EXISTENCE OF MODELING LIMITS FOR SEQUENCES OF
SPARSE STRUCTURES
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ABSTRACT. A sequence of graphs is FO-convergent if the probability of sat-
isfaction of every first-order formula converges. A graph modeling is a graph,
whose domain is a standard probability space, with the property that every
definable set is Borel. It was known that FO-convergent sequence of graphs do
not always admit a modeling limit, and it was conjectured that this is the case
if the graphs in the sequence are sufficiently sparse. Precisely, two conjectures
were proposed:

(1) If a FO-convergent sequence of graphs is residual, that is if for every
integer d the maximum relative size of a ball of radius d in the graphs of
the sequence tends to zero, then the sequence has a modeling limit.

(2) A monotone class of graphs C has the property that every FO-convergent
sequence of graphs from C has a modeling limit if and only if C is nowhere
dense, that is if and only if for each integer p there is N(p) such that
no graph in C contains the pth subdivision of a complete graph on N(p)
vertices as a subgraph.

In this paper we prove both conjectures. This solves some of the main problems
in the area and among others provides an analytic characterization of the
nowhere dense—somewhere dense dichotomy.

1. INTRODUCTION

Combinatorics is at a crossroads of several mathematical fields, including logic,
algebra, probability, and analysis. Bridges have been built between these fields
(notably at the instigation of Leibniz and Hilbert). From the interactions of algebra
and logic is born model theory, which is founded on the duality of semantical and
syntactical elements of a language. Several frameworks have been proposed to
unify probability and logic, which mainly belong to two kinds: probabilities over
models (Carnap, Gaifman, Scott and Kraus, Nilsson, Vaénénen, Valiant,. .. ), and
models with probabilities (H. Friedman, Keisler and Hoover, Terwijn, Goldbring
and Towsner,...). See [19] for a partial overview.

Recently, new bridges appeared between combinatorics and analysis, which are
based on the concept of graph limits (see [21] for an in-depth exposition). Two
main directions were proposed for the study of a “continuous limit” of finite graphs
by means of statistics convergence:

e the left convergence of a sequence of (dense) graphs, for which the limit
object can be either described as an infinite exchangeable random graph
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(that is a probability measure on the space of graphs over N that is invariant
under the natural action of S,,) [2, 16], or as a graphon (that is a measurable
function W : [0,1] x [0,1] — [0,1]) [6, 7, 22].

e the local convergence of a sequence of bounded degree graphs, for which the
limit object can be either described as a unimodular distribution (a proba-
bility distribution on the space of rooted connected countable graphs with
bounded degrees satisfying some invariance property) [3], or as a graphing
(a Borel graph that satisfies some Intrinsic Mass Transport Principle or,
equivalently, a graph on a Borel space that is defined by means of finitely
many measure preserving involutions) [9].

A general (unifying) framework has been introduced by the authors, under the
generic name “structural limits” [29]. In this setting, a sequence of structures is
convergent if the satisfaction probability of every formula (in a fixed fragment of
first-order logic) for a (uniform independent) random assignment of vertices to the
free variables converges. The limit object can be described as a probability measure
on a Stone space invariant by some group action, thus generalizing approaches of
[2, 16] and [3]. This may be viewed as a natural bridge between combinatorics,
model theory, probability theory, and functional analysis [33].

The existence of a graphing-like limit object, called modeling, has been studied in
[31, 35], and the authors conjectured that such a limit object exists if and only if the
structures in the sequence are sufficiently “structurally sparse”. For instance, the
authors conjectured that if a convergent sequence is non-dispersive (meaning that
the structures in the sequence have no “accumulation elements”) then a modeling
limit exists:

Conjecture 1 ([35]). Every convergent residual sequence of finite structures admits
a modeling limit.

For the case of sequences of graphs from a monotone class (that is a class of finite
graphs closed by taking subgraphs) the authors conjectured the following exact
characterization, where nowhere dense classes [27, 28] form a large variety of classes
of sparse graphs, including all classes with excluded minors (as planar graphs),
bounded degree graphs and graph classes of bounded expansion [24, 25, 26].

Conjecture 2 ([31]). A monotone class of graphs C admits modeling limits if and
only if C is nowhere dense.

Note that this conjecture is known in one direction [31]. To prove the existence
of modeling limits for sequences of graphs in a nowhere dense class is the main
problem addressed in this paper.

Nowhere dense classes enjoy a number of (non obviously) equivalent characteriza-
tions and strong algorithmic and structural properties [30]. For instance, deciding
properties of graphs definable in first-order logic is fixed-parameter tractable on
nowhere dense graph classes (which is optimal when the considered class is mono-
tone, under a reasonable complexity theoretic assumption) [15]. Modeling limits
exist for sequences of graphs with bounded degrees (as graphings are modelings),
and this has been so far verified for sequences of graphs with bounded tree-depth
[31], for sequences of trees [35], for sequences of plane trees and sequences of graphs
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with bounded pathwidth [14], and for sequences of mappings [34] (which is the
simplest form of non relational nowhere dense structures). (See also related result
on sequences of matroids [17].)

In this paper, we prove both Conjecture 1 and Conjecture 2 in their full gener-
ality.

