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Preface

Spring school on Combinatorics has been a traditional meeting organized for faculty and students
participating in the Combinatorial Seminar at Charles University for over 30 years. It is inter-
nationally known and regularly visited by students, postdocs and teachers from our cooperating
institutions in the DIMATIA network. As it has been the case for several years, this Spring School is
generously supported by Computer Science Institute (IÚUK) of Charles University, the Department
of Applied Mathematics (KAM), and Center of Excellence — Institute for Theoretical Computer
Science (ITI) of Charles University.
The Spring Schools are entirely organized and arranged by our students (mostly undergraduates).
The lecture subjects are selected by supervisors from the Department of Applied Mathematics
(KAM) and Computer Science Institute (IÚUK) of Charles University as well as from other partic-
ipating institutions. In contrast, the lectures themselves are almost exclusively given by students,
both undergraduate and graduate. This leads to a unique atmosphere of the meeting which helps
the students in further studies and their scientific orientation.
This year the Spring School is organized in Sklené u Fryšavy, a mountain village in Žďárské vrchy
in middle part of Czech republic with a great variety of possibilities for outdoor activities.

Ondřej Pangrác, Robert Šámal, Martin Tancer

KAMKAM
2





Contents

Dependent random choice: Introduction: Dependent random choice (Zdeněk Dvořák) . . . . 7
Dependent random choice: Dependent random choice (Tomáš Toufar) . . . . . . . . . . . . . 8
Network Coding: Fundamental Theorem of Network Coding (Veronika Slívová) . . . . . . . 10
Network Coding: Constructing Network Coding (Karel Král) . . . . . . . . . . . . . . . . . . 11
Beyond trilateration: On the localizability of wireless ad-hoc networks (Onur Çağırıcı) . . . 12
Edge-coloring of 3-uniform hypergraphs (Radovan Červený) . . . . . . . . . . . . . . . . . . 13
The topology of competitively constructed graphs (Andrej Dedík) . . . . . . . . . . . . . . . 15
Integer 4-flows and cycle covers (Anna Dresslerová) . . . . . . . . . . . . . . . . . . . . . . . 16
The communication complexity of addition (Pavel Dvořák) . . . . . . . . . . . . . . . . . . . 18
Parameterized Approximations of Symmetric and Planar Directed Steiner Networks (Andreas

Feldmann) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Highway Dimension and Provably Efficient Shortest Path Algorithms (Tomáš Gavenčiak) . . 21
De-Bruijn-Erdős-type theorems for graphs and posets (Jaroslav Hančl) . . . . . . . . . . . . 23
Euler’s polyhedral formula (Petr Hliněný) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Approximating bounded-degree spanning trees and connected factors with leaves (Dušan Knop) 25
On hardness of some planar SAT problems (Tomáš Masařík) . . . . . . . . . . . . . . . . . . 27
Cops and Robbers ordinals of cop-win trees (Ondřej Mička) . . . . . . . . . . . . . . . . . . 28
Fractional triangle decompositions in graphs with large minimum degree (Jana Novotná) . . 30
Contraction Hierarchies & Hub Labeling (Jitka Novotná) . . . . . . . . . . . . . . . . . . . . 31
A Short Proof That χ Can be Bounded ε Away from ∆ + 1 toward ω (Petra Pelikánová) . . 33
Searching for knights and spies: A majority/minority game (Jakub Svoboda) . . . . . . . . . 34
Combinatorial species and graph enumeration (Josef Svoboda) . . . . . . . . . . . . . . . . . 36
On the Shortest Path Game (Jana Syrovátková) . . . . . . . . . . . . . . . . . . . . . . . . . 38
Note on terminal-pairability in complete grid graphs (Jakub Tětek) . . . . . . . . . . . . . . 40

4



Schedule of talks

9:00 10:00 11:00 12:00

Saturday
room A

chair: Jakub Svoboda

The topology of competitively
constructed graphs

Andrej Dedík 9:00 – 10:30 15

Beyond Trilateration: On the
Localizability of Wireless Ad-hoc

Networks
Onur Çağırıcı 10:30 – 12:00 12

Lunch

12:00 – 13:00

Sunday
room A

chair: Milan Hladík

Fundamental Theorem of
Network Coding:
Network Coding

Veronika Slívová 9:00 – 10:30 10

Constructing Network Coding:
Network Coding

Karel Král 10:30 – 12:00 11

Lunch

12:00 – 13:00

Sunday
room B

chair: Tomáš Masařík

Combinatorial species and graph
enumeration

Josef Svoboda 9:00 – 10:30 36

Fractional triangle
decompositions in graphs with

large minimum degree
Jana Novotná 10:30 – 12:00 30

Monday
room A

chair: Veronika Slívová

Highway Dimension and
Provably Efficient Shortest Path

Algorithms
Tomáš Gavenčiak 9:00 – 10:30 21

Highway dimension, shortest
paths, and provably efficient

algorithms
Jitka Novotná 10:30 – 12:00 31

Lunch

12:00 – 13:00

Tuesday
room A

chair: Jaroslav Hančl

Integer 4-flows and cycle covers
Anna Dresslerová 9:00 – 10:30 16

Edge-coloring of 3-uniform
hypergraphs

Radovan Červený 10:30 – 12:00 13

Lunch

12:00 – 13:00

Wednesday
Trip Day

9:00 –

Thursday
room A

chair: Robert Lukoťka

The communication complexity
of addition

Pavel Dvořák 9:00 – 10:30 18

Introduction:
Dependent random choice

Zdeněk Dvořák 10:30 – 12:00 7

Lunch

12:00 – 13:00

Friday
room A

chair: Ondřej Pangrác

A short Proof that χ Can be
Bounded ε Away from ∆ + 1

toward ω
Petra Pelikánová 19:00 – 20:30 33

Approximating bounded-degree
spanning trees and connected

factors with leaves
Dušan Knop 10:30 – 12:00 25

Lunch

12:00 – 13:00

5



18:00 19:00 20:00 21:00

Friday
room A

chair: Karel Král

Arrival

– 18:00

Dinner

18:00 – 19:00

Searching for knights and spies:
A majority/minority game

Jakub Svoboda 19:00 – 20:30 34

Saturday
room A

chair: Tereza Klimošová

The Code Game

– 19:00

Dinner

19:00 – 19:40

Euler’s poly-
hedral formula
Petr Hliněný

19:40 – 20:30 24

On hardness of some
SAT problems
Tomáš Masařík

20:30 – 21:30 27

Sunday
room A

chair: Andreas Feldmann

Dinner

18:00 – 19:00

Cops and Robbers ordinals of
cop-win trees

Ondřej Mička 19:00 – 20:30 28

Monday
room A

chair: Tomáš Gavenčiak

Dinner

18:00 – 19:00

Parameterized Approximations
of Symmetric and Planar
Directed Steiner Networks

Andreas Feldmann 19:00 – 20:30 20

Tuesday
room A

chair: Jana Syrovátková

Dinner

18:00 – 19:00

De-Bruijn-Erdős-type theorems
for graphs and posets

Jaroslav Hančl 19:00 – 20:30 23

Wednesday
room A

chair: Tomáš Toufar

Trip Day

– 18:00

Dinner

18:00 – 19:00

Note on terminal-pairability in
complete grid graphs

Jakub Tětek 19:00 – 20:30 40

Thursday
room A

chair: Pavel Dvořák

Dinner

18:00 – 19:00

Dependent random choice II.
Dependent random choice

Tomáš Toufar 19:00 – 20:30 8

Thursday
room B

chair: Jitka Novotná

On the Shortest Path Game
Jana Syrovátková 9:00 – 10:30 38

Typical day

8:00 – 9:00 Breakfast
9:00 – 10:30 Talk 1
10:30 – 12:00 Talk 2
12:00 – 13:00 Lunch
13:00 – 18:00 Free time
18:00 – 19:00 Dinner
19:00 – 20:30 Talk 3

6



Series Talks

Zdeněk Dvořák
rakdver@iuuk.mff.cuni.cz

Introduction: Dependent random choice
as part of a serie Dependent random choice

Abstract
We give a brief introduction into extremal graph theory, focusing on the problem of determining
the extremal function for bipartite graphs. In this context, we note the usefulness of finding (in
a sufficiently dense graph) a set of vertices such that each small tuple of them has many common
neighbors. We introduce the basic idea of dependent random choice method and use it to show a
bound on the extremal function for 1-subdivision of multigraphs.
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Tomáš Toufar
toufi@iuuk.mff.cuni.cz

Presented paper by Jacob Fox, Benny Sudakov
Dependent random choice as part of a serie Dependent random choice

(https://arxiv.org/pdf/0909.3271.pdf)

Introduction
In this talk we present a simple yet surprisingly useful probabilistic technique which shows that in
a dense graph there exists a large subset of vertices in which all small subsets have many common
neighbors.
Recently, this technique had several applications in Extremal Graph Theory, Ramsey Theory, Com-
binatorial Geometry, and Additive Combinatorics. We discuss some of the applications in Extremal
graph theory and Ramsey Theory.

