

(Ψ2n
1 ×Ψn

2 ×Ψn
3) oDn ∈ Aut(connected SERIES-PARALLEL), ∀n even.

We note that the semidirect products in (ii) and (iii) are different, see the proof
for details.

Proof. Fig. 8.10 depicts the constructions. For the other direction, we deal with the
case that the primitive graph Gr is a cycle Ck with attached single pendant edges,

260

8.4. Comparison with Babai’s Characterization

otherwise it is trivial. As in the proof of Theorem 8.3.4, we get three cases leading to
different automorphism groups from the statement: (i) Aut(Gr) ∼= Cn, for n ̸= 2, (ii)
Aut(Gr) ∼= Dn, for n odd, (iii) Aut(Gr) ∼= Dn, for n even.

The case (i) is exactly the same as in Theorem 8.3.4. In the cases (ii) and (iii), we
have edge-orbits of types 2n, n, and n↔. The group Aut(Gr) acts on the edge-orbits
of type 2n regularly, exactly as in the proofs of Lemmas 8.2.7 and 8.2.8. We argue
that the edge-orbits of types n and n↔ are more restricted.

In the case (ii), we have exactly one conjugacy class of reflections fi, recall the
notation from the proof of Lemma 8.2.6. Each of the reflections either stabilizes two
edges of the cycle or two vertices if n is even; or a vertex and an edge if n is odd.
In the first case, we get two equivariant edge-orbits of type n↔. In the second case,
we get at most two equivariant edge-orbits of type n consisting of pendant-edges
attached to stabilized vertices. In the last case, we get an edge-orbit of type n↔ and
at most one edge-orbit of type n consisting of pendant-edges. The group Aut(G) can
be constructed by the operation (ii) in the same way as in the case (d) in the proof of
Lemma 8.2.7.

In the case (iii), we have two conjugacy classes of reflections. Each reflection
stabilizes either two edges of the cycle, or two vertices, belonging to the same orbit;
and this is same for each conjugacy class. Therefore, each conjugacy class defines
either an edge-orbit of type n of attached single pendant edges, or an edge-orbit of
type n↔, non-equivariant to the edge-orbit defined by the other class. In total, we
get three possibilities: two non-equivariant orbits of type n, one edge-orbit of type n
and one edge-orbit of type n↔, or two non-equivariant edge-orbits of type n↔. These
three possibilities lead to different semidirect products in (iii) which are created by
restrictions of the operations (e) from the proof of Lemma 8.2.8.

8.4 Comparison with Babai’s Characterization

In this section, we compare our characterization of automorphism groups of planar
graphs with Babai’s characterization [11].

Statement of Babai’s Characterization. We include the full statement of Babai’s
characterization of Aut(PLANAR), copied from [11] with an adapted notation.

Theorem 8.4.1 (Babai [11], 8.12 The Main Corollary). Let Ψ be a finite group. All
graphs below are assumed to be finite.

(A) Ψ is representable by a planar graph if and only if

Ψ ∼= Ψ1 ≀ Sn1 × · · · ×Ψt ≀ Snt (8.2)

for some t, n1, . . . , nt where the groups Ψi are representable by connected planar
graphs.

(A’) Ψ is representable by a planar graph with a fixed point if and only if Ψ is repre-
sentable by a planar graph.

261

Chapter 8. Automorphism Groups of Planar Graphs

(A”) Ψ is representable by a planar fixed-point free graph if and only if a (8.2) de-
composition exists with all groups Ψi possessing planar connected fixed-point-free
graph representation.

(B) For |Ψ| ≥ 3, Ψ is representable by a connected planar graph if and only if

Ψ ∼= (Ψ1 ≀ Sk) ≀ (Ψ2|K) (8.3)

for some positive integer k, where Ψ1 should be representable by a connected graph
having a fixed point; and either Ψ2 is representable by a 2-connected planar graph
G2, or k ≥ 2 and |Ψ2| = 1. In the former case, Ψ2|K denotes the not necessarily
effective permutation group, acting on some orbit K of Aut(G2).

(B’) Ψ is representable by a connected planar graph having a fixed point if and only
if a (8.3) decomposition exists as described under (B) with either |Ψ2| = 1 or G2
a 2-connected planar graph with a fixed point.

(B”) Ψ is representable by a connected fixed-point-free planar graph if and only if a
(8.3) decomposition exists with |Ψ2| ≠ 1, G2 fixed-point free (hence |K| ≥ 2).

(C) Ψ is representable by a 2-connected planar graph if and only if

Ψ ∼= (Ψ1 ≀ Sk) ≀ (Ψ2|K) (8.4)

where |Ψ1| ≤ 2; Ψ2 is representable by some 2-connected planar graph G2. If
|Ψ1| = k = 1, G2 should be 3-connected. Ψ2|K denotes the action of Ψ2 ∼=
Aut(G2), as a not necessarily effective permutation group, on K, an orbit of
either an ordered pair (a, b) or of an unordered pair {a, b} of adjacent vertices
a, b ∈ V (G2).

(C’) Ψ is representable by a 2-connected planar graph with a fixed point or with an
invariant edge if and only if a (8.4) decomposition exists such that G2 has a fixed
point or an invariant edge.

(C”) Ψ is representable by a 2-connected planar fixed-point-free graph if and only if a
(8.4) decomposition exists with G2 fixed-point-free.

(D) Ψ is representable by a 3-connected planar graph if and only if Ψ is isomorphic
to one of the finite symmetry groups of the 3-space:

Cn, Dn, A4, S4, A5,

Cn × C2, Dn × C2, A4 × C2, S4 × C2, A5 × C2.
(8.5)

(D’) Ψ is representable by a 3-connected planar graph with a fixed point if and only if
Ψ is a cyclic or a dihedral group.

(D”) Ψ is representable by a 3-connected planar fixed-point-free graph if and only if
|Ψ| ≥ 2 and Ψ is one of the groups listed under (8.5).

262

8.4. Comparison with Babai’s Characterization

G G′

Figure 8.11: Planar graphs G and G′ with Aut(G) ∼= Aut(G′) ∼= C2
2, having different

actions. For G, we get independent reflections/rotations for each of the blocks. For
G′, the group Aut(G′) is generated by two reflections.

The characterization is very long and hard to understand, but it works in a
nutshell as follows. The automorphism group of a k-connected planar graph (k ≤ 2) is
constructed by combining automorphism groups of smaller k-connected planar graphs
with stabilizers of k-connected planar graphs and automorphism groups of (k + 1)-
connected graphs.

The part (A) corresponds to Jordan’s Theorem 7.2.1. The automorphism groups
listed in the part (D) are the spherical groups described in Section 8.1 and are based
on the classical results from geometry. Therefore, the novel parts are (B) and (C).
Unfortunately, it is not clear which groups are Ψ2|K, used in (8.3) and (8.4).

In principle, it would be possible to derive Theorem 8.4.1 from the described
Jordan-like characterization of Theorems 8.2.1 and 8.2.10, and the reader can work
out further details. The opposite is not possible because Jordan-like characterization
contains more information about automorphism groups of planar graphs; for instance
the one given in Table 8.1. We note that Jordan-like characterizations for all parts of
Theorem 8.4.1 exist. For example, the characterization of Aut(2-connected PLANAR)
in Section 8.3.1, corresponds to the part (C) of Theorem 8.4.1.

Group Products Instead of Group Extensions. We explain why the simple
version of our characterization given in Theorem 6.3.8 already describes the structure
more accurately than Theorem 6.3.7.

Recall simple groups from Section 7.2. A consequence of Babai’s characteriza-
tion (Theorem 6.3.7) describes building blocks (simple groups) for the automorphism
groups of planar graphs. But Theorem 6.3.7 does not describe how the building blocks
for automorphism groups of planar graphs are put together. In certain special cases,
the structure of Ψ can be described from Σ and Ψ/Σ by semidirect products; see
Section 7.2.

A simple version of our characterization (Theorem 6.3.8) states that the auto-
morphism groups of planar graphs can be build from standard building blocks using a
series of semidirect product, so it describes the structure more accurately than Theo-
rem 6.3.7. In Theorems 8.2.1 and 8.2.10, we describe these semidirect products in more
detail. As far as we understand Babai’s approach, he uses generalized wreath products
instead of semidirect products. More important difference between ours and Babai’s
approach consists in the fact that we deal with the 1- and 2-connected case together.
This allows us to apply recursion in a more compact way, thus deriving the Jordan-like
characterization of stabilizers of 1-cuts and 2-cuts, established in Theorem 8.2.1.

A group of symmetries of a graph is not fully described just by characterizing it

263

Chapter 8. Automorphism Groups of Planar Graphs

as an abstract group. Figure 8.11 shows two simple graphs with isomorphic abstract
automorphism groups, realized by different group actions on the graphs. From Babai’s
characterization, the structure of this action is not very clear. On the other hand,
Theorems 8.2.1 and 8.2.10 reveal the actions of automorphism groups on planar graphs,
by describing them with respect to each 1-cut and 2-cut (Theorem 8.2.1), and with
respect to the primitive graph (Theorem 8.2.10).

8.5 Quadratic-time Algorithm

In this section, we describe a quadratic-time algorithm which computes the automor-
phism groups of planar graphs.

Lemma 8.5.1. Let G be an essentially 3-connected planar graph with colored edges.
There exists a quadratic-time algorithm which computes a generating set of Aut(G) or
of the stabilizer of a vertex.

Proof. Consider the unique embedding of G into the sphere. Let n be the number
of vertices of G. We work with colored pendant edges as with colored vertices. Let
(v, e, e′) be an arbitrary angle. For every other angle (v̂, ê, ê′) there exists at most
one automorphism π ∈ Aut(M) which maps (v, e, e′) to (v̂, ê, ê′). We introduce three
involutions ρ, λ, τ on the set of oriented angles by setting:

• ρ(v, e, e′) = (v, e′, e),

• λ(v, e, e′) = (v′, e′′, e′), where v′ is the other vertex incident to e′ and the angles
(v, e, e′) and (v′, e′′, e′) lie on the same side of e′, and

• τ(v, e, e′) = (v, e, e′′), where (v, e, e′′) is the other angle incident to v and e.

The procedure checking whether the mapping π : (v, e, e′) ↦→ (v̂, ê, ê′) extends to an
automorphism is based on the observation that an automorphism of G commutes
with ρ, λ, and τ . It follows that in time O(n), we can check whether the mapping
π : (v, e, e′) ↦→ (v̂, ê, ê′) extends to an automorphism or not. In the positive case, we
get the automorphism π as a byproduct. Moreover, we can easily verify whether the
automorphism preserves colors. Therefore, Aut(G) is computed in time O(n2) and
the algorithm can easily identify which of the abstract spherical groups is isomorphic
to Aut(G). Note that the number of edges of G is O(n). For the stabilizer, we just
compute the automorphisms which map (v, e, e′) to (v, ê, ê′).

Notice that by the above algorithm, we can compute Fix(∂A) of a non-star block
atom A.

Lemma 8.5.2. There is a linear-time algorithm which computes a generating set of
Fix(∂A) and Aut∂A(A) of a proper atom, dipole, or a star block atom A with colored
edges.

264

8.5. Quadratic-time Algorithm

Proof. If A is a dipole or a star block atom, we get Fix(∂A) as the direct product of
symmetric groups, one for each type and color class of edges. Further, if A is a dipole,
it is symmetric if and only if it has the same number of directed edges of each color class
in both directions, and then Aut(A) ∼= Fix(∂A)oC2; otherwise Aut∂A(A) = Fix(∂A).

Let A be a proper atom with ∂A = {u, v}. Since A+ is essentially 3-connected,
the reasoning from Lemma 8.5.1 applies. We know that both Aut∂A(A) and Fix(∂A)
are generated by automorphisms which maps the two angles containing u and uv and
the two angles containing v and uv between each other. We can easily test in time
O(n) which of these mappings are automorphisms.

Proof of Theorem 6.3.9. By Lemma 7.7.1, we cane compute the simplified reduction
tree T in time O(n). In the beginning, all nodes of T are unmarked. We process
the tree from the leaves to the root, dealing with the nodes which have all children
marked, and marking these nodes after. We compute colors and symmetry types of
the considered atoms, the groups Fix(∂A) and for symmetric atoms also involutions
τ exchanging the vertices in the boundaries. Let the colors be integers. Suppose that
in some step, we process several atoms whose edges are colored and have computed
symmetry types.

Dipoles and star block atoms. To each dipole/star block atom with n edges, we
assign the vector v = (t, c1, . . . , cm) where t is the type of the atom and c1, . . . , cm is
the sorted list of colors. By lexicographic sorting of these vectors for all dipoles/star
block atoms, we can compute isomorphism classes and assign new colors to them. This
runs in linear time.

Non-star block atoms. Let A be a non-star block atom with ∂A = {u}. We
work with single pendant edges as with colors of vertices. Let n be the number of its
vertices and m the number of its edges. Consider a map of A. For each choice of an
angle (u, e, e′), we compute labellings 1, . . . , n of the vertices and 1, . . . ,m of the edges
as they appear in BFS of the map. Starting with u, we visit all its neighbors, from
the one incident with e following the rotational scheme. From each neighbor, we visit
their unvisited neighbors, and so on.

For a labeling, we compute the vector

v =
(
c1, . . . , cn, (x1, y1, c

′
1), . . . , (xm, ym, c

′
m)
)

where ci is the color of the i-th vertex, and xj < yj are the endpoints and c′j the
color of the j-th edge. We compute at most 2n of these vectors for all possible choices
of (u, e, e′) and we choose the one which is lexicographically smallest. Notice that
two atoms are isomorphic if and only if their associated vectors are identical. So, by
sorting the chosen vectors for all non-star block atoms lexicographically, we compute
isomorphism classes and assign new colors to them. This runs in quadratic time since
we compute 2n vectors for each atom.

Proper atoms. We approach A+ similarly as a non-star block atom, but we just
need to consider the labellings starting from an angle containing uv and either u, or
v. We have four choices for each vector, so it runs in linear time.

265

Chapter 8. Automorphism Groups of Planar Graphs

D5

τ

π

S4

Figure 8.12: The bold edges are symmetric proper atoms A with Fix(∂A) ∼= C2,
generated by π. We visualize the automorphism group (D4

5 × C6
2) o S4.

For each considered atom A, we apply one of the algorithms described in Lem-
mas 8.5.1 and 8.5.2, and we compute Fix(∂A). If A is a dipole or a proper atom, we
also compute its type, and if A is symmetric, we construct an involution τ ∈ Aut∂A(A)
exchanging the vertices of ∂A.

Following the proof of Theorem 8.2.1, we can compute in quadratic time also
Fix(∂A∗) and τ ∗ for every node which is a child of the root node. By Theorem 8.2.10,
we can compute Aut(G) as the semidirect product of these groups Fix(∂A∗) with
Aut(H) computed by Lemma 8.5.1. We can output the automorphism groups in
terms of permutation generators, or by assigning the computed groups Fix(∂A), τ and
Aut(H) to the corresponding nodes of T .

Corollary 8.5.3. For a planar graph G, its reduction tree can be computed in quadratic
time.

8.6 Conclusions

Let G be a connected planar graph. We propose the following way of imagining
the action of Aut(G) geometrically, which can be used in a dynamic visualization
in 3-space. Suppose that the reduction tree T of G is computed together with the
corresponding parts of Aut(G), assigned to the nodes. For each 2-connected block, we
have some 3-connected colored primitive graph which can be visualized by a symmetric
polytope, and these polytopes are connected by articulations as in the block tree; see
Fig. 8.12.

Onto each polytope, we attach a hierarchical structure of colored atoms given
by the decomposition. For a dipole A with ∂A = {u, v}, we know that independent
color classes can be arbitrarily permuted, so we assign symmetric groups to them. For
a proper atom A with ∂A = {u, v}, the non-trivial element of Fix(∂A) (if it exists) is
the reflection through u and v, and we represent it. These symmetries generate the
subgroup of Aut(G) which fixes all polytopes. Further, for an edge uv representing
a symmetric atom A, we also add an involution τ ∈ Aut∂A(A) exchanging u and v,
which is geometrically a reflection through uv in A+, if τ is used in Aut(G).

266

8.6. Conclusions

The central block is preserved by Aut(G), so it is transformed by a spherical
group Aut(H), permuting also the attached polytopes. Multiple polytopes attached
at an articulation correspond to a star block atom. So isomorphic subtrees of blocks
can be arbitrarily permuted and we assign symmetric groups to them. Consider a
polytope attached by the articulation u to its parent in the block tree. Since Fix(∂A)
of a non-star block atom is either a dihedral or a cyclic group, the polytope can be
only rotated/reflected around u.

Problem 8.6.1. For a planar graph G, is it possible to compute a generating set of
Aut(G) in a linear time?

Our algorithm has two bottlenecks which need to be improved to get a linear-time
algorithm: (i) the algorithm of Lemma 8.5.1, (ii) the procedure of finding lexicograph-
ically smallest vectors of non-star block atoms. Both of these can likely be solved by
modifying the algorithm of [194].

Problem 8.6.2. What are the automorphism groups of projectively planar or toroidal
graphs?

267

Chapter 8. Automorphism Groups of Planar Graphs

268

9 Graph Isomorphism Restricted
by Lists

9.1 Basic Results . 270
9.2 GI-completeness of GraphIso Implies NP-completeness of ListIso . 272
9.3 NP-completeness for 3-regular Colored Graphs 274
9.4 Trees . 277
9.5 Planar Graphs . 278
9.6 Interval, Permutation and Circle Graphs 280
9.7 Bounded Genus Graphs . 283
9.8 Bounded Treewidth Graphs . 284
9.9 Conclusions . 287

This chapter contains:

• 9.1: Basic Results. We describe bipartite perfect matchings and give basic
algorithms for ListIso.
• 9.2: GI-completeness of GraphIso Implies NP-completeness of ListIso.

We show that reduction for GraphIso using vertex-gadgets can be modi-
fied for ListIso.
• 9.3: NP-completeness for 3-regular Colored Graphs. We modify the reduc-

tion of Lubiw [260].
• 9.4, 9.5, and 9.6. We describe combinatorial algorithms for GraphIso of

trees, planar graphs, interval graphs, permutation graphs, and circle graphs,
and modify them for ListIso.
• 9.7 and 9.8. We modify involved algorithms for GraphIso of bounded

genus and bounded treewidth graphs to ListIso.
• 9.9: Conclusions. We describe related topics and open problems.

http://pavel.klavik.cz/orgpad/list_isomorphism.html

269

http://pavel.klavik.cz/orgpad/list_isomorphism.html

Chapter 9. Graph Isomorphism Restricted by Lists

9.1 Basic Results

Let ℓ be the total size of all lists. To make the problem non-trivial, we can assume
that ℓ ≥ n.

9.1.1 Bipartite Perfect Matchings

As a subroutine, we frequently solve bipartite perfect matching:

Lemma 9.1.1 (Hopcroft and Karp [187]). The bipartite perfect matching problem can
be solved in time O(

√
nm), where n is the number of vertices and m is the number of

edges.

We repeatedly use this subroutine to solve ListIso for many graph classes.
Therefore, the running time of many of our algorithms O(

√
nℓ) while the input size is

Ω(n+ ℓ). This cannot be avoided for the following reason.

Lemma 9.1.2. There exists a linear-time reduction from the bipartite perfect matching
problem for n vertices and m edges to ListIso of two independent sets with n vertices
and ℓ = m.

Proof. We have a bipartite graph B. One part X is represented by V (G) and the
other part Y by V (H). For every u ∈ X, we put L(u) = {v : v ∈ Y, uv ∈ E(B)}.

Similar reductions work for trees, etc. Therefore, finding bipartite perfect match-
ings is the bottleneck in many of our algorithms and cannot be avoided: if it cannot
be solved in linear time, ListIso for many graph classes cannot be solved in linear
time as well.

9.1.2 Basic Complexity Results

In this section, we prove some basic results concerning the complexity of ListIso and
ListAut.

Lemma 9.1.3. Both problems ListAut and ListIso are polynomially equivalent.

Proof. To see that ListAut is polynomially reducible to ListIso just set H to be
a copy of G and keep the lists for all vertices of G. It is straightforward to check
that these two instances are equivalent. For the other direction, we build an instance
G′ and L′ of ListAut as follows. Let G′ be a disjoint union of G and H. And let
L′(v) = L(v) for all v ∈ V (G) and set L′(w) = V (G) for all w ∈ V (H). It is easy
to see that there exists list-compatible isomorphism from G to H, if and only if there
exists a list-compatible automorphism of G′.

Lemma 9.1.4. Let C be a class of graphs for which GraphIso can be solved in
polynomial time. Then ListAut can be solved in time O(nc · g) where c is some
constant and g is the size of the automorphism group Aut(G).

270

9.1. Basic Results

Proof. Using [270], we compute the generators of Aut(G) using O(n3) instances of
the graph isomorphism problem. Then we generate all g automorphisms and for each
automorphism, we test whether it is list-compatible.

Lemma 9.1.5. The problem ListIso can be solved in time O(n + m) when all lists
are of size at most two.

Proof. We construct a list-compatible isomorphism π : G → H by solving a 2-Sat
formula which can be done in linear time [110, 9]. When w ∈ L(v), we assume that
deg(v) = deg(w), otherwise we remove w from L(v). Notice that if L(u) = {w}, we can
set π(u) = w and for every v ∈ N(u), we modify L(v) := L(v)∩N(w). Now, for every
vertex ui with L(ui) = {w0

i , w
1
i }, we introduce a variable xi such that π(ui) = wxi

i .
Clearly, the mapping π is compatible with the lists.

We construct a 2-SAT formula such that there exists a list-compatible isomor-
phism if and only if it is satisfiable. First, if L(ui)∩L(uj) ̸= ∅, we add implications for
xi and xj such that π(ui) ̸= π(uj). Next, when π(ui) = wj

i , we add implications that
every uj ∈ N(ui) is mapped to N(wj

i). If L(uj) ∩N(wj
i) ̸= ∅, otherwise ui cannot be

mapped to wj
i and xi ̸= j. Therefore, π obtained from a satisfiable assignment maps

N [u] bijectively to N [π(u)] and it is an isomorphism. The total number of variables in
n, and the total number of clauses is O(n+m), so the running time is O(n+m).

Lemma 9.1.6. Let G1, . . . , Gk be the components of G and H1, . . . , Hk be the com-
ponents of H. If we can decide ListIso in polynomial time for all pairs Gi and Hj,
then we can solve ListIso for G and H in polynomial time.

Proof. Let G1, . . . , Gk be the components of G and H1, . . . , Hk be the components
of H. For each component Gi, we find all components Hj such that there exists a
list-compatible isomorphism from Gi to Hj. Notice that a necessary condition is that
every vertex in Gi contains one vertex of Hj in its list. So we can go through all lists
of Gi and find all candidates Hj, in total time O(ℓ) for all components G1, . . . , Gk.
Let n′ = |V (Gi)|, m′ = |E(Gi)|, and ℓ′ be the total size of lists of Gi restricted to Hj.
We test existence of a list-compatible isomorphism in time ϕ(n′,m′, ℓ′). Then we form
the bipartite graph B between G1, . . . , Gk and H1, . . . , Hk such that GiHj ∈ E(B) if
and only if there exists a list-compatible isomorphism from Gi to Hj. There exists a
list-compatible isomorphism from G to H, if and only if there exists a perfect matching
in B. Using Lemma 9.1.1, this can be tested in time O(

√
kℓ). The total running time

depends on the running time of testing ListIso of the components, and we note that
the sum of the lengths of lists in these test is at most ℓ.

Lemma 9.1.7. The problem ListIso can be solved for cycles in time O(ℓ).

Proof. We may assume that |V (G)| = |V (H)|. Let u ∈ V (G) be a vertex with a
smallest list and let k = |L(u)|. Since ℓ = O(kn), it suffices to show that we can find
a list-compatible isomorphism in time O(kn). We test all the k possible mappings
π : G → H with π(u) ∈ L(u). For u ∈ V (G) and v ∈ L(u), there are at most
two possible isomorphisms that map u to v. For each of these isomorphism, we test
whether they are list-compatible.

271

Chapter 9. Graph Isomorphism Restricted by Lists

Lemma 9.1.8. The problem ListIso can be solved for graphs of maximum degree 2
in time O(

√
nℓ).

Proof. Both graphs G and H are disjoint unions of paths and cycles of various lengths.
For each two connected components, we can decide in time O(ℓ′) whether there exists
a list-compatible isomorphism between them, where ℓ′ is the total size of lists when
restricted to these components: for paths trivially, and for cycles by Lemma 9.1.7.
The rest follows from Lemma 9.1.6, where the running time is of each test in O(ℓ′)
where ℓ′ is the total length of lists restricted to two components.

9.2 GI-completeness of the Graph Isomorphism Implies NP-
completeness of List Restricted Graph Isomorphism

Suppose that graph isomorphism is GI-complete for some class of graphs C ′. We want
to show that in most cases, this translates into NP-completeness of ListIso for C ′.

Vertex-gadget Reductions. Suppose that GraphIso is GI-complete for a class C.
To show that GraphIso is GI-complete for another class C ′, one builds a polynomial-
time reduction ψ from GraphIso of C: given graphs G,H ∈ C, we construct graphs
G′, H ′ ∈ C ′ in polynomial time such that G ∼= H if and only if G′ ∼= H ′. Such
reductions were described for certain graph classes (e.g., chordal graphs [262]) and
they were systematically studied in [74].

We say that ψ uses vertex-gadgets, if to every vertex u ∈ V (G) (resp. u ∈ V (H)),
it assigns a vertex-gadget Vu, and these gadgets are subgraphs of G′ (resp. of H ′), and
satisfy the following two conditions:

1. Every isomorphism π : G → H induces an isomorphism π′ : G′ → H ′ such that
π(u) = v implies π′(Vu) = Vv.

2. Every isomorphism π′ : G′ → H ′ maps vertex-gadgets to vertex-gadgets and
induces an isomorphism π : G→ H such that π′(Vu) = Vv implies π(u) = v.

Theorem 9.2.1. Let C and C ′ be classes of graphs. Suppose that there exists a
polynomial-time reduction ψ using vertex-gadgets from GraphIso of C to GraphIso
of C ′. Then there exists a polynomial-time reduction from ListIso of C to ListIso of
C ′.

Proof. Let G,H ∈ C be an instance of ListIso. Using the reduction ψ, we construct
the corresponding graphs G′, H ′ ∈ C ′ with vertex-gadgets. We need to add lists for
V (G′), we initiate them empty. Let u ∈ V (G). To all vertices w of Vu, we add⋃

v∈L(u) V (Vv) to L(w). For the vertices of G′ outside vertex-gadgets, we set the lists
equal to the union of all remaining vertices of H ′.

We want to argue that there exists a list-compatible isomorphism π′ : G′ → H ′,
if and only if there exists a list-compatible isomorphism π : G → H. If π exists, by
the first assumption of the reduction, it induces π′ which is list-compatible by our
construction of lists. On the other hand, suppose that there exists a list-compatible

272

9.2. GI-completeness of GraphIso Implies NP-completeness of ListIso

isomorphism π′. By the second assumption, π′ maps vertex-gadgets to vertex-gadgets
and induces an isomorphism π : G→ H which is list-compatible by our construction.

Corollary 9.2.2. Let C be a class of graphs with NP-complete ListIso. Suppose that
there exists a reduction ψ using vertex-gadgets from GraphIso of C to GraphIso of
C ′. Then ListIso is NP-complete for C ′.

Among others, this implies NP-completeness of ListIso for the following graph
classes:

Corollary 9.2.3. The problem ListIso is NP-complete for bipartite graphs, split
and chordal graphs, chordal bipartite and strongly chordal graphs, trapezoid graphs,
comparability graphs of dimension 4, grid intersection graphs, line graphs, and self-
complementary graphs.

Proof. We use Corollary 9.2.2 together with Theorem 6.5.1. We briefly describe GI-
hardness reductions for every mentioned class. It is easy to check that, except for line
graphs and self-complementary graphs, all these reductions use vertex-gadgets, where
Vu = {u} for every u ∈ V (G) ∪ V (H).

Bipartite graphs. Assuming the graphs are not cycles, we subdivide every edge
in the input graphs G and H.

Split and chordal graphs [262]. We subdivide every edge in G and H and add
the complete graphs on the original vertices.

Chordal bipartite and strongly chordal graphs [346]. For bipartite graphs G and
H, we subdivide all edges ei twice, by adding vertices ai and bi, we add paths of length
three from ai to bi, and we add the complete bipartite graph between ai’s and bi’s.

Trapezoid graphs [335]. For bipartite graphs G and H, we subdivide every edge
and add the complete bipartite graph on the original vertices.

Comparability graphs of dimension at most 4 [225]. Assuming the graphs are
not cycles, we replace every edge in G and H by a path of length 8.

Grid intersection graphs [345]. For bipartite graphs G and H, we subdivide
every edge twice and add the complete bipartite graph on the original vertices.

Line graphs [358, 175]. Assuming the graphs are not K3 and K1,3, we consider G′
and H ′ being the line graphs of G and H. For every u ∈ V (G), we put Vu = {e : e ∈
E(G), u ∈ e}, and similarly for u ∈ V (H). By Whitney Theorem [358], G ∼= H if and
only if G′ ∼= H ′, and it is easy to observe that it is a reduction using vertex-gadgets.

Self-complementary graphs [69]. A graph H is self-complementary if and only
if H ∼= H where H is the complement of H. Notice that the path of length 3 is
self-complementary. We first describe a polynomial-time reduction from GraphIso
of general graphs to GraphIso of self-complementary graphs.

For an arbitrary graph G, let G1, . . . , G4 be four copies of G. We construct G′ as
depicted in Fig. 9.1 as the disjoint union of G1, G2, G3, and G4. Further, we connect
all vertices in V (Gi) with V (Gi+1). The graph G′ is self-complementary; see Fig. 9.1.

273

Chapter 9. Graph Isomorphism Restricted by Lists

G1

G2 G3

G4 G1

G2 G3

G4

Figure 9.1: On the left, the construction of G′ from four copies of G. On the right,
G′ is depicting, showing that G′ is a self-complementary graph.

All vertices of G1 and G4 have degrees at most 2n− 1 in G′ and all vertices of G2 and
G3 have degrees at least 2n. Since all vertices of G1 have common neighbors in G2,
but there are no edges between V (G2) and V (G4), we can find these four copies of G
in G′. Therefore, G ∼= H if and only if G′ ∼= H ′. The reduction is clearly polynomial.

It remains to define vertex-gadgets. For every u ∈ V (G), we put Vu = {u1},
where u1 ∈ V (G1) is the copy of u. This reduction clearly uses vertex-gadgets.

We are not aware of any polynomial-time reduction for graph isomorphism used
in the literature which cannot be easily modified to use vertex-gadgets. The reason is
that most of the reductions use the following operations:

• Taking the complement of the graph.
• Replacing all vertex by small disjoint isomorphic gadgets.
• Replacing all edge by small disjoint isomorphic gadgets.
• Taking disjoint copies of the graph or its complement. (We can set vertex-gadgets

equal to the vertices in one copy only.)
• Adding a universal vertex, adjacent to all vertices.
• Adding a complete subgraph on some vertices or a complete bipartite graph

between two sets of vertices.

For instance, all reductions described in [74] can be easily modified to use vertex-
gadgets.

9.3 NP-completeness for 3-regular Colored Graphs

Using group theory techniques, graph isomorphism can be solved in polynomial time
for graphs of bounded degree [263] and for colored graphs with color classes of bounded
size [134]. In this section, we modify the reduction of Lubiw [260] to show that ListIso
remains NP-complete even for 3-regular colored graphs with color classes of size at most
8 and each list of size at most 3.

The reduction of Lubiw [260] is from 3-Sat, but we instead use 1-in-3 Sat
which is NP-complete by Schaefer [315]: all literals are positive, each clause is of size

274

9.3. NP-completeness for 3-regular Colored Graphs

ui(0) ui(1)

Hi

(a)

Gj

(b)

qj(0)

rj(0)

sj(0)

rj(1)

sj(1) qj(1)

cj(0012)cj(0002)

cj(0102) cj(0112)

cj(1012)cj(1002)

cj(1102) cj(1112)

Figure 9.2: (a) The variable gadget Hi. (b) The black vertices form the clause gadget
Gj , adjacent to white vertices of variable gadgets.

3 and a satisfying assignment has exactly one true literal in each clause. We show
that an instance of 1-in-3 Sat can be solved using ListAut. We further simplify the
reduction since a fixed-point free automorphism is not required for ListAut.