Our paper is organized as follows: In Section 2 we recall all necessary notions,
definitions, and notations. In Section 3 we will deal with limits with respect to the
fragment FO; of all first-order formulas with at most one free variable. In Section 5
we deduce a proof of Conjecture 1 and, using a characterization of nowhere denses
from [36], we prove that Conjecture 2 holds. Finally, we discuss some possible
developments in Section 6. The general proof strategy is depicted bellow:

Friedman £(Q,) logic Structural Limits Nowhere dense classes

Lift of nowhere dense

Modeling FO;-limits
sequences

Modeling limits of

. Countable skeleton
e-residual sequences

Modeling limits for
nowhere dense classes

2. PRELIMINARIES, DEFINITIONS, AND NOTATIONS

2.1. Structures and Formulas. A signature is a set o of function or relation
symbols, each with a finite arity. In this paper we consider finite or countable
signatures. A o-structure A is defined by its domain A, and by the interpretation
of the symbols in o, either as a relation R# (for a relation symbol A) or as a
function f# (for a function symbol f). A signature o also defines the (countable)
set FO(o) of all first-order formulas built using the relation and function symbols
in o, equality, the standard logical conjunctives, and quantification over elements of
the domain. The quotient of FO(o) by logical equivalence has a natural structure
of countable Boolean algebra, the Lindenbaum-Tarski algebra B(FO(o)) of FO(o).

For a formula ¢ with p free variables and a structure A we denote by ¢(A) the
set of all satisfying assignments of ¢ in A, that is

O(A) ={(v1,...,vp) € AP 1 A = p(v1,...,0p)}.

If A is a finite structure (or a structure whose domain is a probability space), we
define the Stone pairing (¢, A) of ¢ and A as the probability of satisfaction of ¢
in A for a random assignments of the free variables. Hence if A is finite (and no
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specific probability measure is specified on the domain of A) it holds

_ lo(a)]
(6.4) = TEn

Generally, if the domain of A is a probability space (with probability measure vx )
and ¢(A) is measurable then

(6, A) = VP (¢(A)),

where ufp denotes the product measure on AP.

For a o-structure A we denote by Gaifman(A) the graph with vertex set A, such
that two (distinct) vertices x and y are adjacent in Gaifman(A) if both belong to
some relation in A (that is if 3R € o : {z,y} C RA).

2.2. Stone Space and Representation by Probability Measures. The term
of Stone pairing comes from a functional analysis point of view: Let S(FO(o)) be the
Stone dual of the Boolean algebra B(FO(o)). Points of S(FO(o)) are equivalently
described as the ultrafilters on B(FO(0)), the homomorphisms from B(FO(0)) to
the two-element Boolean algebra, or the maximal consistent sets T' of formulas from
FO(o) (point of view we shall make use of here). The space S(FO(0)) is a compact
totally disconnected Polish space, whose topology is generated by its clopen sets

k(¢p) ={T € S(FO(0)): ¢ € T}.

Let A be a finite o-structure (or a o-structure on a probability space such that every
first-order definable set is measurable). Identifying ¢ with the indicator function
1j(4) of the clopen set k(¢), the map ¢ — (¢, A) uniquely extends to a continuous
linear form on the space C'(S(FO(c))). By Riesz representation theorem there
exists a unique probability measure pa such that for every ¢ € FO(o) it holds

(0, A) = / 1y(p) dpa.
S(FO(0))

Note that the permutation group S,, defines a (subgroup of the) group of automor-
phisms of B(FO)(o) (by permuting free variables) and acts naturally on S(FO(0)).
The probability measure pua associated to the structure A is obviously invariant
under the S, -action.

For more details on this representation theorem we refer the reader to [29].

2.3. Structural Limits. Let o be a signature, and let X be a fragment of FO(o).
A sequence A = (A,,)nen of o-structures is X -convergent if (¢, A,,) converges as
n grows to infinity or, equivalently, if the associated probability measures pa, on
S(X) converge weakly [29].

In our setting, the strongest notion of convergence is FO-convergence (corre-
sponding to the full fragment of all first-order formulas). Convergence with respect
to the fragment QF ™ (of all quantifier-free formulas without equality) is equivalent
to the left convergence introduced by Lovasz et al [4, 6, 22]. (It is also equivalent
to convergence with respect to the fragment QF of all quantifier-free formulas, pro-
vided that the sizes of the structures in the sequence tend to infinity.) For bounded
degree graphs, convergence with respect to the fragment FOllocab1 of local formu-
las with a single free variable is equivalent to the local convergence introduced by
Benjamini and Schramm [3]. (Recall that a formula is local if its satisfaction only
depends on a fixed neighborhood of its free variables.) Also, in this case, local
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convergence is equivalent to convergence with respect to the fragment FO' of
all local formulas, provided that the sizes of the structures in the sequence tend to
infinity. For a discussion on the different notions of convergence arising from dif-
ferent choices of the considered fragment of first-order logic, we refer the interested
reader to [29, 31, 35].

Note that the equivalence of X-convergence with the weak convergence of the
probability measures on S(X) associated to the finite structures in the sequence is
stated in [29] as a representation theorem, which generalizes both the representation
of the left limit of a sequence of graphs by an infinite random exchangeable graph
[2] and the representation of the local limit of a sequence of graphs with bounded
degree by an unimodular distribution on the space of rooted connected countable
graphs [3].