Notation
By N(v) we denote neighborhood of v (the set {u : uv ∈ E}). By N(U) we denote the common
neighbors of U , i.e., the set

N(U) =
⋂
v∈U

N(v).

The Turán number ex(n,H) denotes the maximum number of edges of a graph with n vertices that
does not contain H as a subgraph.
The Ramsey number r(H) denotes the smallest positive integer N such that every 2-coloring of KN

contains a monochromatic copy of a graph H.

Key lemma
In Extremal Graph theory, we often want to embed small or sparse graph into a dense graph. To
obtain such an embedding, it is useful to have a large vertex subset U in which all small subsets
have many common neighbors. We can then use U to greedily embed the desired subgraph.
The condition for existence of such a subset is established by the next lemma.
Lemma 1 (Key lemma) Let n, d, a, r,m be positive integers. Let G = (V,E) be a graph on n
vertices with average density d = 2|E|/|V |. If there exists a positive integer t such that

dt

nt−1 −
(
n

r

)(
m

n

)t
≥ a,

then G contains a subset U ⊆ V of size at least a such that every r vertices in U have at least m
common neighbors.

Turán number of bipartite graphs
The central problem in Extremal Graph Theory is to determine or estimate ex(n,H). A classical
result by Turán determines the ex(n,H) when H is a complete graph. Another well-known result by
Erdõs, Stone, and Simonovits determines the asymptotic behavior for graphs of chromatic number
at least three.
However, for bipartite graph estimating ex(n,H) is more complicated; there are only few nontrivial
bipartite graph for which the order of magnitude of ex(n,H) is known. The following result gives
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an upper bound on ex(n,H) for H having small degree in one partite; the result is best possible for
every fixed r.
Theorem 2 If H = (A ∪ B,F ) is a bipartite graph in which every vertex in B has degree at most
r, then ex(n,H) ≤ cn2−1/r, where the constant c depends on H only.

Degenerate graphs
To deal with degenerate graphs we need the following twist of the Key lemma.
Lemma 3 (Two-sided variant of key lemma) Let r, s be integers with r, s ≥ 2 and let G =
(V,E) be a graph with N vertices with at least N2−1/(s3r) edges. The graph G contains subsets
U1, U2 ⊆ V such that, for k ∈ {1, 2}, every r-tuple in Uk has at least N1−1.8/s common neighbors in
U3−k.
The next result has two quick corollaries in Ramsey theory and Extremal Graph theory.
Theorem 4 Let r, s ≥ 2 and let G be a graph with N vertices and at least N2−1/(s3r) edges. Then
the graph G contains every r-degenerate bipartite graph with N1−1.8/s vertices.
Erdõs and Burr conjectured that for every r there is a constant cr such that for every r-degenerate
graph H on n vertices we have r(H) ≤ crn. We show a nearly linear upper bound for degenerate
bipartite graphs.
Corollary 5 The Ramsey number of every r-degenerate bipartite graph H on n vertices satisfies

r(H) ≤ 28r1/3(logn)2/3
n

for n sufficiently large.
Erdõs conjectured that ex(n,H) ∈ O(n2−1/r) for every r-degenerate bipartite graph. As a corollary
of Theorem 4, we obtain a slightly weaker bound.
Corollary 6 Let H be an r-degenerate bipartite graph on h vertices and let n be an integer satisfying
n > h10. Then

ex(n,H) < n2− 1
8r .
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Veronika Slívová
slivova@iuuk.mff.cuni.cz

Presented paper by Christina Fragouli and Emina Soljanin
Fundamental Theorem of Network Coding

as part of a serie Network Coding
(http://ect.bell-labs.com/who/emina/papers/NCF.pdf)

Network coding is a novel technique improvng network throughput and performance. Contrary to
the previous approach (network flows) network coding allows the internal nodes to not only pass
the information but also to process it. The fundamental theorem of network coding says that we
can broadcast all information from a source to all receivers if and only if each receiver can get all
the information.
Definition 1 A cut between S and R is a set of graph edges whose removal disconnects S from R.
A min-cut is a cut with the minimal value. The value of the cut is the sum of the capacities of the
edges in the cut.
Theorem 2 ([1]) Consider a graph G = (V,E) with unit capacity edges, a source vertex X and a
receiver vertex R. If the min-cut between S and R equals h, then the information can be send from
S to R at a maximum rate of h. Equivalently, there exists exactly h edge-disjoint paths between S
and R.
Theorem 3 (Main NC Thm [1]) Consider a directed acyclic graph G = (V,E) with unit capac-
ity edges, h unit rate sources located on the same vertex of the graph and N receivers. Assume that
the value of the min-cut to each receiver is h. Then there exists a multicast transmission scheme
over a large enough finite field Fq, in which intermediate network nodes linearly combine their in-
coming information symbols over Fq, that delivers the information from the sources simultaneously
to each receiver at a rate equal to h.
Definition 4 The local coding vector c`(e) associated with an edge e is the vector of coefficients
over Fq with which we multiply the incoming symbols to edge e. The dimension of c`(e) is 1×|In(e)|,
where In(e) is the set of incoming edges to the parent node of e.
Definition 5 The global coding vector c(e) associated with an edge e is the vector of coefficients
of the source symbols that flow (linearly combined) through edge e. The dimension of c(e) is 1×h.
Theorem 6 (Algebraic version of the Main Thm [1]) In linear network coding, there exist
values in some large enough finite field Fq for the components {αk} of the local coding vectors, such
that all matrices Aj, 1 ≤ j ≤ N , defining the information that the receivers observe, are full rank.
Lemma 7 (Sparse Zeros Lemma [1]) Let f(α1, . . . , αη) be a polynomial in variables α1, . . . , αη,
with maximum degree in each variable of at most d. Then, in every finite field Fq of size q > d on
which f(α1, . . . , αη) is not identically equal to zero, there exist values p1, . . . , pη, such that f(α1 =
p1, . . . , αη = pη) 6= 0.

Bibliography

[1] Christina Fragouli, and Emina Soljanin. Network Coding Fundamentals. The Essence of Knowledge, 2007.
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Karel Král
kralka@iuuk.mff.cuni.cz

Constructing Network Coding as part of a serie Network Coding

We are going to describe the Linear Information Flow Algorithm which for a known network pro-
duces a network flow in polynomial time.
Definition 1 Coding points are the edges of the graph G where we need to perform network coding
operations.
Lemma 2 Consider a coding point δ with m ≤ h parents and a receiver Rj ∈ R(δ). Let V (δ)
be the m-dimensional space spanned by the coding vectors of the parents of δ, and V (Rj, δ) be
the (h − 1)-dimensional space spanned by the elements of Bj after removing c(f j←(δ)). Then
dim {V (δ) ∩ V (Rj, δ)} = m − 1. Where f j←(δ) denotes the predecessor coding point to δ along
the source-target path (Si, Rj) and c denotes the coding vector.
Theorem 3 The LIF algorithm identifies a valid network code using any alphabet Fq of size q > N .

Lemma 4 A randomly selected coding vector c(δk) at step k of the LIF preserves the multicast
property with probability at least 1−N/q.
Observation 5 The LIF algorithm can be implemented to run in time O(|E|Nh2).
The alphabet size (the sizes of the underlying field size) is an important network code characteristic,
as it corresponds to the packet size and thus computation time needed in each node. It is known
that if we do require the smallest possible size we have to solve an NP-complete problem. We are
going to discuss that large alphabet sizes are necessary for some graphs.
Definition 6 Let fi, fj be functions mapping Σ2 to Σ. We say fi, fj are independent iff there does
not exist distinct points (α1, β1) and (α2, β2) in Σ2 such that fi(α1, β1) = fi(α2, β2) and fj(α1, β1) =
fj(α2, β2).
Lemma 7 ([2]) If f1, . . . , fn are pairwise independent functions of the form fi : Σ2 → Σ, then
n ≤ q. Where q denotes the alphabet size |Σ|.
Theorem 8 There exist solvable multicast information flow problems that require an alphabet of
size Ω(

√
n), even if nonlinear network codes are permitted.

Bibliography

[1] Christina Fragouli, and Emina Soljanin. Network Coding Fundamentals. The Essence of Knowledge, 2007. Foun-
dations and Trends R© in Networking 2.2 (2008): 135-269.