Variable Gadget. For each variable ui, we construct the variable gadget Hi which
consists of two isolated vertices ui(0) and ui(1); see Fig. 9.2a. We assign L(ui(0)) =
L(ui(1)) =

{
ui(0), ui(1)

}
. There exist two list-compatible automorphisms of Hi: the

transposition αi swapping ui(0) and ui(1) and the identity βi fixing both ui(0) and
ui(1).

Clause Gadget. Let cj be a clause with the literals qj, rj, and sj. For every such
clause cj, the clause gadget Gj consists of the isolated vertices cj(0), . . . , cj(7). For
every k = 0, . . . , 7, we consider its binary representation k = abc2, for a, b, c ∈ {0, 1}.
The vertex cj(k) has three neighbors qj(a), rj(b), and sj(c) belonging to the variable
gadgets of its literals; see Fig. 9.2b. We assign the list

L(cj(k)) = {cj(k ⊕ 1002), cj(k ⊕ 0102), cj(k ⊕ 0012)},

where ⊕ denotes the bitwise XOR; i.e., L(cj(k)) contains all cj(k′) in which k′ differs
from k in exactly one bit. Let G be the resulting graph consisting of all variable and
clause gadgets.

Lemma 9.3.1. Suppose that π′ is a partial automorphism of G obtained by choosing
αi or βi on each variable gadget Hi. There exists a unique automorphism π extending
π′ such that π(Gj) = Gj.

Proof. Let cj be a clause with the literals qj, rj, and sj. We claim that π(cj(k))
is determined by the images of its neighbors. Recall that βi preserves the vertices
of Hi, but αi swaps them. Therefore, one neighbor of π(cj(k)) is different from the
corresponding neighbor of cj(k) for every application of αi on qj, rj and sj. Let
p = abc2 such that a = 1, b = 1 and c = 1 if and only if αi is applied on the variable
gadget of qj, rj, and sj, respectively. Then π(cj(k)) = cj(k ⊕ p); otherwise π would
not be an automorphism.

275

Chapter 9. Graph Isomorphism Restricted by Lists

...
...

ui,1(0)

ui,2(0)

ui,o(0)

ui,1(1)

ui,2(1)

ui,o(1)

(a) (b)Hi

ui,t(0) ui,t(1)

cj(0002)

cj(1002)

cj(0102)

cj(1102)

cj(0012)

cj(1012)

cj(0112)

cj(1112)

Figure 9.3: (a) The variable gadget Hi. (b) The connection between Hi and Gj .
Suppose that the variable ui has a literal in the clause cj , so k = yzx2. We connect
Hi with Gj as depicted. Suppose that an automorphism π maps cj(k) to cj(k ⊕ p).
We show the action of π on the vertices of Hi when p = 001 (in white), p = 010 (in
gray), and p = 100 (in black).

Lemma 9.3.2. The 1-in-3 Sat formula is satisfiable if and only if there exists a
list-compatible automorphism of G.

Proof. Let T be a truth value assignment satisfying the input formula. We construct a
list-compatible automorphism π of G. If T (ui) = 1, we put π|Hi

= αi, and if T (ui) = 0,
we put π|Hi

= βi. By Lemma 9.3.1, this partial isomorphism has a unique extension
to an automorphism π of G. It is list-compatible since T satisfies the 1-in-3 condition,
so π(cj(k)) = cj(k ⊕ p), for p ∈ {1002, 0102, 0012}.

For the other implication, let π be a list-compatible automorphism. Then π|Hi

is either equal αi, or βi, which gives the values T (ui). By Lemma 9.3.1, π(cj(k)) =
cj(k⊕ p) and since π is a list-compatible isomorphism, we have p ∈ {1002, 0102, 0012}.
Therefore, exactly one literal in each clause is true, so all clauses are satisfied in T .

The described reduction clearly runs in polynomial-time, so we have established
a proof of Theorem 6.5.1. For colored graphs, we require that automorphisms preserve
colors. By altering the above reduction, we get the following:

Theorem 9.3.3. The problem ListIso is NP-complete for 3-regular colored graphs
for which each color class is of size at most 8 and each list is of size at most 3.

Proof. We modify the graph G to a 3-regular graph. For a clause gadget Gj repre-
senting cj, every vertex cj(k) already has degree 3. On the other hand, suppose that
a variable ui has o literals in the formula. Then both vertices of Hi have degrees 4o,
so we have to modify the variable gadgets.

We replaceHi by two cycles of length o, consisting of the vertices ui,1(0), . . . , ui,o(0)
and ui,1(1), . . . , ui,o(1), respectively. To each of these vertices, we attach a small gadget
depicted in Fig. 9.3a. We have L(ui,t(0)) = L(ui,t(1)) =

{
ui,t(0), ui,t(1)

}
. Again, there

are two list-compatible automorphisms: αi exchanging these two cycles by swapping
ui,t(0) with ui,t(1), and βi which is the identity fixing all 2o vertices. We note that
when o ≤ 2, we get parallel edges or loops; if we want to avoid this, we may replace
edges of two cycle by some 3-regular subgraphs.

276

9.4. Trees

Consider the attached gadgets to the vertices ui,t(0) and ui,t(1) corresponding
to one literal of a clause cj. Each vertex depicted in gray is adjacent to exactly one
cj(k) of Gj, as depicted in Fig. 9.3b. Each k consists of three bits, denoted x, y and
z (in some order). The bit x corresponds to this literal of ui (i.e, x is the first bit for
qj being a literal of ui, and so on). The gray vertices of gadgets attached to ui,t(j)
are adjacent to cj(k) with x = j. Adjacent pairs of gray vertices are connected to
cj(k) where k differs in the bit y. Non-adjacent pairs of gray vertices in one gadget
are connected to cj(k) where k differs in the bit z.

In Fig. 9.3b, the action of Z3
2 is depicted. Lemma 9.3.1 translated to the mod-

ified definitions of variable gadgets which implies correctness of the reduction. The
lists for the vertices of the attached gadgets are created as images of three depicted
automorphisms; they clearly are of size at most 3.

The constructed graph G is 3-regular and all lists of G are of size at most 3.
We color the vertices by the orbits of all list-compatible automorphisms and their
compositions. Notice that each color class is of size at most 8.

With Lemma 9.1.8, we get a dichotomy for the maximum degree: ListIso can
be solved in time O(

√
nℓ) for the maximum degree 2, and it is NP-complete for the

maximum degree 3. Similarly, Lemma 9.1.5 implies a dichotomy for the list sizes:
ListIso can be solved in time O(n + m) where all lists are of size 2, and it is NP-
complete for lists of size at most 3. For the last parameter, the maximum size of
color classes, there is a gap. Lemma 9.1.5 implies that ListIso can be solved in time
O(n + m) when all color classes are of size 2 while it is NP-complete for size at most
8.

9.4 Trees

In this section, we modify the standard algorithm for tree isomorphism to solve list
restricted isomorphism of trees. We may assume that both trees G and H are rooted,
otherwise we root them by their centers (and possibly subdivide the central edges). The
algorithm for GraphIso process both trees from bottom to the top. Using dynamic
programming, it computes for every vertex possible images using possible images of
its children. This algorithm can be modified to ListIso.

Theorem 9.4.1. The problem ListIso can be solved for trees in time O(
√
nℓ).

Proof. We apply the same dynamic algorithm with lists and update these lists as we go
from bottom to the top. After processing a vertex u, we compute an updated list L′(u)
which contains all elements of L(u) to which u can be mapped compatibly with its
descendants. To initiate, each leaf u of G has L′(u) = {w : w is a leaf and w ∈ L(u)}.

Next, we want to compute L′(u) and we know L′(ui) of all children U = {u1, . . . , uk}
of u. For each w ∈ L(u) with k children w1, . . . , wk, we want to decide whether to
put w ∈ L′(u). Let W = {w1, . . . , wk}. Each ui can be mapped to all vertices in
L′(ui)∩W . We need to decide whether all ui’s can be mapped simultaneously. There-
fore, we form a bipartite graph B(U,W) between U and W : we put an edge uiwj if

277

Chapter 9. Graph Isomorphism Restricted by Lists

and only if wj ∈ L′(ui). Simultaneous mapping is possible if and only if there exists a
perfect matching in this bipartite graph.

Let r be the root of G and r′ be the root of H. We claim that there is a list-
compatible isomorphism π : G→ H, if and only if L′(r) = {r′}. Suppose that π exists.
When π(u) = w, its children U are mapped to W . Since this mapping is compatible
with the lists, w ∈ L(u), and the mapping of u1, . . . , uk gives a perfect matching in
B(U,W). Therefore, w ∈ L′(u), and by induction r′ ∈ L′(r). On the other hand, we
can construct π from the top to the bottom. We start by putting π(r) = r′. When
π(u) = w, we map its children U to W according to some perfect matching in B(U,W)
which exists from the fact that w ∈ L′(u).

It remains to argue details of the complexity. We process the tree which takes
timeO(ℓ) (assuming n ≤ ℓ) and we process each list constantly many times which takes
O(ℓ). Suppose that we want to compute L′(u). We consider all vertices w1, . . . , wp ∈
L(u), and let W j be the children of wj. We go through all lists of L′(u1), . . . ,L′(uk)
in linear time, and split them into sublists L′(uj

i) of vertices whose parent is wj. Only
these sublists are used in the construction of the bipartite graph B(U,W j). Using
Lemma 9.1.1, we decide existence of a perfect matching in time O(

√
kℓj) which is at

most O(
√
nℓj), where ℓj is the total size of all sublists L′(uj

i). When we sum this
complexity for all vertices u, we get the total running time O(

√
nℓ).

9.5 Planar Graphs

In this section, we describe how to solve ListIso on planar graphs. We use the
3-connected reduction described in Chapter 7. For the purpose of this section, we
consider extended graphs introduced in Section 7.1. Every isomorphism maps vertices
and half-edges while preserving incidencies. We consider the problem ListIso with
lists on both vertices and half-edges.

3-connected Planar Graphs.
Lemma 9.5.1. The problem ListIso (with lists on both vertices and half-edges) can
be solved for 3-connected planar graphs in time O(ℓ).

Proof. We start by computing embeddings of both G and H, in time O(n). It remains
to decide whether there exists a list-compatible isomorphism which has to be a map
isomorphism. By Euler Theorem, we know that the average degree is less than six.
Consider all vertices of degree at most 5, let u be such a vertex with a smallest list,
and let k = |L(u)|. We have ℓ = Ω(kn) and we show that we can decide existence of
a list-compatible isomorphism in time O(kn).

We test all possible mappings π : G → H having π(u) ∈ L(u). For each, we
have at most 10 possible ways how to extend this mapping on the neighbors of u,
and the rest of the mapping is uniquely determined by the embeddings and can be
computed in time O(n). In the end, we test whether the constructed mapping π is an
isomorphism and whether it is list-compatible.

3-connected Reduction.

278

9.5. Planar Graphs

Theorem 9.5.2. Let C be a class of connected graphs closed under contractions and
taking connected subgraphs. Suppose that ListIso with lists on both vertices and half-
edges can be solved for 3-connected graphs in C in time ϕ(n,m, ℓ). We can solve
ListIso on C in time O(

√
mℓ+m+ ϕ(n,m, ℓ)).

Proof. We compute simplified reduction trees TG and TH (without colors and edge
types) for both G and H in time O(n + m). We apply the idea of Theorem 9.4.1 to
test list-compatible isomorphism of TG and TH . We compute the lists L(N) for the
nodes N of TG, from the bottom to the root. A node M ∈ L(N) if there exists a
list-compatible isomorphism from N to M mapping ∂N to ∂M and there exists list-
compatible isomorphism between attached subtrees. (Further, if |∂N | = |∂M | = 2, we
remember in L(N) which of both possible mappings of ∂N to ∂M can be extended as
list-compatible isomorphisms.)

Suppose that N has the children N1, . . . , Nk with computed lists and M has
the children M1, . . . ,Mk. There exists a list-compatible isomorphism mapping the
subtree of Ni to the subtree of Mj, if and only if Mj ∈ L(Ni). The difference from
Theorem 9.4.1 is these subtrees have to be compatible with a list-isomorphism from
N to M ; so it depends on the structure of the nodes N and M .

There, we compute L(N) differently according to the type of N :

• Star block atoms or dipoles. For star block atoms, similarly as in Theorem 9.4.1,
we construct a bipartite graph between N1, . . . , Nk and M1, . . . ,Mk and test
existence of a perfect matching using Lemma 9.1.1. For dipoles, we test two
possible isomorphisms, construct two bipartite graph and test existence of perfect
matchings.
• Non-star block or proper atoms. We modify the lists of ∂N to the vertices of
∂M only. (When they are proper atoms, we run this in two different ways.)
We encode the lists L(N1), . . . ,L(Nk) by lists on the corresponding darts of N
(depending on which of two possible list-isomorphisms of ∂Ni are possible), and
we remove single pendant edges, and intersect their lists with the lists of the
incident vertices. For a proper atom, we further consider N+ and M+ with
added edges e and f such that L(e) = {f}. If the nodes are K2 or cycles, and
we can test existence of a list-compatible isomorphism using Lemma 9.1.7. If
both are 3-connected, we can test it by our assumption in time ϕ(n′,m′, ℓ′). If
this list-compatible isomorphism exists, we add M to L(N).
• The root primitive graphs. We use the same approach as above, ignoring the

part about ∂N and ∂M .

A list-compatible isomorphism from G to H exists, if and only if M ∈ L(N) for the
root nodes N and M of TG and TH .

The correctness of the algorithm can be argued from the fact that all automor-
phisms are captured by the reduction trees (see Section 7.6), inductively from the
top to the bottom as in Theorem 9.4.1. It remains to discuss the running time. The
simplified reduction trees can be computed in linear time using Lemma 7.7.1. When
computing L(N), we first consider the lists of all vertices and edges of N . A node

279

Chapter 9. Graph Isomorphism Restricted by Lists

M is a candidate for L(N), if every vertex and every edge of N has a vertex/edge
of M in its list. Therefore, we can find all these candidate nodes by iterating these
lists, in linear time with respect to their total size. Let M be one of them, and let
n′ = |V (N)|, m′ = |E(N)| and ℓ′ be the total size of lists of the vertices and edges of
N when restricted only to the vertices and edges of M . Either we construct a bipartite
graph and test existence of a perfect matching in time O(

√
m
′
ℓ′), or we test existence

of a list-compatible isomorphism in time ϕ(n′,m′, ℓ′). The total running time spent on
the tree is O(ℓ), the total running time spent testing perfect matchings is O(

√
mℓ),

and the total running time testing list-compatible isomorphisms of 3-connected graphs
is O(ϕ(n,m, ℓ)).

General Planar Graphs. By putting both results together, we get the following:

Theorem 9.5.3. The problem ListIso can be solved for planar graphs in time O(
√
nℓ).

Proof. If G and H are connected, we use Theorem 9.5.2. By Lemma 9.5.1, the function
ϕ(n,m, ℓ) isO(ℓ). IfG andH are disconnected, we apply Lemma 9.1.6 on all connected
components of G and H, and by analysing the proof, the total running time is O(

√
nℓ).

9.6 Interval, Permutation and Circle Graphs

In this section, we prove that the standard algorithms solving GraphIso on interval,
circle and permutation graphs can be modified to solve ListIso on them. The key
idea is that the structure of these graph classes can be captured by graph-labeled
trees which are unique up to isomorphism and which capture the structure of all
automorphisms; see [224, 225] and the references therein.

For interval graphs, we use MPQ-tree. For circle graphs, we use split trees. For
permutation graphs, we use modular trees. On these trees, we apply a bottom-up
procedure similarly as in the proof of Theorem 9.4.1. The key difference is that nodes
correspond to either prime, or degenerate graphs. Degenerate graphs are simple and
lead to perfect matchings in bipartite graphs. Prime graphs have a small number of
automorphisms [224, 225], so all of them can be tested.

9.6.1 Interval Graphs

Recall MPQ-trees from Sections 3.1 and 4.2. To each interval graph G, a unique MPQ-
tree TG is assigned, and G ∼= H if and only if TG and TH are equivalent. From [225,
Lemma 4.3], it follows that every isomorphism π : G → H is obtained by an equiva-
lence transformation of TG and some permutation of the vertices in identical sections.
Therefore, we can apply a bottom-up procedure to test ListIso for MPQ-trees, simi-
larly as in Theorem 9.4.1.

Theorem 9.6.1. The problem ListIso can be solved for interval graphs in time
O(
√
nℓ+m).

280

9.6. Interval, Permutation and Circle Graphs

Proof. We proceed similarly as in Theorem 9.4.1. We compute MPQ-trees TG and TH

representing the interval graphs G and H in linear time [235]. Then we compute lists
L(N) for every node N of TG from the bottom. We distinguish the three types of
nodes of an MPQ-tree.

• Leaf nodes. Let LG be a leaf node in TG and let LH be a leaf node in TH . Then
LH ∈ L(LG) if there exists a list-compatible isomorphism between the induced
complete subgraphs G[sec(LG)] and H[sec(LH)].

• P-nodes. Let N and M be P-nodes of TG and TH , respectively. We want to decide
whether M ∈ L(N). Let N1, . . . , Nk be the children of N and let M1, . . . ,Mk be
the children of Mk. We construct a bipartite graph similarly as in Theorem 9.4.1.
Then M ∈ L(N) if there exists a perfect matching in the bipartite graph and
a perfect matching between the lists of G[sec(N)] and H[sec(M)] (which are
complete graphs).

• Q-nodes. Let N and M be Q-nodes of TG and TH and let N1, . . . , Nk and
M1, . . . ,Mk be their children. Here we have at most two possible isomorphisms.
In particular, an isomorphism can either map the subtree of Ni on the subtree of
Mi, or in the reversed order, and we can test for both possibilities whether the
lists L(Ni) are compatible. Moreover, we consider all sets of intervals belonging
to exactly the same sections of the Q-node, and we test by perfect matchings be-
tween pairs of them whether there exists a list-compatible isomorphism between
them.

The MPQ-trees have O(n) nodes and O(n) intervals in their sections. For leaf nodes
and P-nodes, the analysis is exactly the same as in the proof of Theorem 9.4.1. For
Q-nodes, we just test two possible mappings and bipartite matchings for sections. We
get the total running time O(

√
nℓ+m).

9.6.2 Permutation Graphs

Recall the modular decomposition from Section 2.7.1. We use it to show that the
problem ListIso can be decided in O(

√
nℓ+m) time for permutation graphs.

Theorem 9.6.2. The problem ListIso can be solved for permutation graphs in time
O(
√
nℓ+m).

Proof. For input graph G and H, we first compute the modular trees TG and TH ,
respectively, in time O(n + m) [272]. We again apply the idea of Theorem 9.4.1. We
compute the list L(N) for every node N of TG. Note that all inner nodes consist only
of marker vertices which have no lists. Therefore, we first compute L(L), for every
leaf node. A leaf node K is in L(L) if every non-marker vertex of L has a non-marker
vertex of K in its list. These candidate nodes for L(L) can be found in linear time in
the total size of lists by iterating through the lists of vertices of L.

Let N be a node of the modular tree. It has the children N1, . . . , Nk with
computed lists L(N1), . . . ,L(Nk). Let M be a node with the children M1, . . . ,Mk.

281

Chapter 9. Graph Isomorphism Restricted by Lists

There exist a list-compatible isomorphism mapping the subtree of Ni to the subtree
of Mj if and only if Mj ∈ L(Ni). Moreover these subtrees have to be compatible with
a list isomorphism from N to M . We compute L(N) according to the type of N .

• Degenerate nodes. For degenerate nodes, we proceed similarly as for trees in The-
orem 9.4.1. We construct a bipartite graph between the nodes nodes N1, . . . , Nk

and M1, . . . ,Mk and test for a perfect matching using Lemma 9.1.1.
• Prime nodes. For prime nodes, there are at most four possible isomorphisms

mapping N to M [225, Lemma 6.6]. We test for these four possible isomorphisms
π whether π(Mi) ∈ L(Mi) for every Mi.

A list compatible isomorphism exists if M ∈ L(N), for the root nodes N and M of TG

and TH . The correctness of the algorithm follows from the fact that all automorphisms
of a permutation graph are captured by the modular tree [225]. A similar argument
as in the proofs of Theorems 9.4.1 and 9.6.1 gives the running time.

9.6.3 Circle Graphs

Recall split decomposition and split trees from Section 2.6.

Testing ListIso. Next, we show that the problem ListIso can be solved on circle
graphs in polynomial time.

Theorem 9.6.3. The problem ListIso can be solved for circle graphs in polynomial
time.

Proof. For input graph G and H, we first compute the split trees TG and TH , in
polynomial time using [150, 79]. We assume that the trees TG and TH are rooted and
we can also assume that the roots are prime or degenerate nodes. We again apply the
idea of Theorem 9.4.1.

We compute the list L(N) for every node N of TG. Let M be a leaf node of TH

and let mN ∈ V (N) and mM ∈ V (M) be the marker vertices incident to a tree edge
closer to the root. Then M is in L(N) if there is a list-compatible isomorphism from
N to M which maps mN to mM .

Let N be a node of the split tree. It has the children N1, . . . , Nk with computed
lists L(N1), . . . ,L(Nk). Let M be a node with the children M1, . . . ,Mk. There exist a
list-compatible isomorphism mapping the subtree of Ni to the subtree of Mj if and only
if Mj ∈ L(Ni). Moreover these subtrees have to be compatible with an isomorphism
from N to M . We compute L(N) according to the type of N .

• Degenerate nodes. For degenerate nodes, we proceed similarly as for trees in The-
orem 9.4.1. We construct a bipartite graph between the nodes nodes N1, . . . , Nk

and M1, . . . ,Mk and test for a perfect matching using Lemma 9.1.1.
• Prime nodes. For prime nodes, there are at most four possible isomorphisms

mapping mN to mM [224, Lemma 5.6]. We test those four possible isomorphisms,
construct four bipartite graphs and test existence of perfect matchings.

282

9.7. Bounded Genus Graphs

• The root node. If it is degenerate, we proceed as above. If it is prime, then its
automorphism groups is a subgroup of a dihedral group [224, Lemma 5.5]; essen-
tially it behaves as a cycle. Therefore, we approach it similarly as in Lemma 9.1.7.

A list compatible isomorphism exists if M ∈ L(N), for the root nodes N and M of TG

and TH .
The correctness of the algorithm follows from the fact that all automorphisms

of a circle graph are captured by the split tree [224]. The running time is clearly
polynomial.

9.7 Bounded Genus Graphs

In this section, we describe an FPT algorithm solving ListIso when parameterized
by the Euler genus g. We modify the recent paper of Kawarabayashi [206] solving
graph isomorphism in linear time for a fixed genus g. The harder part of this paper
are structural results, described below, which transfer to list-compatible isomorphisms
without any change. Using these structural results, we can build our algorithm.

Theorem 9.7.1. For every integer g, the problem ListIso can be solved on graphs of
Euler genus at most g in time O(

√
nℓ).

Proof. See [206, p. 14] for overview of the main steps. We show that these steps can
be modified to deal with lists. We prove this result by induction on g, where the base
case for g = 0 is Theorem 9.5.3. Next, we assume that both graphs G and H are
3-connected, otherwise we apply Theorem 9.5.2. By [206, Theorem 1.2], if G and H
have no polyhedral embeddings, then the face-width is at most two.

Case 1: G and H have polyhedral embeddings. Following [206, Theorem 1.2], we
have at most f(g) possible embeddings ofG andH. We choose one embedding ofG and
we test all embeddings of H. It is known that the average degree is O(g). Therefore,
we can apply the same idea as in the proof of Lemma 9.5.1 and test isomorphism of
all these embeddings in time O(ℓ).

Case 2: G and H have no polyhedral embedding, but have embeddings of face-
width exactly two. Then we split G into a pair of graphs (G′, L). The graph L are
called cylinders and the graph G′ correspond to the remainder of G. The following
properties hold [206, p. 5]:

• We have G = G′ ∪ L and for ∂L = V (G′ ∩ L), we have |∂L| = 4.
• The graph G′ can be embedded to a surface of genus at most g − 1, and L is

planar [206, p. 4].
• This pair (G′, L) is canonical, i.e., every isomorphism from G to H maps (G′, L)

to another pair (H ′, L′) in H.

It is proved [206, Theorem 5.1] that there exists some function q′(g) bounding the
number of these pairs both in G and H, and can be found in time O(n). We fix a pair
(G′, L) in G and iterate over all pairs (H ′i, L′i) in H. Following [206, p. 36], we get that

283

Chapter 9. Graph Isomorphism Restricted by Lists

G ∼= H, if and only if there exists a pair (H ′i, L′i) in H such that G′ ∼= H ′i, L ∼= L′i, and
G′ ∩L is mapped to H ′i ∩L′i. To test this, we run at most 2q′(g) instances of ListIso
on smaller graphs with modified lists.

Suppose that we want to test whether G′ ∼= H ′i and L ∼= L′i. First, we modify the
lists: for u ∈ V (G′), put L′(u) = L(u)∩H ′i, and for v ∈ V (L), put L′(v) = L(v)∩L′i,
and similarly for lists of darts. Further, for all vertices u ∈ ∂L in both G′ and L, we
put L′(u) = L(u) ∩ ∂L. We test existence of list-compatible isomorphisms from G′ to
H ′i and from L to L′i. There exists a list-compatible isomorphism from G to H, if and
only if these list-compatible isomorphisms exist at least for one pair (H ′i, L′i).

We note that when g = 2, a special case is described in [206, Theorem 5.3], which
is slightly easier and can be modified similarly.

Case 3: G and H have no polyhedral embedding and have only embeddings of
face-width one. Let V be the set of vertices in G such that for each u ∈ V , there exists
a non-contractible curve passing only through u. By [206, Lemma 6.3], |V | ≤ q(g) for
some function q. For u, the non-contractible curve divides its edges to two sides, so
we can cut G at u, and split the incident edges. We obtain a graph G′ which can be
embedded to a surface of genus at most g − 1.

By [206, Lemma 6.3], we can find all these vertices V and V ′ in G and H in time
O(n). We choose u ∈ V arbitrarily, and we test all possible vertices v ∈ V ′. Let G′
be constructed from G by splitting u into new vertices u′ and u′′, and similarly H ′ be
constructed from H by splitting v into new vertices v′ and v′′. In [206, p. 36], it is
stated that G ∼= H, if and only if there exists a choice of v ∈ V ′ such that G′ ∼= H ′ and
{u′, u′′} is mapped to {v′, v′′}. Therefore, we run at most q(g) instances of ListIso
on smaller graphs with modified lists.

If v /∈ L(u), clearly a list-compatible isomorphism is not possible for this choice
of v ∈ V ′. If v ∈ L(u), we put L′(u′) = L′(u′′) = {v′, v′′}. Then there exists a
list-compatible isomorphism from G to H, if and only if there exists a list-compatible
isomorphism from G′ to H ′.

The correctness of our algorithm follows from [206]. It remains to argue the
complexity. Throughout the algorithm, we produce at most w(g) subgraphs of G and
H, for some function w, for which we test list-compatible isomorphisms. Assuming
the induction hypothesis, the reduction of graphs to 3-connected graphs can be done
in time O(

√
nℓ). Case 1 can be solved in time O(ℓ). Case 2 can be solved in time

O(
√
nℓ). Case 3 can be solved in time O(

√
nℓ).

9.8 Bounded Treewidth Graphs

In this section, we prove that ListIso can be solved in FPT with respect to the
parameter treewidth tw(G). Unlike in Sections 9.5 and 9.6, the difficulty of graph
isomorphism on bounded treewidth graphs raises from the fact that tree decomposi-
tion is not uniquely determined. We follow the approach of Bodlaender [37] which
describes an XP algorithm for GraphIso of bounded treewidth graphs, running in
time nO(tw(G)). Then we show that the recent breakthrough by Lokshtanov et al. [256],

284

9.8. Bounded Treewidth Graphs

giving an FPT algorithm for GraphIso, translates as well.
Definition 9.8.1. A tree decomposition of a graph G is a pair T = ({Bi : i ∈ I}, T =
(I, F)), where T is a rooted tree and {Bi : i ∈ I} is a family of subsets of V, such that

1. for each v ∈ V (G) there exists an i ∈ I such that v ∈ Bi,

2. for each e ∈ E(G) there exists an i ∈ I such that e ⊆ Bi,

3. for each v ∈ V (G), Iv = {i ∈ I : v ∈ Bi} induces a subtree of T.

We call the elements Bi the nodes, and the elements of the set F the decomposition
edges.

We define the width of a tree decomposition T = ({Bi : i ∈ I}, T) as maxi∈I |Bi|−
1 and the treewidth tw(G) of a graph G as the minimum width of a tree decomposition
of the graph G.

Nice Tree Decompositions. It is common to define a nice tree decomposition of
the graph [227]. We naturally orient the decomposition edges towards the root and
for an oriented decomposition edge (Bj, Bi) from Bj to Bi we call Bi the parent of Bj

and Bj a child of Bi. If there is an oriented path from Bj to Bi we say that Bj is a
descendant of Bi.

We also adjust a tree decomposition such that for each decomposition edge
(Bi, Bj) it holds that

⏐⏐⏐|Bi| − |Bj|
⏐⏐⏐ ≤ 1 (i.e. it joins nodes that differ in at most

one vertex). The in-degree of each node is at most 2 and if the in-degree of the node
Bk is 2 then for its children Bi, Bj holds that Bi = Bj = Bk (i.e. they represent the
same vertex set).

We classify the nodes of a nice decomposition into four classes—namely introduce
nodes, forget nodes, join nodes and leaf nodes. We call the node Bi an introduce node
of the vertex v, if it has a single child Bj and Bi \ Bj = {v}. We call the node Bi a
forget node of the vertex v, if it has a single child Bj and Bj \ Bi = {v}. If the node
Bk has two children, we call it a join node (of nodes Bi and Bj). Finally we call a
node Bi a leaf node, if it has no child.

Bodlaender’s Algorithm. A graph G has treewidth at most k if either |V (G)| ≤ k,
or there exists a cut set U ⊆ V (G) such that |U | ≤ k and each component of G \ U
together with U has treewidth at most k. The set U corresponds to a bag in some
tree decomposition of G. Bodlaender’s algorithm [37] enumerates all possible cut sets
U of size at most k in G (resp. H), we denote these Ci (resp. Di). Furthermore, it
enumerates all connected components of G \ Ci as Cj

i (resp. of H \ Di as Dj
i). We

denote by G[U,W] the graph induced by U ∪̇W . The set W is either a connected
component or a collection of connected components. We call U the border set.
Lemma 9.8.2 ([8, 37]). A graph G[U,W] with at least k vertices has a treewidth at
most k with the border set U if and only if there exists a vertex v ∈ W such that for
each connected component A of G[W \ v], there is a k-vertex cut Cs ⊆ U ∪ {v} such
that no vertex in A is adjacent to the (unique) vertex in (U ∪ {v}) \ Cs, and G[Cs, A]
has treewidth at most k.

285

Chapter 9. Graph Isomorphism Restricted by Lists

Lemma 9.8.3. The problem ListIso can be solved in XP with respect to the parameter
treewidth.

Proof. We modify the algorithm of Bodlaender [37]. Let k = tw(G) = tw(H). We
compute the sets Ci, C

j
i for G and the sets Di′ , D

j′

i′ for H; there are nO(k) pairs (Ci, C
j
i).

The pair (Ci, C
j
i) is compatible if Cj

i is a connected component of G′ \ Ci for some
G′ ⊆ G that arises during the recursive definition of treewidth. Let f : Ci → Di′

be an isomorphism. We say that (Ci, C
j
i) ≡f (Di′ , D

j′

i′) if and only if there exists an
isomorphism ϕ : Ci∪Cj

i → Di′ ∪Dj′

i′ such that ϕ|Ci
= f . In other words, ϕ is a partial

isomorphism from G to H. The change for ListIso is that we also require that both
f and ϕ are list-compatible.

The algorithm resolves (Ci, C
j
i) ≡f (Di′ , D

j′

i′) by the dynamic programming, ac-
cording to the size of Dj′

i′ . If |Cj
i | = |D

j′

i′ | ≤ 1, we can check it trivially in time kO(k).
Otherwise, suppose that |Cj

i | = |D
j′

i′ | > 1, and let m be the number of components of
Cj

i (and thus Dj′

i′). We test whether f : Ci → Di′ is a list-compatible isomorphism.
Let v ∈ Cj

i be a vertex given by Lemma 9.8.2 (with U = Ci and W = Cj
i) and let Cs

be the corresponding extension of v to a cut set. We compute for all w ∈ Dj′

i′ ∩L(v) all
connected components Bq. From the dynamic programming, we know for all possible
extensions D′ of w to a cut set whether (Cm, Ap) ≡f ′ (D′, Bq) with f ′(x) = f(x) for
x ∈ Ci and f ′(v) = w. Finally, we decide whether there exists a perfect matching in
the bipartite graph between (Cm, Ap)’s and (D′, Bq)’s where the edges are according
to the equivalence.