2.4. Non-standard Limit Structures. A construction of a non-standard limit
object for FO-convergent sequences has been proposed in [29], which closely follows
Elek and Szegedy construction for left limits of hypergraphs [10]. One proceeds as
follows:

Let (A, )nen be a sequence of finite o-structures and let U be a non—prmmpal

ultrafilter. Let A = [L;cn Ai and let ~ be the equivalence relation on A defined
by (zn) ~ (yn) if {n : x, = yn} € U. Then the ultraproduct of the structures A,,

is the structure L = [],; A;, whose domain L is the quotient of A by ~, and such
that for each relational symbol R it holds is defined by

([v'],...,[v"])) e R*  «— {n:(vl,...,vP) e R*}cU.

As proved by Lo$ [20], for each formula ¢(z1,...,x,) and each v',... vP €
L, An we have

[TA Eo(@',....[7D) i {i: Aio(v),...,0F)} €U
U

In [29] a probability measure v is constructed from the normalised counting
measures v; of A; via the Loeb measure construction, and it is proved that every
first-order definable set of the ultraproduct is measurable. The ultraproduct is then
a limit object for the sequence (A,,)nen. In particular, for every first-order formula
¢ with p free variables it holds:

@ 1 AD = [ - [ Lozl [2p]) du(lzi]) - dv([zp]) = lim{o, As).
[Ta0= [ [ :

Moreover, the above integral is invariant by any permutation on the order of the
integrations.

However, the constructed object is difficult to handle. In particular, the sigma-
algebra constructed on [[;; A,, is not separable. For a discussion we refer the reader
to [8, 10]. The ultraproduct construction is used in the proof of Lemma 2 to prove
consistency of some theories in Friedman’s @, logic (see Section 2.6).

2.5. Modelings. By similarity with graphings, which are limit objects for local
convergent sequences of graphs with bounded degrees [9], the authors proposed
the term of modeling for a structure A built on a standard Borel space A, endowed
with a probability measure v, and such that every first-order definable set is Borel
[31]. Such structures naturally avoid pathological behaviours (for instance, every



6 JAROSLAV NESETRIL AND PATRICE OSSONA DE MENDEZ

definable set is either finite, countable, or has the cardinality of continuum). The
definition of Stone pairing obviously extends to modeling by setting

(1) (6, A) =P (p(A)).

An X-convergent sequence (A, )nen has modeling X -limit L (or simply modeling
limit L when X = FO) if L is a modeling such that for every ¢ € X it holds

(6,L) = lim (¢, A).

Let C be a class of structures. We say that C admits modeling limits if every
FO-convergent sequence of structures (A,,),en with A,, € C has a modeling limit.

Note that not every FO-convergent sequence has a modeling limit: Consider a
sequence (G )nen of graphs, where G,, is a graph of order n, with edges drawn
randomly (independently) with edge probability 0 < p < 1. Then with probability
1 the sequence (G, )nen is FO-convergent. However, this sequence has no modeling
limit, and even no modeling QF ™ -limit: Assume for contradiction that (G}, )nen has
a modeling QF-limit L. Because (x1 = x2,G,) = 1/n — 0 the probability measure
11, is atomless thus L is uncountable. As L is a standard Borel space, there exists
zero-measure sets N C L and N’ C [0, 1], and a bijective measure preserving map
f:L\N — [0,1]\ N’. By the equivalence of QF ~-convergence and left-convergence
the modeling L defines a {0, 1}-valued graphon W : [0,1] x [0, 1] — [0, 1], which is
a left limit of (G,)nen by:

1 ifz,yé N and L | f~1(2) ~ f~1(y)

0 otherwise.

W(z,y) = {

But a left limit of (G, )nen is the constant graphon p, which is not weakly equivalent
to W (as it should, according to [5]) thus we are led to a contradiction.

This example is prototypal, and this allows us to prove that if a monotone class
of graphs admits modeling limits then this class has to be nowhere dense [31]. The
proof involves the characterization of nowhere dense classes by the model theoretical
notions of stability and independence property [1], their relation to VC-dimension
[18], and the characterization of sequences of graphs admitting a random-free (i.e.
almost everywhere {0, 1}-valued) left limit graphon [23]. Conjecture 2 asserts that
the converse is true as well.

2.6. H. Friedman’s @,,-logic. Friedman [11, 12] studied a logical system where
the language is enriched by the quantifier “there exists x in a non zero-measure
set ...”, for which he studied axiomatizations, completeness, decidability, etc. A
survey including all these results was written by Steinhorn [37, 38]. In particular,
H. Friedman considered specific type of models, which he calls totally Borel, which
are (almost) equivalent to our notion of modeling: A totally Borel structure is a
structure whose domain is a standard Borel space (endowed with implicit Borel
measure) with the property that every first-order definable set (with parameters)
is measurable.