[2] April Rasala Lehman, Eric Lehman Complexity Classification of Network Information Flow Problems Proceed-
ings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2004.
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Standalone Talks

Onur Çağırıcı
onur@mail.muni.cz

Presented paper by Z. Yang, Y. Liu, and X-Y. Li
Beyond trilateration: On the localizability of wireless ad-hoc networks

(http://ieeexplore.ieee.org/abstract/document/5062166/?reload=true)

Introduction
he proliferation of wireless and mobile devices has fostered the demand of context aware applications,
in which location is often viewed as one of the most significant contexts. Classically, trilateration
is widely employed for testing network localizability; even in many cases it wrongly recognizes a
localizable graph as non-localizable. In this study, we analyze the limitation of trilateration based
approaches and propose a novel approach which inherits the simplicity and efficiency of trilateration,
while at the same time improves the performance by identifying more localizable nodes. We prove
the correctness and optimality of this design by showing that it is able to locally recognize all
1-hop localizable nodes. To validate this approach, a prototype system with 19 wireless sensors
is deployed. Intensive and large-scale simulations are further conducted to evaluate the scalability
and efficiency of our design.
Wheel Graph A wheel graph Wn is a graph with n vertices, formed by connecting a single vertex
to all vertices of an (n − 1)-cycle. The vertices in the cycle will be referred to as rim vertices,
the central vertex as the hub, an edge between the hub and a rim vertex as a spoke, and an edge
between two rim vertices as a rim edge.
Conditions for Node Localizability We define the distance graph GN of a wireless ad-hoc
network. Each wireless communication device (e.g., laptop, RFID, or sensor node) is modeled as
a vertex of GN and there is an un-weighted edge connecting two vertices if the distance between
them can be measured or both of them are in known locations, e.g., beacon nodes. The closed
neighborhood graph of a vertex v, denoted by N [v], is a subgraph of GN containing only v and its
one-hop (direct) neighbors and edges between them in GN . We also define the open neighborhood
graph N(v), obtained by removing v and all edges incident to v from N [v].
Lemma 3 If a graph G is 2-connected, then G is globally rigid, where G′ is obtained by adding a
vertex v0 and edges between v0 to all vertices in G.
Theorem 1 In a neighborhood graphN [v] with k(k ≥ 3), localizable vertices vi(i = 1, . . . , k and v =
vk), any vertex (other than vi) belongs to a wheel structure with at least 3 localizable vertices if
and only if it is included by the unique block in N(v) containing k − 1 localizable vertices.
Definition 2 In a network, a node is k-hop localizable if it can be localized by using only the
information of at most k-hop neighbors.
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Radovan Červený
cervera3@fit.cvut.cz

Presented paper by Paweł Obszarski, Andrzej Jastrzȩbski
Edge-coloring of 3-uniform hypergraphs
(http://dx.doi.org/10.1016/j.dam.2016.06.009)

Introduction
We will cover the edge-coloring problem for special classes of hypergraphs, where we will show a
NP-completeness result together with a polynomial solution for some highly-structured classes of
hypergraphs – hypertrees, hypercycles and hypercacti. We will conclude with an in-depth overview
of the Orlin’s algorithm for coloring proper circular arc graphs.

Definitions
Let H = (V,E) be a hypergraph, V (H) is a set of vertices, E(H) is a multiset of non-empty subsets
of V (H) called hyperedges(edges), an edge e and vertex v are incident if v ∈ e and two edges e, e′
are adjacent if they share a common vertex.
Ψ(e) = |e| denotes the edge cardinality. Ψ(H) = maxe∈E(H) Ψ(e) denotes the maximum cardinality
of an edge in H. For a vertex v ∈ V , degree deg(v) is a number of edges to which v is incident.
∆(H) = maxv∈V (H) deg(v) is a degree of H.
Hypergraph H is d−uniform if ∀e ∈ E(H),Ψ(e) = d.
A proper edge-coloring of a hypergraph H with k colors is a function c : E(H) → {0, . . . , k − 1}
such that no two adjacent edges are assigned the same color.
The chromatic index χ′(H) of H is a number of colors in an optimal (minimal) edge-coloring of H.
A line graph L(H) of hypergraph H is a simple graph where vertices represent hyperedges of H
and two vertices in L(H) are adjacent if and only if their corresponding hyperedges are adjacent.
A graph G is an underlying (host) graph of hypergraph H if V (G) = V (E) and each edge e ∈ E(H)
induces a connected subgraph in G.
A hypergraph H is called a hypertree/hypercycle/hypercactus if there exists a tree/cycle/cactus
which is an underlying graph for H.

Theorems
Fact 1 For any 3-uniform hypergraph H the following holds: ∆(H) ≤ χ′(H) ≤ 3∆(H)− 2.
The edge-coloring of hypergraph H is equivalent to vertex-coloring of L(H), thus the above fact
can be generalized to χ′(H) ≤ ∆(L(H))+1, or due to Brooks’ theorem to χ′(H) ≤ ∆(L(H)) unless
L(H) is a complete graph or an odd cycle.
Fact 2 Let H be hypertree. Then it can be edge-colored in polynomial time.
Lemma 3 Let H be hypercycle withm edges and Ψ(H) = 3. Then it can be edge-colored in O(m3/2).
It is done by transforming the graph into a proper circular arc graph which can be colored using
an improved version of Teng and Tucker’s approach in O(n3/2) [1]. Teng and Tucker’s work is a
refinement of an original O(n2) algorithm by Orlin et al. [2].
Theorem 4 Edge-coloring of a 3-uniform hypercactus with m edges can be done in time O(m3/2).
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Using results for hypertrees and hypercycles, we devise an iterative procedure to color the whole
hypercactus.
Theorem 5 It is NP-complete to decide whether a 3-partite hypergraph of degree 3 is 3-edge-
colorable.
The reduction is done from the problem of edge precoloring extension to proper 3-edge-coloring
for bipartite graphs of degree 3 precolored with at most 3 colors, which has been proven to be
NP-complete by Fiala [3].

Orlin’s algorithm — Definitions
A graph G is a circular arc graph if there is a 1:1 correspondence between vertices of G and the
arcs of the circle such that two vertices are adjacent if and only if their corresponding arcs are
intersecting.
Such graph G is called proper if no arc is wholly contained in another.
An overlap clique of G is a maximal set of vertices of G whose corresponding arcs intersect at a
common point on the circle.
A set S is called circularly consecutive if S = {i, i + 1, . . . , j} or S = {i, i + 1, . . . , n, 1, . . . , j} for
some i, j ∈ {1, . . . , n}.
A last element of a circularly consecutive set S is element i ∈ S such that element i+ 1 /∈ S.
We denote a circularly consecutive set S = 〈i, j〉 where j is the last element of S and i is the last
element of {1, . . . , n} \ S.

Orlin’s algorithm — Theorems
Lemma 6 Let G be a proper circular arc graph. Each overlap clique of G is circularly consecutive.
Lemma 7 Let G be a proper circular arc graph on n vertices and let k be an integer that divides
n. G is k-colorable if and only if G has no overlap clique of size k + 1.
Lemma 8 Let G be a proper circular arc graph on n vertices that is k-colorable. Then G can be
colored in a way such that each color class contains dn/ke or bn/kc vertices.
Theorem 9 Let G be a proper circular arc graph on n vertices, let k < n and r = k (mod n).
Then G is k-colorable if and only if there exists a subset V ′ ⊂ V of size rdn/ke together with a
subset V ′′ = V − V ′ of size (k − r)bn/kc and it holds that V ′ does not contain a overlap clique of
size r + 1 and V ′′ does not contain a overlap clique of size k − r + 1.
Theorem 10 The partition problem from the Theorem 9 can be formulated as an integer linear
program such that it is a special case of a shortest path problem. Let G be a proper circular arc
graph. G may be k-colored if there exists a feasible solution to the linear program and such solution
can be found in O(n2).

Bibliography

[1] Wei-Kuan Shih and Wen-Lian Hsu. An O(n1.5) algorithm to color proper circular arcs. Discrete Applied Math-
ematics, 25 (1989), pp. 321–323, http://dx.doi.org/10.1016/0166-218X(89)90011-5.

[2] J. Orlin, M. Bonuccelli, D. Bovel. An O(n2) algorithm for coloring proper circular arc graphs. SIAM J. Algebraic
Discrete Meths., 2 (1981), pp. 88–93, http://dx.doi.org/10.1137/0602012.

[3] J. Fiala. NP completeness of the edge precoloring extension problem on bipartite graphs. Journal of Graph Theory,
43, pp. 156–160, http://dx.doi.org/10.1002/jgt.10088.
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Andrej Dedík
dedikandrej@gmail.com

Presented paper by A.Frieze, W.Pegden
The topology of competitively constructed graphs
(https://www.math.cmu.edu/∼af1p/Texfiles/reggame.pdf)

Introduction
In the paper authors consider a k-regular graph game, in which two players add one edge each turn
into initially empty graph. The focal point of the paper shows, regardless of who starts, that a
player can achieve resulting graph of a k-regular graph game to be planar, or contain a clique of
arbitrary size as a minor for particular k.

Stuff I presume you are already familiar with
Unoriented graph, Planar graph, Graph minor, Clique, Spanning tree

Definitions
The k-regular graph game is a game for two players switching turns starting with an empty
graph. Each turn player may add an edge between two vertices, if there isn’t one already, and it
doesn’t increase the degree of any vertex above k. If such move is not possible, the game ends.
The deficit of vertex v denoted by def(v) is defined as k− deg(v). Basically the amount of edges
containing v we can add to graph in the course of k-regular graph game.
The deficit of subgraph G′ denoted by def(G′) is defined as ∑

v∈G′
def(v).