Reducing The Number of Possible Bags. Otachi and Schweitzer [290] pro-
posed the idea of pruning the family of potential bags which finally led to an FPT
algorithm [256]. A family B(G), whose definition depends on the graph, is called
isomorphism-invariant if for an isomorphism φ : G → G′, we get B(G′) = φ(B(G)),
where φ(B(G)) denotes the family B(G) with all the vertices of G replaced by their
images under φ.

For a graph G, a pair (A,B) with A ∪ B = V is called a separation if there
are no edges between A \ B and B \ A in G. The order of (A,B) is |A ∩ B|. For
two vertices u, v ∈ V (G), by µ(u, v) we denote the minimum order of separation
(A,B) with u ∈ A \ B and v ∈ B \ A. We say a graph G is k-complemented if
µG(u, v) ≥ k) =⇒ uv ∈ E(G) holds for every two vertices u, v ∈ V . We may
canonically modify the input graphs G and H ListIso, by adding these additional
edges and making them k-complemented.

Theorem 9.8.4 ([256], Theorem 5.5). Let k be a positive integer, and let G be a graph
on n vertices that is connected and k-complemented. There exists an algorithm that
computes in time 2O(k5 log k) · n3 an isomorphism-invariant family of bags B with the
following properties:

1. |B| ≤ O(k4) for each B ∈ B,

2. |B| ≤ 2O(k5 log k) · n2,

286

9.9. Conclusions

3. Assuming tw(G) < k, the family B captures some tree decomposition of G that
has width O(k4).

4. The family B is closed under taking subsets.
Theorem 9.8.5. The problem ListIso can be solved in FPT time 2O(k5 log k)n5 where
k = tw(G).

Proof. We use the algorithm of Lemma 9.8.3, where Ci’s and Di’s are from the collec-
tion B of Theorem 9.8.4. The total number of pairs (Ci, C

j
i) and (Di′ , D

j′

i′) is bounded
by 2O(k5 log k)n3 [256, p. 20]. The dynamic programming in [256, Theorem 6.2] is done
according to the potential function Φ(Di′ , D

j′

i′) = 2|Dj′

i′ | + |Di′|. We use nice tree
decompositions, so in each step, the dynamic programming either introduces a new
node into the bag Di′ , or moves a node from the bag Di′ to Dj′

i′ , or joins several pairs
with the same bag Di′ . In all these operations, we check existence of a list-compatible
isomorphism, using dynamic programming, exactly as in Lemma 9.8.3.

9.9 Conclusions

We conclude this chapter with description of related results and open problems.

Forbidden Images. We note that Lubiw [260] used a different definition of ListIso:
for every vertex u ∈ V (G), we are given a list of forbidden images F(u) ⊆ V (H) and
we want to find an isomorphism π : G → H such that π(u) /∈ F(u). The advantage
of forbidden lists is that we can express GraphIso in space O(n+m), but the input
for ListIso is of size O(n2). On the other hand, we consider lists of allowed images
more natural (for instance, list coloring is defined similarly) and also such a definition
appears naturally in [118]. Both statements are clearly polynomially equivalent, and
the main focus of our paper is to distinguish between tractable and intractable cases
for ListIso.

Group Reformulation. Luks [263] described the following group problem which
generalizes computing automorphism groups of graphs. Let Ω be a ground set and
let Γ be a group acting on Ω. Further, let Ω be colored. We want to compute the
subgroup of Γ which is color preserving. When Γ is the symmetric group acting on
all pairs of vertices V (G) which are colored by two colors (corresponding to edges
and non-edges in G), then the computed subgroup is Aut(G). To generalize graph
isomorphism in this language, we have two colorings and we want to find a color-
preserving permutation g ∈ Γ. We note that Babai [14] calls these generalizations
string automorphism/isomorphism problems.

A similar generalization of ListIso was suggested to us by Ponomarenko. We
are given a group Γ acting on a ground set Ω and for every x ∈ Ω, we have a list
L(x) ⊆ Ω. We ask whether there exists a permutation g ∈ Γ such that g(x) ∈ L(x)
for every x ∈ Ω. We obtain ListIso either similarly as above, or when Ω = V (G) and
Γ = Aut(G).

We may interpret our results for ListIso using this group reformulation. The
robust combinatorial algorithms work because the groups Γ are highly restricted. In

287

Chapter 9. Graph Isomorphism Restricted by Lists

particular, for trees, Jordan [202] proved that Aut(G) is formed by a series of direct
products and wreath products with symmetric groups, to it has a tree structure.
Therefore, the algorithm of Theorem 9.4.1 solves ListIso on Aut(G) by a bottom-
up dynamic algorithm. Similar characterizations were recently proved for interval,
permutation and circle graphs [224, 225] and for planar graphs [217], and are used in
the algorithms of Theorems 9.5.3, 9.6.1, 9.6.2, and 9.6.3. For graphs of bounded genus
or bounded treewidth, no such detailed description of the automorphism groups is yet
known, but they are likely restricted as well. On the other hand, for cubic graphs, the
automorphism groups Aut(G) may be arbitrary, so this approach fails, and actually
ListIso is NP-complete by Theorem 9.3.3.

To attack ListIso from the point of this group reformulation, instead of different
graph classes, we may study it for different combinations of Γ and the lists L. First,
for which groups Γ, it can be solved efficiently for all possible lists L? Second, for
which lists L, the problem can be solved efficiently? We did not try to attack the
problem much in the second direction, aside Lemma 9.1.5 and Theorem 9.3.3. For
instance, when L is a partitioning of Ω, the problem is easy since we get the usual
color-preserving isomorphism problem.

k-dimensional Weisfieler-Leman refinement (k-WL). The classical 2-WL [355,
356] colors vertices of a graph and it initiates with different colors for each degree. In
each step, it takes vertices of one color class and partitions them by different numbers
of neighbors of other color classes. It stops when no partitioning longer occurs. Its
generalization k-WL [12, 196] colors and partitions (k − 1)-tuples according to their
adjacencies.

Certainly, when G and H are isomorphic graphs, they are partitioned and colored
the same. So when G ̸∼= H, k-WL distinguishes G and H, for a suitable value of k. If
we prove for a graph class that k is small enough, we obtain a combinatorial algorithm
for GraphIso. For instance, Grohe [162] proves that for every graph X, there exists
a value k such that two X-minor free graphs are either isomorphic, or distinguished
by k-WL. This does not translate to ListIso since k-WL applied on G only estimates
the orbits of Aut(G). When G ∼= H, and we may test this, assuming that GraphIso
can be decided efficiently for G and H, we obtain two identical partitions. They may
be used to reduce sizes of the lists, but we still end up with the question whether there
exists a list-compatible isomorphism. In Section 9.3, we show that it is NP-complete
to decide ListIso even when sizes of all lists are bounded by 3.

Excluded Minors. Another major open problem for ListIso is its complexity for
graphs with excluded minors. As described in Introduction, the original polynomial-
time algorithm of Ponomarenko [298] for GraphIso is based heavily on group theory,
and his technique unlikely translates to ListIso. But it seems doubtful that the prob-
lem will be NP-complete, since new combinatorial structural and algorithmic results
may be applied.

Robertson and Seymour [307] proved that every graph G with an excluded mi-
nor can be decomposed into pieces which are “almost embeddable” to a surface of
genus g, where g depends on the minor. The recent book of Grohe [162] describes the
seminal idea of automorphism-invariant treelike decompositions. A treelike decomposi-

288

9.9. Conclusions

tion generalizes a classical tree decomposition by replacing a tree of bags by a directed
acyclic graph of bags. Unlike tree decompositions, a treelike decomposition D of G can
be constructed with two additional properties. Firstly, it is automorphism-invariant,
meaning that every automorphism of G induces an automorphism of D. Secondly, it
is canonical, meaning that for two isomorphic graphs G and G′, isomorphic treelike
decompositions D and D′ are constructed.

The main structural result of Grohe [162] is that every graph G with an excluded
minor has a canonical automorphism-invariant treelike decomposition for which the
graphs induced by bags called torsos are “almost embeddable” to a surface of genus g,
where g depends on the minor. Therefore, to solve ListIso on graphs with excluded
minors, we need to prove the following:

1. We need to show that ListIso can be solved on almost embeddable graphs in
polynomial time. We may use the results of Theorems 9.7.1 and 9.8.5 to do so.

2. We need to prove Lifting Lemma for ListIso, stating the following: If we can
compute a canonical automorphism-invariant treelike decomposition of a class
C in polynomial time and we can solve ListIso for its torsos A in polynomial
time, then we can solve ListIso for C in polynomial time as well. Here, we
might modify the algorithm for lifting of canonization by Grohe [162].

We note that it is quite difficult to understand and describe everything in de-
tail. The book of Grohe [162] is very extensive (almost 500 pages) and described
in the language of graph logics. Unfortunately, no purely combinatorial description
of the results is available, and we believe that such a description of a combinatorial
algorithm for solving graph isomorphism of graphs with excluded minors would be de-
sirable. A combinatorial description of treelike decompositions is described by Grohe
and Marx [163], but an algorithm for the graph isomorphism problem of graphs with
excluded minors is only used as a black box.

Bounded Rankwidth. Rankwidth generalizes treewidth in the way that bounded
treewidth implies bounded rankwidth, but not the opposite. Very recently, the first XP
algorithm for graph isomorphism of graphs of bounded rankwidth was described [164].
The approach is by computing automorphism-invariant tree decomposition (which
should translate to ListIso), but then further group theory is applied to test whether
the decompositions are isomorphic. It is a very interesting question whether group
theory can be avoided and the problem can be solved in a purely combinatoric way.
Therefore, determining the complexity of ListIso for graphs of bounded rankwidth
is one of major open problems and it might give an insight into this question as well.

Also, rankwidth is closely related to cliquewidth: when one parameter is bounded,
the other is bounded as well. The graphs of cliquewidth at most 2 are called cographs
and can be represented by cotrees. Their isomorphism can therefore be reduced to
isomorphism of cotrees and solved in polynomial time [76], and this approach should
translate to ListIso. Very recently, a combinatorial polynomial-time algorithm for
graph isomorphism of graphs of cliquewidth at most 3 was described [85] which might
translate to ListIso as well.

289

Chapter 9. Graph Isomorphism Restricted by Lists

Bounded Eigenvalue Multiplicity. The polynomial-time algorithms for GraphIso
of graphs of bounded eigenvalue multiplicity [15, 108] are heavily based on group
theory. Actually, already the case of multiplicity one is non-trivial. It seems unlikely
that these results will translate to ListIso, but constructing an NP-hardness reduction
with bounded eigenvalue multiplicity seems non-trivial.

Forbidden Subgraphs, Induced Subgraphs and Induced Minors. There are
several papers dealing with GraphIso for classes of graphs with excluded subgraphs,
induced subgraphs and induced minors, and again the question is which results trans-
late to ListIso. Otachi and Schweitzer [289] prove a dichotomy for excluded sub-
graphs. The GI-complete cases translate by Theorem 9.2.1, but the polynomial cases
follow from [163] which does not seem to translate. More complicated characteriza-
tions are known for forbidden induced subgraphs [40, 242, 320]. Belmonte et al. [22]
describe dichotomy for forbidden induced minors.

Logspace Results. For some graph classes, GraphIso is known to be solvable in
LogSpace. It is a natural question to ask whether these results translate to ListIso.
For instance, graph isomorphism of trees [254] can be solved in LogSpace, with a
similar bottom-up procedure as in the proof of Theorem 9.4.1. The celebrated result of
Reingold [301], stating that undirected reachability can be solved in LogSpace, allowed
many other graph algorithms to be translated to LogSpace. In particular, GraphIso
is known to be solvable in LogSpace for planar graphs [86, 87], k-trees [228], interval
graphs [229], and bounded treewidth graphs [105].

290

10 3-connected Reduction
for Regular Graph Covers

10.1 Definition of Regular Graph Covering 292
10.2 Regular Projections and Quotients of Atoms 294
10.3 Quotient Expansions . 298
10.4 Quotients of Planar Graphs and Negami’s Theorem 304
10.5 Concluding Remarks . 307

This chapter contains:

• 10.1: Definition of Regular Graph Covering. We define semiregular sub-
groups, regular covering projections and regular quotients.
• 10.2: Regular Projections and Quotients of Atoms. We introduce halvable

atoms and describe three types of quotients of atoms.
• 10.3: Quotient Expansions. We revert the reductions in quotients and

describe all quotients H0 of G0 rising from the quotients Hr of Gr.
• 10.4: Quotients of Planar Graphs and Negami’s Theorem. We apply the

results to planar graphs. We describe all quotients of planar atoms and
primitive graphs, and thus describe all quotients of planar graphs.
• 10.5: Concluding Remarks. We conclude with remarks and open problems.

http://pavel.klavik.cz/orgpad/regular_covers.html

291

http://pavel.klavik.cz/orgpad/regular_covers.html

Chapter 10. 3-connected Reduction for Regular Graph Covers

10.1 Definition of Regular Graph Covering

A graph G covers a graph H (or G is a cover of H) if there exists a locally bijective
homomorphism p called a covering projection. A homomorphism p fromG toH is given
by a mapping ph : H(G)→H(H) preserving edges and incidences between half-edges
and vertices. It induces two mappings pv : V (G) → V (H) and pe : E(G) → E(H)
such that pe(uv) = pv(u)pv(v) for every uv ∈ E(G). The property to be local bijective
states that for every vertex u ∈ V (G) the mapping ph restricted to the half-edges
incident with u is a bijection. Figure 10.1 contains two examples of graph covers. We
mostly omit subscripts and just write p(u) or p(e).

Fibers. A fiber over a vertex v ∈ V (H) is the set p−1(v), i.e., the set of all vertices
V (G) that are mapped to v, and similarly for fibers over edges and half-edges. We
adopt the standard assumption that both G and H are connected. It follows that all
fibers of p are of the same size. In other words, h(G) = k ·h(H) and v(G) = k · v(H)
for some k ∈ N which is the size of each fiber, and we say that G is a k-fold cover of
H.

Regular Coverings. We aim to consider regular coverings which are highly symmet-
ric. From the two examples from Fig. 10.1, the regular covering p is more symmetric
than the non-regular covering p′.

An action of a group of automorphism is called semiregular if it has no non-
trivial (i.e., non-identity) stabilizers of half-edges and vertices. Further, we require
the stabilizer of an edge in a semiregular action to be trivial, unless it is a halvable
edge, when it may contain an involution transposing the two half-edges. We say that
a group is semiregular if its action is semiregular. Through the paper, the letter Γ is
reserved for semiregular subgroups of Aut(G). We say that π ∈ Aut(G) is semiregular
if the subgroup ⟨π⟩ is semiregular. (Note that this is equivalent to the fact that π has
all cycles of the same length.)

Let Γ be any semiregular subgroup of Aut(G). It defines a graph G/Γ called
a regular quotient (or simply quotient) of G as follows: The vertices of G/Γ are the
orbits of the action Γ on V (G), the half-edges of G/Γ are the orbits of the action Γ on
H(G). A vertex-orbit [v] is incident with a half-edge-orbit [h] if and only if the vertices

u
v

w

u

vw

u

v

w

p

G

u

vw

H

p′

u
vw

u
v w

u

v w G′

Figure 10.1: Two covers of H. The projections pv and p′v are written inside of the
circles, and the projections pe, ph, p′e, and p′h are omitted. Notice that each loop
is realized by having two neighbors labeled the same, and parallel edges are realized
by having multiple neighbors labeled the same. Also covering projections preserve
degrees.

292

10.1. Definition of Regular Graph Covering

Figure 10.2: The Hasse diagram of all quotients of the cube graph depicted in a
geometric way. When semiregular actions fix edges, the quotients contain half-edges.
The quotients connected by bold edges are obtained by 180 degree rotations. The
quotients connected by dashed edges are obtained by reflections. The tetrahedron is
obtained by the antipodal symmetry of the cube, and its quotient is obtained by a 180
degree rotation with the axis going through the centers of two non-incident edges of
the tetrahedron.

of [v] are incident with the half-edges of [h]. (Because the action of Γ is semiregular,
each vertex of [v] is incident with exactly one half-edge of [h], so this is well defined.)
We say that G regularly covers H if there exists a regular quotient of G isomorphic to
H.

We naturally construct the regular covering projection p : G→ G/Γ by mapping
the vertices to its vertex-orbits and half-edges to its half-edge-orbits. Concerning an
edge e ∈ E(G), it is mapped to an edge of G/Γ if the two half-edges belong to different
half-edge-orbits of Γ. If they belong to the same half-edge-orbits, it corresponds to a
half-edge of G/Γ with free end. The projection p is a |Γ|-fold regular covering.

For the graphs G and H of Fig. 10.1, we get H ∼= G/Γ for Γ ∼= C3 which “rotates
the cycle by three vertices”. As a further example, Fig. 10.2 depicts all quotients of
the cube graph.

Block trees and Regular Coverings.

Lemma 10.1.1. If G has a non-trivial semiregular automorphism, then G has a cen-
tral block.

Proof. For contradiction, suppose that G has a central articulation u. Every automor-
phism of a tree preserves its center, so Aut(T) preserves u. Also, all automorphisms
of Aut(G) preserve u since every automorphism of Aut(G) induces an automorphism
of Aut(T). This contradicts existence of a non-trivial semiregular automorphism.

293

Chapter 10. 3-connected Reduction for Regular Graph Covers

Let u be an articulation contained in the central block. By Tu we denote the
subtree of T defined by u and all its predecessors, and let Gu be the graph induced by
all vertices of the blocks of Tu.

Lemma 10.1.2. Let Γ be a semiregular subgroup of Aut(G). If u and v are two
articulations of the central block and of the same orbit of Γ, then Gu

∼= Gv. Moreover
there is a unique π ∈ Γ which maps Gu to Gv.

Proof. Notice that either Gu = Gv, or Gu∩Gv = ∅. Since u and v are in the same orbit
of Γ, there exists π ∈ Γ such that π(u) = v. Consequently π(Gu) = Gv. Suppose that
there exist π, σ ∈ Γ such that π(Gu) = σ(Gu) = Gv. Then π · σ−1 is an automorphism
of Γ fixing u. Since Γ is semiregular, π = σ.

In the language of quotients, it means that G/Γ consists of C/Γ together with
the graphs Gu attached to C/Γ, one for each orbit of Γ.

In the following, we shall assume that G contains a central block.

Why not just 2-connected?? We use the 3-connected reduction described in Chap-
ter 7 since it behaves well with respect to automorphism groups. The behaviour of
regular covering with respect to 1-cuts in G is very simple, so a natural question fol-
lows: why do we not restrict ourselves to 2-connected graphs G? The issue is that the
quotient C/Γ might not be 2-connected (see Fig. 10.5 on the right), so it may consists of
many blocks in H. When H contains subtree of blocks isomorphic to Gu, it may corre-
spond to Gu, or it may correspond to a quotient of a subgraph C/Γ, together with some
other Gv attached. Therefore, we work with 1-cuts together with 2-cuts and we define
3-connected reduction for 1-cuts in G as well, unlike in [340, 344, 191, 78, 352, 11].
This is essential for the algorithm for regular covering testing described in Chapter 11.

10.2 Regular Projections and Quotients of Atoms

In this section, we review the changes in atoms and the 3-connected reduction of
Chapter 7 in order to capture semiregular subgroups of the automorphism groups.

Halvable Atoms. For the purpose of studying regular covering projection, we dis-
tinguish an additional symmetry type of an atom. Aside asymmetric atoms, we divide
symmetric atoms into two types:

1. A halvable atom A. There exits a semiregular involutory automorphism τ ∈
Aut(A) which exchanges u and v.

2. A symmetric atom A. The atom A is not halvable, but there exists an automor-
phism in Aut(A) which exchanges u and v.

When a halvable atom is reduced, we replace it by a halvable edge. Again,
we naturally consider only the automorphisms which preserve these edge types and of
course the orientation of directed edges, and we use this generalized definition to define
symmetry types of their atoms. In the definition of a halvable atom, the automorphism

294

10.2. Regular Projections and Quotients of Atoms

u v

a halvable atom

u v

u v

a symmetric atom

u v

u v

an asymmetric atom

u v

Figure 10.3: The three types of atoms and the corresponding edge types which we
use in the reduction. We denote halvable edges by small circles in the middle.

τ fixes no vertices and no directed and undirected edges, but some halvable edges may
be fixed. Figure 10.3.

We note that the symmetry type of atoms depends on colors and types of edges
the atom contains; see Fig. 10.4 for an example. Also, the figure depicts a quotient
G2/Γ2 of G2, and its expansions to G1/Γ1 and G0/Γ0. The resulting quotients G1/Γ1
and G2/Γ2 contain half-edges because Γ1 and Γ2 fix some halvable edges but G0/Γ0
contains no half-edges. This example shows that in reductions and expansions we need
to consider half-edges even both graphs G and G/Γ are simple.

Three Types of Projections Let Γ be a semiregular subgroup of Aut(G), which
defines a regular covering projection p : G → G/Γ. Negami [288, p. 166] investigated
possible projections of proper atoms, and we investigate this question in more detail.
Let A be an atom and p|A be its regular projection. We distinguish three different cases

G0 G1 G2

G0/Γ0 G1/Γ1 G2/Γ2

Figure 10.4: We reduce a part of a graph in two steps. In the first step, we replace
five atoms by five edges of different types. As the result we obtain one halvable atom
which we further reduce to one halvable edge. Notice that without considering edge
types, the resulting atom in G1 would be just symmetric. In the bottom, we show a
part of the corresponding quotient graphs when Γi contains a semiregular involutory
automorphism π from the definition of a half-projection.

295

Chapter 10. 3-connected Reduction for Regular Graph Covers

x y

u

v

x y

v

u

p

edge-projection
x y

u

v

x

yz

w

u

xy

z w

u

x

y z

w

u

x y

zw

u

p

loop-projection

u

x

yz

w

z

y

x

u

z

y

x

u

z

y

x

u

z

y

x

u

phalf-projection

u

x z

y

u

x z

y

Figure 10.5: The three cases for projectios of atoms. Notice that for the third graph,
an edge-projection can also be applied which gives a different quotient.

illustrated in Fig. 10.5. For a block atom A, we have exclusively an edge-projection.
For a proper atom or a dipole A with ∂A = {u, v}, we get the following three types of
projections p|A:

• An edge-projection. The atom A is preserved in G/Γ, meaning p(A) ∼= A. Notice
that p(A) is a subgraph ofG/Γ, not necessarily induced. For instance for a proper
atom, it can happen that p(u)p(v) is adjacent, even through uv /∈ E(G), as in
Fig. 10.5.
• A loop-projection. The interior Å is preserved and the vertices u and v are

identified, i.e., p(Å) ∼= Å and p(u) = p(v).
• A half-projection. The covering projection p is a 2k-fold cover. There exists an

involutory permutation π in Γ which exchanges u and v and preserves A. Then
p(u) = p(v) and p(A) is a halved atom A, consisting of orbits of π on A. This
projection can only occur when A is a halvable atom.

Lemma 10.2.1. For an atom A and a regular covering projection p, we have p|A
either an edge-projection, a loop-projection, or a half-projection.

Proof. Let Γ be the semiregular subgroup of Aut(G) defining p : G → G/Γ. For a
block atom A, Lemma 10.1.2 implies that p(A) ∼= A, so only an edge-projection occurs.
It remains to deal with A being a proper atom or a dipole, and let ∂A = {u, v}.
According to Lemma 7.4.8b every automorphism π either preserves Å, or Å and π(Å)
are disjoint.

Suppose that there exists a non-trivial automorphism π ∈ Γ preserving Å. By
Lemma 7.4.8a, we know π(∂A) = ∂A, and by semiregularity, π is uniquely determined
and exchanges u and v. Then the fiber containing u and v has to be of an even size,
with π being an involution reflecting k copies of A, and so p is a 2k-fold covering
projection. Therefore, p|A is a half-projection.

296

10.2. Regular Projections and Quotients of Atoms

p(A)

p(u) p(v)

edge-quotient

p(A)

p(u) = p(v)

loop-quotient

p(A)

p(u) = p(v)

half-quotient

Figure 10.6: How can the quotient p(A) look in G/Γ, depending on type of p|A.

Suppose that there is no non-trivial automorphism which preserves Å. The only
difference between an edge- and a loop-projection is whether u and v are contained
in one fiber of p|A, or not. First, suppose that for every non-trivial π ∈ Γ we get
A ∩ π(A) = ∅. Then no fiber contains more than one vertex of A, and p|A is an
edge-projection, i.e, A ∼= p(A). Next, suppose that there exists π ∈ Γ such that
A ∩ π(A) ̸= ∅. By Lemma 7.4.8c, we get A ∩ π(A) = ∂A ∩ ∂π(A), so u and v belong
to one fiber of p|A, which makes p|A a loop-projection.

Figure 10.6 shows the corresponding quotients p(A) in G/Γ. For an edge-, a
loop- and a half-projection p|A, we get three types of quotients p(A) of A which we
call an edge-quotient, a loop-quotient and a half-quotient, respectively. The following
lemma allows to say “the” edge- and “the” loop-quotient of an atom.

Lemma 10.2.2. For every atom A, there is the unique edge-quotient and the unique
loop-quotient up to isomorphism.

Proof. In both cases, we have Å ∼= p̊(A), so these quotients are uniquely determined.

For half-quotients, this uniqueness does not hold. First, an atom A with ∂A =
{u, v} has to be halvable to admit a half-quotient. Then each half-quotient is deter-
mined by an involutory automorphism τ exchanging u and v; here τ is the restriction
of π from the definition of a half-projection. There is a one-to-many relation between
non-isomorphic half-quotients and automorphisms τ , i.e., several different automor-
phisms τ may give the same half-quotient.

Lemma 10.2.3. A dipole A has at most
⌊

e(A)
2

⌋
+ 1 pairwise non-isomorphic half-

quotients, and this bound is achieved.

Proof. Figure 10.7 shows a construction which achieves the bound. It remains to show
that it is an upper bound. Without loss of generality, we can assume that all edges of
this dipole are halvable. Let τ be a semiregular involution. Edges which are fixed in τ

Figure 10.7: Assuming that quotients can contain half-edges, the depicted dipole
has four non-isomorphic half-quotients.

297

Chapter 10. 3-connected Reduction for Regular Graph Covers

correspond to half-edges in the half-quotient A/ ⟨τ⟩. Pairs of edges interchanged by τ
give rise to loops in A/ ⟨τ⟩. In the quotient, we have ℓ loops and h half-edges attached
to a single vertex such that 2ℓ+ h = e(A). Since ℓ is between 0 and

⌊
e(A)

2

⌋
, the upper

bound is established.

For planar proper atoms, we prove in Lemma 10.4.3 that there are at most two
non-isomorphic half-quotients. This non-uniqueness of half-quotients is one of the
main algorithmic difficulties for regular covering testing of planar graphs studied in
Chapter 11.

10.3 Quotient Expansions

Suppose that Hr = Gr/Γr is a quotient of Gr. The reductions applied to reach Gr are
reverted on Hr and produce an expansion series Hr, Hr−1, . . . , H0 of Hr. We obtain a
series of semiregular subgroups Γr, . . . ,Γ0 such that Hi = Gi/Γi and Γi extends Γi+1.
The entire process is depicted in the diagram in Fig. 6.11.

The problem is that expansions are unlike reductions not uniquely determined.
From Hi+1, we can construct multiple Hi. In this section, we characterize all possible
ways how Hi can be constructed from Hi+1, and thus establish Theorem 6.6.1.

Reduction Epimorphism and Semiregular Subgroups. Recall the reduction
epimorphism Φi defined in Section 7.6. We show that it behaves nicely with respect
to semiregular subgroups of Aut(Gi).

Lemma 10.3.1. Let Φi : Aut(Gi)→ Aut(Gi+1) be the reduction epimorphism. For a
semiregular subgroup Γ of Aut(Gi), the restriction Φi|Γ is an isomorphism. Moreover,
the subgroup Φi(Γ) remains semiregular.

Proof. Recall that the kernel Ker(Φi) is the set of all π such that Φi(π) = id and it
is a normal subgroup of Aut(Gi). It has the following structure: π ∈ Ker(Φi) if and
only if it fixes everything except for the interiors of the atoms. Further, π(Å) = π̊(A),
so π can non-trivially act only inside the interiors of the atoms.

For any subgroup Γ, the restricted mapping Φi|Γ is a group homomorphism with
Ker(Φi|Γ) = Ker(Φi)∩Γ. If Γ is semiregular, then we show that Ker(Φi)∩Γ is trivial.
We know that Gi contains at least one atom A. The boundary ∂A is fixed by Ker(Φi),
so by semiregularity of Γ the intersection with Ker(Φi) is trivial. Hence Φi|Γ is an
isomorphism.

For the semiregularity of Φi(Γ), let π′ ∈ Φi(Γ). Since Φi|Γ is an isomorphism,
there exists the unique π ∈ Γ such that Φi(π) = π′. If π′ fixes a vertex u, then π fixes
u as well, so it is the identity, and π′ = Φi(id) = id. If π′ only fixes an edge e = uv,
then π′ exchanges u and v. If π also fixes e, this edge is halvable and so π′ can fix it
as well. Otherwise there is an atom A in Gi replaced by e in Gi+1. Then π|A is an
involutory semiregular automorphism exchanging u and v, so A is halvable. But then
e is a halvable edge, and thus π′ is allowed to fix it.

298

10.3. Quotient Expansions

Reduction Preserves Central Block. We show that the reduction preserves the
central block.

Lemma 10.3.2. Let G admit a non-trivial semiregular automorphism π. Then each
Gi+1 has a central block which is obtained from the central block of Gi by replacing its
atoms by colored edges.

Proof. By Lemma 10.3.1, semiregular automorphisms are preserved during the reduc-
tion. By Lemma 10.1.1, each Gi has a central block. Since we replace only proper
atoms and dipoles in the central block, it remains to be a block after the reduction.
We argue by induction that it remains central as well.

Let B be the central block of Gi and let B′ be this block in Gi+1. Consider the
subtree T ′u of the block tree T ′ of Gi+1 attached to B′ in u containing the longest path
in T ′ from B′. This subtree corresponds to the subtree Tu attached at u in Gi. Let π be
a non-trivial semiregular automorphism in Gi. Then π(u) = v, and by Lemma 10.1.2
we have Tv

∼= Tu. Then T ′v corresponds in Gi+1 to Tv after reduction and T ′u
∼= T ′v.

Therefore B′ is the central block of Gi+1.

If G has a non-trivial semiregular automorphism, then its central block is pre-
served in the primitive graph Gr. By Lemma 7.4.2, Gr is either 3-connected, or Cn, or
K2, or can be made from these graphs by attaching single pendant edges to at least
two vertices.

10.3.1 Quotients and Their Expansion

Let G0, . . . , Gr be the reduction series of G and let Γ0 be a semiregular subgroup of
Aut(G0). By repeated application of Lemma 10.3.1, we get the uniquely determined
semiregular subgroups Γ1, . . . ,Γr of Aut(G1), . . . ,Aut(Gr) such that Γi+1 = Φi(Γi),
each isomorphic to Γ0. Let Hi = Gi/Γi be the quotients with preserved colors of
edges, and let pi be the corresponding covering projection from Gi to Hi. Recall that
Hi can contain edges, loops and half-edges; depending on the action of Γi on the
half-edges corresponding to the edges of Gi.

Lemma 10.3.3. Every semiregular subgroup Γi of Aut(Gi) corresponds to a unique
semiregular subgroup Γi+1 of Aut(Gi+1) such that Γi+1 = Φi(Γi).

Quotients Reductions. Consider Hi = Gi/Γi and Hi+1 = Gi+1/Γi+1. We investigate
relations between these quotients. LetA be an atom ofGi represented by a colored edge
e inGi+1. According to Lemma 10.2.1, pi|A is either an edge, a loop or a half-projection.
It is easy to see that Φi is defined exactly in the way that pi+1(e) corresponds to an
edge for an edge-projection, to a loop for a loop-projection, and to a half-edge for a
half-projection. (This explains these names of projections and quotients.) Figure 10.8
shows examples. We get the following commuting diagram:

−→

−→

−
→

−
→

Gi Gi+1

Hi Hi+1

Γi Γi+1

red.

red.

(10.1)

299

Chapter 10. 3-connected Reduction for Regular Graph Covers

G0/Γ0

red.