In this context, Friedman introduced a new quantifier @),,, which is to be un-
derstood as expressing “there exists non-measure 0 many”, and initiated the study
of the extension L£(Q,,) of first order logic, whose axioms are all the usual axiom
schema for first-order logic together with the following ones [38]:

Mo _‘(me)(aj = y)S
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M (Qmx)¥(z,...) < (Qmy)¥(y,...), where ¥(x,...) is an L(Q,,)-formula
in which y does not occur and ¥(y,...) is the result of replacing each free
occurrence of x by y;

My (Qmz)(®VVY) = (Qnz)®V (Qmzx)Y;

Mz [(Qmz)® A (Vz)(® = ¥)] = (Qmz)¥;

M4 (Qm$)(me)q) — (me>(Qm$)q)

The rules of inference for £(Q,,) are the same as for first-order logic: modus
ponens and generalization. Let the proof system just described be denoted by IC,,.

The standard semantic for @), is as follows: for a structure M on a probability
space such that every first-order definable (with parameters) is measurable (for
probability measure \) it holds

M E Qunz ¢(z,a) <= A{z:ME ¢(x,a)}) > 0.
Note that the set of £(Q,,)-sentences satisfied by M (for this semantic) is obviously
consistent in k.
The following completeness theorem has been proved by Friedman [11] (see also
[38]):
Theorem 1. A set of sentences T in L(Q.,) has a totally Borel model if and only
of T' is consistent in ICp, .

It has been noted that one can require the domain of the totally Borel model to
be a Borel subset of R with Lebesgue measure 1.

3. MODELING FO1-LIMITS

Let A = (A,)nen be an FO-convergent sequence of finite structures, and let
T(A) be the union of a complete theory of an elementary limit of A together with,

for each first order formula ¢ with free variables z1,...,x,,
either (Qmz1) ... (Qmxp) @, if lim (¢, A,) > 0;
n— oo
or ﬁ((mel) e (Qmzyp) gb), if nli_)nolo@b, A,)=0.

The ultraproduct construction provides a model for T'(A):

Lemma 2. For every FO-convergent sequence A of finite structures, the theory
T(A) is consistent in ICp,.

Proof. Using the standard semantic for @), it is immediate that any ultraproduct
[I; A; is a model for T'(A) hence T'(A) is consistent in /Cy,. O

Theorem 3. For every FO-convergent sequence A of finite structures, there exists
a modeling M whose domain M is a Borel subset of R, and such that:
(1) the probability measure vy associated to M is uniformly continuous with re-
spect to Lebesque measure \;
(2) M is a modeling FO1-limit of A;
(3) for every ¢ € FO it holds
(o, M) =0 <«— lim (¢, A,) = 0.

n— o0
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Proof. According to Lemma 2 the theory T'(A) is consistent in /C,,,. Hence, accord-
ing to Theorem 1, T'(A) has a totally Borel model T. (Furthermore, we may assume
that T" is a Borel subset of R with Lebesgue measure 1.)

For every integer k, there exists an integer N (k) and N (k) formulas 0%, . .., 0?‘3\,(@
(with a single free variable) defining the local 1-types up to quantifier rank & in the
sense that all of these formulas are local and have quantifier rank k, they induce a
partition (formalized as 6F + —|9§3 if i # j and = \/, 0F), and for every local formula
#(x) with quantifier rank k and for every 1 < i < N(k) either it holds 6% - ¢, or
OF - —g.

Define I, = {i : A(6F(L)) > 0}. Define the probability measure 7, on L as
follows: for every Borel subset X of L define

C— AXNGL)

Obviously 7, weakly converges to some probability measure w. Let M be the
modeling obtained by endowing L with the probability measure vny = 7. Note that
vm is absolutely continuous with respect to A by construction. 0

Theorem 3 immediately implies

Corollary 1. FEvery FO1-convergent sequence has a modeling FO1-limit.

4. MODELING LIMITS OF RESIDUAL SEQUENCES

We know that in general an FO-convergent sequence does not have a modeling
limit (hence Corollary 1 does not extend to full FO). This nicely relates to sparse—
dense dichotomy.

Recall that a class C of (finite) graphs is nowhere dense if, for every integer k,
there exists an integer n(k) such that the k-th subdivision of the complete graph
K.,y on n(k) vertices is the subgraph of no graph in C [27, 30]. (Note a subgraph
needs not to be induced.) Based on a characterization by Lovasz and Szegedy [23]
or random-free graphon and a characterization of nowhere-dense classes in terms of
VC-dimension (Adler and Adler [1] and Laskowski [18]) the authors derived in [31]
the following necessary condition for a monotone class C to have modeling limits.

Theorem 4. Let C be a monotone class of graphs. If every FO-convergent of graphs
from C has a modeling limit then the class C is nowhere dense.

However, there is a particular case where a modeling limit for an FO-convergent
sequence will easily follow from Theorem 3. That will be done next.

Definition 5. A sequence (A,,)nen is residual if, for every integer d it holds

Ba(Ay, v,
lim sup —‘ al Y )|

n—oo v, €A, |An|

=0,

where By(A,,v,) denotes the set of elements of A, at distance at most d from
v, (in the Gaifman graph of A,). Equivalently, (A, ),en is residual if, for every
integer d, it holds

lim (dist(z1,x2) < d, A,) =0.

n— oo
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The notion of residual sequence is linked to the one of residual modeling: A
residual modeling is a modeling, all components of which have zero measure (that
is if and only if for every integer d, every ball of radius d has zero measure).