Theorems
Theorem 1 Regardless of who has the first move, a player in the 3-regular graph game has a
strategy to ensure that the resulting graph is planar.
Theorem 2 For any l and sufficiently large n, and regardless of who has the first move, a player
in the 4-regular graph game on n vertices has a strategy to ensure that the resulting graph has a Kl

minor.
Lemma 3 In the course of playing the 4-regular graph game, a player can force the appearance of
components of arbitrarily large deficit.
Lemma 4 Suppose G is a connected labeled graph, with nonnegative vertex labels bounded some
fixed number b. For any s, if the sum of the labels of G is sufficiently large relative to b and ∆(G),
we can find k disjoint connected subgraphs of G each with label sums s.
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Introduction
In the paper are improved upper bounds for shortest cycle cover problem for general graphs with
loops and parallel edges.
Definition 1 A cycle is a graph in which each vertex has even degree. A circuit is a minimal
nonempty cycle. The length of a cycle is the number of edges it contains.
Definition 2 A collection of cycles of graph G covers G if each edge of G is in at least one of the
cycles; such a collection is called a cycle cover. The length of a cycle cover is the sum of lengths of
cycles in the cycle cover. Length of the shortest cycle cover is denoted by cc(G).
Alon and Tarsi ([1]) conjectured that:
Conjecture 3 Every bridgeless graph G has cycle cover of length at most 7

5 |E(G)| (= 1.4|E(G)|).
In this talk we prove this theorem.
Theorem 4 Let G be a bridgeless graph in which each vertex has degree at least 3. Then CC(G) <
278
171 |E(G)| (≈ 1.6257|E(G)|), and if G is loopless, then cc(G) < 218

135 |E(G)| (≈ 1.6148|E(G)|).
To prove this we need some auxiliary lemmas and theorems.

Auxiliary lemmas and theorems
In this talk by k-flow we mean Zk-flow.
Definition 5 The support of a k-flow f is SP (f) = {e ∈ E(G) : f(e) 6= 0}. If SP (f) = E(G),
than f is called to be nowhere-zero flow.
Definition 6 Let f be a k-flow in G and H a subgraph of G. Define

Ei(f,H) = {e ∈ E(H) : f(e) = i}, O ≤ i ≤ k − 1
When H = G we use Ei(f) instead of Ei(f,G).
Definition 7 Let f be a k-flow in G with a circuit C. A k-flow ϕ is (f, C)-equivalent if SP (ϕ)\E(C) =
SP (f)\E(C).
Lemma 8 Let f be a k-flow in a graph G with circuit C. Then there is an (f, C)-equivalent k-flow
ϕ with |E0(ϕ,C)| ≤ |C|

k
.

Lemma 9 ([2]) A graph G has a nowhere-zero 4-flow if and only if there are three cycles in G
such that each edge of G is contained in exactly two of the three cycles.
Definition 10 Let f be a 4-flow in a graph G with a circuit C. A path P connecting two distinct
vertices x, y ∈ E(C) is called a chord-path, with respect to f and C, if E(P ) ∩ E(C) = ∅, V (P ) ∩
V (C) = {x, y} and E(P ) ⊆ E1(f) ∪ E3(f).
Definition 11 Let f be a 4-flow in a graph G with a circuit C = x0x1 . . . xn−1. A segment S =
xixi+1 . . . xi+t of C is E0-alternating if edges of E0(f) appear alternatively on S and first and last
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edge of S are in E0(f) (indices are taken modulo n). Segment S is maximal if there is no (f, C)-
equivalent 4-flow ϕ having an E0(f)-alternating segment S ′ such that E(S) ⊆ E(S ′) and |S ′| > |S|.
Lemma 12 Let f be a 4-flow in a graph G with a circuit C = x0x1 . . . xn−1. Suppose that for any
(f, C)-equivalent 4-flow f ′, Eα(f ′, C) is a matching for each α ∈ Z4. Let S = xixi+1 . . . xi+t be a
maximal E0(f)-alternating segment. If |E(S)| ≤ |C| − 2, then there is a 4-flow ϕ in G such that
SP (ϕ) = SP (f), ϕ(xi+txi+t+1) ∈ {1, 3} and a chordal-path P , with respect to ϕ and C, starts at
xi+t+1 with the other end xj ∈ V (S)\{xi}.
Theorem 13 Let f be a 4-flow in a graph G with a circuit C, where |C| = 4m,m ≥ 1. Suppose that
the orientation of G has been chosen such that C is a directed circuit. If for any (f ;C)-equivalent
4-flow f ′, Eα(f ′, C) is matching for each α ∈ Z4, then there is an (f, C)-equivalent 4-flow ϕ such
that |E0(ϕ,C)| ≤ m− 1.
Theorem 14 Let f be a 4-flow in a graph G with a circuit C. If |C| ≤ 19, then there is an
(f, C)-equivalent 4-flow ϕ such that |E0(ϕ;C)| < |C|

4 .
Definition 15 An edge is said to be contracted if it is deleted and its ends are identified. For a
subgraph H in a graph G, the contraction of H, denoted by G/H, is the graph obtained by contracting
all the edges of H.
Lemma 16 Let G be a bridgeless graph. If each vertex of G has degree at least 3, then G has a
spanning cycle F such that |F | ≥ 2

3 |E(G)| and G/F has a nowhere-zero 4-flow.
Lemma 17 Let F be a cycle in a bridgeless graph G and dm the number of components of m edges
in F . If G/F has a nowhere-zero 4-flow, then

cc(G) ≤ 3(|V (G/F )− 1) + |E(G)|+ 1
2 |F | −

1
2
∑
i≥0

d2i+1.

Lemma 18 Let F be a cycle in a bridgeless graph G. If f is a 4-flow in G with E0(f) ⊆ E(F ),
then

cc(G) ≤ 2|E(G)| − |F |+ 2|E0(f)|.
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The communication complexity of addition
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Introduction
In this talk we will prove a lower bound of randomized communication complexity of function GT
(greater-then). This lower bound meets an upper bound for this function.
Definition 1 The function GTn : {0, 1}n → {0, 1} is defined as GT(x, y) = 1 if and only if x ≥ y
(as binary numbers).
In the randomized communication model there is Alice and Bob and they know some boolean
function f : X × Y → {0, 1} and some random bits r. Alice gets some x ∈ X and Bob gets
y ∈ Y and their task is to compute f(x, y) with high probability. Let π be a protocol and π(x, y)
be an output of this protocol. The randomized communication complexity Rε(f) of the function f
is the length of the optimal randomized protocol π such that for every x ∈ X, y ∈ Y holds that
Prr[f(x, y) 6= π(x, y)] ≤ ε.
The distributional communication model is similar however there is a distribution µ on inputs
X × Y and no random bits r. The error of the protocol is measured against the distribution µ.
Thus, distributional communication complexity Dµ

ε (f) of the function f is the length of the optimal
deterministic protocol π such that Pr(x,y)∼µ[f(x, y) 6= π(x, y)] ≤ ε.

r : 01010000 . . .

Alice Bob
x ∈ X y ∈ Y0

1

0

f : X × Y → {0, 1}

π(x, y)

Prr[err] = Prr[π(x, y) 6= f(x, y)] ≤ ε

Rε(f)

µ over X × Y
Alice Bob
x ∈ X y ∈ Y0

1

0

f : X × Y → {0, 1}

π′(x, y)

Prr[err] = Prµ[π
′(x, y) 6= f(x, y)] ≤ ε

Dµ
ε (f)

Figure 1: The difference between randomized and distributional communication models. The pro-
tocol π is randomized with random bits r and the protocol π′ is deterministic.

Theorem 2 (Yao’s Principle) For every f holds that Rε(f) = maxµDµ
ε (f).

Lower Bound of GT
Theorem 3 (Main Theorem) R1/100(GTn) ≥ Ω(log n).
The result is asymptotically optimal because there is a randomized protocol for GT of length
O(log n). The proof is done by contradiction – suppose we have a randomized protocol π for
GT of length γ log n for a sufficiently small constant γ. We design two distributions G and B over
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{0, 1}n × {0, 1}n such that
Pr

(x,y)∼G
[GT(x, y) = 1] = 1,

Pr
(x,y)∼B

[GT(x, y) = 1] = 1/2.

By Yao’s principle we get a deterministic protocol π′ which has a probability of error smaller then
1/100 on the distribution G/2 + B/2. It follows the protocol π′ has a probability of error smaller
then 2/100 on the distributions G and B. We prove that these two distributions are close. Thus,
the protocol π′ has similar outputs on the distributions G and B, which is the contradiction.