G1/Γ1 G0/Γ
′

0

red.

G1/Γ
′

1

Figure 10.8: An example of two quotients of the graph G0 from Fig. 7.14 with the
corresponding quotients of the reduced graph G1. Here Γ1 = Φ1(Γ0) and Γ′1 = Φ1(Γ′0).

So we can construct the graph Hi+1 from Hi by replacing the projections of atoms in
Hi by the corresponding projections of the edges replacing the atoms.

Overview of Quotients Expansions. Our goal is to reverse the horizontal edges in
Diagram (10.1), i.e, to understand:

←−

←−

−
→

−
→

Gi Gi+1

Hi Hi+1

Γi Γi+1

exp.

exp.

(10.2)

Let Γi and Γi+1 be semiregular groups such that Φi(Γi) = Γi+1. Then we call Γi+1 a
reduction of Γi, and Γi an extension of Γi+1. There are two fundamental questions we
address in this section in full detail:

• Question 1. Given a group Γi+1, which semiregular groups Γi are its extensions?
Notice that all these groups Γi are isomorphic to Γi+1 as abstract groups, but
they correspond to different actions on Gi.
• Question 2. Let Γi and Γ′i be two semiregular groups extending Γi+1. Under

which conditions are the quotients Hi = Gi/Γi and H ′i = Gi/Γ′i different?

Extensions of Group Actions. We first deal with Question 1. Our approach
is similar as in the proof of Proposition 7.6.4, but because of semiregularity we do
not need an extra assumption for existence of involutory automorphisms exchanging
boundaries of symmetric proper atoms.

Lemma 10.3.4. For every semiregular group Γi+1 ≤ Aut(Gi+1), there exists an ex-
tension Γi ≤ Aut(Gi) such that Diagram (10.1) commutes.

Proof. First notice that Γi+1 determines the action of Γi everywhere on Gi except for
the interiors of the atoms of Gi, so we just need to define it there.Let e = uv be one
edge of Gi+1 replacing an atom A in Gi. Let |Γi+1| = k. We distinguish three cases,
see Fig. 7.17:

Case 1: The atom A is a block atom. Then the orbit [e] contains exactly k edges.
Let ∂A = {u}, [e] = {e1, . . . , ek}, and ui = π′(u) for the unique π′ ∈ Γi+1 mapping e
to ei. (We know that π′ is unique because Γi+1 is semiregular.) Let A1, . . . , Ak be the

300

10.3. Quotient Expansions

atoms of Gi corresponding to e1, . . . , ek in Gi+1. The edges e1, . . . , ek have the same
color and type, and thus the block atoms Ai are pairwise isomorphic.

We define the action of Γi on the interiors of A1, . . . , Ak as follows. As in the proof
of Proposition 7.6.4, we choose arbitrarily isomorphisms σ1,i from A1 to Ai such that
σ1,i(u1) = ui, and put σ1,1 = id and σi,j = σ1,jσ

−1
1,i . If π′(ei) = ej, we set π|Åi

= σi,j|Åi
.

By (7.2), the composition of the extensions π1 and π2 of π′1 and π′2 is defined on the
interiors of A1, . . . , Aℓ exactly as the extension of π2π1. Also, (7.2) implies that an
identity π′kπ′k−1 · · · π′1 = id extends to the identity. Hence the extended action remains
semiregular.

Case 2: The atom A is a proper atom or a dipole and the orbit [e] contains
exactly k edges. Let e = uv and [e] = {e1, . . . , ek}. We define ui = π′(u) and vi = π′(v)
similarly as above. The rest of the argument is similar as in Case 1, we just require
that σ1,i(u1) = ui and σ1,i(v1) = vi.

Case 3: The atom A is a proper atom or a dipole and the orbit [e] contains
exactly ℓ = k

2 edges. Then we have k half-edges in one orbit, so in Hi+1 we get one
half-edge. Let [e] = {e1, . . . , eℓ}. They have to be halvable, and consequently the
corresponding atoms A1, . . . , Aℓ are halvable. Let ui be an arbitrary endpoint of ei

and let vi be the second endpoint of ei. Again, we arbitrarily choose isomorphisms σ1,i

from A1 to Ai such that σ1,i(u1) = ui and σ1,i(v1) = vi, and define σi,j = σ1,jσ
−1
1,i .

Since A1 is a halvable atom, we further consider a semiregular involution τ1 of
A1 which exchanges u1 and v1. Again, τ1 defines a semiregular involution of Ai by
conjugation as τi = σ1,iτ1σ

−1
1,i . We put σ̂i,j = σi,jτi = τjσi,j which is an isomorphism

mapping Ai to Aj such that σ̂i,j(ui) = vj and σ̂i,j(vi) = uj. In the extension, we put
π|Åi

= σi,j|Åi
if π′(ui) = uj, and π|Åi

= σ̂i,j|Åi
if π′(ui) = vj. As in the proof of

Proposition 7.6.4, it follows that the composition π2π1 is correctly defined as above,
and it maps identities to identities.

To conclude the proof, it is easy to observe that by semiregularity of Γi+1 the
constructed group Γi acts semiregularly on Gi, as well.

Corollary 10.3.5. The construction in the proof of Lemma 10.3.4 gives all possible
extensions of Γi+1 such that Diagram (10.1) commutes.

Proof. Recall that the atoms of Gi form blocks in the action of any extension Γi, and
the action on the blocks is prescribed by Γi+1. An extension Γi of Γi+1 gives in Cases
1 and 2 the isomorphisms σ1,i, for i = 1, . . . k, and in Case 3 the isomorphisms σ1,i,
σ̂1,i and τi, for i = 1, . . . k

2 . However, by semiregularity, given these isomorphisms the
extension is uniquelly determined.

Quotient Expansion. Recall the description of quotients of atoms from Section 10.2.
We are ready to establish the main theorem of this chapter. It states that every quo-
tient Hi of Gi can be created from some quotient Hi+1 of Gi+1 by replacing edges, loops
and half-edges of atoms replaced in the reduction from Gi to Gi+1 with corresponding
edge-, loop- and half-quotients.

301

Chapter 10. 3-connected Reduction for Regular Graph Covers

Proof of Theorem 6.6.1. Let Hi+1 = Gi+1/Γi+1 and let Hi be constructed in the above
way. We first argue that Hi is a quotient of Gi, i.e., it is equal to Gi/Γi for some Γi

extending Γi+1. To see this, it is enough to construct Γi in the way described in the
proof of Lemma 10.3.4. We choose σ1,i arbitrarily, and the involutory permutations τ
are prescribed by chosen half-quotients replacing half-edges. It is easy to see that the
resulting graph is the constructed Hi. We note that only the choices of τ matter, for
arbitrary choices of σ1,i we get isomorphic quotients Hi.

On the other hand, if Hi is a quotient, it replaces the edges, loops and half-edges
of Hi+1 by some quotients, so we can generate Hi in this way. The reason is that
according to Corollary 10.3.5, we can generate all Γi extending Γi+1 by some choices
σ1,i and τ .

We say that two quotients Hi and H ′i extending Hi+1 are different if there exists
no isomorphism of Hi and H ′i which fixes the vertices and edges common with Hi+1.
(But Hi and H ′i still might be isomorphic.) According to Lemma 10.2.2, the edge and
loop-quotients are uniquely determined, so we are only free in choosing half-quotients.
For non-isomorphic choices of half-quotients, we get different graphs Hi. For instance
suppose that Hi+1 contains a half-edge corresponding to the dipole from Fig. 10.9.
Then in Hi we can replace this half-edge by one of the four possible half-quotients of
this dipole.

Corollary 10.3.6. If Hi+1 contains no half-edge, then Hi is uniquely determined.
Thus, for an odd order of Γr, the quotient Hr uniquely determines H0.

Proof. This is implied by Theorem 6.6.1 and Lemma 10.2.2 which states that edge-
and loop-quotients are uniquely determined. If the order of Γr is odd, no half-edges
are constructed in Hr, so no half-quotients ever appear.

Half-quotients of Dipoles. In Lemma 10.2.3, we describe that a dipole A without
colored edges can have at most

⌊
e(A)

2

⌋
+1 pairwise non-isomorphic half-quotients. This

statement can be easily altered to dipoles with colored edges which admit a much larger
number of half-quotients:

Lemma 10.3.7. Let A be a dipole with colored edges. Then the number of pairwise
non-isomorphic half-quotients is bounded by 2⌊

e(A)
2 ⌋ and this bound is achieved.

Proof. Figure 10.9 shows an example. It can be easily generalized to exponentially
many pairwise non-isomorphic quotients by introducing more pairs of halvable edges
of additional colors. It remains to argue correctness of the upper bound.

Figure 10.9: An example of a dipole with a pair of black halvable edges and a pair
of white halvable edges. There exist four pairwise non-isomorphic half-quotiens.

302

10.3. Quotient Expansions

First, we derive the structure of all involutory semiregular automorphisms τ
acting on Å. We have no freedom concerning the non-halvable edges of A: The
undirected edges of each color class has to be paired by τ together. Further, each
directed edge has to be paired with a directed edges of the opposite direction and the
same color. It remains to describe possible action of τ on the remaining at most e(A)
halvable edges of A. These edges belong to c color classes having m1, . . . ,mc edges.
Each automorphism τ has to preserve the color classes, so it acts independently on
each class.

We concentrate only on one color class having mi edges. We bound the number
f(mi) of pairwise non-isomorphic quotients of this class. Then we get the upper bound

∏
1≤i≤c

f(mi) (10.3)

for the number of non-isomorphic half-quotients of A.
The rest of the proof is similar to the proof of Lemma 10.2.3. An edge e fixed in

τ is mapped into a half-edge of the given color in the half-quotient A/ ⟨τ⟩. If τ maps
e to e′ ̸= e, then we get a loop in the half-quotient A/ ⟨τ⟩. The resulting half-quotient
only depends on the number of fixed edges and fixed two-cycles in the considered color
class. We can construct at most f(mi) = ⌊mi

2 ⌋+ 1 pairwise non-isomorphic quotients,
since we may have zero to ⌊mi

2 ⌋ loops with the complementing number of half-edges.
The bound (10.3) is maximized when each class contains exactly two edges.

(Except for one class containing either three edges, or one edge if e(A) is odd.)

Assume that Hi+1 contains a half-edge corresponding to a half-quotient of a
dipole in Hi. By Theorem 6.6.1, the number of non-isomorphic expansions Hi of Hi+1
can be exponential in the size difference of Hi and Hi+1.

The Block Structure of Quotients. We show how the block structure is preserved
during expansions. A block atom A of Gi is always projected by an edge-projection,
and so it corresponds to a block atom of Hi. Suppose that A is a proper atom or a
dipole, and let ∂A = {u, v}.

• For an edge-projection p|A, we get p(u) ̸= p(v), and p(A) is isomorphic to an
atom in Hi.
• For a loop- or a half-projection p|A, we get p(u) = p(v) and p(u) is an articulation

of Hi. If A is a dipole, then p(A) is a pendant star of half-edges and loops
attached to p(u). By Lemma 7.4.4, if A is a proper atom, then p(A) is either a
path ending with a half-edge and with attached single pendant edges (when A+

is essentially a cycle), or a pendant block with attached single pendant edges and
half-edges (when A+ is essentially 3-connected). (The reason is that the fiber of
an articulation in a 2-fold cover is a 2-cut.)

Lemma 10.3.8. The block structure of Hi+1 is preserved in Hi, possibly with some
new subtrees of blocks attached.

Proof. By Theorem 6.6.1, edges inside blocks are replaced by edge-quotients of block
atoms, proper atoms and dipoles which preserves 2-connectivity. New subtrees of

303

Chapter 10. 3-connected Reduction for Regular Graph Covers

blocks in Hi are created by replacing pendant edges with block atoms, loops by loop-
quotients, and half-edges by half-quotients.

10.4 Quotients of Planar Graphs and Negami’s Theorem

In this section, we show implication of our theory to planar graphs. We geometrically
characterize the quotients of planar graphs which results in a direct proof of Negami’s
Theorem [288]. Using Theorem 6.6.1, it only remains to understand the quotients of
planar primitive graphs and the half-quotients of planar proper atoms.

Recall from Section 8.1 that the automorphism groups of 3-connected planar
graphs are spherical groups. The key point is that regular covering projections behave
geometrically for them. Table 10.1 shows the number of conjugacy classes of subgroups
of spherical groups S4, C2 × S4 and C2 × A5 which are isometry groups of platonic
solids. Note that conjugate subgroups Γ determine isomorphic quotients G/Γ.

Geometry and Quotients. Recall from Section 8.1 that automorphisms of a 3-
connected planar graph are either orientation preserving, or orientation reversing.
This allows to use geometry to study regular quotients. Let τ be an orientation
reversing involution of an orientable surface. The involution τ is called antipodal if it
is a semiregular automorphism of a closed orientable surface S such that S/⟨τ⟩ is a
non-orientable surface. Otherwise τ is called a reflection. A reflection of the sphere
fixes a circle. An orientation reversing involution of a 3-connected planar graph is
called antipodal if the respective isometry is antipodal and it is called a reflection if

S4 of the order 24
Order Number Order Number

1 1 6 1
2 2 8 1
3 1 12 1
4 3

C2 × S4 of the order 48
Order Number Order Number

1 1 8 7
2 5 12 2
3 1 16 1
4 9 24 3
6 3

C2 × A5 of the order 120
Order Number Order Number

1 1 8 1
2 3 10 3
3 1 12 2
4 3 20 1
5 1 24 1
6 3 60 1

Table 10.1: The number of conjugacy classes of the subgroups of the isometry groups
of platonic solids.

304

10.4. Quotients of Planar Graphs and Negami’s Theorem

the respective isometry is a reflection. A reflection of a map on the sphere fixes always
either an edge, or a vertex.

The quotient of the sphere by an orientation preserving group of automorphisms
is again the sphere. The half-quotient of the sphere by a reflection is the disk and and
the half-quotient by an antipodal involution is the projective plane. See Fig. 10.10.

Quotients of Primitive Graphs. By Lemma 7.4.2, we know that every primi-
tive graph Gr is either 3-connected with attached single pendant edges, or K2 or Cn

with attached single pendant edges. These attached single pendant edges only make
Aut(Gr) smaller, which restricts the possible quotients. Therefore it is sufficient to
understand how possible quotients can look for 3-connected planar graphs, K2 and
Cn.

Lemma 10.4.1 ([331]). Let G be a 3-connected planar graph and Γ be a semiregular
subgroup of Aut(G). There are three types of quotients of G:

(a) Rotational quotients – The action of Γ is orientation preserving and the quotient
G/Γ is planar.

(b) Reflectional quotients – The action of Γ is orientation reversing but does not
contain an antipodal involution. Then the quotient G/Γ is planar and necessarily
contains half-edges.

(c) Antipodal quotients – The action of Γ is orientation reversing and contains an
antipodal involution. Then G/Γ is projective planar.

πGr

180
◦

p

π

Gr

p

π

Gr

p

Gr/ 〈π〉 Gr/ 〈π〉 Gr/ 〈π〉

Figure 10.10: From left to right, a rotational quotient, a reflectional quotient and
an antipodal quotient of the cube; also see Fig. 10.2.

305

Chapter 10. 3-connected Reduction for Regular Graph Covers

Figure 10.10 shows examples of these types of quotients. We note that an an-
tipodal quotient can be planar, but not necessarily; for an example, see Fig. 6.7.

The quotients of K2 are straightforward. Next, we characterize quotients of
cycles, which completes the description of possible quotients of primitive graphs:

Lemma 10.4.2. Let Γ be a semiregular subgroup of Aut(Cn). Then Cn/Γ is either a
cycle, or a path with two half-edges attached to its ends (only for n even).

Half-quotients of Proper Atoms. Next, we characterize the half-quotients of pla-
nar proper atoms. There are further restrictions compared to the quotients of primitive
graphs since the involution has to exchange the vertices of the boundary:

Lemma 10.4.3. Let A be a planar proper atom and let ∂A = {u, v}. There are
at most two half-quotients A/ ⟨τ⟩ where τ ∈ Aut∂A(A) is an involutory semiregular
automorphism transposing u and v:

(a) The rotational half-quotient – The involution τ is orientation preserving and
A/ ⟨τ⟩ is planar with at most one half-edge.

(b) The reflectional half-quotient – The involution τ is a reflection and A/ ⟨τ⟩ is
planar with at least two half-edges.

Proof. The graph A+ (obtained from A by adding the edge uv) is an essentially 3-
connected planar graph with a unique embedding into the sphere. By Lemma 8.1.4c,
Aut∂A(A) is a subgroup of C2

2. An involution τ exchanging u and v corresponds to a

u v

τ

A+

180◦

p

p(u)A+/ 〈τ〉

u v

τ

A+

p

p(u)A+/ 〈τ〉

Figure 10.11: The rotational quotient and reflectional quotient of a planar proper
atom A with the added edge uv.

306

10.5. Concluding Remarks

map automorphism of A+ fixing uv. Either τ is a 180◦ rotation around the centre of uv
which gives the rotational half-quotient, or it is a reflection which gives the reflectional
half-quotient; see Fig. 10.11. According to Lemma 10.4.1, both possible half-quotients
are planar.

Direct Proof of Negami’s Theorem. Using the above statements, we give a direct
proof of Negami’s Theorem. This theorem states that a graph H has a finite planar
regular cover G (i.e, G/Γ ∼= H for some semiregular Γ ≤ Aut(G)), if and only if H is
projective planar. For a given projective planar graph H, the construction of a planar
graph G is easy: by embedding H into the projective plane and taking the double
cover of this embedding, we get the graph G embedded to the sphere. Below, we prove
the harder implication:

Theorem 10.4.4 (Negami [288]). Let G be a planar graph. Then every (regular)
quotient of G is projective planar.

Proof. We apply the reduction series on G which produces graphs G = G0, G1, . . . , Gr

such that Gr is primitive. If Gr is essentially 3-connected, then by Lemma 10.4.1 every
quotient Hr = Gr/Γr is projective planar. If Gr is K2 or Cn with single pendant edges
attached, then by Lemma 10.4.2 every quotient Hr = Gr/Γr is even planar.

By Theorem 6.6.1, every quotient H = G/Γ can be constructed from some
Hr by an expansion series in which we replace edges, loops and half-edges by edge-
quotients, loop-quotients and half-quotients, respectively. All edge- and loop-quotients
are clearly planar. By Lemma 10.4.3, every half-quotient of a proper atom is planar,
and by Lemma 10.3.7 every half-quotient of a dipole is a set of loops and half-edges
attached to a single vertex, which is also planar. Therefore, these replacements can be
done in a way that the underlying surface of Hr is not changed, so H is also projective
planar.

We note that deciding whether H = G/Γ is planar or non-planar projective is
done on the primitive graph Gr. It is non-planar if and only if Γr contains a semiregular
antipodal involution and the resulting quotient Hr = Gr/Γr is non-planar.

10.5 Concluding Remarks

We recall the main points addressed in this chapter:

• We show that the 3-connected reduction described in Chapter 7 behave well
with respect to semiregular subgroups and regular graph covering. For a pre-
scribed quotient Hr = Gr/Γr, we describe all possible expansions H0 = G0/Γ0
which revert the reductions. Theorem 6.6.1 states that every quotient H ∼= G/Γ
can be obtained in this way, and different quotients H0 are constructed by non-
isomorphic quotients Hr and non-isomorphic choices of half-quotients in the ex-
pansions.

307

Chapter 10. 3-connected Reduction for Regular Graph Covers

• Since the quotients of 3-connected planar graphs can be understood using ge-
ometry, we give a direct proof of Negami’s Theorem [288] (Theorem 10.4.4).
The reason is that a quotient Hr = Gr/Γr is due to geometry always planar or
projective planar. By Theorem 6.6.1, the expansions create H from Hr while
preserving the underlying surface of Hr.
• Our results have as well algorithmic implications for regular covering testing,

described in Chapter 11.

More General Graphs. Our structural results also work for more general graphs.
We have assumed that the graphs G and H are without loops and free half-edges. We
can work with loops and half-edges in G in the same way as with pendant edges (of
different colors). Since we assume that H contains no half-edges, we set the reductions
and expansions in the way that half-edges can appear in the expansion series but no
expanded quotient H0 contains half-edges. This is done by having all edges of G0 as
undirected edges. To admit quotients H0 with half-edges, it is sufficient to change all
edges of G0 to halvable edges. Also, all the results can be used when G and H contain
colored edges, vertices, some edges oriented, etc.

Harmonic Regular Covers. There is a generalization of regular graph covering for
which it would be interesting to find out whether our techniques can be modified.
Consider geometric regular covers of surfaces, like in Fig. 10.10 and 10.11. The orbits
of the 180◦ rotations are of size two, with the exception of two points lying on the
axis of the rotation. These exceptional points are called branch points. In general,
a regular covering projection is locally homeomorphic around a branch point to the
complex mapping z ↦→ zℓ for some integer ℓ ≤ k, and ℓ is called the order of the
branch point.

Assume that G is a 3-connected planar graph embedded onto the sphere, Γ ≤
Aut(G) is a semiregular subgroup of automorphisms of the sphere, and p : G→ H =
G/Γ is the regular covering projection. When H is a standard graph (with no free half-
edges), all branch points of p belong to faces of the embedding. If a branch point (of
order two) is placed in the center of an edge of G, this edge is projected to a half-edge
in H. It is possible to consider covering projections between surfaces in which branch
points can be placed in vertices of G which gives harmonic regular covering [17]. If a
branch point of order ℓ is placed in a vertex v ∈ V (G), then the vertex p(v) ∈ V (H)
has the degree equal deg v/ℓ and for an edge e ∈ E(H) incident with p(v), the fiber
p−1(e) has exactly ℓ edges incident with v.

308

11 Algorithmic Aspects of Regular
Graph Covers

11.1 Complexity of Regular Graph Covering 310
11.2 Atoms, Reduction and Expansion 311
11.3 Meta-algorithm . 312
11.4 Star Blocks Atoms with Lists . 327
11.5 Applying the Meta-algorithm to Planar Graphs 334
11.6 Concluding Remarks . 334

This chapter contains:

• 11.1: Complexity of Regular Graph Covering. We prove that Regular-
Cover belongs to NP and it is GI-hard.
• 11.2: Atoms, Reduction and Expansion. We describe how to compute sym-

metry types and quotients of atoms.
• 11.3: Meta-algorithm. We describe the FPT algorithm solving Regular-

Cover for graph classes satisfying (P1), (P2), and (P3). It is an involved
dynamic programming on the reduction tree of H using two subroutines: a
generalization of the perfect matching problem (the bottleneck) and Lis-
tIso (fast).
• 11.4: Star Blocks Atoms with Lists. We discuss details concerning the only

slow subroutine in the meta-algorithm.
• 11.5: Applying the Meta-algorithm to Planar Graphs. We show that planar

graphs satisfy (P1), (P2), and (P3).
• 11.6: Concluding Remarks. We describe the time analysis of the algorithm

for regular covering testing of planar graphs and discuss open problems.

http://pavel.klavik.cz/orgpad/regular_covers.html

309

http://pavel.klavik.cz/orgpad/regular_covers.html

Chapter 11. Algorithmic Aspects of Regular Graph Covers

11.1 Complexity of Regular Graph Covering

We establish fundamental complexity properties of regular covering. Our goal is to
highlight similarities with the graph isomorphism problem.

Belonging to NP. The H-Cover problem clearly belongs to NP since one can just
test in polynomial time whether a given mapping is a locally bijective homomorphism.
Not so obviously, the same holds for RegularCover:

Lemma 11.1.1. The RegularCover problem belongs to NP.

Proof. By definition, G regularly covers H if and only if there exists a semiregular
subgroup Γ of Aut(G) such that G/Γ ∼= H. As a certificate, we give k permutations,
one for each element of Γ, and an isomorphism between G/Γ and H. We check that
these permutations define a group Γ acting semiregularly onG. The given isomorphism
allows to check that the constructed G/Γ is isomorphic to H. Clearly, this certificate
is polynomially large and can be verified in polynomial time.

One can prove even a stronger result:

Lemma 11.1.2. For a mapping p : G → H, we can test whether it is a regular
covering projection in polynomial time.

Proof. Testing whether p is a covering projection can clearly be done in polynomial
time. It remains to test regularity. Choose an arbitrary spanning tree T of H. Since
p is a covering, then p−1(T) is a disjoint union of k isomorphic copies T1, . . . , Tk

of T . We number the vertices of the fibers according to the spanning trees, i.e.,
p−1(v) = {v1, . . . , vk} such that vi ∈ Ti. This induces a numbering of the half-edges of
each fiber over a half-edge of H(H), following the incidences between half-edges and
vertices. For every half-edge h /∈ H(T), we define the permutation σh of {1, . . . , k}
taking i to j if there is a half-edge h′ ∈ p−1(h) incident with a vertex of Ti and paired
with a half-edge incident with a vertex of Tj.

Let Θ be the group generated by all σh, where h /∈ H(T). We assume that G
is connected. By Orbit-Stabilizer Theorem, we have |Θ| = |Θv| · |[v]|, and from the
connectivity, it follows that |[v]| = k. Therefore, the action of Θ is regular if and only
if |Θ| = k which can be checked in polynomial time.

The constructed permutations σh associated with p are known in the litera-
ture [165] as permutation voltage assigments associated with p.

GI-hardness. When k = |G|/|H| = 1, the problem RegularCover exactly cor-
responds to GraphIso. Let GI be the class of decision problems polynomial-time
reducible to GraphIso. Bodlaender [36] proved the following for general covers (and
his reduction works for regular covers as well):

Lemma 11.1.3. For every fixed k, the k-FoldCover and k-FoldRegularCover
problems are GI-hard.

310

11.2. Atoms, Reduction and Expansion

G

G

G G

G

G′ H ′

H

Figure 11.1: The graph G′ is constructed by k copies of G with attached universal
vertices connected into a cycle while H ′ is constructed by attaching a universal vertex
with a loop to H.

Proof. For input graphs G and H of the graph isomorphism problem, we construct
the graphs G′ and H ′ depicted in Fig. 11.1. The reduction works since the universal
vertices in G′ must be mapped to the universal vertex in H ′ (since covering projection
preserves degrees). Therefore, G′ (regularly) covers H ′ if and only if G ∼= H.

11.2 Atoms, Reduction and Expansion

Recall algorithmic results from Section 7.7. We show that we can algorithmically
compute with new definitions of Section 10.2.

Computing Symmetry Types of Atoms.

Lemma 11.2.1. For a dipole A, we can determine its symmetry type (halvable, sym-
metric, asymmetric) in polynomial time.

Proof. For a dipole A, we can determine in polynomial time using Lemma 7.7.4
whether it is asymmetric or not. It is halvable if and only if it is balanced and it
has an even number of undirected edges, which can be easily tested in polynomial
time as well.

Lemma 11.2.2. For a proper atom A of C satisfying (P1), (P2), and (P3 ∗), we can
determine its symmetry type (halvable, symmetric, asymmetric) in polynomial time.

Proof. Let ∂A = {u, v}. By Lemma 7.7.5, we can determine using (P1) and (P3 ∗)
whether A is asymmetric or not. If it is not asymmetric, we use (P2) to generate poly-
nomially many semiregular involutions of order two acting on B. For each semiregular
involution, we check whether it transposes u to v, and whether it preserves the col-
ors of V (B) coding pendant edges. If such a semiregular involution exists, then A is
halvable, otherwise it is just symmetric.

Computing Half-quotients of Proper Atoms.

Lemma 11.2.3. Let A be a proper atom of C satisfying (P1) and (P2). Then there
are polynomially many non-isomorphic half-quotients of A which can be computed in
polynomial time.

311

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Proof. By Lemma 7.4.4, A+ is either essentially a cycle (where it holds trivially), or it
is an essentially 3-connected graph. We construct B+ from A+ be replacing pendant
edges with colored vertices, by (P1) both A+ and B+ belong to C. According to (P2),
the number of different semiregular subgroups of order two is polynomial in the size of
B+. Each half-quotient is defined by one of these semiregular involutions which fixes
the edge uv, transposes u and v, and preserves colors.

Computing Reduction Series and Reduction Tree with Halvable Edges.

Lemma 11.2.4. If a graph G belongs to C satisfying (P1), (P2) and (P3 ∗), then the
reductions series G = G0, . . . , Gr and the reduction tree can be computed in polynomial
time.

Proof. We work exactly as in Lemma 7.7.6 but we use Lemma 11.2.2 instead of
Lemma 7.7.5.

11.3 Meta-algorithm

In this section, we establish the meta-algorithm from Theorem 6.6.3, solving Regu-
larCover for G belonging to C satisfying (P1) to (P3) in time O∗(2e(H)/2).

Let k = |G|/|H|, and we assume that k ≥ 2. (If k is not an integer, then clearly
G does not cover H. If k = 1, then it is equivalent to the graph isomorphism problem
and we can test it using Lemma 7.7.7.) The algorithm consists of the following major
parts:

1. Reduction Part: We construct the reduction series for G = G0, . . . , Gr terminat-
ing with the unique primitive graph Gr. Throughout the reduction the central
block is preserved, otherwise according to Lemma 10.3.2 there exists no semireg-
ular automorphism of G and we output “no”. According to (P1), the reduction
preserves the class C, and also every atom belongs to C.

2. Quotient Part: Using (P2), we construct the list of all subgroups Γr of Aut(Gr)
of the order k acting semiregularly on Gr. The number of subgroups in the list
is polynomially large by (P2).

3. Expansion Part: For each Γr in the list, we compute Hr = Gr/Γr. We say
that a graph Hr is expandable if there exists a sequence of extensions repeatedly
applying Theorem 6.6.1 which constructs H0 isomorphic to H. We test the
expandability of Hr using dynamic programming while using (P3).

It remains to explain details of Expansion Part, and prove the correctness of the
algorithm.

Outline. In Section 11.3.1, we give an overview of Expansion Part. In Section 11.3.2,
we describe a catalog which stores all atoms and their quotients discovered during
reductions. In Section 11.3.3, we describe reductions with lists, used in expandibility
testing. Last, in Section 11.3.4, we conclude with a proof of Theorem 6.6.3.

312

11.3. Meta-algorithm

G

edge-projection

G

loop-projection

G

half-projection

?

H

Figure 11.2: For a pendant block of H, there are three possible preimages in G. It
could be a block atom mapped by the edge-projection, or a proper atom mapped by
the loop-projection, or another proper atom mapped by a half-projection (where the
half-quotient is created by 180◦ rotation τ).

11.3.1 Overview of Testing Expandability

In this section, we explain how to test expandability of Hr. We start by illustrating
the fundamental difficulty, for simplicity on pendant blocks. Suppose that H has a
pendant block as in Fig. 11.2. From the local information, there is no way to know
whether this block corresponds in G to the edge-quotient of a block atom, or to the
loop-quotients of some proper atoms, or to half-quotients of some other proper atoms.
It can easily happen that the all these atoms appear in G. So without exploiting some
additional information from H, there is no way to know what is the preimage of this
pendant block.

In our approach, we revert the problem of expandability of Hr by reducing H
towards Hr. But since it is not clear which atoms of H correspond to which parts
of G, we do not decide it during the reductions, instead we just remember lists of all
possibilities. The dynamic programming deals with these lists and computes further
lists for larger parts of H. Figure 11.3 illustrates the overview of our algorithm.

Reductions of Quotients and Cores. Notice that Hr might not be primitive; see
Fig. 11.4 for an example. It would be difficult to match it to a reduction series in H,
so in Step 3, we further reduce Hr to a primitive graph Hs.

We define atoms in the quotient graphs similarly as in Section 7.4 with only
one difference. We choose one arbitrary block/articulation called the core in Hr; for
instance, we can choose the central block/articulation. The core plays the role of the

−→

←−

−→

←−

−→

←− −→
←−

−→
←−

−→
←−

−→ −→ −→ −→ −→ −→

−
→

−
→

−
→

−
→L ?

G = G0 G1 · · · Gr

H0 H1 · · · Hr Hr+1 · · · Hs

R0 R1 · · · Ri Ri+1 · · · Rt

Γ0 Γ1 Γr

H =

Step 1: reduction

Step 2: choose semiregular Γr ≤ Aut(G)

Step 3: further reduction

Step 4: choose core in H Step 5: reduction with lists

Step 6:
Step 7: compute the expansion from the isomorphism

Figure 11.3: The metaalgorithm proceeds in the following seven steps. We iterate
over all possible choices in Steps 2 and 4.