By an interplay of these notions we now can prove Conjecture 1.

Theorem 6. Every FO-convergent residual sequence has a modeling limit.

Proof. The main characteristic of residual sequences is that a residual sequence is
FO-convergent if and only if it is FO;-convergent [35]. Consider the modeling limit
M obtained in Theorem 3 for a FO-convergent residual sequence. Then for every
integer d it holds

<diSt(JI1,.1'2) < d, M> =0.

It follows that M is residual, and thus the convergence of (¢, A,) to (¢, M) for
first-order formulas with (at most) one free variable (i.e. FO1-convergence) implies
convergence for all first-order formulas (i.e. FO-convergence). O

5. MODELING LIMITS OF QUASI-RESIDUAL SEQUENCES

Here we prove our main result in the form of a generalization of Section 4 for
quasi-residual sequences. The motivation for the introduction of the definition of
quasi-residual sequences is the following:

Known constructions of modeling limits for some nowhere dense classes with un-
bounded degrees [14, 31, 35] are based on the construction of a countable “skeleton”
on which residual parts are grafted. We shall use the same idea here for the general
case. The countable skeleton will be built thanks to the following characterization
of nowhere dense classes proved in [36]:

Theorem 7. Let C be a class of graphs. Then C is nowhere dense if and only if for
every integer d and every € > 0 there is an integer N = N(d, €) with the following
property: for every graph G € C, and every subset A of vertices of G, there is S C A
with |S| < N such that no ball of radius d in G[A\ S| has order greater than €|A|.

This theorem justifies the introduction of the following relaxation of the notion
of residual sequence:

Definition 8. A sequence (A, )nen (with |A,| — o0) is quasi-residual if, for every
integer d and every € > 0 there exists an integer /N such that it holds

B if A, ny Un
limsup inf sup |Ba(Gaifman(An) | Sn, vn )|
n—00 SnE(AA?) v €EAR\Sn |An|

In other words, (A, )nen is quasi-residual if, for every distance d and every € > 0
there exists an integer N so that (for sufficiently large n) one can remove at most
N vertices in the Gaifman graph of A,, so that no ball of radius d will contain at
least € proportion of A,,.

The next result directly follows from Theorem 7.

Corollary 2. Let C be a nowhere dense class of graphs and let (Gp)nen be a
sequences of graphs from C such that |G,| = co. Then (Gy)nen is quasi-residual.
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5.1. (d,e)-residual Sequences. We now consider a relaxation of the notion of
residual sequence and show how this allows to partially reduce the problem of
finding modeling FO-limits to finding modeling FO;-limits.

Definition 9. Let d be an integer and let € be a positive real. A sequence (A,,)nen
is (d, €)-residual if it holds

Ba(An,
limsup sup [Ba(An, vn)] < e
n—oco v,€A, ’An|

Similarly, a modeling M is (d, €)-residual if it holds
sup vpm(Ba(M,v)) < e.
veM

Lemma 10. Let d € N and let € > 0 be a positive real. Assume (Ay)nen is a FO-
convergent (2d, €)-residual sequence of graphs and assume L is a (2d,¢€)-residual
modeling FO1-limit of (A, )nen-

Then for every d-local formula ¢ with p free variables it holds

(6.1) — lim (6, A,)] < pe

Proof. By restricting the signature to the symbols in ¢ if necessary, we can assume
that o is finite. Let g be the quantifier rank of ¢. Then there exists finitely many
local formula &7, . .., £ with quantifier rank at most ¢ (expressing the rank ¢ d-local
type) such that:

e every element of every model satisfies exactly one of the &; (formally, - \/¢;

and F (§ — —&;) if i # j);
e two elements x and y satisfies the same local first-order formulas of quan-
tifier rank at most ¢ if and only if they satisfy the same &;.

Let ((x1,...,xp) be the formula /\1§i<j§p dsoq(zi, ;). By d-locality of ¢ there
exists a subset X C [N]? such that

p
crlee Vo A& @)
(i1,...,0p)EX j=1

Let 5 = \/(1.17_“7%)@( /\?:1 &, (x;). For every structure A it holds

b, A) = > ], A).

(i1,...,ip)EX J=1
As L is a modeling FO;-limit of A,, it holds (§;,, L) = lim,, o (&;;, Ay), hence
(6.L) = lim (5, A.)

On the other hand, as ( - (¢ <> ¢), for every structure A holds

(6A) = (6.8 < (6.4) = (5 (dcas, &),

Note that (d<a4, A) is nothing but the expected measure of a ball of radius 2d in
A. In particular, if A is (2d, €)-residual, then it holds [(¢, A) — (¢, A)| < e. Thus,

(¢, L) (6, A,)| < pe.

— lim
n—r0o0

[l
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5.2. Marked Quasi-residual sequences. To allow an effective use of the prop-
erties of quasi-residual sequences, we use a (lifted) variant of the notion of quasi-
residual sequence.

Let o be a countable signature and let o+ be the signature obtained by adding
to o countably many unary symbols {M; };eny and {Z; }ien.