Technical Ingredients
We measure similarity of two distributions by the statistical distance.
Definition 4 Let X and Y be distributions over S. The statistical distance of X and Y is defined
as

∆(X, Y ) = 1
2
∑
s∈S

∣∣∣Pr[X = s]− Pr[Y = s]
∣∣∣ = max

T⊆S

∣∣∣Pr[X ∈ T ]− Pr[Y ∈ T ]
∣∣∣.

We also use in the proof the notion of the entropy, which describe the uncertainty of result when
we sample X.
Definition 5 Let X and Y be random variables taking values in a set S. The entropy of X is
defined as

H(X) =
∑
s∈S

Pr[X = s] log 1
Pr[X = s] .

The condition entropy of X conditioned on Y is defined as
H(X|Y ) =

∑
s∈S

Pr[Y = s]H(X|Y = s).

For these notions we use the following results.
Proposition 6 Let V be a random variable taking values in a set S. Let U be a uniform variable
over S and π : S → S be a permutation. Then,

1. ∆(V ; π(V )) ≤ 2∆(V, U).

2. ∆(V ;U) ≤
√

log |S| −H(V ) (Pinsker’s inequality).

Proposition 7 Let V,W be two random variables and E1, . . . , Et be mutually exclusive events.
Then, ∆(V,W ) ≤ ∑i≤t Pr[Ei]∆(V |Ei;W |Ei).
Proposition 8 (Chain Rule) H(X1, . . . , Xn) = ∑

H(Xi|X<i).
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Parameterized Approximations of Symmetric and Planar Directed
Steiner Networks

Joint work with Rajesh Chitnis.

Abstract
We study the Directed Steiner Network (DSN) problem, for which the input consists of a di-
rected edge-weighted graph G on n vertices, together with a list of k vertex pairs (s1, t1), . . . , (sk, tk),
the so called terminals. The aim is to compute the cheapest subgraph N of G such that there is
an si → ti path in N for each i ∈ {1, . . . , k}. An important special case is the Strongly Con-
nected Steiner Subgraph (SCSS) problem, in which every terminal needs to be connected to
all other terminals in the solution N . Already this problem is notoriously hard both in terms of
approximation, but also in terms of fixed-parameter tractability (FPT) for the well-studied param-
eter k: it is hard to approximate better than log2 n [Halperin and Krauthgamer, STOC 2003], and
it is W[1]-hard for k [Guo et al., SIAM J. of Discrete Math. 2011]. However, combining the two
paradigms of approximation and FPT, it is known that for SCSS a 2-approximation can easily be
computed in time 2k · nO(1) [Chitnis et al., IPEC 2013]. We aim at obtaining better parameterized
approximations for SCSS, but also for DSN, when using k as a parameter.
We present some preliminary results in this direction. In particular, we aim for parameterized
approximation schemes, i.e. (1 + ε)-approximations computed in efficient time f(k, ε) · nO(1) or in
time f(k) · nO(g(ε)) for some functions f and g independent of n. It follows from known results that
there is no efficient f(k, ε) · nO(1) time (1 + ε)-approximation, unless P=W[1], even for SCSS on
planar digraphs [Chitnis et al., SODA 2014]. We show that there are also no efficient parameterized
approximation schemes for DSN on symmetric digraphs, i.e. where the weight of every edge uv
is equal to the weight of its reverse edge vu. This is somewhat surprising as symmetric instances
at first seem to closely resemble the undirected setting, in which DSN corresponds to the classical
Steiner Forest problem, and the latter is known to be FPT for parameter k [Dreyfus andWagner,
Networks 1971]. On the positive side, we present a (non-efficient) (1 + ε)-approximation algorithm
running in time 2k · n2O(1/ε) for symmetric minor closed input graphs. It remains to generalize this
algorithm to the purely planar (minor closed) and the purely symmetric settings, and/or show that
the symmetric minor closed setting is hard as well.
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Highway Dimension and Provably Efficient Shortest Path Algorithms

(https://doi.org/10.1145/2985473)

The graph. Let G = (V,E) be a simple undirected graph, n = |V |, m = |E|. Let l(e) ≥ 1 be the
edge-length, for paths let l(P ) denote the total length.
The metric. The shortest path length d(u, v) is a metric. Let D = maxu,v d(u, v) be the diameter
of G. Let Br(v) = {u | d(u, v) ≤ r}. Let d(P, v) = minu∈P d(u, v), also saying that P is k-close to
v for any k ≥ d(P, v). We assume all the shortest paths are unique (this can be ensured by length
perturbation).

Significant paths and highway dimension
Significant paths. Let r > 0 be the A shortest path P is r-significant if there is a shortest P ′ ⊇ P
extending P by at most one vertex at each end and l(P ′) > r. Let Pr denote all r-significant paths.
Let Sr(v) ⊆ Pr denote all r-significant paths 2r-close to v.
Simplification: Imagine r-significant paths as paths of length at least r. Works for l ≡ 1.
Highway dimension. G has highway dimension HD at most h if for all r > 0 and all v ∈ V
there is H ⊆ V such that |H| ≤ h and H hits all r-significant paths P that are 2r-close to v (all
P ∈ Sr(v)).

Sparse hitting sets
Sparse Shortest-path Hitting Set (h, r)-SPHS is a hitting set C ⊆ V for Pr with |B2r(v) ∩
C| ≤ h for all v ∈ V (locally sparse). Multiscale SPHS is a collection of (h, 2i−1)-SPHS for
i = 0, . . . , dlog2De.
Theorem 4.2. A minimal hitting set for Pr on a graph with HD(G) = h is (h, r)-SPHS.

Application: Hub labeling
Hub labeling L : V → 2V such that ∀u, v ∈ V , L(u)∩L(v) contains a vertex on the shortest u− v
path.
Theorem 5.1. There is a hub labeling with |L(v)| = O(h logD). After preprocessing, min-distance
queries take O(h logD) time.

Application: Transit node routing
Theorem 5.7. Choose M . Let q be smallest number with |(h, 2i−1)-SPHS| ≤ M . Then after
preprocessing, all distance-queries with dist ≥ 5 · 2q−1 can be answered in time O(h2) and using
memory O(hn+M2).

VC dimension and polynomial-time approximation
Vapnik-Chervonenkis dimension of a set system (X,R ⊆ 2X) is the maximal size of a set
Y ⊆ X that is shattered by R. Y is shattered by R if every Y ′ ⊆ Y can be obtained as Y ′ = Y ∩R
with R ∈ R.
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Theorem 7.1. There is an algorithm that finds a hitting set of size O(hd log(hd)) where d is the
VC dimension and h the optimal hitting set size.
Theorem 7.2. A unique shortest path system has VC dimension 2.
Theorem 8.2. There is an algorithm that finds (O(h log h), r)-SPHS in polynomial time for any
r > 0.
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Introduction
It all started with the classical theorem of De Bruijn and Erdős:
Theorem 1 Every non-collinear set of n points in the plane determines at least n lines. Moreover,
equality occurs if and only if the configuration is a near-pencil (that is, exactly n − 1 of the points
are collinear).
There were many attempts to generalize that theorem. The paper studies the variations of this
theorem in posets with the natural betweenness relation given by the poset relation. Second part
is devoted to the triangle relation in a given graph which sounds less intuitive, but has a close
connection to comparability graphs.

Lines in Posets
Let P = (X,≺) be a poset and h(P ) be the height of P given by the maximum size of a chain in
P . We define the natural betweenness relation [abc], that is, b is between a and c, in the following
way

[abc]⇔ a ≺ b ≺ c or c ≺ b ≺ a.
Then we define the analog of a line

ab = {a, b} ∪ {z : [zab] or [azb] or [abz]}.
Theorem 2 Let P be a poset on n points with no universal line and with h(P ) ≥ 2. Then P
induces at least

h(P )
(
bn/h(P )c

2

)
+ bn/h(P )c(n mod h(P )) + h(P )

distinct lines. Moreover, P induces exactly n lines if and only if it consists of a chain of size n− 1
and a point which is comparable to at most one point of this chain.

Lines in Graphs
Let G be a graph. We define a line given by two vertices a, b,∈ V (G) by

ab = {a, b} ∪ {x ∈ V (G) : abx is a triangle in G}.
Theorem 3 If a graph G on n ≥ 4 vertices does not contain a universal line, then it induces at
least n distinct lines, and equality occurs if G consists of a clique of size n− 1 and a vertex that has
at most one neighbor in the clique.
This concept generalizes the poset case from the previous section. Indeed, if we construct the
comparability graph GP of the poset P = (X,≺), that is the graph with X as a vertex set and ab
as an edge if and only if a ≺ b or b ≺ a, then xyz is a triangle in GP if and only if [xyz] or [zxy] or
[yzx].
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Euler’s polyhedral formula

Abstract
“V − E + F = 2”, the famous Euler’s polyhedral formula, has a natural generalization to convex
polytopes in every finite dimension, also known as the Euler–Poincaré Formula. We provide a short
new inductive combinatorial proof of this general formula. Our proof is self-contained and it does
not use shellability of polytopes.
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Abstract
We present constant factor approximation algorithms for the following two problems: First, given
a connected graph G = (V,E) with non-negative edge weights, find a minimum weight spanning tree
that respects prescribed upper bounds on the vertex degrees. Second, given prescribed (exact) vertex
degrees d = (dv)v∈V , find a minimum weight connected d-factor. Constant factor approximation
algorithms for these problems were known only for the case that dv ≥ 2 for all v ∈ V .