313

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Gr
Hr = Gr/Γr

Γr

Figure 11.4: A primitive graph Gr which is 3-connected. Let Γr be the semiregular
subgroup of Aut(Gr) generated by a 120◦ rotation. It defines the quotient Hr = Gr/Γr

which is not primitive (contains articulations and 2-cuts).

central block in the definition of parts and atoms. Also, in the definition we consider
half-edges and loops as pendant edges, so they do not form block atoms. We proceed
with the reductions in Hr further till we obtain a primitive quotient graph Hs, for
some s ≥ r; see Fig. 11.5.

Let H0, . . . , Hs−1 be the graphs obtained by an expansion series of Hs using
Theorem 6.6.1.

Lemma 11.3.1. The graph Hs is expandable to H, if and only if Hr is expandable to
H.

Proof. It follows from the fact that the graphs Hs−1, . . . , Hr are uniquelly determined,
since no half-edges are expanded till Hr.

Lemma 11.3.2. If Hs is expandable to H, then the core of Hs is expanded to some
block or articulation of H.

H1

red.

H2

red.

H3

red.

H4

Figure 11.5: The graph H1 is one quotient of G1 from Fig. 7.14. We further reduce
it to H3 with respect to the core block depicted in gray. Notice that H1 and H2 only
contain block atoms.

314

11.3. Meta-algorithm

Proof. The graph Hs consists of the core together with some pendant edges, loops
and half-edges. By Lemma 10.3.8, the core is preserved as an articulation/block in
all graphs Hs, . . . , H0. The core can be only changed by replacing of its colored edges
by edge-quotients. Since Hs is expandable to H0, the expanded core is isomorphic to
some block or articulation of H.

In Step 4, we test all possible positions of the core in H. (We have O(n) possibil-
ities, so we run the dynamic programming algorithm multiple times.) In what follows,
we have the core fixed in H as well.

In Step 5, we apply on H reductions with lists, described in Section 11.3.3. In
Step 6, we test whether some choices from these lists are compatible with the graph
Hs.

11.3.2 Catalog of Atoms

During the reduction phase of the algorithm, we construct the following catalog of
atoms forming a database of all discovered atoms. These atoms arise in three ways:
atoms of G0, . . . , Gr−1, atoms in half-quotients of these atoms, and atoms in the re-
ductions of the quotients Hr = Gr/Γr. We are not very concerned with a specific
implementation of the algorithm, so the purpose of this catalog is to simplify descrip-
tion.

For each isomorphism class of atoms represented by an atom A, we store the
following information in the catalog:

• The atom A.
• The corresponding colored edge of a given type representing the atom in the

reduction.
• If A is an atom of G0, . . . , Gr−1, the unique edge- and loop-quotients of A and

information about its half-quotients.

For an overview of adding an atom A into the catalog, see Algorithm 4.

Storing Star Block Atoms. Let A be a star block atom. We store it in the catalog
partially expanded which works as follows. By the definition, A consists of a vertex
with attached edges, loops and half-edges. If some edge corresponds to a star block
atom S, we replace it with the edges of S. Similarly, if some loop corresponds to the
loop-quotient Q of a dipole D, we replace it by the loops of Q. We repeat this till all
pendant edges of A correspond to block atoms and all loops of A correspond to loop-
quotients of proper atoms. On the other hand, the half-edges of A may correspond to
half-quotients of both proper atoms and dipoles.

Storing Dipoles. Let A be a dipole in G0, . . . , Gr−1. By Lemma 10.3.7, it can have
exponentially many non-isomorphic half-quotients. On the other hand, they are well
described in Section 10.3, so we can generate all of them from the dipole when needed.

We store this dipole A in the catalog partially expanded which works as follows.
Almost all edges of A correspond to proper atoms, while at most one edge corresponds

315

Chapter 11. Algorithmic Aspects of Regular Graph Covers

to a dipole D. (At most one since from the definition, a dipole D with ∂D = {u, v}
consists of all edges between u and v.) If one edge corresponds to D, we replace it in
A with the edges of the dipole D. And if one of these edges of D again correspond to
some dipole D′, we proceed further with the expansion.

Notice that by the definition of the reduction, all colored edges of D have different
colors than the edges of A. Therefore the half-quotients of the original dipole A are
exactly the same as the half-quotients of the partially expanded dipole A. The reason
for this expansion is that every half-quotient of the partially expanded dipole A consists
of loops and half-edges attached to one vertex, where each loop and each half-edge is
expanded into one block (with attached single pendant edges, half-edges and loops).

Algorithm 4: The subroutine for adding an atom into the catalog
Require: An atom A.
Ensure: If A is not contained in the catalog, then it is added. A colored halv-

able/undirected/directed edge corresponding to A is given.
1: if A is a star block atom then
2: while A contains a pendant edge e′ of a star block atom S do
3: Replace e′ with the edges of S.
4: while A contains a loop e′ of the loop-quotient of a dipole D do
5: Replace e′ with the loops of the loop-quotient of D.
6: if A is a dipole then
7: while A contains an edge e′ corresponding to a dipole D do
8: Replace e′ with the edges of D.
9: We test whether A is contained in the catalog using Lemma 11.3.4.

10: if A is contained in the catalog then
11: return The corresponding colored edge representing A.
12: We determine the symmetry type of A using Lemmas 7.7.4 and 7.7.5.
13: We assign an edge e of a new color of the corresponding type to A.
14: if A is an atom of G0, . . . , Gr. then
15: We compute the edge-quotient of A and the loop-quotient of A (if A is not a

block atom).
16: if A is a dipole consisting of exactly two halvable edges of the same color then
17: We add the half-quotient of A with one loop to the list of half-quotients.
18: if A is a halvable proper atom then
19: We compute all half-quotients Q of A by Lemma 11.2.3.
20: for each half-quotient Q do
21: Apply the reduction series on Q with respect to the block containing ∂Q,

constructing a primitive graph Q′.
22: Add all detected atoms to the catalog and replace them by the correspond-

ing colored edges.
23: Add Q′ to the catalog, as a half-quotient of A.
24: return The assigned colored edge e corresponding to A.

316

11.3. Meta-algorithm

A

〈τ〉

Q = A/ 〈τ〉

red. red.

red.

Q′

Figure 11.6: A proper atom A with a half-quotient Q generated by 180◦ rotation τ .
A reduction series is applied on Q which adds further atoms to the catalog and the
primitive graph Q′.

Further, if a halvable dipole A consists of exactly two edges of the same color,
we compute its half-quotient consisting of just the single loop attached, and we add
this quotient to the catalog. The reason is that this quotient behaves exactly as the
loop-quotient of some proper atom.

Storing Proper Atoms. If A is not a dipole, we compute the list of all its pairwise
non-isomorphic half-quotients, and store them in the catalog in the following way. A
half-quotient Q of A might not be primitive. Therefore, we apply a reduction series on
Q, and add all atoms discovered by the reduction to the catalog. (We do not compute
their half-quotients. They are never realized unless these atoms are directly found
in G as well.) When the reduction series finishes, this half-quotient is reduced to a
primitive graph Q′. Naturally, the block containing ∂Q, being a single vertex of the
half-quotient, behaves like the central block in the definition of atoms, i.e., it is never
reduced. The reduced half-quotient Q′ is either essentially 3-connected, a cycle with
attached single pendant edges, or K2 with a single pendant edge or half-edge attached.
See Fig. 11.6 for an example.

Total Size of Catalog. Next, we prove that the catalog is not too large.

Lemma 11.3.3. Assuming (P2), the catalog contains polynomially many atoms and
half-quotients.

Proof. First we deal with the number of atoms in G0, . . . , Gr. Notice that by replacing
an interior of an atom, the total number of vertices and edges is decreased; the interiors
of atoms in each Gi contain at least two vertices and edges in total and are pairwise
disjoint (see Lemma 7.4.7). Thus we add a linear number of atoms of G0, . . . , Gr to
the catalog, of total linear size.

By (P2), there are polynomially many possible quotientsHr, in each we encounter
linearly many atoms when reducing to Hs. So we add polynomially many atoms to
the catalog.

By (P2), each proper atom A has polynomially many half-quotients, for different
semiregular involutions of Aut(A). So, we have in total polynomially many half-

317

Chapter 11. Algorithmic Aspects of Regular Graph Covers

quotients, each containing at most linearly many atoms in its reduction series. And
by Lemma 10.2.2 we have the unique edge- and loop-quotient. So again, the total
number of atoms and quotients added to the catalog is polynomial.

Catalog Queries. Throughout the algorithm, we repeatedly ask queries whether
some atom or some of its quotients is contained in the catalog, and if so, we retrieve
the corresponding colored edge/loop/half-edge.

Lemma 11.3.4. Assuming (P3 ∗), each catalog query can be answered in polynomial
time.

Proof. By Lemma 11.3.3, we need to test graph isomorphism for the input atom/quotient
and polynomially many atoms/quotients in the catalog. If the input is an atom of an
edge-quotient, we use Lemma 7.7.3. If it is a loop- or a half-quotient, then it is a
primitive graph and we use Lemma 7.7.2.

11.3.3 Reductions with Lists

In this section, we describe Steps 5 and 6 of the diagram in Fig. 11.3. By Lemma 11.3.1,
we need to test whether Hs is expandible to H. We approach this in the opposite way,
by applying a reduction series on H with respect to the core defining H0, . . . ,Ht.
As already discussed in Section 11.3.1, we do not know which parts of G project to
different parts of H. Therefore each Hi is a set of graphs, and Ht is a set of primitive
graphs. We then determine expandability of Hs by testing whether Hs ∈ Ht.

Since each set Hi can contain a huge number of graphs, we represent it implicitly
in the following manner. Each Hi is represented by one graph Ri with some colored
edges and with so-called pendant elements attached to some vertices.

Pendant Elements with Lists. A pendant element x in Ri corresponds to a block
atom in Rj for some j < i, which is reduced in Rj+1. When pendant elements are
fully expanded, they correspond to block part of H with pairwise disjoint interiors.
We use the name pendant element since it may represent a pendant edge of some color,
several loops of some other colors, and several half-edges of some other colors.

Each pendant element x is equipped with a list L(x) whose members are possible
realizations of the corresponding block atom by the quotients from the catalog. Each
graph of Hi is created for Ri by replacing the pendant elements by some choices of
edges, loops and half-edges from their lists. The list L(x) of a pendant element x con-
tains an edge/loop/half-edge if and only if it is possible to expand this edge/loop/half-
edge to the graph isomorphic to the block part corresponding to x. For an example,
see Fig. 11.7. According to Lemma 11.3.3, we have polynomially many atoms, and so
the size of each list is polynomial in size.

Lemma 11.3.5. Each list L(x) contains at most one edge. Further, if two lists share
an edge or a loop, their pendant elements correspond to isomorphic block parts in H.

Proof. Two atoms have the isomorphic edge-quotients if and only if they are isomor-
phic. Therefore each list L(x) contains at most one edge.

318

11.3. Meta-algorithm

R0

red.
? x

R1

L(x) =
{

, ,

}

Figure 11.7: Let x be the pendant element corresponding to the pendant block of H
depicted in Fig. 11.2. Then L(x) contains three different members if all three atoms
depicted in Fig. 11.2 are contained in the catalog.

If a pendant element x is fully expanded, it corresponds to one block part of
H. Suppose that an edge- or a loop-quotient belongs to L(x). If it is fully expanded,
then it has to be isomorphic to this block part. But according to Lemma 10.2.2,
the expansions of edge- and loop-quotients are deterministic since half-edges are never
encountered. Therefore the corresponding block part in H is uniquely determined.

One list may contain several loops, for which identifying of the vertices of the
boundaries constructs identical graphs; see Fig. 11.8. Similarly, a list may contain
several half-edges; see Fig. 11.9. Because of the second part of Lemma 11.3.5, the
loops pose no problem. On the other hand, one half-edge may be contained in lists of
several different pendant elements which are expanded to non-isomorphic subgraphs
in H; see Fig. 11.8. This creates the main difficulty for our algorithm, leading to the
bottleneck in form of a slow subroutine requiring time O∗(2e(H)/2).

Reductions with Lists. We want to compute the reduction series with lists H =
R0,R1, . . . ,Rt ending with a primitive graph Rt with attached pendant elements with
computed lists. We construct R0 by replacing all pendant edges and loops by pendant
elements with singleton lists.

Suppose that we know Ri, and we want to apply one step of the reduction and

A1 A2 A3

{

, ,
}

?

?

{ }

{ }

{ }

Figure 11.8: Two block atoms corresponding to pendant elements with depicted
lists. On the left, the list has the loops corresponding to A1 and A2 and the half-edge
corresponding to A3. On the right, the list only contains the half-edge of A3.

319

Chapter 11. Algorithmic Aspects of Regular Graph Covers

D1

〈τ1〉
≈

D1/ 〈τ1〉 D2/ 〈τ2〉 D2

〈τ2〉

Figure 11.9: An example of two dipoles D1 and D2 having isomorphic half-quotients.
Consider the atoms A1 and A3 from Fig. 11.8, for which the loop-quotient of A1 is
isomorphic to a half-quotient of A3. Let D1 consist of four edges corresponding to A1
and let D2 consist of two edges corresponding to A3. Then the half-quotient D1/ ⟨τ1⟩
can be expanded to a graph isomorphic to an expansion of the half-quotient D2/ ⟨τ2⟩.

compute Ri+1. We find all atoms in Ri. We define atoms with respect to the chosen
core in H, and we work with pendant elements as with pendant edges. Further, we
consider only star block atoms consisting only of an articulation with all its descendants
attached in form of reduced pendant elements. This means that we postpone reduction
of star block atoms till all their descendants are reduced first. (The same modification
could be applied in all reductions as well, but it is important here.)

To construct Ri+1 from Ri, we proceed with the following:

• We replace dipoles and proper atoms by edges of the corresponding colors from
the catalog. A proper atom might have pendant elements attached to its interior,
but these pendant elements are always realized by edges corresponding to the
edge-quotients of some block atoms. Therefore, we can replace the pendant
elements with lists by the unique edges from these lists, and if some list contains
no edge, we stop the reduction. We run a catalog query and if the dipole or
proper atom is not contained in the catalog, we halt the reduction procedure.
• We replace block atoms by pendant elements with constructed lists. If some list

is empty, we again halt the reduction.

It remains to describe the construction of the lists for the created pendant elements.

Computing Lists. Let A be a block atom in Ri, replaced by a pendant element x in
Ri+1, and we want to compute L(x). We compute L(x) from the lists of the pendant
elements attached to A. Suppose that A has pendant elements y1, . . . , yp attached.
For each member of L(x), we remember which members of L(y1), . . . ,L(yp) have to be
chosen for its expansion.
Lemma 11.3.6. Let A be a non-star block atom in Ri. Assuming (P3), we can
compute the list L(x) of the pendant element x corresponding to A in polynomial time.

Proof. We iterate over quotients in the catalog which are K2 with a single pendant
edge, essentially cycles, or essentially 3-connected graphs by Lemma 7.4.3. Let Q be
such a quotient. For u ∈ ∂A, we put L(u) = ∂Q. For each single pendant element y of
A attached at u, we construct L(u) consisting of all vertices v ∈ V (Q) such that the
pendent edge/loop/half-edge attached at v belongs to L(y). We remove all pendant
elements attached at A and all pendant edges/loops/half-edges attached at Q.

By definition of pendant elements, it is possible to expand Q to the block part
corresponding to A if and only if there exists a list-compatible isomorphism A L−→ Q.

320

11.3. Meta-algorithm

?

?

?

{

,
}

{

,
}

{

,
}

A A1 A2

Figure 11.10: On the left, a non-star block atom A in Ri with depicted lists of
its pendant elements. On the right, two possible atoms from the catalog having a
quotient for which there exists a list-compatible isomorphism from A. So the list of
the pendant element replacing A in Ri+1 contains the pendant edge corresponding
to the edge-quotient of the block atom A1 and the half-edge corresponding to a half-
quotient of the proper atom A2.

If Q is K2 or a cycle, we test it trivially. If Q is 3-connected, we test it using (P3). If
A L−→ Q, we add the pendant edge/loop/half-edge representing this quotient to the
list L(x), and we remember the constructed isomorphism A L−→ Q. See Fig. 11.10 for
an example.

On the other hand, if A is a star block atom, we compute its list by a slow
subroutine. If this slow subroutine can be avoided and the list for A can be computed
in polynomial time, the entire meta-algorithm of Theorem 6.6.3 runs in polynomial
time.
Lemma 11.3.7. Let A be a star block atom in Ri. We can compute the list L(x) of
the pendant element x corresponding to A in time O∗(2e(H)/2).

Proof. Each star block atom of Ri corresponds either to the edge-quotient of a star
block atom, or to the loop- or a half-quotient of a dipole. Lemma 10.3.7 states that a
dipole can have exponentially many pairwise non-isomorphic half-quotients, we iterate
over all of them which gives 2e(H)/2 part in the complexity bound. Since we postpone
reduction of star block atoms, all pendant elements of A necessarily correspond to
non-star block atoms in some Rj, for j < i, so each pendant element corresponds in
H to one subtree of blocks attached at the vertex of A.

Case 1: Dipoles. We iterate over all partially expanded dipoles in the catalog
and try to add them to the list L(x). Let D be a partially expanded dipole, recall that
all edges of D correspond to proper atoms.

We test whether the lists of the pendant elements attached to the star block
atom A are compatible with the loop-quotient of D. Each loop of this loop-quotient
corresponds to the loop-quotient of some proper atom which is either a cycle with
attached single pendant edges, or essentially 3-connected by Lemma 7.4.4. Therefore,
it corresponds to exactly one pendant element in A. By Lemma 11.3.5, each loop
belongs only to lists of pendant elements of type. Therefore, we just need to compare
the number of loops in each color class with the number of lists containing this colored
loop. If these numbers match, we add the loop representing the loop-quotient of D to
L(x).

321

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Then we iterate over all half-quotients of D. By Lemma 10.3.7, let Q be one
of its at most 2e(H)/2 possible quotients. Recall from Section 11.2 that an edge of D
projects either to a half-edge, or together with another edge of D of the same color
and type to one loop. So each Q consists of loops and half-edges attached to a vertex.
Since all edges of D correspond to proper atoms, each loop and each half-edge has to
be matched to one pendant element of A.

Therefore, we test existence of a perfect matching in the following bipartite graph:
One part is formed by the loops and the half-edges of Q, and the other part is formed
by the pendant elements of A. A loop/half-edge is adjacent to a pendant element, if
and only if the corresponding list contains this loop/half-edge. Each perfect matching
defines one assignment of the loops and half-edges of Q to the pendant elements of A.
See Fig. 11.11 for an example. We add the half-edge corresponding to a half-quotient
of D to L(x) if and only if there exists a perfect matching for at least one half-quotient
Q of D.

Case 2: Star Block Atoms. We iterate over all partially expanded star block
atoms of the catalog, let S be one of them. The star block atom S consists of one
vertex with attached pendant edges (corresponding to non-star block atoms), loops
(corresponding to the loop-quotients of proper atoms) and half-edges. Some of these
half-edges correspond to dipoles, and some to proper atoms. Let h1, . . . , hd be the
half-edges corresponding to partially expanded dipoles D1, . . . , Dd from the catalog.
We construct all expanded edge-quotients Q of S by replacing h1, . . . , hd by all possible
choices of half-quotients Q1, . . . , Qd of D1, . . . , Dd. In total, we have at most 2e(H)/2

different expanded edge-quotients Q of S.
All pendant edges of Q correspond to non-star block atoms, and all loops and

half-edges correspond to loop- and half-quotients of proper atoms. Therefore, every
edge, loop and half-edge attached in Q has to be matched to one pendant element
of A. Similarly as above, for each expanded edge-quotient Q, we test whether there
exists a perfect matching between edges, loops and half-edges of Q and the lists of
pendant elements of A. We add the edge representing the edge-quotient of the star
block atom S to L(x), if and only if there exists a perfect matching for some expanded
edge-quotient Q of S.

?
?

?
?

{

,
}

{

,
}

{

,
}

{

,
}

A

D Q

{

,
}

{

,
}

{

,
}

{

,
}

Figure 11.11: The half-edge corresponding to a half-quotient of the dipole D belongs
to the list L(x) of a pendant element x replacing A because there exists a perfect
matching between the loops and half-edges of the half-quotient Q of D and the lists
of pendant elements of A.

322

11.3. Meta-algorithm

The procedure computes the list L(x) correctly since we test all possible quotients
from the catalog, and for each quotient we test all possibilities how it could be matched
to A. For each quotient Q, the running time is clearly polynomial, and we have
O∗(2e(H)/2) quotients.

Algorithm 5 gives the pseudocode for computation of the list L(x) of a pendant
element x replacing an atom A. If the returned list is empty, we halt the reduction;
either Hs is not expandable to H, or we have chosen a wrong core in H.

Testing Expandibility. The reduction with lists ends with a primitive graph Rt

with lists. For one particular choice of a core, Rt represents the set of graphs Ht to
which H can be reduced.

In the following, we denote by Rt
L−→ Hs existence of a list-compatible iso-

morphism which preserves colors and orientations of edges and maps pendant ele-
ments x of Rt into pendant edges, loops and half-edges of Hs such that π(x) ∈
L(x). (It corresponds to a list-compatible isomorphism defined in Section ?? when
pendant elements/edges/loops/half-edges are removed, as described in the proof of
Lemma 11.3.6.)

Lemma 11.3.8. The graph Hs is expandable to H0 which is isomorphic to H if and
only if Rt

L−→ Hs for some choice of the core in H.

Proof. Suppose that Rt
L−→ Hs for some choice of the core. By the definition, every

pendant element x of Rt can be replaced by any member of L(x) which can be fully
expanded to the block part in H corresponding to x. The list-compatible isomorphism
chooses for pendant elements of Rt realization by edges, loops and half-edges which is
compatible with the computed quotient of Hs.

In more detail, we first expand edges inHs, . . . , Hr+1 by the unique edge-quotients
to reach Hr, this has to be compatible with the sequence of replacements defined by
Rt

L−→ Hs. Then we do replacements in the manner of Theorem 6.6.1, and con-
struct the expansions Hr−1, . . . , H0. Since we expand according to the list-compatible
isomorphism Rt

L−→ Hs, the constructed graph H0 is isomorphic to H.
On the other hand, suppose that Hs is expandable to H0 which is isomorphic to

H. Then according to Lemma 10.3.8, the core of Hs is preserved in H, so it has to
correspond to some block or to some articulation of H, which we choose as the core of
H. Since there exists a sequence of replacements from Hs which constructs H0, this
sequence of replacements is possible in Rt. Thus Rt

L−→ Hs.

Lemma 11.3.9. Assuming (P3), we can test whether Hs is expandable to H0 which
is isomorphic to H in time O∗(2e(H)/2).

Proof. We iterate over all choices of the core in H. For each, we compute the reduction
series with lists H = R0, . . . ,Rt, using Algorithm 5 and Lemmas 11.3.6 and 11.3.7.
We modify both graphs Rt and Hs similarly as in the proof of Lemma 11.3.6. For
each pendant element x of Rt attached at u, we put L(u) be the set of all vertices of
V (Hs) having an attached pendant edge/loop/half-edge which belongs to L(x), and
we remove x. We remove all pendant edges/loops/half-edges of Hs.

323

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Algorithm 5: The subroutine for computing lists of pendant elements
Require: A block atom A of Ri.
Ensure: The list L(x) of the pendant element x replacing A in Ri+1.

1: Initiate the empty list L(x).
2: if A is a non-star block atom then
3: Iterate over all quotients from the catalog.
4: for each quotient Q from the catalog do
5: For each pendant element x of A attached at u, set L(u) to all vertices V (Q)

having an attached pendant edge/loop/half-edges belonging to L(x), and re-
move x.

6: Remove all pendant edges/loops/half-edges in Q, and test A L−→ Q (trivially
or using (P3)).

7: If some list-compatible isomorphism exists, we add the edge/loop/half-edge
of Q to L(x) together with this list-compatible isomorphism.

8: if A is a star block atom then
9: Iterate over all partially expanded dipoles D and star block atoms S in the

catalog.
10: for each partially expanded dipole D do
11: Test whether the loop-quotient of D matches the lists; if yes, then add the

loop representing D to L(x).
12: Iterate over all half-quotients Q of D.
13: for each half-quotient Q do
14: Test existence of a perfect matching between the loops and half-edges of Q

and the lists of the pendant elements of A.
15: If a perfect matching exists, add the half-edge of D to L(x) together with

this half-quotient Q and this matching, and proceed with the next dipole.
16: for each partially expanded star block atom S do
17: Compute all expanded edge-quotients Q of S by replacing the half-edges

h1, . . . , hd corresponding to the dipoles by all possible combinations of their
half-quotients Q1, . . . , Qd.

18: for each expanded edge-quotient Q do
19: Test existence of a perfect matching between the edges, loops and half-edges

of Q and the lists of the pendant elements of A.
20: If a perfect matching exists, then add the edge of S to L(x) with this

expanded edge-quotient Q and this matching, and proceed with the next
star block atom.

21: return The constructed list L(x).

Then we test whether Rt
L−→ Hs. It is trivial to deal with the cases when Hs or

Rt are cycles, K2 or K1. Otherwise by Lemma 7.4.2, both Hs and Rt are 3-connected
graphs, and we testRt

L−→ Hs using (P3). By Lemma 11.3.8, this subroutine is correct
and runs in time O∗(2e(H)/2).

324

11.3. Meta-algorithm

11.3.4 Proof of The Main Theorem

Now, we are ready to establish the main algorithmic result of the paper; see Algo-
rithm 6 for the pseudocode. Assuming that a class C satisfies (P1) to (P3), we show
that RegularCover can be solved for C-inputs G in time O∗(2e(H)/2):

Proof of Theorem 6.6.3. We recall the main steps of the algorithm and discuss their
time complexity. The reduction series G0, . . . , Gr can be computed in polynomial time,
by Lemmas 7.7.6 and 11.3.4. We reach in Gr one of primitive graphs characterized in
Lemma 7.4.2. If Gr is essentially 3-connected, the property (P2) ensures that there
are polynomially many semiregular subgroups Γr of Aut(Gr) which can be computed
in polynomial time. If Gr is K2 with attached single pendant edges or essentially a
cycle, it is true as well.

For each of these subgroups Γr, we compute the quotient Hr = Gr/Γr. Then we
compute the reduction seriesHr, . . . , Hs, again in polynomial time using Lemma 11.3.4.
Using Lemma 11.3.9, we test in timeO∗(2e(H)/2) whether Hs is expandable to H0 which
is isomorphic to H. We output “yes” if and only if Hr = Gr/Γr is expandable to H0
isomorphic to H for at least one the subgroups Γr.

To certify the “yes” outputs, we construct the semiregular subgroup Γ ≤ Aut(G)
such that G/Γ ∼= H as follows. If Rt

L−→ Hs for some choice of the core in H, this list-
compatible isomorphism describes how to expand Hs to H0 which is isomorphic to H
using Theorem 6.6.1. This expansion replaces edges, loops and half-edges with edge-
quotients, loop-quotients and some choices of half-quotients. The expansion towards
Hr is deterministic since no half-edges are replaced.

We expand Hr, . . . , H0, together with constructing group extensions Γr−1, . . . ,Γ0
of Γr, where Γi is a semiregular subgroup of Aut(Gi). When Gi+1 is expanded to Gi, we
replace some edges with interiors of some atoms. In the common parts, we define the
actions of Γi and Γi+1 the same. It remains to define the action of Γi on the interiors of
these atoms in such a way that Gi/Γi = Hi. When some orbit of atoms is projected to
the edge- or loop-quotients, then we isomorphically swap their interiors in Γi the same
as the corresponding edges are swapped in Γi+1. For an orbit which is projected to
half-quotients, we further compose some automorphisms of Γi with the half-quotient
defining semiregular involution τ on their interior (when the corresponding edges are
flipped in Γi). For more details, see [119], proofs of Lemma 4.7 and Theorem 1.3
therein.

It remains to argue correctness of the algorithm. First suppose that the algorithm
succeeds. We construct a semiregular subgroup Γ of Aut(G). By Lemma 11.3.8, some
Hs is expandible to H0 which is isomorphic to H. By Theorem 6.6.1, we get that
G/Γ ∼= H which proves that G regularly covers H. On the other hand, suppose that
there exists a semiregular Γ such that H ∼= G/Γ. Then Γ corresponds to the unique
semiregular subgroup Γr on Gr which is one of the semiregular subgroups tested by
the algorithm. Therefore Hr has to be expandable to H0 isomorphic to H, and we
detect this correctly according to Lemma 11.3.8.

Next, we prove two corollaries. The first corollary states that if G is 3-connected,

325

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Algorithm 6: The meta-algorithm for regular covers – RegularCover
Require: A graph G of C satisfying (P1), (P2) and (P3), and a graph H.
Ensure: A semiregular subgroup Γ ≤ Aut(G) such that G/Γ ∼= H if it exists.

1: Compute the reduction series G0, . . . , Gr ending with the primitive graph Gr.
2: During the reductions, we use Algorithm 4 to add atoms and their quotients into

the catalog, and to replace them with colored edges.
3: Using (P2), we compute all semiregular subgroups Γr of Aut(Gr).
4: for each semiregular subgroup Γr do
5: Compute the quotient Hr = Gr/Γr.
6: Choose, say, the central block/articulation of Hr as the core.
7: Compute the reduction series Hr, . . . , Hs with respect to the core.
8: During the reductions, we use Algorithm 4 to add atoms into the catalog, and

to replace them with colored edges.
9: for each guessed position of the core in H do

10: Compute the reduction series with lists H = R0, . . . ,Rt.
11: to compute Ri+1 from Ri do
12: for each proper atom or dipole A in Ri do
13: if A is a proper atom then
14: Replace its pendant elements with the unique pendant edges from their

lists. If some list contains no pendant edge, halt and test for other
choices of the core in H.

15: Replace A with a colored edge using the catalog. Halt and test for other
choices of the core in H if A is not in the catalog.

16: for each block atom A in Ri do
17: Replace it by a pendant element x whose list L(x) is computed using

Algorithm 5. Halt and test for other choices of the core in H if L(x) is
empty.

18: Test Rt
L−→ Hs using Lemma 11.3.9.

19: if Rt
L−→ Hs then

20: Using the lists, compute the expansions Hs−1, . . . , H0 such that H0 ∼= H.
21: Using Theorem 6.6.1, compute the group extensions Γr−1, . . . ,Γ0 = Γ to

the interiors of expanded edges, loops and half-edges. For half-edges, use
involutions τ on interiors of replacing half-quotients.

22: By Lemma 11.3.8, G/Γ ∼= H, so the group Γ defines the regular covering
projection p : G→ H.

23: return The semiregular subgroup Γ ≤ Aut(G).
24: return The graph G does not regularly cover the graph H.

H is 2-connected or k = |G|/|H| is odd, the meta-algorithm can avoid the slow sub-
routine of Lemma 11.3.7 and can be modified to run in polynomial time.

Proof of Corollary 6.6.4. If G is 3-connected, then it is primitive, so G = Gr. There-
fore, we compute all quotients Hr = Gr/Γr, and test using Lemma 7.7.7 whether

326

11.4. Star Blocks Atoms with Lists

Hr
∼= H. No reduction with lists needs to be applied. If H is 2-connected, no pen-

dant elements are created the reduction of H with lists, so the slow subroutine can be
avoided and even the assumptions (P1), (P2) and (P3∗) are sufficient.

If |Γ| = |Γr| is odd, then no half-edges occur in Hr, and so according to Corol-
lary 10.3.6, the expansion gives the unique graph H0. We just test whether H0 ∼=
H.

Next, we prove that we can modify the meta-algorithm to output all regular
quotients of G, with a polynomial-time delay.

Proof of Corollary 6.6.5. We compute the reduction series G = G0, . . . , Gr and all
semiregular subgroups Γr of Aut(Gr). Next, we run all possible expansions of Hr =
Gr/Γr to H0 using Theorem 6.6.1, by all possible choices of half-quotients. All half-
quotients of proper atoms can be computed in polynomial time. For dipoles, we can
easily generate them with polynomial-time delays. We output all constructed graphs
H0.

11.4 Star Blocks Atoms with Lists

The bottleneck in the running time of the meta-algorithm of Theorem 6.6.3 is the single
slow subroutine in Lemma 11.3.7, computing lists of pendant elements replacing star
block atoms in Ri. In this section, we give insights into this problem, which might
lead to a faster algorithm for RegularCover of planar graphs.

We show a combinatorial reformulation to finding a certain generalization of a
perfect matching which we call IV-Matching. Here we describe a complete derivation
of this problem, and in Conclusions we just give its combinatorial statement.