For integers d,¢ we define the formulas d4,; and Sd as

(2) (sd,i = (32) dgd(xl, Z) AN MZ(Z)
(3) 8d = (32) dgd(xl, Z) N Zd(Z)

In other words, d4,(z) holds if = belongs to the ball of radius d centered at the

clement marked M;, and d4(z) holds if 2 belongs to the d-neighborhood of elements
marked by Z;.

Definition 11. A sequence (A;}),en (with |[A}F| — co) of ot -structures is a marked
quasi-residual sequence if the following condition holds:

e For every integers i,n it holds |M;(A;)| < 1 (i.e. at most one element in
A} is marked by M;);

e For every distinct integers 4,j and every integer n, no element of A} is
marked both M; and Mj;

e For every integer d there is a non-decreasing unbounded function Fy : N —
N with the property that for every integer n it holds

Fq(n)
(4) Zas(A)) = | Mi(A));

i=1
e For every integer d and every positive real € > 0 there is NV € N such that
B,(Gaif AT N M (A, v,
(5) limsup sup |Ba(Gaifman(A7) \ U;Z; Mi(A7), vn)| <

+
n—oo v, EAT\UN, M;(AY) |An |

(In other words, every ball of radius d in Gaifman(A;) \ UN, M;(A;")
contains less than e proportion of all the vertices, as soon as n is sufficiently
large.)

e For every integer d the following limit equality holds:

. N +\ . . +
©) Jim o, AZ) = Jim Jiw A\ bams A7)

The main purpose of this admittedly technical definition is to allow to make
use of the sets S,, arising in the definition of quasi-residual sequences by first-order
formula, by means of the marks M;. The role of the marks Z; is to allow a kind
of of limit exchange. (Note that d4,(A™) is nothing but the ball of radius d of A™

centered at the element marked by M;.)

Lemma 12. For every quasi-residual sequence (A, )nen of o-structures there exists
an FO-convergent marked quasi-residual sequence (B ),en of o-structures such
that (Forget(B;}))nen s a subsequence of (Ay)nen-

Proof. Let ¢’ be the signature obtained by adding to o countably many unary
symbols {M,};en. For n € N we define the o’-structure A/ has the o’-structure
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obtained from A,, by defining marks M; are assigned in such a way that for every
d e N and € > 0 there is N € N such that letting S, = [J~, M;(AZ,) it holds

B if Al ns Un
lmsup  sup | B4(Gai man(/ "\ SnyUn)|
n—oo v €AN\S, ’An‘

This is obviously possible, thanks to the definition of a quasi-residual sequence.
Considering an FO-convergent subsequence we may assume that (A!) is FO-
convergent.
For d € N we define the constant

m

. . . ) /

aa= Jim lim (V 0ai, A2)
i

(Note that the values lim, oo (Vv das, AL) exist as (Al) is FO-convergent and

that they form, for increasing m, a non-decreasing sequence bounded by 1.)

Then for each d € N there exists a non-decreasing function F; : N — N such
that lim,, . lim Fyg(n) = oo and

F(n)
. ) / o
nh_)Igl()( \_/1 dais AL) = ay.

Then we define A" to be the sequence obtained from A’ by marking by Z; all the

elements in Uggn) M;(A!). Now we let (B}) to be a converging subsequence of
(A ) nen. U

Let (4 be the formula asserting that the ball of radius d centered at x; contains
9 but no element marked Z;, that is

Cq = dgd(a?l,aﬁg) A (VZ)(de(ZCl, Z) — ﬁZd(Z)).
Lemma 13. Let (A}),en be a marked quasi-residual sequence. Then

lim ({4, A}) = 0.
n—oo

Proof. Assume for contradiction that a = lim,, (g, A;") is strictly positive.
According to the definition of a marked quasi-residual sequence, there exists an
integer m such that no ball of radius d in Gaifman(A;) \ U, M;(A;}) contains
more than (a/2)|A,| elements. Let ng be such that F;(ng) > m, and let n; > ng
be such that (¢4, At) > a/2 holds for every n > nj.
Then there exists v such that the ball of radius d centered at v contains no

element marked Z; (hence no element marked M;,..., M,,) and contains more
than (a/2)|A,| elements, what contradicts the fact that this ball is a ball of radius
d in Gaifman(A;}) \ U~ M;(A}). O

In general, a modeling FO;-limit of a (d, €)-residual sequence does not need to
be (d’,€)-residual. However, if we consider a sequence that is also marked quasi-
residual, and if we assume that the modeling FO;-limit satisfies the additional
properties asserted by Theorem 3 then we can conclude that the modeling is (d/4, €)-
residual, as proved in the next lemma.

Lemma 14. If the sequence (A}) is (4d, €)-residual and L™ is a modeling with the
properties asserted by Theorem 3 then L is (d, €)-residual.
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Proof. We first prove that the set T of vertices v € LT such that the ball of
radius 2d centered at v has measure greater than € has zero measure. According to
Lemma 13, it holds lim,, . {(2q4, A;}) = 0 hence ((aq, L™) = 0. This implies that
the set V' of 27 such that the ball of radius 2d centered at x; contains no element
marked Z5; and has measure at least € has zero measure. Hence we only have to
consider vertices v in the 2d-neighborhood of Zog(L™). Let

oog = lim lim (\/ d2d.is Ant).
=1

m—00 N—+00

Let k € N. There exists m(k) such that

m(k)
. . J’_ -
(7) n11_>1r010< \_/1 d2d.is AL ) > g — 1/,

which means that at least asqy — 1/k proportion of LT is at distance at most 2d
from elements marked My, ..., My, ).