Problems
We consider two different optimization problems. In each case, an instance consists of a simple
undirected complete graph G = (V,E) with edge weights w : E → N that satisfy the triangle
inequality and given (dv)v∈V to be interpreted as either prescribed vertex degrees or upper bounds
thereof. For F ⊆ E, let degF (v) be the degree of node v ∈ V in the graph (V, F ). Furthermore,
w(F ) = ∑

e∈F w(e) is the total weight of the edge set F .
In the Bounded-Degree Minimum Spanning Tree problem (denoted by BMST), we are to
compute a tree T ⊆ E of minimum weight with the additional condition that degT (v) ≤ dv for all
v ∈ V . We call such a tree a d-bounded tree.
In the Connected Factor problem (denoted by ConnFact), our goal is to compute a connected
d-factor F of minimum weight. This means that (V, F ) must be connected and degF (v) = dv for
all vertices v ∈ V .

Lemmata and Algorithms
Lemma 1 Given an undirected, complete graph G = (V,E) with edge weights w that satisfy the tri-
angle inequality and an edge f = {u, v}, we can compute in polynomial time a Hamiltonian path P
with endpoints u and v such that w(P ) ≤ 2w(T ), where T ⊆ E is a spanning tree that contains f
and has minimum weight among all such trees.
We define two sets V=1 = {v ∈ V : dv = 1}, V≥2 = {v ∈ V : dv ≥ 2}.
We proceed in two steps.

• In the first step, we compute a forest that spans all of V=1 and a subset of V≥2 without violating
the degree constraints. This forest is computed by solving an appropriate minimum-cost flow
problem.

• In the second step, we connect the components of this forest along a Hamiltonian Path
through a subset of the V≥2 nodes. In this way, we construct a tree whose leaves are a subset
of V=1. Note that an optimal tree can also have leaves from V≥2.
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The Flow Problem Consider the following flow problem MCFf : The underlying graph has vertex
set V ∪ {r}, where r is a new node, and edge set (E \ f) ∪

{
{u, r} : v ∈ V≥2

}
. All edges e ∈ E \ f

have a capacity of 1 in both directions and costs of w(e) per unit of flow. Each node v ∈ V≥2 has
a node capacity of dv − 1. The edges {v, r} for v ∈ V≥2 are overflow edges and have cost 0. For
v ∈ V≥2 \f , edge {v, r} has a capacity of dv−2. For v ∈ f , edge {v, r} has a capacity of dv−1. The
task is to find a minimum-cost flow from the V=1 nodes, each having a supply of 1, to the new root
node r, which has a demand of |V=1|. Such a minimum-cost flow can be computed in polynomial
time [1].
Lemma 2 Let f = {u, v} be an edge. Let F be an integral optimum solution of MCFf with
minimum support S. Then we have the following properties:

1. w(S) ≤ w(Treed), where Treed is an optimal solution to BMST,

2. S is a forest,

3. degS(u) ≤ du − 1 and degS(v) ≤ dv − 1, and

4. each connected component of S contains u or v or a vertex x ∈ V≥2 with degS(x) ≤ dx − 2.

Now given S, the support of a flow as in Lemma 2, we connect the connected components via
a Hamilton Path P with endpoints u and v as in Lemma 1: In each component of S that
contains neither u nor v, we pick a root r of degree at most dr − 2 in S. Such a root exists by
Lemma 2. Then we connect the components of S by following P , starting in u, ending in V and
skipping all other vertices except the root nodes chosen. This yields a d-bounded tree T of weight

w(T ) ≤ w(S) + w(P ) ≤ w(Treed) + 2w(Treed) ≤ 3w(Treed).

Theorem 3 There is a 3-approximation algorithm for BMST.
Lemma 4 Let T be a d-bounded tree, and let F be a d-factor. If F is not connected, then we can
find an edge f = {u, v} ∈ F \ T and vertices u′ and v′ with the following properties:

1. f connects two components of F ,

2. {u, u′}, {v, v′} ∈ F \ T , and

3. {u′, v′} ∈ E \ F .

Theorem 5 There is a 7-approximation algorithm for ConnFact.
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On hardness of some planar SAT problems

In this talk we will discuss several complexity results about variants of the planar SAT problem.

Definitions
SAT is a classical problem. Given a formula in CNF the task is to find an assignment to variables
such that the formula is true. Planar SAT means that the underlying incidence graph of variables
and clauses is planar. Strongly planar SAT is a modification such that the incidence graph of literals
and clauses is planar, even when the edge between the two literals of the same variable is added.
In 3 SAT are only 3 literals in a clause. Not-all-equal variant is satisfied if each clause has at least
one literal set to true and one set to false. In contrary to 1-in-3 SAT that is satisfied if exactly one
literal is set to true.

Theorems
Theorem 1 ([1]) Planar not all equal 3SAT is polynomial time solvable.
Theorem 2 ([2]) Planar 1-in-3SAT is NP-complete.
Theorem 3 ([3]) Strongly planar 3SAT is NP-complete.
Theorem 4 ([4]) Strongly planar preassigned not all equal 3SAT is NP-complete.
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Cops and Robbers ordinals of cop-win trees
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Introduction
The Cops and Robbers is a simple combinatorial game played by two players (cop and robber) on
a graph. First, cop chooses his starting vertex, then robber chooses his starting vertex. Then both
players take turns and move cop, resp. robber, along one edge (or they may choose not to move).
For the cop the goal is to catch robber, that is, to occupy same vertex as the robber. Robber has
to outrun the cop and he wins only if he can move in such way, that cop can never catch him.
This article explores game of Cops and Robbers on infinite cop-win trees and it characterizes CR-
ordinals for cop-win (infinite) trees.

Ordinal numbers
Definition 1 Ordinal number is set α such that it is strictly well-ordered with respect to relation
∈ and for every β it holds β ∈ α⇒ β ⊂ α. We will denote proper class of all ordinals as ON. For
two ordinals α, β we also define relation < as α < β ⇔ α ∈ β.
Finite ordinals are precisely natural numbers, that is 0 = ∅, 1 = {0}, 2 = {0, 1}, etc. Smallest
infinite ordinal is set of all natural numbers N = ω. Ordinals can be seen as transfinite extension
of natural numbers.
Definition 2 Let α, β ∈ ON. We define α+β to be the unique ordinal isomorphic to set {0}×α∪
{1} × β with lexicographical ordering. Successor of α is ordinal α + 1.
Note that while ordinal addition is associative, it is not commutative. For example 1+ω = ω 6= ω+1.
Definition 3 Nonzero α ∈ ON is successor ordinal if there exists β ∈ ON such that α = β + 1. If
there exists no such β, than α is limit ordinal.
Every n ∈ ω except zero is successor ordinal, while ω itself is smallest limit ordinal. Now we may
introduce transfinite induction. It is an extension of mathematical induction to ordinals. The only
difference is that we have to consider limit ordinals. So, apart from successor case α → α + 1 we
have limit case (∀β < α)→ α.

Capture relation and capture-time ordinals
Definition 4 Let G = (V,E) is (infinite) graph. We define set of relations {≤α |α ∈ ON} on V
as follows:

• u ≤0 v iff u = v.

• u ≤α v iff for every x ∈ N [u] there exists y ∈ N [v] and β < α such that x ≤β y.

We call these relations capture relation. Smallest ordinal ρ(G) such that ≤ρ(G)=≤ρ(G)+1 (i.e. the
relation stabilizes) is called CR-ordinal.
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It can be seen that capture relation stabilizes and ρ(G) is well defined. Also, it holds that given
graph G is cop-win iff ≤ρ(G)= V ×V and capture relation can be used to obtain best moves for cop.
Definition 5 Let G = (V,E) is cop-win graph and u, v ∈ V . We define:

• η(u, v) = min{α|u ≤α v}

• η(v) = sup {η(u, v)|u ∈ V }

• η(G) = min{η(v)|v ∈ V }

• θ(G) = {v ∈ V |η(v) = η(G)}

For finite graph η(G) is capture time – maximum number of moves the cop needs to capture
the robber, minimized over all starting positions of cop (i.e. the cop chooses his starting point).
Similarly the CR-ordinal ρ(G) is maximum number of moves the cop needs to capture robber, but
maximized over all starting positions (i.e. robber chooses cop’s starting point). Clearly it holds
that ρ(G) = sup η(v)|v ∈ V .