Instance. Figure 11.12 shows an example. Suppose that Ri contains a star block
atom A with attached pendant elements, each with a previously computed list and
corresponding to a non-star block atom. We want to determine the list L(x) of the
pendant element x replacing A in Ri+1. The following are the candidates for members
of L(x):

• Each loop corresponding to the loop-quotient of a dipole D.
• Each half-edge corresponding to a half-quotient of a dipole D.
• Each edge corresponding to the edge-quotient of a star block atom S.

Since loop-quotients of dipoles are uniquely determined, we can easily test them
and we can ignore them. The case of a half-quotient of a dipole D can be reduced to
a star block atom S with a single half-edge attached corresponding to a half-quotient
of D. If S can be matched to A, we instead add the half-edge corresponding to a half-
quotient of D to L(x). Therefore, in the remainder of this section, we only deal with
the case of a star block atoms S. We want to decide whether the edge corresponding
to the edge-quotient of S belongs to L(x). We shall assume that at least one half-edge
attached in S corresponds to a dipole, otherwise the problem is trivial.

327

Chapter 11. Algorithmic Aspects of Regular Graph Covers

? ?
?

?

?

?
??

3×
{

,
}

2×
{ }

3×
{

,
}

2×
{

,
}

3×
{ }

4×
{

,
}

3×
{

,
}

3×
{

,
}

A

Ri

S

2×

5×

3×D1

red.

Figure 11.12: On the left, a star block atom A in Ri with 23 attached pendant
elements, together with their lists and multiplicities. On the right, a star block atom
S from the catalog which belongs to L(x). The bold dashed edges correspond to
the partially expanded dipole D1 whose edges are depicted with multiplicities, the
remaining colored edges correspond to proper atoms.

Outline. In Section 11.4.1, we simplify both A and S. In Section 11.4.2, we further
apply size constraints to simplify them. In Section 11.4.3, we derive the IV-Matching
problem.

11.4.1 Preprocessing Star Block Atoms

The star block atom S has several pendant edges, loops and half-edges attached.
Further, we may assume that S is partially expanded (see Section 11.3.2), so its pen-
dant edges correspond to non-star block atoms and its loops correspond to proper
atoms. On the other hand, a half-edge can be of two types: either it corresponds to
a half-quotient of a proper atom, or of a dipole. For example, in Fig. 11.12 we have
two half-edges corresponding to proper atoms, and two half-edges corresponding to
dipoles. Further, we may assume that all these dipoles are partially expanded (see
Section 11.3.2), so all their edges correspond to proper atoms.

Unifying Dipoles. Recall that every half-quotient of a dipole consists of half-edges

S

unified dipoles

S

4× 8×

D

Figure 11.13: We apply the unification on the example in Fig. 11.12 as follows. We
unify both occurances of the dipole D1 into the dipole D. Since the colored classes of
gray edges have odd sizes, we attach one half-edge per dipole from each class directly
to S.

328

11.4. Star Blocks Atoms with Lists

and loops attached to one vertex. Since S may contain multiple half-edges correspond-
ing to half-quotients of dipoles, we want to unify them into one dipole D containing
all their edges. (This may happen in the quotients; see Fig. 11.14.)

The issue is that this unification might introduce additional quotients of D as
in Fig. 11.14. If two dipoles both contain an odd number of edges of one color, the
unified dipole D has a half-quotient consisting of only loops of this color which is not
possible in the case of half-quotients of two separated dipoles. There is an easy fix:
we check each dipole and we remove one edge from each color class of odd size (of
necessarily halvable edges) and attach the half-edge of this color directly to S. At
least one half-edge of this color appears in every half-quotient of this dipole, so the
possible half-quotients are not changed. In Fig. 11.13, we illustrate this preprocessing
for the example in Fig. 11.12.

Non-halvable Edges of The Dipole. If the dipole D contains some non-halvable
edges, then they are paired in every half-quotient of D and form loops. We remove
them from D and attach the corresponding number of loops directly in S. After this
step, the dipole D contains only even number of halvable edges in each color class.

Attached Pendant Edges and Loops. The star block atom S may have some
pendant edges (corresponding to non-star block atoms) and loops (corresponding to
proper atoms) attached. Therefore, each attached pendant edge/loop corresponds to
exactly one pendant element of A. By Lemma 11.3.5, each is contained in list of
only one type of pendant elements, all corresponding to isomorphic block parts in
H. Therefore, we can arbitrarily assign pendant elements, remove them from A and
remove these pendant edges and loops from S.

Summary. By the preprocessing of S and A described above, we may assume the fol-
lowing. The star block atom S has only half-edges attached, all but one corresponding
to proper atoms. The remaining half-edge corresponds to the unified dipole D having
only color classes of even sizes of halvable edges corresponding to proper atoms.

For each pendant element x of A, the list L(x) contains only half-edges (attached
in S or in a half-quotient of D) and loops (corresponding to halvable edges of D).

Gr−1

red.

Gr

Γr

Hr

ex
p.

exp.

exp.

Hr−1

Figure 11.14: For Γr generated by two reflections, the quotient Hr consists of a star
block atom with two half-edges corresponding to dipoles. All three expansions Hr−1
up to isomorphism are depicted. But it is not possible to expand Hr to the quotient
with three attached loops.

329

Chapter 11. Algorithmic Aspects of Regular Graph Covers

11.4.2 Sizes and Chains

To simplify the problem further, we study sizes of atoms and their quotients. Let A
be an atom and let Q be a quotient of this atom. Depending on the type of Q, we get:

• Q is the edge-quotient: Then v(Q) = v(A) and e(Q) = e(A).
• Q is the loop-quotient: Then v(Q) = v(A)− 1 and e(Q) = e(A).
• Q is a half-quotient: Then v(Q) = v(A)/2 and e(Q) = e(A)/2.

Sizes of Expanded Subgraphs and Quotients. Throughout each reduction, we
calculate how many vertices and edges are in all the atoms replaced by colored edges
which we denote by v̂ and ê. Initially, we put v̂(e) = 0 and ê(e) = 1 for every edge
e ∈ E(G0). For a subgraph X, we define

v̂(X) := v(X) +
∑

e∈E(X)
v̂(e), and ê(X) :=

∑
e∈E(X)

ê(e).

When an atom A is replaced by an edge e in the reduction, we put v̂(e) = v̂(Å) and
ê(e) = ê(Å). For a subgraph X of Gi, the numbers v̂(X) and ê(X) are the numbers
of vertices and edges when X is fully expanded.

We similarly define v̂ and ê for quotients and their subgraphs; the difference is
that the quotients may contain half-edges. For a half-edge h ∈ H(X), created by
halving an edge e, we put v̂(h) = v̂(e)/2 and ê(h) = ê(e)/2. For a subgraph X, we
define

v̂(X) := v(X) +
∑

e∈E(X)
v̂(e) +

∑
h∈H(X)

v̂(h), and ê(X) :=
∑

e∈E(X)
ê(e) +

∑
h∈H(X)

ê(h).

Sizes of Pendant Elements. We also inductively define v̂ and ê for pendant ele-
ments x and subgraphs X of R0, . . . ,Rt. Initially, we put v̂(e) = 0 and ê(e) = 1 for
every edge e ∈ E(R0). For a subgraph X of Ri, let P (X) be the set of all pendant
elements in X. We define

v̂(X) := v(X) +
∑

e∈E(X)
v̂(e) +

∑
y∈P (X)

v̂(ẙ), and ê(X) :=
∑

e∈E(X)
ê(e) +

∑
y∈P (X)

ê(y),

while for a pendant element x corresponding to an atom A in Ri, we define v̂(x) =
v̂(A), v̂(̊x) = v̂(Å) = v̂(x)− 1, and ê(x) = ê(A).

Restricting Lists by Sizes. Next, we show that these sizes can restrict possible
members of lists of pendant elements:

Lemma 11.4.1. For a pendant element x, the possible pendant edge and all loops and
half-edges of the list L(x) have the same v̂ and ê as v̂(x) and ê(x), respectively.

Proof. The pendant element x corresponds to a block part of H. All members of
L(x) can be fully expanded to graphs isomorphic to this block part. Necessarily, these
graphs contain the same number of vertices and edges as v̂(x) and ê(x).

330

11.4. Star Blocks Atoms with Lists

{

,
}

{ }

{

,
}

{

,
}

{ }

{

,
}

{

,
}

{

,
}

level 0 level 1 level 2 level 3

v̂ ≡ α v̂ ≡ 2α− 1 v̂ ≡ 4α− 3 v̂ ≡ 8α− 7

ê ≡ β ê ≡ 2β ê ≡ 4β ê ≡ 8β

Figure 11.15: A chain of pendant elements with four levels, which is the only chain
in Fig. 11.12, for some α and β (we ignore multiplicities of pendant elements). Notice
that quotients corresponding to one atom are placed in neighboring levels.

When L(x) is computed, we can only consider quotients of the correct sizes,
speeding up Algorithm 5. For pendant edges and loops, each belongs to lists of only
one type of pendant elements by Lemma 11.3.5. This is not true for half-edges and
for purpose of this section, the following is important:

Corollary 11.4.2. Let x and y be two pendant elements.

(i) If L(x) and L(y) share a half-edge, then v̂(x) = v̂(y) and ê(x) = ê(y).
(ii) Let L(x) contain a loop of a color c and a half-edge of a color c′. Then L(y)

cannot contain both the loop of the color c′ and the half-edge of the color c.

Proof. (i) Implied by Lemma 11.4.1.
(ii) Let L(x) contain a loop e and L(y) contain a half-edge h of the same color.

Then v̂(x) = v̂(e) + 1 and v̂(y) = v̂(e)/2 + 1 for the vertices, and ê(x) = ê(e) and
ê(y) = ê(e)/2 for the edges. Therefore x corresponds to a larger block part in H than
y. By the same argument, we deduce that y corresponds to a larger block part in H
than x, which gives a contradiction.

The property (i) relates half-edges together. The property (ii) states that there
is a certain size hierarchy on the pendant elements discussed below.

Chains of Pendant Elements. Pendant elements can be partitioned into inde-
pendent chains, each further partitioned into several levels. The level of size (α, β)
consists of all pendant elements x having v̂(x) = α and ê(x) = β. Each chain starts
with the level 0 of some size (α, β). Further, it contains the levels m > 0 of sizes
(2mα− (2m − 1), 2mβ). See Fig. 11.15 for an example.

The key property is the following: if L(x) contains a half-edge of a color c and
L(y) contains the loop of the same color c, then x belongs to a level m and y belongs
to the level m + 1 of the same chain. A star block atom A can contain multiple
chains, but different chains contain completely different colors in their lists, so they
are completely independent.

331

Chapter 11. Algorithmic Aspects of Regular Graph Covers

Summary. We may partition S, D, and A according chains of pendant elements of
A and test them separately. Therefore, we may assume that there is exactly one chain
of pendant elements in A, and only the corresponding edges in D and half-edges in S.

11.4.3 Reduction to the IV-Matching Problem

The star block atom S contains a half-edge corresponding to the dipole D and let
H ′(S) be the set of the remaining half-edges corresponding to proper atoms. The
dipole D has the following half-quotients Q. For each color class of an even size s,
we choose an arbitrary integer ℓ such that 0 ≤ ℓ ≤ s

2 , and attach ℓ loops and s − 2ℓ
half-edges of this color in Q.

If these values s and ℓ are known for each color class, we can test existence of
a perfect matching as described in the proof of Lemma 11.3.7. Since they are not
known, we need to solve a generalization of perfect matching called IV-Matching
which includes choosing of these values as a part of the problem.

Definition of the Problem. The input of IV-Matching gives the following bipartite
graph B. We have V (B) = P (A) ∪ E(D) ∪H ′(S). For e ∈ E(D) of a color c and
x ∈ P (A), we have ex ∈ E(B) if and only if the half-edge or the loop of the color c
belongs to the list L(x). We call the former case a half-incidence and the latter case
a loop-incidence. Further, we have a half-incidence hx ∈ E(B) between h ∈H ′(S) of
a color c and x ∈ P (A) if and only if the half-edge of the color c belongs to L(x).

We ask whether there exists a spanning subgraph B′ of B, called an IV-subgraph
of B, satisfying the following properties. Each component of connectivity of B′ is a
path of length one or two (corresponding to I and V in the name). Each x ∈ P (A) is
in B′ either half-incident to exactly one vertex in E(D)∪H ′(S), or it is loop-incident
to exactly two edges e, e′ ∈ E(D) of the same color class. Further, each vertex of
E(D) ∪ H ′(S) is incident in B′ to exactly one x ∈ P (A). See Fig. 11.16 for an
example, with several additional properties which we discuss below.

Level Structure. The structure of levels of the chain of pendant elements transfers
into the level structure of B. The part P (A) is partioned into levels called A levels.
Every half-edge h ∈ H ′(S) is half-incident only to vertices of the A level m of the
size (v̂(h), ê(h)). Every edge e ∈ E(D) is half-incident only to vertices of the A level
m of size (v̂(e)/2, ê(e)/2) and loop-incident only to vertices of the A level m + 1 of
the size (v̂(e)− 1, ê(e)). Therefore, we can define S levels for the part E(D)∪H ′(S)
such that an S level m contains all vertices half-incident to the A level m or loop-
incident to the A level m + 1. If we depict all levels from left to right according to
their order, alternating A levels and S levels, all edges of B go between consecutive
levels as depicted in Fig. 11.16.

Clusters. We can view B as a cluster graph. In each S level, E(D) and H ′(S) form
clusters according to their color classes, called edge clusters and half-edge clusters
respectively. In each A level, the pendant elements form pendant element clusters
according to equivalence classes of their lists. (We note that two pendant elements
with equal lists can correspond to non-isomorphic subgraphs in H. Then their lists
contain only half-edges.) Two clusters are either completely adjacent, or not adjacent

332

11.4. Star Blocks Atoms with Lists

3×
{

,
}

2×
{ }

3×
{

,
}

2×
{

,
}

3×
{ }

4×
{

,
}

3×
{

,
}

3×
{

,
}

4×

4×

1×

8×

2×

4×

4×

3×

A level 0 A level 1 A level 2 A level 3S level 0 S level 1 S level 2

half-

incidences

loop-

incidences

half-

incidences

loop-

incidences

half-

incidences

loop-

incidences

Figure 11.16: The instance of the IV-Matching problem corresponding to the input
A in Fig. 11.12 and the preprocessed star block atom S in Fig. 11.13. The edges E(B)
are depicted in gray and an IV-subgraph B′ is highlighted in bold. We have I’s between
half-incidences and V’s between loop-incidences. The part P (A) is in elipses, the other
part E(D) ∪H ′(S) is in boxes. The lists P (A), the edges E(D) and the half-edges
H ′(S) are depicted together with multiplicities.

at all: the subgraph induced by the union of two clusters is either a complete bipartite
graph, or contains no edges.

Each pendant element cluster may be loop-adjacent to several edge clusters. On
the other hand, each edge cluster is loop-adjacent to at most one pendant element
cluster: the loop of the corresponding color belongs to at most one isomorphism class
of pendant elements by Lemma 11.3.5. There are no constraints for half-incidences
between clusters.

Only Logarithmically Many Levels. The sizes of graphs are growing exponentially
with the level number. Therefore, we have at most logarithmically many levels with
respect to the size of the input graph H.

Complexity. Since IV-Matching can be used to solve the slow subroutine of Lemma 11.3.7,
we get the following in relation to the meta-algorithm of Theorem 6.6.3:

Proposition 11.4.3. If the IV-Matching problem can be solved for logarithmically
many levels in polynomial time, then we can modify the meta-algorithm of Theo-
rem 6.6.3 to run in polynomial time as well.

Unfortunately, Folwarczný and Knop [128] recently proved that this problem
is NP-complete, even for two A levels. Nevertheless, we believe that the particular
instances arizing from the RegularCover problem might be solvable in polynomial
time and the properties described in this section might be useful for that.

Numbers of Edges Between Levels. We do not know how many half- and loop-
incidences are in B′ at each cluster, otherwise we could solve the problem directly by
finding a perfect matching in a modified graph. On the other hand, these numbers
are determined between consecutive A levels and S levels as follows. Let am be the
number of pendant elements in the A level m and let sm be the number of edges and

333

Chapter 11. Algorithmic Aspects of Regular Graph Covers

half-edges in the S level m. Let B′ be an IV-subgraph and let bi and b′i be the numbers
of edges in B′ between the A level i and the S level i, and between the S level i and
the A level i+ 1, respectively.

Every pendant element in the A level 0 is half-incident in B′ to the S level 0, so
b0 = a0. Therefore, the number of remaining vertices in the S level 0 is s0− b0. These
vertices are loop-incident in B′ to the A level 1, so b′0 = s0 − b0 and a1 − b′0

2 pendant
elements remain in the A level 1. We can proceed in this way further, and we get the
following inductive formulas:

bi = ai −
b′i−1
2 , and b′i = si − bi.

Clearly, each number b′i has to be even, otherwise no IV-subgraph exists.

11.5 Applying the Meta-algorithm to Planar Graphs

In this section, we discuss automorphism groups of 3-connected planar graphs and we
show that the meta-algorithm of Theorem 6.6.3 applies to the class of planar graphs.

Properties (P1) to (P3). We are ready to establish the following:

Lemma 11.5.1. The class of planar graphs satisfies (P1) to (P3).

Proof. The class of planar graphs clearly satisfies (P1). For (P2), Lemma 8.5.1 allows
to compute Aut(G) in time O(v2(G)). Since it is a spherical group, we can generate all
linearly many subgroups and check which ones act semiregularly. The property (P3)
holds for projectively planar graphs since ListIso can be solved in time O(v5/2(G))
for graphs of bounded genus [209] (even for lists on both vertices and half-edges).

Theorem 6.6.2. By Lemma 11.5.1, we can apply Theorem 6.6.3.

11.6 Concluding Remarks

This paper is based on the structural results of [119], describing behaviour of regular
graph covering with respect to 1-cuts and 2-cuts in G. In Theorem 6.6.3, we derive
an FPT meta-algorithm for testing regular graph covers for C-inputs G where C is a
class of graphs satisfying (P1) to (P3). In particular, this meta-algorithm is tailored
for the class of planar graphs (Theorem 6.6.2).

When working with 3-connected decomposition, we described two subroutines
we need to solve. First, we have rediscovered graph isomorphism restricted by lists,
introduced by Lubiw [260], which lead to several fruitful results in [209]. Second, we
introduce a generalization of bipartite matching called the IV-Matching problem,
proved to be NP-complete by Folwarcný and Knop [128].

We conclude by several remarks and open problems.

334

11.6. Concluding Remarks

Running Time of The Meta-algorithm. We have omitted polynomial factors in
the complexity since the main goal was to establish that RegularCover can be
solved in FTP time for C-inputs G for C satisfying (P1) to (P3). The degree of the
polynomial depends on the complexity of polynomial time algorithms in (P2) and
(P3).

We roughly estimate the degree of the polynomial for running time of the algo-
rithm of Theorem 6.6.2 for planar graphs. Let n = v(G) ≥ v(H). For planar graphs,
each primitive graph has O(n) quotients and each proper atom has at most two half-
quotients. Therefore, the catalog contains O(n2) atoms and quotients. Each catalog
query can be answered in time O(n4), and with a suitable canonization even in time
O(n3).

The simplified reduction series can be computed in time O(n) by Lemma 7.7.1,
the symmetry type of each atom can be determined in time O(n2) by Lemma 8.5.1.
When adding a proper atom to the catalog, we compute its at most two half-quotients
in time O(n2) and compute their reduction series in time O(n4). Together with catalog
queries, we can compute the reduction series and Gr in time O(n5).

Next, we iterate over O(n) quotients Hr of Gr. For each, we compute the reduc-
tion series in time O(n4). Next, we iterate over O(n) choices of the core in H. We
compute the reduction series with lists where O(n) subroutines are called. The subrou-
tine of Lemma 11.3.6 runs in time O(n9/2) since ListIso takes time O(n5/2) [209] and
we compare each non-star block atom A with O(n2) candidates from the catalog. The
subroutine of Lemma 11.3.7 runs in time O(n22e(H)/2). The final test in Lemma 11.3.9
runs in time O(n5/2).

In total, the running time of the algorithm in Theorem 6.6.2 is O(n5 · (n5/2 +
2e(H)/2)). By a more careful analysis of the subroutines and possibly reordering them,
it should be possible to decrease the degree little bit.

We did not try to optimize the factor 2e(H)/2. This estimate is certainly very
rough and maybe some further techniques from parameterized complexity can be ap-
plied to solve IV-Matching faster. We believe that this approach should be followed
only when we can prove that RegularCover is NP-complete for planar inputs G.
Also, to prove Theorem 6.6.3, it might be possible to design a simpler FPT algorithm
running in time O∗(2e(H)/2). Our goal was to obtain as much understanding of the
problem as possible, in order to construct a polynomial time algorithm. We failed
with the subroutine of Lemma 11.3.7, but nevertheless further structural results may
be established and the problem may be solvable in polynomial time.

Possible Extensions of The Meta-algorithm. There are several possible natural
extensions of the meta-algorithm. First, we can easily generalize it for input graph
G and H with half-edges, directed edges and halvable edges, and also for colored
graphs. Further, for a regular covering testing, one can prescribe a list L(u) ⊆ V (H)
of allowed images of a regular covering projection p for each vertex u ∈ V (G) such
that p(u) ∈ L(u): the expandability testing subroutine can compute with these lists
as well.

Complexity of Regular Graph Covering. By Lemmas 11.1.1 and 11.1.3, it follows

335

Chapter 11. Algorithmic Aspects of Regular Graph Covers

that RegularCover is GI-hard and belongs to NP. Its complexity remains an open
problem:

Problem 11.6.1. What is the complexity of the RegularCover problem?

One possibility to attack this problem would be to prove that it is NP-hard, or to
construct an efficient algorithm using an oracle for GraphIso. If RegularCover
is not NP-hard, another possibility is to prove that RegularCover satisfies some
properties which unlikely hold for any NP-hard problem. See Section 6.4 for more
information about GraphIso.

As a possible next direction of research, we suggest to attack classes of graphs
close to planar graphs, for instance projective planar graphs or toroidal graphs. To do
so, it seems that new techniques need to be built. Even the automorphism groups of
projective planar graphs and toroidal graphs are not yet well understood.

It is natural to ask whether FPT running time of the meta-algorithm of Theo-
rem 6.6.3 is needed:

Problem 11.6.2. Can the RegularCover problem be solved in polynomial time for
C-inputs G where C satisfies (P1) to (P3)? Can it be solved in polynomial time for
planar inputs G?

The IV-Matching Problem. In Section 11.4, we have shown that the bottle-
neck of the algorithm of Theorem 6.6.3 reduces to a generalized matching problem
called IV-Matching. Here, we describe a purely combinatorial formulation of the
IV-Matching problem. This reformulation can be useful to understand the problem
without regular covering and the structural results described in Chapters 10 and 11.

The input of IV-Matching consists of a bipartite graph B with a partitioning
V1, . . . , Vℓ of its vertices V (B) which we call levels, with all edges between of consec-
utive levels Vi and Vi+1, for i = 1, . . . , ℓ − 1. The levels V1, V3, . . . are called odd and
the levels V2, V4, . . . even. Further each level Vi is partitioned into several clusters,
each consisting of a few vertices with identical neighborhoods. There are three key
properties:

• The incidences in B respect the clusters; between any two clusters the graph B
induces either a complete bipartite graph, or an edge-less graph.
• Each cluster of an even level V2t is incident with at most one cluster at V2t+1.
• The incidences between the clusters of V2t−1 and V2t can be arbitrary.

The problem IV-Matching asks whether there is a spanning subgraph B′ called
an IV-subgraph of B. Each component of connectivity of B′ equals to a path of length
one or two. Each vertex of an odd level V2t+1 is in B′ adjacent either to exactly one
vertex of V2t+2, or to exactly two vertices of V2t. Each vertex of an even level V2t

is adjacent to exactly one vertex of the levels V2t−1 ∪ V2t+1. In other words, from
V2t−1 to V2t the edges of B′ form a matching, not necessarily perfect. From V2t to
V2t+1, the edges of B′ form independent V-shapes, with their centers in the level V2t+1.
Figure 11.17 shows an example.

336

11.6. Concluding Remarks

3×

2×

3×

2×

3×

4×

3×

3×

4×

4×

1×

8×

2×

4×

4×

3×

V1 V3 V5 V7V2 V4 V6

Figure 11.17: An example input B, the clusters are depicted by circles together with
their sizes. The odd levels are drawn in circles and the even ones in rectangles. The
edges of B are depicted by gray lines between clusters representing complete bipartite
graphs. One spanning subgraph B′ solving the IV-Matching problem is depicted in
bold.

In the conference version of the paper [118], we asked as an open problem what
is the complexity of the IV-Matching problem. Recently, Folwarcný and Knop [128]
answered this by proving that IV-Matching is strongly NP-hard even for ℓ = 3. We
note that this does not imply NP-hardness of RegularCover, and it is possible
that specific instances of IV-Matching arising from RegularCover can be solved
in polynomial time.

A Weaker Assumption (P2’). To make Theorem 6.6.3 a more natural generaliza-
tion of Babai’s algorithm [11] for graph isomorphism, it would be nice to replace (P2)
with a weaker assumption:

(P2’) For a 3-connected graphG ∈ C with colored vertices and colored possibly directed
edges and a graph H with colored vertices and colored possibly directed edges,
half-edges and loops, we can test RegularCover(G,H) in polynomial time.

It is an open problem whether our meta-algorithm can be modified for C satisfying
(P1), (P2’) and (P3):1

Problem 11.6.3. Can the RegularCover problem be solved in FPT time (with
respect to the parameter e(H)) for C-inputs G where C satisfies (P1), (P2’), and
(P3)?

The modified algorithm would have to process both G and H simultaneously. For
instance, it is not needed to decide whether a proper atom is halvable or symmetric.
Also, we do not need to compute all half-quotients of a proper atom, we only need to
test whether some subgraphs located in H are one of them. There are several issues
with this approach which make this generalization a very tricky problem.

1Even more natural would be to replace (P3) with (P3∗), but this problem seems even more
tricky.

337

Chapter 11. Algorithmic Aspects of Regular Graph Covers

As illustrated in Fig. 11.6, a half-quotient of a proper atom might not be essen-
tially 3-connected (but it is always essentially 2-connected if the proper atom is not a
path). Therefore, we would locate Q′ in H which is not a half-quotient of A. To test
it using (P2), we would need to expand some proper atoms and dipoles in Q′ to reach
Q, but it is not clear which ones.

Even more involved is to avoid finding of all quotients Hr = Gr/Γr. Since Hr

might consist of many blocks which might contain many proper atoms and dipoles, it
is not clear how to locate it in H to test existence of a regular covering using (P2).

338

Bibliography

[1] J. Abello, M. R. Fellows, and J. C. Stillweil. On the complexity and com-
binatorics of covering finite complexes. Australian Journal of Combinatorics,
4:103–112, 1991.

[2] S. B. Akers and B. Krishnamurthy. On group graphs and their fault tolerance.
IEEE Trans. Comput., 36(7):885–888, 1987.

[3] J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

[4] P. Angelini, G. Di Battista, F. Frati, V. Jelínek, J. Kratochvíl, M. Patrignani,
and I. Rutter. Testing planarity of partially embedded graphs. ACM Transac-
tions on Algorithms, 11(4):32:1–32:42, 2015.

[5] D. Angluin. Local and global properties in networks of processors. In ACM
Symposium on Theory of Computing, pages 82–93. ACM, 1980.

[6] D. Angluin and A. Gardiner. Finite common coverings of pairs of regular graphs.
J. Combin. Theory Ser. B, 30(2):184–187, 1981.

[7] K. Appel and W. Haken. Every planar map is four colorable. Mathematical
Solitaires & Games, 145, 1980.

[8] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, April
1987.

[9] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979.

[10] L. Babai. Automorphism groups of planar graphs i. Discrete Mathematics,
2(4):295–307, 1972.

[11] L. Babai. Automorphism groups of planar graphs II. In Infinite and finite
sets (Proc. Conf. Keszthely, Hungary, 1973) Bolyai-North-Holland, pages 29–
84, 1975.

[12] L. Babai. On the isomorphism problem. 1977.

339

[13] L. Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of
combinatorics (vol. 2), pages 1447–1540. MIT Press, 1996.

[14] L. Babai. Graph isomorphism in quasipolynomial time. In STOC, 2016.

[15] L. Babai, D.Y. Grigoryev, and D.M. Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, STOC ’82, pages 310–324. ACM, 1982.

[16] K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial orders of dimension 2.
Networks, 2:11–28, 1972.

[17] M. Baker and S. Norine. Harmonic morphisms and hyperelliptic graphs. Int.
Math. Res. Notes, 15:2914–2955, 2009.

[18] M. Balko, P. Klavík, and Y. Otachi. Bounded representations of interval and
proper interval graphs. In Algorithms and Computation, ISAAC 2013, volume
8283 of Lecture Notes in Computer Science, pages 535–546, 2013.

[19] M. Balko, P. Klavík, and Y. Otachi. Bounded representations of interval and
proper interval graphs. In preparation, 2017.

[20] J. Bang-Jensen, J. Huang, and X. Zhu. Completing orientations of partially
oriented graphs. CoRR, abs/1509.01301, 2015.

[21] R. Bar-Yehuda and T. Etzion. Connections between two cycles – a new design
of dense processor interconnection networks. Discrete Applied Mathematics, 37–
38:29–43, 1992.

[22] R. Belmonte, Y. Otachi, and P. Schweitzer. Induced minor free graphs: Isomor-
phism and clique-width. CoRR, abs:1605.08540, 2016.

[23] S. Benzer. Fine structure of a genetic region in bacteriophage. Proceedings of
the National Academy of Sciences, 41(6):344–354, 1955.

[24] S. Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci.
U.S.A., 45:1607–1620, 1959.

[25] C. Berge. Färbung von graphen, deren sämtliche bzw. deren ungerade kreise
starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe,
10(114):88, 1961.

[26] C. Berge. Some classes of perfect graphs. Internat. Computation Centre, 1966.

[27] D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces
in a planar graph. SIAM Journal on Computing, 17(1):53–76, 1988.

[28] N. Biggs. Algebraic graph theory. Cambridge University Press, 1993.

[29] O. Bílka, J. Jirásek, P. Klavík, M. Tancer, and J. Volec. On the complexity of
planar covering of small graphs. In LNCS, WG, volume 6986, pages 83–94, 2011.

340

[30] G. Birkhoff. On groups of automorphisms. Rev. Un. Mat. Argentina, 11:155–157,
1946.

[31] M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. I. Interval graphs.
Discrete Mathematics, 100(1–3):267–279, 1992.

[32] B. Blank. An imaginary tale book review. Notices of the AMS, 46(10):1233–1236,
1999.

[33] T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of planar
graphs. In Handbook of Graph Drawing and Visualization, pages 349–383. CRC
Press, 2013.

[34] T. Bläsius and I. Rutter. Simultaneous PQ-ordering with applications to con-
strained embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2015.

[35] A. Bobenko, C. Mercat, and M. Schmies. Discrete conformal maps. Symmetries
and integrability of difference equations, 255:97, 1999.

[36] H. L. Bodlaender. The classification of coverings of processor networks. Journal
of Parallel and Distributed Computing, 6(1):166–182, 1989.

[37] H. L Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990.

[38] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical computer science, 209(1):1–45, 1998.

[39] K. S. Booth and G. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci., 13:335–
379, 1976.

[40] K.S. Booth and C.J. Colbourn. Problems polynomially equivalent to graph
isomorphism. Technical Report CS-77-04, Computer Science Department, Uni-
versity of Waterloo, 1979.

[41] A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combinator-
ica, 7(3):243–254, 1987.

[42] A. Bouchet. Unimodularity and circle graphs. Discrete Mathematics, 66(1-
2):203–208, 1987.

[43] J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified o(n) planarity
by edge addition. J. Graph Algorithms Appl., 8(2):241–273, 2004.

[44] G. R. Brightwell and E. R. Scheinerman. Representations of planar graphs.
SIAM Journal on Discrete Mathematics, 6(2):214–229, 1993.

[45] P. Buneman. A characterisation of rigid circuit graphs. Discrete mathematics,
9(3):205–212, 1974.

341

[46] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[47] L. Campbell. Dense group networks. Discrete Applied Mathematics, 37–38:65–
71, 1992.

[48] L. Campbell, G. E. Carlsson, M. J. Dinneen, V. Faber, M. R. Fellows, M. A.
Langston, J. W. Moore, A. P. Mullhaupt, and H. B. Sexton. Small diameter
symmetric networks from linear groups. IEEE Trans. Comput., 41(2):218–220,
1992.