However, according to (6), and as Lt is a modeling FO;-limit of (A;}),en it
holds

Qg = li_>m (52d,AﬁL> = <82d;L+>7

which means that a asg proportion of L™ is at distance at most 2d from elements
marked Zy4 (which include elements marked My, .. .,Mm(k)). Thus the set N
of vertices in the 2d-neighborhood of Zo4(L) but not in the 2d-neighborhood of

U?;(f) M; (L") has measure at most 1/k.

Let v be in the 2d-neighborhood of U;n:(f) M;(L7T). Then the ball of radius 2d
centered at v is included in the ball of radius 4d centered at a vertex marked M;,
for some i < m(k). But this ball has measure (044, L") = limy, 00 (d4a.i, A}). As
the sequence (A;}) is (4d, €)-residual, it holds (444, A)}) < € for sufficiently large
n. Hence the ball of L™ of radius 2d centered at v (which is included in the ball of
radius 4d centered at the vertex marked M;) has measure less than e.

It follows that the set of v such that the ball of radius 2d centered at v has
measure at least € is included in V' U [, N} hence has zero measure.

Now assume for contradiction that there exists a vertex v such that the ball B
of radius d centered at v has measure at least e. Then for every w € B the ball of
radius 2d centered at v has measure at least e, what contradicts the fact that the
measure of B is positive. O

5.3. Color Coding and Mark Elimination. We now consider how to turn a
marked quasi-residual into a (d, €)-residual marked quasi-residual sequence.

The idea here, is to encode each relation R with arity k > 1 with m* —1 relations
plus a sentence. The sentence expresses the behaviour of R when restricted to
elements marked My, ..., M,,. The m* —1 relations expresses which tuples of non-
marked elements can be extended (and how) with elements marked My, ..., M,, to
form a k-tuple of R.

As above, let o be a countable signature with unary relations M; and Z;. Let
m € N.

We define the signature oc*™ as the signature obtained from o* by adding, for
each symbol R € o with arity k& > 1 the relation symbols N ﬁf of arity k— |I|, where
0#1C[k]and f:1— [m].



14 JAROSLAV NESETRIL AND PATRICE OSSONA DE MENDEZ

Let AT be a o™ -structure.

We define the structure Encode,, (A ™) as the o*™-structure A*, which has same
domain as A, same unary relations, and such that for every symbol R € o with
arity k > 1, for every ) # I C [k] and f : I — [m], denoting i; < --- < i, the
elements of [k] \ I and is41,...,% the elements of I, it holds

A" = Nﬁf(vil,...,vie)

¢ m k
— AT E /\ /\ =M, (vi;) A [(Hviuw e 7vik)(R(U1’ L ) A /\ Mf(ij)(vij))}

j=1r=1 j=b+1
and

A" = R(v,...,vk)
— AT = R(vi,...,u) A /\ N\ —M; ().

Note that the Gaifman graph of A* can be obtained from the Gaifman graph of
AT by removing all edges incident to a vertex marked Mj, ..., M,,.

We now explicit how the relation R in AT can be retrieved from A*.

For m € N, R € ¢ with arity £k > 1, and Z C [m]* let ni’m(:cl,...,xk) be
defined as follows:

ng’m = \/ /k\ M, (x;) v [ Tlyeey Tg) A K ﬁMj(xi)]

>w

(i1,...,0)EZ J=1 i=1j=1
m
V \/ \/ [N[f le,...,xie)/\/\Mf(i)(scl /\ /\ /\—le ]
0#£IC[k] f:I—][m el t€[k\II j=1

and let gﬁ be the following sentence, which expresses that Z encodes the set of
all the tuples of elements marked My, ..., M,, in R.

§E = [ /\ (3931,...,xk)(R(xl,...,xk) A /\(sz(acl))]

(il,...,z’k)EZ J:

/\ﬂ[ \/  Geneo) (R om) A /\(Mij(xi))].

(i1, in ) E[M]F\ Z j=1

—

The following lemma sums up the main properties of our construction.

Lemma 15. Let A1 be a o -structure, and let A* = Encode,,(A™).
Let R € o be a relation symbol with arity k > 1. Then

e there exists a unique subset Z of [m]¥ such that AT |= &
o for this Z and for every vy,...,vx € AT it holds

AT E Ry, ..., ) = A" En2™(v1,...,0).

Proof. This lemma straightforwardly follows from the above definitions. O
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Let m € N be fixed.

An elimination theory is a set T,, containing, for each R € ¢ with arity k£ >
1, exactly one sentence ¢Z (for some Z C [m]¥). For a ot-structure AT, the
elimination theory of AT is the set of all sentences gg satisfied by A™.

For a formula ¢ € FO(o), we define the elimination formula &5\ of ¢ with respect
to an elimination theory T,, as the formula obtained from ¢ by replacing each
occurence of relation symbol R with arity £ > 1 by the formula ng’m, where Z is
the unique subset of [m]* such that ¢& € T5,.