Classification of CR-ordinals for trees
Theorem 6 Let T is a cop-win tree. Than ρ(T ) is either finite or in form α+ ω, where α is limit
ordinal. Moreover, for every n ∈ ω there is a cop-win tree with ρ(T ) = n and for every limit ordinal
α there is a cop-win tree with ρ(T ) = α + ω.
This is the main result of the article. Finite case is trivial. So first we proof following lemma which
gives the first part of the theorem.
Lemma 7 If T is a cop-win tree with infinite radius, than η(T ) is infinite and ρ(T ) = η(T ) + ω.
For the second part, we will recursively construct family of trees with desired CR-ordinal.
Definition 8 For every α ∈ ON we will define tree Sα with root rα as follows:

• (S0, r0) is a tree containing only vertex v0.

• (Sα, rα) for α > 0 is created by attaching trees Sβ for every β < α to the new vertex rα with
an edge from their root.

Lemma 9 For every α ∈ ON it holds η(Sα+1) = α.
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Introduction
A triangle decomposition of a graph is one of decomposition problems, classical problems in com-
binatorics. The question is whether a graph can be decomposed into triangles. There are known
results that ensure a triangle decomposition, these results are based on determining the lower bound
on minimum degree and on the number of vertices. The paper focus on fractional variant of the
problem where non-negative weights are assigned to the triangles of the graph such that for each
edge the sum of the weights of the triangles containing this edge is one. The lower bound ( 9

10 + ε)n
on minimum degree is proven and furthermore this result is used to improved the previously known
bound for the non-fractional variant.

More formally
Definition 1 Let H be a graph. An H-decomposition of a graph G is a set of subgraphs of G
isomorphic to H that are edge disjoint such that each edge of G is contained in one of them. A
K3-decomposition is also called a triangle decomposition.
Definition 2 A fractional H-decomposition of a graph G is an assignment of non-negative weights
to the copies of H in G such that for an edge e, the sum of the weights of the copies of H that contain
e is equal to one. A fractional K3-decomposition is also called a fractional triangle decomposition.
Definition 3 A graph G is H-divisible if gcd(G) is a multiple of gcd(H), and the number of edges
of G is a multiple of the number of edges of H.
Theorem 4 (Barber et al.). There exists an n0 such that every K3-divisible graph G on n ≥ n0
vertices with minimum degree at least 0.956n is K3-decomposable.
Theorem 5 (Garaschuk). Let G be a graph with n vertices and minimum degree at least 0.956n.
The graph G admits a fractional triangle decomposition.
Theorem 6 (the paper). Let ε > 0. There exists an n0 such that every graph with n ≥ n0 vertices
and minimum degree at least ( 9

10 + ε)n admits a fractional triangle decomposition.
Theorem 7 (Barber et al.). Suppose there exist n0 and δ such that every graph on n ≥ n0 vertices
with minimum degree at least δn is fractionally K3-decomposable. For all ε > 0, there exist n1
such that every K3-divisible graph on n ≥ n1 vertices with minimum degree at least max(δ, 3

4 + ε)n
vertices is K3-decomposable.
Theorem 8 (the paper). Let ε > 0. There exists an n0 such that every K3-divisible graph on
n ≥ n0 vertices with minimum degree at least ( 9

10 + ε)n is K3-decomposable.
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Contraction Hierarchies & Hub Labeling

The graph. Let G = (V,E) be a simple undirected graph, n = |V |, m = |E|. Let l(e) ≥ 1 be the
edge-length, for paths let l(P ) denote the total length.
The metric. The shortest path length d(u, v) is a metric. Let D = maxu,v d(u, v) be the diameter
of G. Let Br(v) = {u | d(u, v) ≤ r}. Let d(P, v) = minu∈P d(u, v), also saying that P is k-close to
v for any k ≥ d(P, v). We assume all the shortest paths are unique (this can be ensured by length
perturbation).
Sparse Shortest-path Hitting Set (h, r)-SPHS is a hitting set C ⊆ V for Pr with |B2r(v)∩C| ≤ h
for all v ∈ V (locally sparse). Multiscale SPHS is a collection of (h, 2i1)-SPHS for i = 0, . . . , dlog2De.
Theorem 4.2. [2] A minimal hitting set for Pr on a graph with HD(G) = h is (h, r)-SPHS.

Algorithm: Contraction Hierarchies [5]
Contraction. A shortcut is a new edge e = (u,w) with length dist(u,w). The contraction operation
deletes a vertex v from the graph and adds edges between its neighbors to maintain the shortest
path information.
Preprocessing We contract all vertices from least important to most important. The output of
preprocessing is the set E+ of shortcut edges and the vertex order. We denote the position of a
vertex v in the ordering by rank(v).
Query An s− t CH query runs a pruned bidirectional Dijkstra search on the graph G+ = (V,E ∩
E+). When scanning v, only the edges (v, w) with rank(v) < rank(w) are examined.
Lemma 6.1. [8] For fixed v and j, the number of edges (v, w) ∈ E+ with w ∈ Qj is at most h.
Theorem 6.2. If (G, l) has highway dimension h, then preprocessing based on multiscale SPHS
produces a set of shortcuts E+ such that degree of every vertex in G(V,E ∩ E+) is at most
h+ h log(D) and |E + | ≤ nh logD.

Algorithm: Bidirectional A* [7]
Priority function
f(n) = g(n) Dijkstra
f(n) = g(n) + h(n) The A∗ algorithm
f(n) = max(g(n) + h(n), 2g(n) MM search

Lemma 1 MM never expands nodes with g(n) > C∗/2.

Algorithm: Hub labeling [3]
Hub labeling L : V → 2V such that ∀u, v ∈ V , L(u)∩L(v) contains a vertex on the shortest u− v
path.
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Introduction
Conjecture 1 (Reed’s) Every graph satisfies χ ≤

⌈
(∆+1) + ω

2

⌉
.

This conjecture has been proven for some restricted classes of graphs.

Notation
Let G = (V,E) be a graph. Chromatic number χ is the smallest number of colors needed to color
the vertices of G such that no two adjacent vertices share the same color.
Clique number ω denotes number of vertices in a maximum clique.
Maximum degree of G is denoted ∆.
Let N(v) be a neighborhood of a vertex v ∈ V , an induced subgraph of G consisting of all vertices
adjacent to v. Size of the maximum closed neighborhood (neighborhood which contains the vertex
v) is ∆ + 1.
Independent set (stable set) in G is a set S ⊆ V such that no two vertices are adjacent.
Antimatching in G is a matching in the complement of G.

Theorems
Theorem 2 There exists an ε > 0 such that every graph satisfies

χ ≤ d(1− ε)(∆ + 1) + εωe.
Theorem 3 Every graph satisfying ω > 2

3(∆ + 1) contains an independent set hitting every maxi-
mum clique.
Theorem 4 There is a ∆0 such that for any graph with maximum degree ∆ > ∆0 and for any
B > ∆(log ∆)3, if no N(v) contains more than

(
∆
2

)
−B edges then χ(G) ≤ (∆ + 1)− B

e6∆ .

Corollary 5 There is ∆0 such that for any graph with maximum degree at most ∆ > ∆0 and for
any α > 2(log∆)3

(∆−1) , if no N(v) contains more than (1− α)
(

∆
2

)
edges then

χ(G) ≤ (1− α

2e6 )(∆ + 1) + α

2e6ω.

Theorem 6 Let α be any positive constant and let ε be any constant satisfying 0 < ε < 1
6 − 2

√
α.

Let G be a graph with ω ≤ 2
3(∆ + 1) and let v be a vertex whose neighborhood contains more than

(1− α)
(

∆
2

)
. Then

χ(G) ≤ max{χ(G− v), (1− ε)(∆ + 1)}.
Corollary 7 Let ρ be a positive constant satisfying ρ ≤ 1

160 , let G be a graph with maximum degree
at most ∆, ω ≤ 2

3(∆ + 1), and let v be a vertex whose neighborhood contains at least (1 − ρ)
(

∆
2

)
edges. Then

χ(G) max{χ(G− v), (1− ρ)(∆ + 1)}.
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Introduction
In a room there are n people, numbered from 1 up to n. Each person is either a knight or a spy,
and will answer any question of the form ‘Person x, is Person y a knight?’ Knights always answer
truthfully. We consider two types of spy: liars, who always lie, and moles, who lie or tell the truth
as they see fit.
In this talk we determine the minimum number of questions that are necessary and sufficient to find
a spy, or to find at least one person’s identity, or to find an identity of a specific person, nominated
in advance.
TL(n, k) is the minimum number of questions that are necessary and sufficient either to identify a
liar, or to make a correct claim that everyone in the room is a knight if we know that there in the
room with n people are at least k (n2 < k < n) knights and others are liars (not moles).
T ∗L(n, k) is defined like TL(n, k), but we know, that at least one spy is present.
Theorem 1 Let n = q(n− k + 1) + r where 0 ≤ r ≤ n− k. Then