[49] C. Carathéodory. Untersuchungen über die konformen Abbildungen von festen
und veränderlichen Gebieten. Mathematische Annalen, 72(1):107–144, 1912.

[50] G. E. Carlsson, J. E. Cruthirds, H. B. Sexton, and C. G. Wright. Interconnec-
tion networks based on a generalization of cube-connected cycles. IEEE Trans.
Comput., 100(8):769–772, 1985.

[51] N. Carter. Visual group theory. MAA, 2009.

[52] A. Cayley. The theory of groups: Graphical representation. Amer. J. Math.,
1:174–176, 1878.

[53] M. R. Cerioli, F. de S. Oliveira, and J. L. Szwarcfiter. Linear-interval dimension
and pi orders. Electronic Notes in Discrete Mathematics, 30:111–116, 2008.

[54] M. R. Cerioli, F. de S. Oliveira, and J. L. Szwarcfiter. On counting interval
lengths of interval graphs. Discrete Applied Mathematics, 159(7):532 – 543,
2011.

[55] S. Chaplick, P. Dorbec, J. Kratochvíl, M. Montassier, and J. Stacho. Contact
representations of planar graphs: Extending a partial representation is hard.
In WG’14, volume 8747 of Lecture Notes in Computer Science, pages 139–151.
2014.

[56] S. Chaplick, S. Felsner, U. Hoffmann, and V. Wiechert. Grid intersection graphs
and order dimension. In preparation.

[57] S. Chaplick, J. Fiala, P. van’t Hof, D. Paulusma, and M. Tesař. Locally con-
strained homomorphisms on graphs of bounded treewidth and bounded degree.
Theoretical Computer Science, 590:86–95, 2015.

[58] S. Chaplick, R. Fulek, and P. Klavík. Extending partial representations of circle
graphs. In Graph Drawing, GD 2013, volume 8242 of Lecture Notes in Computer
Science, pages 131–142, 2013.

[59] S. Chaplick, R. Fulek, and P. Klavík. Extending partial representations of circle
graphs. CoRR, abs/1309.2399, 2015.

342

[60] S. Chaplick, G. Guśpiel, G. Gutowski, T. Krawczyk, and G. Liotta. The partial
visibility representation extension problem. In Graph Drawing and Network
Visualization: 24th International Symposium, GD 2016, volume 9801 of Lecture
Notes in Computer Science, pages 266–279, 2016.

[61] S. Chaplick, M. Toepfer, J. Voborník, and P. Zeman. On h-topological intersec-
tion graphs. In WG 2017, Lecture Notes in Computer Science, 2017.

[62] E. Chargaff. Chemical specificity of nucleic acids and mechanism of their enzy-
matic degradation. Cellular and Molecular Life Sciences, 6(6):201–209, 1950.

[63] F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete
Applied Mathematics, 66(2):109–133, 1996.

[64] R. Chitnis, L. Egri, and D. Marx. List h-coloring a graph by removing few
vertices. In Algorithms – ESA 2013: 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, LNCS, pages 313–324, 2013.

[65] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect
graph theorem. Annals of Mathematics, 164:51–229, 2006.

[66] F. R. K. Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997.

[67] C. J. Colbourn. On testing isomorphism of permutation graphs. Networks,
11(1):13–21, 1981.

[68] C. J. Colbourn and K. S. Booth. Linear times automorphism algorithms for
trees, interval graphs, and planar graphs. SIAM J. Comput., 10(1):203–225,
1981.

[69] C. J. Colbourn and M. J. Colbourn. Isomorphism problems involving self-
complementary graphs and tournaments. In Proceedings of the Eighth Mani-
toba Conference on Numerical Mathematics and Computing (Univ. Manitoba,
Winnipeg, Man., 1978), Congr. Numer, volume 22, pages 153–164, 1978.

[70] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The symmetries of things.
CRC Press, 2016.

[71] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 2009.

[72] D. G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs.
Congressus Numerantium, 58:267–275, 1987.

[73] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear
time recognition of unit interval graphs. Inf.Process.Lett, 55(2):99–104, 1995.

[74] D. G. Corneil and D. G. Kirkpatrick. A theoretical analysis of various heuristics
for the graph isomorphism problem. SIAM Journal on Computing, 9(2):281–297,
1980.

343

[75] D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition
of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–1953,
2009.

[76] D.G. Corneil, H. Lerchs, and L.S. Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, 3(3):163–174, 1981.

[77] A. Cournier and M. Habib. A new linear algorithm for modular decomposition.
Trees in Algebra and Programming—CAAP’94, pages 68–84, 1994.

[78] W.H. Cuningham and J. Edmonds. A combinatorial decomposition theory.
Canad. J. Math., 32:734–765, 1980.

[79] W.H. Cunningham. Decomposition of directed graphs. SIAM Journal on Alge-
braic Discrete Methods, 3:214–228, 1982.

[80] A. R. Curtis, M. C. Lin, R. M. McConnell, Y. Nussbaum, F. J. Soulignac,
J. P. Spinrad, and J. L. Szwarcfiter. Isomorphism of graph classes related to the
circular-ones property. Discrete Mathematics and Theoretical Computer Science,
15(1):157–182, 2013.

[81] I. Dagan, M. C. Golumbic, and R. Y. Pinter. Trapezoid graphs and their coloring.
Discrete Applied Mathematics, 21(1):35–46, 1988.

[82] E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications
to split decomposition and parity graph recognition. Journal of Algorithms,
36(2):205–240, 1998.

[83] V. Dalmau, L. Egri, P. Hell, B. Larose, and A. Rafiey. Descriptive complexity of
list h-coloring problems in logspace: A refined dichotomy. In Logic in Computer
Science (LICS), 2015 30th Annual ACM/IEEE Symposium on, pages 487–498,
2015.

[84] P. Damaschke. The hamiltonian circuit problem for circle graphs is NP-complete.
Information Processing Letters, 32(1):1–2, 1989.

[85] B. Das, M. K. Enduri, and I. V. Reddy. Polynomial-time algorithm for isomor-
phism of graphs with clique-width at most three. CoRR, 1506.01695, 2015.

[86] S. Datta, N. Limaye, and P. Nimbhorkar. 3-connected planar graph isomorphism
is in log-space. In FSTTCS, 2008.

[87] S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar graph
isomorphism is in logspace. In Proc. 24th IEEE CCC, pages 203–214, 2009.

[88] H. de Fraysseix. Local complementation and interlacement graphs. Discrete
Mathematics, 33(1):29–35, 1981.

[89] H. de Fraysseix and P. O. de Mendez. On a characterization of gauss codes.
Discrete & Computational Geometry, 22(2):287–295, 1999.

344

[90] H. de Fraysseix, P. O. de Mendez, and J. Pach. Representation of planar graphs
by segments. In Intuitive Geometry, volume 63 of Coll. Math. Soc. J. Bolyai,
pages 109–117, 1994.

[91] H. De Fraysseix, P. O. de Mendez, and P. Rosenstiehl. On triangle contact
graphs. Combinatorics, Probability and Computing, 3(02):233–246, 1994.

[92] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Trémaux trees and pla-
narity. International Journal of Foundations of Computer Science, 17(05):1017–
1029, 2006.

[93] J. W. Demmel. Applied numerical linear algebra. SIAM, 1997.

[94] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403,
1996.

[95] G. Di Battista and R. Tamassia. Incremental planarity testing. In Foundations
of Computer Science, 1989., 30th Annual Symposium on, pages 436–441. IEEE,
1989.

[96] G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees.
In International Colloquium on Automata, Languages, and Programming, pages
598–611. Springer, 1990.

[97] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956–997, 1996.

[98] R. Diestel. Graph theory. Springer, 2000.

[99] G. A. Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

[100] T. Drakengren and P. Jonsson. Eight maximal tractable subclasses of Allen’s
algebra with metric time. Journal of Artificial Intelligence Research, 7:25–45,
1996.

[101] T. A. Driscoll and L. N. Trefethen. Schwarz-Christoffel mapping, volume 8.
Cambridge University Press, 2002.

[102] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal of
Mathematics, 63(3):600–610, 1941.

[103] P. Eades and X. Lin. Spring algorithms and symmetry. Theor. Comput. Sci.,
240(2):379–405, 2000.

[104] G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in the plane.
Journal of Combinatorial Theory, Series B, 21(1):8–20, 1976.

345

[105] M. Elberfeld and P. Schweitzer. Canonizing Graphs of Bounded Tree Width
in Logspace. In 33rd Symposium on Theoretical Aspects of Computer Science
(STACS 2016), volume 47 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 32:1–32:14, 2016.

[106] P. Erdös, S. Fajtlowicz, and A. J. Hoffman. Maximum degree in graphs of
diameter 2. Networks, 10(1):87–90, 1980.

[107] S. Evdokimov and I. Ponomarenko. Circulant graphs: recognizing and iso-
morphism testing in polynomial time. St. Petersburg Mathematical Journal,
15(6):813–835, 2004.

[108] S. Evdokimov and I.N. Ponomarenko. Isomorphism of coloured graphs with
slowly increasing multiplicity of jordan blocks. Combinatorica, 19(3):321–333,
1999.

[109] S. Even and A. Itai. Queues, stacks, and graphs. Theory of Machines and
Computation (Z. Kohavi and A. Paz, Eds.), pages 71–76, 1971.

[110] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-
modity flow problems. SIAM Journal on Computing, 5(4):691, 1976.

[111] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive graphs.
Journal of the ACM (JACM), 19(3):400–410, 1972.

[112] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2(3):339–344, 1976.

[113] H. M. Farkas and I. Kra. Riemann surfaces. In Riemann Surfaces, volume 71 of
Graduate Texts in Mathematics, pages 9–31. 1992.

[114] I. Fáry. On straight-line representation of planar graphs. Acta Sci. Math.
(Szeged), 11:229–233, 1948.

[115] T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of
Combinatorial Theory, Series B, 72(2):236–250, 1998.

[116] T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory.
SIAM Journal on Computing, 28(1):57–104, 1998.

[117] J. Fiala. Note on the computational complexity of covering regular graphs. In
9th Annual Conference of Doctoral Students, WDS’00, pages 89–90. Matfyzpress,
2000.

[118] J. Fiala, P. Klavík, J. Kratochvíl, and R. Nedela. Algorithmic aspects of regular
graph covers with applications to planar graphs. In ICALP 2014, volume 8572
of LNCS, pages 489–501, 2014.

[119] J. Fiala, P. Klavík, J. Kratochvíl, and R. Nedela. 3-connected reduction for
regular graph covers. CoRR, abs/1503.06556, 2017.

346

[120] J. Fiala, P. Klavík, J. Kratochvíl, and R. Nedela. Algorithmic aspects of regular
graph covers. CoRR, abs/1609.03013, 2017.

[121] J. Fiala and J. Kratochvíl. Locally constrained graph homomor-
phisms—structure, complexity, and applications. Computer Science Review,
2(2):97–111, 2008.

[122] L.S. Filotti and J.N. Mayer. A polynomial time algorithm for determining the
isomorphism of graphs of fixed genus. In Proceedings of the 12th ACM Sympo-
sium on Theory of Computing, STOC ’80, pages 236–243, 1980.

[123] P. C. Fishburn. Intransitive indifference with unequal indifference intervals.
Journal of Mathematical Psychology, 7(1):144–149, 1970.

[124] P. C. Fishburn. Paradoxes of two-length interval orders. Discrete Math.,
52(2):165–175, 1984.

[125] P. C. Fishburn. A characterization of uniquely representable interval graphs.
Discrete Applied Mathematics, 12:191–194, 1985.

[126] P. C. Fishburn. Interval graphs and interval orders. Discrete Math., 55(2):135–
149, 1985.

[127] P. C. Fishburn. Interval orders and interval graphs: A study of partially ordered
sets. John Wiley & Sons, 1985.

[128] L. Folwarczný and D. Knop. IV-matching is strongly NP-hard. CoRR,
abs/1506.08388, 2015.

[129] F.V. Fomin, J. Kratochvíl, D. Lokshtanov, F. Mancini, and J.A. Telle. On the
complexity of reconstructing h-free graphs from their star systems. Journal of
Graph Theory, 68(2):113–124, 2011.

[130] M. Fontet. Linear algorithms for testing isomorphism of planar graphs. In Pro-
ceedings Third Colloquium on Automata, Languages, and Programming, pages
411–423, 1976.

[131] R. Frucht. Herstellung von graphen mit vorgegebener abstrakter gruppe. Com-
positio Mathematica, 6:239–250, 1939.

[132] R. Frucht. Graphs of degree three with a given abstract group. Canadian J.
Math, 1:365–378, 1949.

[133] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pac.
J. Math., 15:835–855, 1965.

[134] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutation
groups. In FOCS, pages 36–41. IEEE, 1980.

[135] C. P. Gabor, K. J. Supowit, and W. Hsu. Recognizing circle graphs in polynomial
time. J. ACM, 36(3):435–473, 1989.

347

[136] J. Gajarský, D. Lokshtanov, J. Obdržálek, S. Ordyniak, M.S. Ramanujan, and
S. Saurabh. FO model checking on posets of bounded width. In FOCS 2015,
pages 963–974.

[137] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica,
18(1):25–66, 1967.

[138] R. Ganian, P. Hlinený, D. Král, J. Obdržálek, J. Schwartz, and J. Teska.
FO model checking of interval graphs. Logical Methods in Computer Science,
11(4:11):1–20, 2015.

[139] M. Garey, D. Johnson, G. L. Miller, and C. Papadimitriou. The complexity of
coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods,
1(2):216–227, 1980.

[140] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

[141] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the
theory of NP-completeness. San Francisco, LA: Freeman, 58, 1979.

[142] T. Gavenčiak, P. Gordinowicz, V. Jelínek, P. Klavík, and J. Kratochvíl. Cops
and robbers on string graphs. In Algorithms and Computation, ISAAC 2015,
volume 9472 of Lecture Notes in Computer Science, pages 355–366, 2015.

[143] T. Gavenčiak, P. Gordinowicz, V. Jelínek, P. Klavík, and J. Kratochvíl. Cops
and robbers on intersection graphs. CoRR, abs/1607.08058, 2016.

[144] T. Gavenčiak, V. Jelínek, P. Klavík, and J. Kratochvíl. Cops and robbers of
intersection graphs. In Algorithms and Computation, ISAAC 2013, volume 8283
of Lecture Notes in Computer Science, pages 174–184, 2013.

[145] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

[146] F. Gavril. A recognition algorithm for the intersection of graphs of paths in
trees. Discrete Mathematics, 23:211–227, 1978.

[147] F. Gavril. Maximum weight independent sets and cliques in intersection graphs
of filaments. Information Processing Letters, 73(5-6):181–188, 2000.

[148] A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut orienter
les arêtes de manière à obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci.
Paris, 254:1370–1371, 1962.

[149] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs
and of interval graphs. Can. J. Math., 16:539–548, 1964.

[150] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle
graph recognition. Algorithmica, 69(4):759–788, 2014.

348

[151] C. Godsil and G. F. Royle. Algebraic graph theory, volume 207. Springer Science
& Business Media, 2013.

[152] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In FOCS, vol-
ume 86, pages 174–187, 1986.

[153] D. M. Goldschmidt. Automorphisms of trivalent graphs. Annals of Mathematics,
111(2):377–406, 1980.

[154] M. C. Golumbic. The complexity of comparability graph recognition and color-
ing. J. Combin. Theory, Ser. B, 22:68–90, 1977.

[155] M. C. Golumbic. Reasoning about time. In Mathematical Aspects of Artificial
Intelligence, F. Hoffman, ed., volume 55, pages 19–53, 1998.

[156] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. North-Holland
Publishing Co., 2004.

[157] M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. Journal
of Algorithms, 19(3):449–473, 1995.

[158] M. C. Golumbic, D. Rotem, and J. Urrutia. Comparability graphs and intersec-
tion graphs. Discrete Mathematics, 43(1):37–46, 1983.

[159] M. C. Golumbic and R. Shamir. Complexity and algorithms for reasoning about
time: A graph-theoretic approach. Journal of the ACM (JACM), 40(5):1108–
1133, 1993.

[160] R. E. Greene and K.-T. Kim. The riemann mapping theorem from riemann’s
viewpoint. Complex Analysis and its Synergies, 3(1):1, 2017.

[161] R. J. Greenspan. Seymour Benzer (1921–2007). Current Biology, 18(3):R106–
R110, 2008.

[162] M. Grohe. Descriptive complexity, canonisation, and definable graph structure
theory. Manuscript, 2012.

[163] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs
with excluded topological subgraphs. In Proceedings of the Forty-fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 173–192, 2012.

[164] M. Grohe and P. Schweitzer. Isomorphism testing for graphs of bounded rank
width. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 1010–1029, 2015.

[165] J. L. Gross and T. W. Tucker. Topological graph theory. Courier Dover Publi-
cations, 2001.

349

[166] D. Guo, J. Wu, H. Chen, and X. Luo. Moore: An extendable peer-to-peer
network based on incomplete Kautz digraph with constant degree. In INFO-
COM 2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 821–829, 2007.

[167] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
International Symposium on Graph Drawing, pages 77–90. Springer, 2000.

[168] M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-BFS and partition
refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theoretical Computer Science, 234:59–84, 2000.

[169] M. Habib and C. Paul. A survey of the algorithmic aspects of modular decom-
position. Computer Science Review, 4(1):41–59, 2010.

[170] H. Hadwiger, H. Debrunner, and V. Klee. Combinatorial geometry in the plane.
Courier Corporation, 2015.

[171] A. Hajnal and J. Surányi. Über die auflösung von graphen in vollständige teil-
graphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113–121, 1958.

[172] G. Hajós. Über eine Art von Graphen. Internationale Mathematische
Nachrichten, 11:65, 1957.

[173] K. M. Hall. An r-dimensional quadratic placement algorithm. Management
science, 17(3):219–229, 1970.

[174] P. Hanlon. Counting interval graphs. Transactions of the American Mathematical
Society, 272(2):383–426, 1982.

[175] F. Harary. Graph theory. Addison-Wesley, Reading, MA, 1969.

[176] W. A. Harris. Seymour Benzer 1921–2007 the man who took us from genes to
behaviour. PLoS Biol, 6(2):e41, 2008.

[177] I. B. Hartman, I. Newman, and R. Ziv. On grid intersection graphs. Discrete
Mathematics, 87(1):41–52, 1991.

[178] Z. Hedrlín and A. Pultr. On full embeddings of categories of algebras. Illinois
Journal of Mathematics, 10(3):392–406, 1966.

[179] P. Hell, D. Kirkpatrick, P. Klavík, and Y. Otachi. Minimal forbidden induced
subgraphs for k-nested interval graphs. In preparation, 2017.

[180] P. Hell and J. Nešetřil. On the complexity of H-coloring. J. Combin. Theory
Ser. B, 48(1):92–110, 1990.

[181] P. Hell and J. Nešetril. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, 2004.

[182] A. J. Hoffman and R. R. Singleton. On Moore graphs with diameters 2 and 3.
IBM Journal of Research and Development, 4(5):497–504, 1960.

350

[183] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10(4):718–720, 1981.

[184] S. Hong and P. Eades. Drawing planar graphs symmetrically, II: Biconnected
planar graphs. Algorithmica, 42(2):159–197, 2005.

[185] S. Hong and P. Eades. Drawing planar graphs symmetrically, III: Oneconnected
planar graphs. Algorithmica, 44(1):67–100, 2006.

[186] S. Hong, B. McKay, and P. Eades. Symmetric drawings of triconnected pla-
nar graphs. In Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 356–365, 2002.

[187] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[188] J. E. Hopcroft and R. E. Tarjan. A V 2 algorithm for determining isomorphism
of planar graphs. Information Processing Letters, 1(1):32–34, 1971.

[189] J. E. Hopcroft and R. E. Tarjan. Isomorphism of planar graphs. In Complexity
of computer computations, pages 131–152. Springer, 1972.

[190] J. E. Hopcroft and R. E. Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, 1973.

[191] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973.

[192] J. E. Hopcroft and R. E. Tarjan. A V log V algorithm for isomorphism of tricon-
nected planar graphs. Journal of Computer and System Sciences, 7(3):323–331,
1973.

[193] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
568, 1974.

[194] J. E. Hopcroft and J. Wong. Linear time algorithm for isomorphism of planar
graphs. In STOC, pages 172–184. ACM, 1974.

[195] W. L. Hsu. O(M ·N) algorithms for the recognition and isomorphism problems
on circular-arc graphs. SIAM Journal on Computing, 24(3):411–439, 1995.

[196] N. Immerman and E. Lander. Describing graphs: A first-order approach to
graph canonization. In Complexity theory retrospective, pages 59–81. Springer,
1990.

[197] K. Jampani and A. Lubiw. The simultaneous representation problem for chordal,
comparability and permutation graphs. In Algorithms and Data Structures, vol-
ume 5664 of Lecture Notes in Computer Science, pages 387–398. 2009.

[198] K. Jampani and A. Lubiw. Simultaneous interval graphs. In Algorithms and
Computation, volume 6506 of Lecture Notes in Computer Science, pages 206–
217. 2010.

351

[199] Y.-N. Jan and L. Jan. Seymour Benzer (1921-2007). Science, 319(5859):45–45,
2008.

[200] V. Jelínek, J. Kratochvíl, and I. Rutter. A kuratowski-type theorem for planarity
of partially embedded graphs. Comput. Geom., 46(4):466–492, 2013.

[201] F. Joos, C. Löwenstein, F. de S. Oliveira, D. Rautenbach, and J. L. Szwarcfiter.
Graphs of interval count two with a given partition. Inform. Process. Lett.,
114(10):542–546, 2014.

[202] C. Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik, 70:185–190, 1869.

[203] H. Kaplan and Y. Nussbaum. A simpler linear-time recognition of circular-arc
graphs. Algorithmica, 61(3):694–737, 2011.

[204] R. M. Karp. Mapping the genome: Some combinatorial problems arising in
molecular biology. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’93, pages 278–285, 1993.

[205] M. O. Katanaev. All universal coverings of two-dimensional gravity with torsion.
Journal of mathematical physics, 34:700–736, 1993.

[206] K. Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time.
CoRR, abs/1511.02460, 2015.

[207] K. Kawarabayashi and B. Mohar. Graph and map isomorphism and all poly-
hedral embeddings in linear time. In Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC ’08, pages 471–480, 2008.

[208] D. G. Kendall. Incidence matrices, interval graphs and seriation in archaeology.
Pac. J. Math, 28(3):565–570, 1969.

[209] P. Klavík, D. Knop, and P. Zeman. Graph isomorphism restricted by lists.
CoRR, abs/1607.03918, 2016.

[210] P. Klavík, J. Kratochvíl, T. Krawczyk, and B. Walczak. Extending partial rep-
resentations of function graphs and permutation graphs. In Algorithms, ESA
2012, volume 7501 of Lecture Notes in Computer Science, pages 671–682, 2012.

[211] P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and
T. Vyskočil. Extending partial representations of proper and unit interval graphs.
In Algorithm Theory, SWAT 2014, volume 8503 of Lecture Notes in Computer
Science, pages 253–264, 2014.

[212] P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and
T. Vyskočil. Extending partial representations of proper and unit interval graphs.
Algorithmica, 77(4):1071–1104, 2017.

[213] P. Klavík, J. Kratochvíl, Y. Otachi, and T. Saitoh. Extending partial represen-
tations of subclasses of chordal graphs. In Algorithms and Computation, ISAAC
2012, volume 7676 of Lecture Notes in Computer Science, pages 444–454, 2012.

352

[214] P. Klavík, J. Kratochvíl, Y. Otachi, and T. Saitoh. Extending partial representa-
tions of subclasses of chordal graphs. Theoretical Computer Science, 576:85–101,
2015.

[215] P. Klavík, J. Kratochvíl, Y. Otachi, T. Saitoh, and T. Vyskočil. Extending
partial representations of interval graphs. Algorithmica, 2016.

[216] P. Klavík, J. Kratochvíl, and T. Vyskočil. Extending partial representations of
interval graphs. In Theory and Applications of Models of Computation, TAMC
2011, volume 6648 of Lecture Notes in Computer Science, pages 276–285, 2011.

[217] P. Klavík, R. Nedela, and P. Zeman. Jordan-like characterization of automor-
phism groups of planar graphs. CoRR, abs/1506.06488, 2017.

[218] P. Klavík, R. Nedela, and P. Zeman. On orbits of isometries of polyhedra. 2017.

[219] P. Klavík, Y. Otachi, and J. Šejnoha. On the classes of interval graphs of limited
nesting and count of lengths. In 27th International Symposium on Algorithms
and Computation, ISAAC 2016, volume 64 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 45:1–45:13, 2016.

[220] P. Klavík, Y. Otachi, and J. Šejnoha. Extending partial representations of in-
terval graphs of limited nesting. In preparation, 2017.

[221] P. Klavík, Y. Otachi, and J. Šejnoha. On the classes of interval graphs of limited
nesting and count of lengths. CoRR, abs/1510.03998, 2017.

[222] P. Klavík and M. Saumell. Minimal obstructions for partial representations of
interval graphs. In Algorithms and Computation, ISAAC 2014, volume 8889 of
Lecture Notes in Computer Science, pages 401–413, 2014.

[223] P. Klavík and M. Saumell. Minimal obstructions for partial representations of
interval graphs. CoRR, 1406.6228, 2015.

[224] P. Klavík and P. Zeman. Automorphism groups of geometrically represented
graphs. In 32nd International Symposium on Theoretical Aspects of Computer
Science, STACS 2015, volume 30 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 540–553, 2015.

[225] P. Klavík and P. Zeman. Automorphism groups of geometrically represented
graphs. CoRR, abs/1407.2136, 2015.

[226] V. Klee. What are the intersection graphs of arcs in a circle? The American
Mathematical Monthly, 76(7):810–813, 1969.

[227] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer, 1994.

[228] J. Köbler and S. Kuhnert. The isomorphism problem of k-trees is complete for
logspace. In Proc. 34th MFCS, pages 537–448, 2009.

353

[229] J. Köbler, S. Kuhnert, B. Laubner, and O. Verbitsky. Interval graphs: Canoni-
cal representations in logspace. SIAM Journal on Computing, 40(5):1292–1315,
2011.

[230] J. Kobler, S. Kuhnert, and O. Watanabe. Interval graph representation with
given interval and intersection lengths. In Algorithms and Computation, volume
7676 of Lecture Notes in Computer Science, pages 517–526. 2012.

[231] S. G. Kobourov. Spring embedders and force directed graph drawing algorithms.
CoRR, abs/1201.3011, 2012.

[232] P. Koebe. Kontaktprobleme der konformen Abbildung. Hirzel, 1936.

[233] Y. Koren. On spectral graph drawing. In International Computing and Combi-
natorics Conference, pages 496–508. Springer, 2003.

[234] Y. Koren. Drawing graphs by eigenvectors: theory and practice. Computers &
Mathematics with Applications, 49(11):1867–1888, 2005.

[235] N. Korte and R. Möhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput., 18(1):68–81, 1989.

[236] A. Kostochka and J. Kratochvíl. Covering and coloring polygon-circle graphs.
Discrete Mathematics, 163(1-3):299–305, 1997.

[237] J. Kratochvíl. String graphs. II. recognizing string graphs is NP-hard. Journal
of Combinatorial Theory, Series B, 52(1):67–78, 1991.

[238] J. Kratochvíl and J. Matoušek. String graphs requiring exponential representa-
tions. J. Comb. Theory, Ser. B, 53(1):1–4, 1991.

[239] J. Kratochvíl and M. Pergel. Intersection graphs of homothetic polygons. Elec-
tronic Notes in Discrete Mathematics, 31:277–280, 2008.

[240] J. Kratochvíl, A. Proskurowski, and J. A. Telle. Covering regular graphs. J.
Comb. Theory Ser. B, 71(1):1–16, 1997.

[241] J. Kratochvíl and Zs. Tuza. Algorithmic complexity of list colorings. Discrete
Applied Mathematics, 50(3):297–302, 1994.

[242] S. Kratsch and P. Schweitzer. Graph isomorphism for graph classes characterized
by two forbidden induced subgraphs. In WG 2012, volume 7551 of Lecture Notes
in Computer Science, pages 34–45, 2012.

[243] T. Krawczyk and B. Walczak. Extending partial representations of trapezoid
graphs. In WG 2017, Lecture Notes in Computer Science, 2017.

[244] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. J. ACM, 50(5):591–640,
2003.

354

[245] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math.,
15:217–283, 1930.

[246] F. Lalonde. Le problème d’étoiles pour graphes est NP-complet. Discrete Math-
ematics, 33(3):271–280, 1981.

[247] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of
the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014.

[248] R. Leibowitz, S. F. Assmann, and G. W. Peck. The interval count of a graph.
SIAM J. Algebr. Discrete Methods, 3:485–494, 1982.

[249] C. Lekkerkerker and D. Boland. Representation of finite graphs by a set of
intervals on the real line. Fund. Math., 51:45–64, 1962.

[250] P. A. Levene. The structure of yeast nucleic acid. Studies from the Rockefeller
Institute for Medical Research, 30:221, 1919.

[251] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-
erties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230,
1980.

[252] D. Lichtenstein. Isomorphism for graphs embeddable on the projective plane. In
ACM Symposium on Theory of Computing, STOC ’80, pages 218–224, 1980.

[253] M. C. Lin and J. L. Szwarcfiter. Characterizations and recognition of circular-
arc graphs and subclasses: A survey. Discrete Mathematics, 309(18):5618–5635,
2009.

[254] S. Lindell. A logspace algorithm for tree canonization. In Proc. 24th ACM
STOC, pages 400–404, 1992.

[255] N. Lindzey and R. M. McConnell. Linear-time algorithms for finding tucker sub-
matrices and lekkerkerker–boland subgraphs. SIAM Journal on Discrete Math-
ematics, 30(1):43–69, 2016.

[256] D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth.
In FOCS, pages 186–195, 2014.

[257] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs.
Comput. Math. Appl., 25:15–25, 1993.

[258] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial The-
ory, Series B, 13(2):95–98, 1972.

[259] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 306(10):867–875, 2006.

[260] A. Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM
Journal on Computing, 10(1):11–21, 1981.

355

[261] R. D. Luce. Semiorders and a theory of utility discrimination. Econometrica,
Journal of the Econometric Society, pages 178–191, 1956.

[262] G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval
graph isomorphism. Journal of the ACM (JACM), 26(2):183–195, 1979.

[263] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in poly-
nomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982.

[264] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems.
Journal of Algorithms, 17(2):251–268, 1994.

[265] S. Mac Lane. A structural characterization of planar combinatorial graphs. Duke
Mathematical Journal, 3(3):460–472, 1937.

[266] B. Maddox. The double helix and the ‘wronged heroine’. Nature, 421(6921):407–
408, 2003.

[267] A. Malnič, R. Nedela, and M. Škoviera. Lifting graph automorphisms by voltage
assignments. European Journal of Combinatorics, 21(7):927–947, 2000.

[268] P. Mani. Automorphismen von polyedrischen graphen. Mathematische Annalen,
192(4):279–303, 1971.

[269] E. S. Marczewski. Sur deux propriétés des classes d’ensembles. Fund. Math.,
33:303–307, 1945.

[270] R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3):131–136, 1979.

[271] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,
37(2):93–147, 2003.

[272] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive
orientation. Discrete Math., 201(1-3):189–241, 1999.

[273] T. Mchedlidze, M. Nöllenburg, and I. Rutter. Drawing planar graphs with a
prescribed inner face. In Graph Drawing, pages 316–327, 2013.

[274] B. D. McKay, M. Miller, and J. Širáň. A note on large graphs of diameter two
and given maximum degree. J. Combin. Theory Ser. B, 74(1):110–118, 1998.

[275] T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. SIAM
Monographs on Discrete Mathematics and Applications, 1999.

[276] F. R. McMorris, C. Wang, and P. Zhang. On probe interval graphs. Discrete
Applied Mathematics, 88(1-3):315–324, 1998.

[277] O. Merino. A short history of complex numbers. University of Rhode Island,
2006.

356

[278] G. B. Mertzios. The recognition of simple-triangle graphs and of linear-interval
orders is polynomial. SIAM Journal on Discrete Mathematics, 29(3):1150–1185,
2015.

[279] G. L. Miller. Isomorphism testing for graphs of bounded genus. In ACM Sym-
posium on Theory of Computing, STOC ’80, pages 225–235, 1980.

[280] G.L. Miller. Isomorphism testing and canonical forms for k-contractable graphs
(a generalization of bounded valence and bounded genus). In International Con-
ference on Fundamentals of Computation Theory, pages 310–327. Springer, 1983.