TL(n, k) =


n− q + 1 if r = 0
n− q if r = 1
n− q if r ≥ 2

and

T ∗L(n, k) =


n− q if r = 0
n− q if r = 1
n− q − 1 if r ≥ 2

with the single exception that T ∗L(5, 3) = 4.
Let T ∗S(n, k) and TS(n, k) be the analogously defined numbers if all spies are moles.
Theorem 2 We have T ∗S(n, k) = n− 1 and TS(n, k) = n.
If all spies are liars, then let minimum number of questions that are necessary and sufficient to find
a knight be KL(n, k), to find at least one person’s identity be EL(n, k) and to identify Person 1 be
NL(n, k).
Let KS(n, k), ES(n, k) and NS(n, k) be the analogously defined numbers when all spies are moles.
Let N∗L(n, k) and N∗S(n, k) be the analogously defined numbers to NL(n, k) and NS(n, k) when it is
known that a spy is present. Let B(s) be the number of 1s in the binary expansion of s ∈ N.
Theorem 3 We have

KS(n, k) = KL(n, k) = ES(n, k) = EL(n, k) = 2(n− k)−B(n− k)
and the same holds for the analogous numbers defined on the assumption that a spy is present.
Moreover

NS(n, k) = NL(n, k) = N∗S(n, k) = N∗L(n, k) = 2(n− k)−B(n− k) + 1
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with the exception that N∗L(n, k) = 2(n− k)−B(n− k) = n− 2 when n = 2e+1 + 1 and k = 2e + 1
for some e ∈ N.
Theorem 4 Suppose that spies always lie. There is a questioning strategy that will find a knight by
question K(n, k) , find Person 1’s identity by question K(n, k) + 1 and by question TL(n, k) either
find a spy or prove that everyone in the room is a knight. Moreover if a spy is known to be present
then a spy will be found by question T ∗L(n, k).
Theorem 5 Suppose that all spies are moles. There is a questioning strategy that will find a
knight by question K(n, k) + 1, find Person 1’s identity by question K(n, k) + 2, and by question
TS(n, k) = n either find a spy, or prove that everyone in the room is a knight. Moreover, if a spy
is known to be present, then a spy will be found by question T ∗S(n, k) = n − 1. When n = 7 and
k = 4 and a spy is known to be present there is no questioning strategy that will both find a knight
by question KS(7, 4) = 4 and find a spy by question T ∗S(7, 4) = 6.
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Basic definitions
Definition 1 Species F is a procedure which assigns

• to every finite set U a set of structures F(U).

• to every bijection σ : U → V a transport function or relabeling F(σ) : F(U)→ F(V )

such that for σ : U → V and ϕ : V → W :

• F(ϕ ◦ σ) = F(ϕ) ◦ F(σ)

• F(idU) = idF(U)

In other words, a species is a functor from the category of finite set and bijections into category of
sets.
Definition 2 Two species F and G are combinatorially equivalent if there is a collection αU :
F(U)→ G(U) such that for every transport σ : U → V the following diagram commutes:

F(U)
αU - G(U)

F(V )

F(σ)

? αV - G(V )

G(σ)

?

Species generating functions
Definition 3 The exponenential generating function of a species F is

F(x) =
∞∑
n=0

f(n)x
n

n!
where f(n) = |F{1, 2, . . . , n}|.
Definition 4 The type generating function of a species F is

F̃(x) =
∞∑
n=0

f̃(n)xn

where f̃(n) is the number of isomorphism classes of F-structures of order n.
Proposition 5 Two combinatorial equivalent species have the same exponential (resp. type) gen-
erating function.

36



Operations on species
Definition 6 Let F and G be species. Then their sum F + G is the species where

F + G(U) = F(U)∪̇G(U).
Definition 7 Let F and G be species. Then their product F · G is the species where

F · G(U) =
⋃
S⊆U
F(S) · G(U \ S).

Definition 8 Let F and G be species and G∅ = ∅. Then their composition F ◦ G is the species
where F ◦ G(U) is given by: {(s, T ) : s ∈ F(T ) and T is a set of G-structures whose label sets form
a partition of U}.
Note 9 All operations are equipped with obvious transport functions.
Most of applications are based on the following theorems:
Theorem 10 Exponential (resp. type) gererating functions of the sum of two species F and G is
the sum of corresponding exponential (resp. type) generating functions. Similarly for the product
and the composition of species.
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Introduction
There is a directed graph G(V,E) with positive costs c(u, v) for each edge (u, v) ∈ E and two
vertices s, t ∈ V. The Shortest Path Game is played by two players who have full knowledge of the
graph. They start in s and always move together along edges of the graph. In each vertex the
player selects the next vertex among all neighboring vertices of the current vertex with the oponent
taking decision in his previous turn. So player A starts in s, select the edge from s to some x, then
B selects the edge from x to the next vertex. The player deciding in the current vertex also has to
pay the cost of the chosen edge. Each player wants to minimize the total arc costs it has to pay.
The game continues until the players reach the destination vertex t.
The similar problem could be defined on undirected graph or on some specific types of graphs.
Possible restrictions of the game:

• No player can select an arc which does not permit a path to vertex t.

• Possibility to restrict the game to simple paths - each vertex may be visited at most once.

• The players cannot select an arc which implies necessarily a cycle of even length.

The goal of paper is to study the complexity status of finding this spe-path.

Definitions
Definition 1 Backward induction - algorithm, where is each node in the game tree, whose child
nodes are all leaves, the associated player can reach a decision by simply choosing the best of all
child nodes.
Definition 2 Spe-path is subgame perfect equilibrium (SPE).
Definition 3 Quantified 3-SAT can be interpreted as the following game: There are two players
(the existential- and the universal-player) moving alternately, starting with the existential-player.
The ith move consists of assigning a truth value to variable xi. After n moves, the existential-player
wins if and only if the produced assignment makes ϕ true.
Definition 4 Cactus graph is graph where each edge is contained in at most one simple cycle.

Theorems
Theorem 5 Shortest Path Game is PSPACE-complete for bipartite directed graphs.
Theorem 6 The spe-path of Shortest Path Game on acyclic directed graphs can be computed in
O(|A|) time.
Theorem 7 Shortest Path Game on undirected graphs is PSPACE-complete for bipartite graphs.
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Theorem 8 Q is a "yes"-instance of Quantified 3-SAT ⇔ s is a "yes"-instance of Shortest Path
Game.
Theorem 9 The spe-path of Shortest Path Game on undirected cactus graphs can be computed in
O(n2) time.
Theorem 10 The spe-path of Shortest Path Game on directed cactus graphs can be computed in
O(n) time.
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Introduction
Given graph G and multigraph D on the same vertex set, we say that G realizes D if there exist
edge disjoint paths P1, P2, . . . , Pn such that Pi is connecting the endpoints of the edge ei for all i.
The graph D is called a demand graph. Given a graph G and a family of demand graphs F we say
that G is terminal-pairable with respect to F if and only if all demand graphs D ∈ F are realizable
in G. We call G path-pairable if it is terminal pairable with respect to M, the set of all perfect
matchings on Kn.
This paper deals with upper bound on the minimal value of the maximal degree in a path-pairable
graph. The best known lower bound is logn

log logn . The best upper bound proved before this paper is√
n. Upper bound of roughly 5.2 log n is proved in this paper.

Cartesian product of graphs
Vertex set of the Cartesian productG = G1�G2� · · ·�Gn is the Cartesian product V (G) = V (G1)×
V (G2) × · · · × V (Gn). Edge between two vertices (v1, v2, . . . , vn) and (w1, w2, . . . , wn) is present if
and only if there exists i such that vi and wi are adjacent in graph Gi.

Terminal pairability of complete grid graphs
Let Kn

t = ∏n
i=1Kt be defined as the Cartesian product of n copies of Kt.

Theorem 1 Let D be a demand multigraph with V (D) = Kn
t and ∆(D) ≤ b t6c − 2 even. Then G

is terminal-pairable with respect to D for all D.
Corollary 2 Kn

t is path-pairable for t ≥ 24.When we set t = 24, we get an upper bound on minimal
value of ∆(G) = logN t

log t ≈ 5.2 logN where N is the number of vertices.
In the proof of the theorem stated above, we will use the following two theorems.
Theorem 3 Let Kt(q) be a q-regular demand multigraph of the complete graph Kt. If q ≤ 2b6

t
c−4,

then Kt is terminal-pairable with respect to Kt(q).
Theorem 4 [1] Let G be a 2k-regular multigraph. Then E(G) can be decomposed into the union
of k edge-disjoint 2-factors.
The following notation is used in the proof. Let Li be the subgraph of Kn

t induced by
{(a1, a2, . . . , an−1, i) for 1 ≤ aj ≤ t for 1 ≤ j ≤ n− 1}.

We call L1, L2, . . . , Ln layers of Kn
t . Similarly we will define columns l1, l2, . . . , ltn−1 as the induced

Kt that we get by fixing the first n− 1 coordinates.
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