[281] M. Miller and J. Širáň. Mnore graphs and beyond: A survey of the de-
gree/diameter problem. Electronic Journal of Combinatorics, 61:1–63, 2005.

[282] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University
Press, 2001.

[283] T. H. Morgan. The Theory Of The Gene. New Haven, Yale University Press,
1928.

[284] J. Mycielski. Sur le coloriage des graphes. In Colloq. Math, volume 3, page 9,
1955.

[285] W. Naji. Graphes de Cordes: Une Caracterisation et ses Applications. PhD
thesis, l’Université Scientifique et Médicale de Grenoble, 1985.

[286] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: a maximal
tractable subclass of allen’s interval algebra. J. ACM, 42(1):43–66, 1995.

[287] T. Needham. Visual complex analysis. Oxford University Press, 1998.

[288] S. Negami. The spherical genus and virtually planar graphs. Discrete Mathe-
matics, 70(2):159–168, 1988.

[289] Y. Otachi and P. Schweitzer. Isomorphism on subgraph-closed graph classes: A
complexity dichotomy and intermediate graph classes. In International Sympo-
sium on Algorithms and Computation, pages 111–118. Springer, 2013.

[290] Y. Otachi and P. Schweitzer. Reduction techniques for graph isomorphism in the
context of width parameters. In Algorithm Theory - SWAT 2014 - 14th Scan-
dinavian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014.
Proceedings, pages 368–379, 2014.

[291] S. Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100,
2005.

[292] M. Patrignani. On extending a partial straight-line drawing. Int. J. Found.
Comput. Sci., 17(5):1061–1070, 2006.

[293] I. Pe’er and R. Shamir. Realizing interval graphs with size and distance con-
straints. SIAM Journal on Discrete Mathematics, 10(4):662–687, 1997.

357

[294] M. Pergel. Recognition of polygon-circle graphs and graphs of interval filaments
is NP-complete. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 238–247. Springer, 2007.

[295] M. Pirlot. Minimal representation of a semiorder. Theory and Decision, 28:109–
141, 1990.

[296] M. Pirlot. Synthetic description of a semiorder. Discrete applied mathematics,
31(3):299–308, 1991.

[297] M. Pirlot and P. Vincke. Semiorders: Properties, representations, applications,
volume 36. Springer Science & Business Media, 2013.

[298] I.N. Ponomarenko. The isomorphism problem for classes of graphs closed under
contraction. Journal of Soviet Mathematics, 55(2):1621–1643, 1991.

[299] L. Pray. Discovery of DNA structure and function: Watson and Crick. Nature
Education, 1(1):100, 2008.

[300] A. Proskurowski and J. A. Telle. Classes of graphs with restricted interval
models. Discrete Mathematics & Theoretical Computer Science, 3(4):167–176,
1999.

[301] O. Reingold. Undirected connectivity in logspace. Journ. of ACM, 55(4), 2008.

[302] B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Grösse. EA Huth, 1851.

[303] G. Ringel and J. Youngs. Solution of the Heawood map-coloring problem. Pro-
ceedings of the National Academy of Sciences of the United States of America,
60(2):438–445, 1968.

[304] F. S. Roberts. Indifference graphs. Proof techniques in graph theory, pages
139–146, 1969.

[305] F. S. Roberts. Discrete Mathematical Models, with Applications to Social, Bio-
logical, and Environmental Problems. Prentice-Hall, Englewood Cliffs, 1976.

[306] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-
coloring planar graphs. In Proceedings of the twenty-eighth annual ACM sympo-
sium on Theory of computing, pages 571–575. ACM, 1996.

[307] N. Robertson and P. Seymour. Graph minors xvi. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 77:1–27, 1999.

[308] R. W. Robinson. Enumeration of non-separable graphs. Journal of Combinato-
rial Theory, 9(4):327–356, 1970.

[309] B. Rodin and D. Sullivan. The convergence of circle packings to the riemann
mapping. J. Differential Geom, 26(2):349–360, 1987.

358

[310] D. J. Rose. Triangulated graphs and the elimination process. Journal of Math-
ematical Analysis and Applications, 32(3):597–609, 1970.

[311] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SICOMP, 5(2):266–283, 1976.

[312] J.J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in
Mathematics. Springer, 1994.

[313] G. Sabidussi. Graphs with given group and given graph-theoretical properties.
Canad. J. Math, 9:515–525, 1957.

[314] M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in NP.
In STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pages 1–6, 2002.

[315] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages
216–226. ACM, 1978.

[316] A. A. Schäffer. A faster algorithm to recognize undirected path graphs. Discrete
Appl. Math, 43:261–295, 1993.

[317] W. Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343, 1989.

[318] U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37(3):312–323, 1988.

[319] E. Schrödinger. What is Life. Cambridge, 1944.

[320] P. Schweitzer. Towards an isomorphism dichotomy for hereditary graph classes.
In STACS 2016, volume 30 of LIPIcs, 2015.

[321] D. J. Skrien. A relationship between triangulated graphs, comparability graphs,
proper interval graphs, proper circular-arc graphs, and nested interval graphs.
Journal of Graph Theory, 6(3):309–316, 1982.

[322] D. J. Skrien. Chronological orderings of interval graphs. Discrete Appl. Math.,
8(1):69–83, 1984.

[323] F. J. Soulignac. Bounded, minimal, and short representations of unit interval and
unit circular-arc graphs. Chapter I: theory. J. Graph Algorithms Appl, 21(4):455–
489, 2017.

[324] F. J. Soulignac. Bounded, minimal, and short representations of unit interval
and unit circular-arc graphs. Chapter II: algorithms. J. Graph Algorithms Appl,
21(4):491–525, 2017.

[325] D. Spielman. Spectral graph theory. In Combinatorial Scientific Computing.
Chapman and Hall / CRC Press, 2012.

359

[326] J. Spinrad. On comparability and permutation graphs. SIAM J. Comput.,
14(3):658–670, 1985.

[327] J. P. Spinrad. Recognition of circle graphs. J. of Algorithms, 16(2):264–282,
1994.

[328] J. P. Spinrad. Efficient Graph Representations. Field Institute Monographs,
2003.

[329] E. Steinitz. Polyeder und raumeinteilungen. Teubner, 1916.

[330] K. Stephenson. The approximation of conformal structures via circle packing.
Series in Approximations and Decompositions, 11:551–582, 1999.

[331] J. Stillwell. Geometry of surfaces. Springer, 1992.

[332] K. E. Stoffers. Scheduling of traffic lights–a new approach. Transportation
Research, 2:199–234, 1968.

[333] G. Strang. Introduction to applied mathematics, volume 16. Wellesley-Cambridge
Press Wellesley, MA, 1986.

[334] G. Strang. Linear algebra and its applications, 4th Edition. Thomson,
Brooks/Cole, 2006.

[335] A. Takaoka. Graph isomorphism completeness for trapezoid graphs. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 98(8):1838–1840, 2015.

[336] A. Takaoka. Recognizing simple-triangle graphs by restricted 2-chain subgraph
cover. In International Workshop on Algorithms and Computation, pages 177–
189. Springer, 2017.

[337] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular
decomposition via recursive factorizing permutations. Automata, languages and
programming, pages 634–645, 2008.

[338] M.C. Thornton. Spaces with given homeomorphism groups. Proc. Amer. Math.
Soc., 33:127–131, 1972.

[339] W. P. Thurston. Geometry and topology of 3-manifolds. In Princeton lecture
notes, 1980.

[340] B.A. Trakhtenbrot. Towards a theory of non-repeating contact schemes. Trudi
Mat. Inst. Akad. Nauk SSSR, 51:226–269, 1958.

[341] W. T. Trotter. New perspectives on interval orders and interval graphs. In in
Surveys in Combinatorics, pages 237–286. Cambridge Univ. Press, 1997.

[342] A. Tucker. An efficient test for circular-arc graphs. SIAM Journal on Computing,
9(1):1–24, 1980.

360

[343] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical
Society, 3(1):743–767, 1963.

[344] W. T. Tutte. Connectivity in graphs, volume 15. University of Toronto Press,
1966.

[345] R. Uehara. Tractabilities and intractabilities on geometric intersection graphs.
Algorithms, 6(1):60–83, 2013.

[346] R. Uehara, S. Toda, and T. Nagoya. Graph isomorphism completeness for
chordal bipartite graphs and strongly chordal graphs. Discrete Applied Mathe-
matics, 145(3):479 – 482, 2005.

[347] M. Vilian and H. Kautz. Constraint propagation algorithms for temporal rea-
soning. In Proc. Fifth Nat’l. Conf. on Artificial Intelligence, pages 337–382,
1986.

[348] V. G. Vizing. Vertex colorings with given colors. Metody Diskret. Analiz., 29:3–
10, 1976.

[349] J. Von Neumann and H. H. Goldstine. Numerical inverting of matrices of high
order. Bulletin of the American Mathematical Society, 53(11):1021–1099, 1947.

[350] J. Šiagiová. A note on the McKay-Miller-Širáň graphs. J. Combin. Theory Ser.
B, 81(2):205–208, 2001.

[351] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114(1):570–590, 1937.

[352] T.R.S. Walsh. Counting unlabeled three-connected and homeomorphically irre-
ducible two-connected graphs. J. Combin. Theory B, 32:12–32, 1982.

[353] J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure
for deoxyribose nucleic acid. Nature, (4356), 1953.

[354] J. Weiner. Time, love, memory: a great biologist and his quest for the origins of
behavior. Vintage, 2014.

[355] B. Weisfeiler and A.A. Leman. A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya,
9:12–16, 1968.

[356] B. Weisfeiler (ed.). On Construction and Identification of Graphs, volume 558
of Lect. Notes in Math. Springer, 1976.

[357] D. B. West. Parameters of partial orders and graphs: Packing, covering, and
representation. In Graphs and order, pages 267–350. Springer, 1985.

[358] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal
of Mathematics, 54(1):150–168, 1932.

361

[359] H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc., 34:339–
362, 1932.

[360] G. Wolf. Friedrich Miescher: The man who discovered DNA. Chemical Heritage,
21(10-11):37–41, 2003.

[361] E. S. Wolk. The comparability graph of a tree. Proceedings of the American
Mathematical Society, 13(5):789–795, 1962.

[362] M. Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic Discrete Methods, 3(3):351–358, 1982.

[363] P. Zeman. Extending partial representations of unit circular-arc graphs. CoRR,
abs/1706.00928, 2017.

[364] P. Zhang, E. A. Schon, S. G. Fischer, E. Cayanis, J. Weiss, S. Kistler, and P. E.
Bourne. An algorithm based on graph theory for the assembly of contigs in
physical mapping of DNA. Computer applications in the biosciences: CABIOS,
10(3):309–317, 1994.

[365] S. Zhou. A class of arc-transitive Cayley graphs as models for interconnection
networks. SIAM Journal on Discrete Mathematics, 23(2):694–714, 2009.

362

Index

(P1), (P2), (P3), and (P3∗), 200
IV-Matching, 332
3-connected planar graphs

fixed edge-orbits k, 241
orientation preserving, 236
orientation reversing, 236
point-orbits k, 252
reflected edge-orbits k↔, 241
reflection, 236
rotation, 236
spherical groups, 236
stabilizers, 236
vertex-orbits k, 252

3-connected reduction, 175
3-connected components, 175, 216
algorithm

simplified reduction, 230
simplified tree, 230

atoms, 175, 216
Aut∂A(A), 221
Fix∂A, 225
asymmetric, 221
block atoms, 175, 216
boundary ∂A, 217
dipoles, 175, 216
extended proper atom A+, 219
halvable atoms, 294
interior Å, 217
non-star block atoms, 216
proper atoms, 175, 216
star block atoms, 216
symmetric, 221
symmetric atoms, 294

change in the automorphism
group, 176

essentially 3-connected, 218
essentially a cycle, 218
non-trivial 2-cut, 216
parts, 216

block parts, 216
dipole parts, 216
proper parts, 216

primitive graphs, 175, 217
reduction epimorphism Φi, 176,

224
Ker(Φi), 225

reduction series, 222
isomorphic atoms A ∼= A′, 222
set of all atoms A, 222

reduction tree, 175, 224
SPQR trees, 176

3-Partition, 156

algebraic graph theory, 18
adjacency matrix AG, 18
Laplacean matrix LG, 18
spectral graph drawing, 20
spring embeddings, 19

asteroidal triple-free graphs, 60
AT-FREE, 60
asteroidal triple, 60

atoms, see 3-connected reduction
automorphism groups, 174, 177

Aut(C), 177
3-DIM, 182
AutGroup, 177
action on geometric

representations, 178
automorphisms of

representations, 178

363

morphisms of representations,
178

circle graphs, 181
Frucht’s Theorem, 177
interval graphs, 179
Jordan’s characterization, 177
Jordan-like characterizations, 178
non-universal class C, 177
permutation graphs, 180
trees, 177
universal class C, 177

automorphism groups of planar
graphs, 177

Babai’s characterization, 182
quadratic-time algorithm, 185
semidirect products, 184

Benzer, 23
Enterobacteria phage T4, 23
mutation matrices, 24
reordering property, 24
T4 rII mutants, 23
T4 rII system, 23

block tree, 175, 212
articulations, 212

inner, 213
outer, 213

blocks, 175, 212
central articulation, 213
central block, 213
root, 213
subtree, 213

Cayley graphs, 196
planar Cayley graphs, 197
recognition, 196

chordal graphs, 37
H-GRAPH, 70
CHOR, 37
recognition, 38
subtree-in-tree representations, 39
topological H-graphs, 70

circle graphs, 42
almost perfect, 43
circular words τ , 42
interval overlap graphs, 42
recognition, 43, 71

split decomposition, 71
characterization of all

representations, 73
equivalence relation ∼, 72
long vertices, 72
marker vertices, 71
maximal splits, 72
non-trivial, 71
prime graphs, 71
short vertices, 72
split, 71
split between A and B, 71

split trees, 74
degenerate graphs, 74
leaf node, 75
minimal split decomposition, 74
node, 75
tree edge, 75

circle packing, 31
contact representations, 31, 47
Koebe-Andreev-Thurston

Theorem, 31
Thurston method, 31

circular-arc graphs, 44
CIRCULAR-ARC, 44
HELLY CIRCULAR-ARC, 44
PROPER CIRCULAR-ARC, 44
UNIT CIRCULAR-ARC, 44
biclique case, 96
Helly circular arc graphs, 44
multiclique case, 96
normalized representations, 84, 96
proper circular arc graphs, 44
unit circular arc graphs, 44

comparability graphs, 39
k-IDIM, 41
COMP, 39
k-DIM, 40
TRANSITIVE, 76
co-comparability graphs co-COMP,

40
interval dimension idim(G), 41
modular decomposition, 78
order dimension, 40
recognition, 39
transitive orientation, 39

364

transitive orientation →, 39
complex numbers and analysis, 26

amplitwist, 27
analytic functions, 29
Cauchy-Riemann equations, 29
complex derivatives, 28
conformal automorphism of a disk,

30
conformal maps, 29
Dirichlet principle, 30
geometry, 27
Jacobian matrix, 29
Möbius transformations, 30
mapping z ↦→ z2, 27
matrix representation, 27
Riemann Mapping Theorem, 30

Thurston method, 31
consecutive orderings, 100

maximal cliques of interval graphs,
101

PQ-trees, see PQ-trees

degree-diamater problem, 193
DNA, 21

extended graphs, 204
definition, 204
directed edges, 205
halvable edges, 205
incidence function ι, 204
involution λ, 204
single pendant edges, 204
the number of edges e(G), 204
the number of half-edges h(G), 204
the number of vertices v(G), 204
the set of edges E(G), 204
the set of half-edges H(G), 204
the set of vertices V (G), 204
types of edges

free edge, 204
loop, 204
pendant edge, 204
standard edge, 204

types of half-edges
free half-edge, 204
standalone half-edge, 204

undirected edges, 205

FO property testing, 68
function graphs, 40

FUN, 40
co-comparability graphs, see

comparability graphs

geometric representations, 32
Rep, 32
Rep(G), 33
intersection representations, 33
multimapping ρ, 32
planar embeddings, 45

geometry
antipodal mapping, 304
reflection, 304
rotation, 304

graph classes
(P1), (P2), (P3), and (P3∗), 200
intersection graphs, 33
planar embeddings, 45
planar graphs, 45
the class of quotients C/Γ, 200

graph covering, 191, 292
k-fold covering, 199, 292
H-Cover, 196

planar inputs G, 196
k-FoldCover, 199
covering projection p : G→ H,

192, 292
covering testing, 196
fibers, 292
lifting, 192

graph homomorphisms, 198
H-Hom, 198

graph isomorphism problem, 186
G ∼= H, 186
k-WL, 187
GI, 186
ColoredGraphIso, 190
GraphIso, 186
colored graph isomorphism, 190
combinatorial algorithms, 186
computing generators of Aut(G),

187
definition, 186
group theory, 187
Luks’ algorithm, 187

365

graph sandwich problems, 91
graphs, 32

co-C, 32
closed neighborhood N [x], 32
complement, 32
edges E(G), 32
extended graphs, see extended

graphs
induced subgraph G[A], 32
number of edges m and e(G), 32
number of vertices n and v(G), 32
twin classes, 62
twins, 62
vertices V (G), 32

group theory, 205
An alternating group, 206
Cn cyclic group, 206
Dn dihedral group, 206
Sn symmetric group, 206
action, 206

equivariance, 206
orbits [x], 206
semiregular, 206, 292
stabilizer Stab(x), 206

blocks of imprimitivity, 225
Cayley graphs, 192
cosets, 206
factorization, 207
group extension, 207
group extension problem, 207
group homomorphism, 207

epimorphism, 207
Homomorphism Theorem, 207
image Im(Φ), 207
kernel Ker(Φ), 207

group products, 207
direct product ×, 208
external, 207
generalized wreath product ≀,

209, 213
internal, 207
semidirect product o, 208
wreath product ≀, 209

normal subgroup Σ E Ψ, 207
quotient group Ψ/Σ, 207
semiregular group, 292

simple groups, 207
spherical groups, 236
subgroup Σ ≤ Ψ, 206

intersection graphs
intersection representations, 33
sets ⟨x⟩, 33

intersection representations, 33
interval graphs, 34

ℓ(x) and r(x), 35
INT, 34
characterizations

Fulkerson and Gross, 34, 59, 101
Gilmore and Hoffman, 35, 39
Lekkerkerker and Boland, 35, 60

clique-points, 101
closed intervals ⟨x⟩, 34
consecutive orderings of maximal

cliques, 101
forbidden induced subgraphs, 60
inteval representations, 34
on the left, on the right, between,

35
recognition, 78
trivially perfect graphs, 38

interval orderings, 104, 108
single overlaps, 105

interval orders, 35
semiorders, 35
unit interval orders, 35

k-length interval graphs, 36
hardness of RepExt, 68, 156
k-LengthINT, 36
the count of lengths λ(G), 36

k-nested interval graphs, 36
⃝←i and ⃝→i , 166
ν(R), 157
ν(u), 157
(, 157
chains of nested intervals, 157
cleaned representations, 158
computing ν(G), 68
efficient encoding, 158
flipped representation R↔, 163
forced nestings (F , 159
formulas for P-nodes, 164

366

formulas for Q-nodes, 166
k-NestedINT, 36
minimal representations, 162
pruning twins, 157
the nesting ν(G), 36
triples (α, β, γ), 160
triples for leaves, 163

Laplace operator ∆, 19, 30
Dirichlet principle, 30
harmonic functions, 30

list restricted graph isomorphism, 188
ListAut, 188
ListIso, 188
list-compatible automorphism, 188
list-compatible isomorphism, 188
lists L(u), 188
reduction using vertex-gadgets, 272
total size of lists ℓ, 270

minimal obstructions
(k, ℓ)-CE Lemma, 140
k-FAT Lemma, 137
definition, 118
flip operation, 129
leaf case, 131
list
k-BI obstructions, 121
k-EFB obstructions, 123
k-EFDS obstructions, 123
k-EFS obstructions, 122
k-FAT obstructions, 119
k-FB obstructions, 122
k-FDS obstructions, 123
k-FNS obstructions, 123
k-FS obstructions, 122
(k, ℓ)-CE obstructions, 123
LB obstructions, 60
SE obstructions, 119

P-node case, 132
paths Px,y, 118
Q-node case, three subtrees, 149
Q-node case, two subtrees, 135
Sliding Lemma, 128

modular decomposition, 76
M1 →M2, 78
adjacent modules, 76

complete and independent graphs,
76

degenerate graphs, 76
extending partial orientations, 79
function representation, 78
modular partitions P , 76
modular tree, 77

complete and independent nodes,
77

degenerate nodes, 77
directed tree edges, 77
nodes, 77
prime nodes, 77
root node, 77
subtrees, 77

modules, 76
prime graphs, 76
quotient graphs G/P , 76
recognition of interval graphs, 78
strong modules, 77
transitive orientations, 78
trivial modules, 76

MPQ-trees, 126
P ↦→(a) and P ↦→(a), 128
Q-monotone paths, 127
s←u (Q) and s→u (Q), 128
on the left, on the right, between,

on the same side, 128
sections s(a), s(P), si(Q), 126

orientations
acyclic, 85
chordal graphs, 85
in-tournament, 85
local tournament, 85
locally transitive local tournament,

85
locally transitive tournament, 85
proper circular-arc graphs, 85
proper interval graphs, 85
tournament, 85
transitive, 39
trivially perfect graphs, 85

partial embedding extension, 86
NP-hardness for STRAIGHTLINE,

87

367

EmbedExt, 86
algorithm for CURVES, 87
minimal forbidden partially

embedded minors, 87
partial embedding, 86

partial orientation extension, 75
orient, 75
OrientExt, 75
NP-completeness, 84
extending orientation, 75
function graphs, 81

2-Sat formula, 83
poset constraint, 82
pre-drawn modules and subtrees,

82
regions Reg(v), 81
representations of posets, 81
two transitive orientations, 83

partial functions, 83
domain, 83

partial orientation →′, 75
permutation graphs, 81
transitive orientations, 79
trapezoid graphs, 84

trapezoid posets, 84
partial representation extension, 56

Ext(R′), ExtRep(R′), Ext(R′, G),
and ExtRep(R′, G), 56

RepExt, 56
chordal graphs, 69

Recog∗, 69
Add, 69
Both, 69
Fixed, 69
Sub, 69
tree modifications T, 69

circle graphs, 73
contact representations, 87
extending representation, 56
interval graphs, 59, 99
P (a), 103
x(a) and y(a), 103
↓a, 103
certifying linear-time algorithm,

61

characterization by maximal
cliques, 104

interval ordering ▹, 103
minimal obstructions, see

minimal obstructions
located and unlocated components,

63
partial representation R′, 56
pre-drawn vertices and sets, 56
proper circular-arc graphs, 86
restriction R′[A], 56
unit interval graphs

left-shifting algorithm, 66
linear program, 65
obstruction digraph H, 66
required resolution, 64
system of difference constraints,

66
partial visibility extension, 87
path graphs, 39

PATH, 39
perfect graphs, 38

trivially perfect graphs, 38
permutation graphs, 41

PERM = COMP ∩ co-COMP =
2-DIM, 41

PERM, 41
planar embeddings, 45

CURVES, 45
STRAIGHTLINE, 46
Fáry Theorem, 46
straight-line embeddings, 46

planar graphs, 45
OUTERPLANAR, 48
PLANAR, 46
SERIES-PARALLEL, 48
3-connected graphs, 46
contact representations, 47

circle packings, 47
grid intersection representations,

47
touching isosceles triangles, 47

Mani Theorem, 47
maps, 236
outerplanar graphs, 48
planar embeddings, 45

368

polyhedral graphs, 46
series-parallel graphs, 48
spherical embeddings, 46
stereographic projection, 46

PQ-trees, 35, 100
T [N], 106
compatible, 106
equivalence relation, 100
equivalent transformations, 100
frontier, 100
P-nodes, 100
Q-nodes, 100
reordering algorithm, 107
reordering algorithm for interval

orderings, 109
l, 109

reordering problem, 106
Ti ▹ Tj, 106

subtrees, 106
proper interval graphs, 35

PROPER INT Rep, 63
PROPER INT, 35
acyclic local tournaments, 63
proper interval representations, 35

recognition, 33
certifying algorithm, 33
interval graphs, 102

regular graph covering, 191, 292
k-FoldRegularCover, 199
RegularLifting, 198
RegularQuotient, 198
RegularCover, 196
Cayley graphs, 192

planar Cayley graphs, 197
recognition, 196

covering projection p : G→ H, 192
expansion, 195

main theorem, 195
lifting, 192, 198
meta-algorithm, 312

catalog, 315
catalog queries, 318
cores, 313
partially expanded atoms, 315

Negami’s Theorem, 195
projections of atoms

edge-projection, 296
half-projection, 296
loop-projection, 296

quotients, 198
quotients of atoms, 195

edge-quotient, 297
edge-quotients, 195
half-quotient, 297
half-quotients, 195
loop-quotient, 297
loop-quotients, 195

quotients of dipoles, 302
quotients of planar primitive

graphs
antipodal quotient, 305
reflectional quotient, 305
rotational quotient, 305

quotients of planar proper atoms
reflectional half-quotient, 306
rotational half-quotient, 306

regular covering testing, 196
FPT algorithm for planar graphs,

196
FPT meta-algorithm, 200

regular quotient G/Γ, 192, 292
restricted representation problems, 87

allen algebras, 94
interval satisfiability ISat, 94
primitive relations, 94
relations, 94
restricted ISat, 95

bounded representations, 89
BoundRep, 89
bounds Lv and Rv, 89
solvable bounds, 89

chronological ordering, 88
Chronolog, 88

representation sandwich problems,
91

Av and Bv, 91
RepSandwich, 91
SubSet, 91
SuperSet, 91

simultaneous representations
problems, 92

SimRep, 92

369

arbitrary intersections, 92
sunflower intersections, 92

string graphs, 45
STRING, 45

topological sorts, 110
minimal elements, 110

trapezoid graphs, 41
TRAPEZOID, 41
normalized representations, 84
split, 84

trees, 47
CATERPILLAR, 47
PSEUDOFOREST, 47

TREE, 47
caterpillar graphs, 47
pseudoforests, 47

triangle graphs, 42
TRIANGLE, 42

unit interval graphs, 35
UNIT INT Rep, 63
UNIT INT, 35
required resolution, 64
synthehic graphs, 67
unit interval representations, 35

visibility representations, 87

370

371

	Introduction to Geometric Representations of Graphs
	Motivation
	Tutte's Spring Embedding and Spectral Graph Drawing
	Benzer's Study of the Structure of DNA
	Riemann Mapping Theorem and Circle Packings

	Definitions
	Intersection Representations
	Interval Graphs
	k-nested and k-length Interval Graphs
	Chordal Graphs
	Comparability Graphs and Related Geometric Graph Classes
	Circle Graphs
	Circular-Arc Graphs
	String Graphs

	Planar Embeddings
	Polyhedral Graphs
	Contact Representations
	Subclasses of Planar Graphs
	Bounded Genus Graphs and Other Graph Classes

	Results of This Thesis
	Part I: Partial Representation Extension Problems
	Part II: Extending Algebraic Properties of Graphs

	I The Partial Representation Extension Problems
	State of The Art for Partial Representation Extension
	Definitions and Motivation
	Interval Graphs
	Structural Results
	Algorithmic Results

	Proper and Unit Interval Graphs
	Proper Interval Graphs
	Unit Interval Graphs

	k-nested and k-length Interval Graphs
	Chordal graphs
	Circle Graphs
	Partial Orientation Extension Problems
	Modular Decomposition and Modular Trees
	Transitive Orientations and Comparability Graphs
	Permutation Graphs
	Function Graphs
	Trapezoid Graphs
	Proper Circular-arc Graphs

	Extending Other Types of Partial Representations
	Related Restricted Representation Problems
	Chronological Ordering
	Bounded Representation Problems
	Representation Sandwich Problems
	Simultaneous Representations Problems
	Allen Algebras and Interval Satisfiability

	Open Problems

	Extending Partial Interval Representations in Linear Time
	PQ-trees and Consecutive Orderings of Maximal Cliques
	Characterization of Extendible Partial Representations
	The Reordering Problem of PQ-trees
	The Reordering Problem for General Orderings
	The Reordering Problem for Interval Orderings

	Linear-time Algorithm

	Minimal Obstructions for RepExt of Interval Graphs
	Definition of Minimal Obstructions
	List of Minimal Obstructions
	Proofs of Non-extendibility and Minimality

	MPQ-trees and Basic Tools
	MPQ-trees
	Basic Tools

	Strategy for Finding Minimal Obstructions
	Obstructed Leaves
	Obstructed P-nodes
	Obstructed Q-nodes
	Cliques in Two Different Subtrees
	k-FAT and (k,)-CE Lemmas
	Cliques in Three Different Subtrees

	Proofs of the Main Results
	Conclusions

	Interval Graphs of Limited Nesting and Count of Lengths
	Extending Partial Representations with Two Lengths
	Basic Properties of k-Nested Interval Graphs
	Recognizing k-nested Interval Graphs
	Triples (,,)
	Triples for P-nodes
	Triples for Q-nodes
	Construction of Linear-time Algorithm

	Conclusions

	II Extending Algebraic Properties of Graphs
	Overview of Algebraic Properties of Graphs
	Outline
	3-connected Reduction
	Atoms, Reduction Series and Reduction Tree
	Change in Automorphism Groups
	Relation to Previous Works

	Automorphism Groups of Planar Graphs
	Restricted Graph Classes and Jordan-like Characterizations
	Babai's Characterization
	The Jordan-like Characterization
	Quadratic-time Algorithm

	Graph Isomorphism Problem
	Graph Isomorphism Problem Restricted by Lists
	Our Results

	Regular Graph Covers
	Motivations for Regular Graph Covering
	Structural Results
	Regular Covering Testing
	Related Computational Problems
	Other Covering Problems
	Three Properties
	The Meta-algorithm

	3-connected Reduction
	Definition of Extended Graphs
	Group Theory and Automorphism Groups of Graphs
	Introduction to Group Theory
	Automorphism Groups of Extended Graphs

	Block Trees and Their Automorphisms
	Properties of Automorphisms
	Characterization of Automorphism Groups
	Why Not Just 2-connected Graphs?

	Structural Properties of Atoms
	Definition and Basic Properties of Atoms
	Structure of Primitive Graphs and Atoms
	Non-overlapping Atoms
	Symmetry Types of Atoms

	Reduction Series and Reduction Trees
	Reduction Epimorphism
	Properties of Reduction Epimorphism
	Semidirect Product
	Inductive Characterization

	Polynomial-time Algorithms
	Comparison with Previous Results

	Automorphism Groups of Planar Graphs
	Automorphism Groups of 3-connected Planar Graphs
	Automorphism Groups of Planar Primitive Graphs and Atoms

	The Jordan-like Characterization
	Characterization by Semidirect Product Series
	Fixer of the Boundary of an Expanded Atom
	Composition of Spherical groups with Fixers
	Possible Lengths of Orbits

	Applications of Jordan-like Characterization
	Automorphism Groups of 2-connected Planar Graphs
	Automorphism Groups of Outerplanar Graphs
	Automorphism Groups of Series-Parallel Graphs

	Comparison with Babai's Characterization
	Quadratic-time Algorithm
	Conclusions

	Graph Isomorphism Restricted by Lists
	Basic Results
	Bipartite Perfect Matchings
	Basic Complexity Results

	GI-completeness of GraphIso Implies NP-completeness of ListIso
	NP-completeness for 3-regular Colored Graphs
	Trees
	Planar Graphs
	Interval, Permutation and Circle Graphs
	Interval Graphs
	Permutation Graphs
	Circle Graphs

	Bounded Genus Graphs
	Bounded Treewidth Graphs
	Conclusions

	3-connected Reduction for Regular Graph Covers
	Definition of Regular Graph Covering
	Regular Projections and Quotients of Atoms
	Quotient Expansions
	Quotients and Their Expansion

	Quotients of Planar Graphs and Negami's Theorem
	Concluding Remarks

	Algorithmic Aspects of Regular Graph Covers
	Complexity of Regular Graph Covering
	Atoms, Reduction and Expansion
	Meta-algorithm
	Overview of Testing Expandability
	Catalog of Atoms
	Reductions with Lists
	Proof of The Main Theorem

	Star Blocks Atoms with Lists
	Preprocessing Star Block Atoms
	Sizes and Chains
	Reduction to the IV-Matching Problem

	Applying the Meta-algorithm to Planar Graphs
	Concluding Remarks

	Bibliography
	Index