It directly follows from Lemma 15 that if AT is a o™ -structure which satisfies all
sentences in an elimination theory 7;,, then for every formula ¢ € FO(o), denoting
(E the elimination formula of ¢ with respect to T}, it holds

(8) Encoden, (AT) | ¢(v1,...,v,) <= AT E¢(vr,...,0p).

5.4. Modeling Limits of Quasi-residual Sequences. Let us recall Gaifman
locality theorem.

Theorem 16 ([13]). Every first-order formula ¥ (x1,...,x,) is equivalent to a
Boolean combination of t-local formulae x(x;,,...,x;,) and basic local sentences of
the form

1. Ym (/\ P(yi) A /\ d>2r(yiayj)>
i=1 1<i<j<m
where ¢ is r-local. Furthermore r < 79 =1 ¢ < 70W)=1/2 m < n + qr(v), and,
if ¢ is a sentence, only basic local sentences occur in the Boolean combination.

From this theorem we deduce:

Lemma 17. Let (A,)nen be an elementary convergent sequence of o-structures.
Then for every formula ¢ € FO(o) with quantifier rank q there exists a 741 /2-local

formula ¢ and an integer ng such that for every n > ng it holds ¢(A,) = ¢(A,,).

Proof. According to Theorem 16 ¢ is equivalent to a Boolean combination of sen-
tences and 797! /2-local formulas. Putting it in disjunctive normal form and con-
sidering all Boolean combinations of the sentences, we get that ¢ is equivalent to
\/iil 0; A 1;, for some sentences 61, ...,0y and 797! /2-local formulas 1, .., ¥y,
with the additional property that in every model exactly one of the sentences 6; is
satisfied. (Formally we require -/, 0; and - (6; — —0;) for i # j.) As (A, )nen is
elementary convergent, there exists 1 < a < N and ng € N such that A,, =6, for
every n > ng. Let 5 = 1),. Then the result follows from 0, F (¢ <> 1,). O

We can now prove our main result, which directly implies Conjecture 1 and, from
which will also follow Conjecture 2.

Theorem 18. Fvery quasi-residual FO-convergent sequence has a modeling limat.

Proof. Let (A,)nen be an FO-convergent quasi-residual sequence. According to
Lemma 12, up to considering a subsequence, there exists an FO-convergent marked
quasi-residual sequence (A"),en of o-structures such that Forget(A}) = A,,.
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Let L™ be a modeling with properties asserted by Theorem 3, and let L =
Forget(L™). Our aim is to prove that L is a modeling limit of the sequence (A, ) en.

Let ¢ € FO(o) be a formula with quantifier rank ¢ and p free variables, and let
€ > 0 be a positive real.

Let d = 7971 /2 and let m and ng be integers such that for every n > ng no ball
of radius 84 in Gaifman(A,,) \ U;~, M;(A}}) contains at least (e¢/p®)|A,| vertices.

Let A = Encode,,(A). Each relation of A¥ being defined by a fixed for-
mula from relations of A}, the sequence (A¥),cy is FO-convergent and L* =
Encode,, (L") is a modeling FO;-limit of (AX),cn satisfying additional properties
asserted by Theorem 3.

Let T;, be the elimination theory of LT (as defined above). As LT is an FO;-
limit (hence an elementary limit) of (A}),en there exists ny > ng such that for
every symbol R € ¢ with arity k > 1 used in ¢, if gj% € T, then A} = g;% holds for
every n > ni. Let $ be the elimination formula of ¢ with respect to T},. Note that
g/g has also quantifier rank at most q. According to Lemma 15, for every n > n; it
holds ¢(A*) = ¢(A}). Thus, as p(A+) = ¢(A,) (as ¢ only uses symbols in o) it
holds

As L* satisfies T}, we get
(10) (6,L%) = (4,L).

Note that by our choice of m the sequence (A}) is (8d, ¢/p?)-residual hence by
Lemma 14 the modeling L* is (2d, ¢/p?)-residual.

According to Lemma 17 there exists a d-local formula gg and an integer ny > nq

such that for every n > ns it holds QAS(A;) = ¢(A}) hence
As L* is elementary limit of (A} ),en it similarly holds
(12) (6.L7) = (¢, L).

According to Lemma 10 (as ¢ is d-local, (AX) is (8d,¢/p®)-residual and L* is
(2d, €/p?)-residual) it holds

’<$a L*> - n11_>1210<§g, A;kz>’ <€
Hence by (11) and (12) it holds
(13) |<¢a L> o nll_>rgo<¢a An)’ < €.
As (13) holds for every € > 0 we have
(6.1) = lim (9, Ay).

As this holds for every formula ¢ € FO(o), we conclude that L is a modeling limit
Of (An)nEN- U

From Theorems 7 it follows that any FO-convergent sequence of graphs from a
nowhere dense class is quasi-residual thus from Theorem 18 directly follows a proof
of Conjecture 2.
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Corollary 3. Let C be a monotone class of graphs. Then C has modeling limits if
and only if C is nowhere dense.

6. FURTHER COMMENTS

6.1. Approximation. Let A and B be measurable subsets of the domain L of the
modeling limit of an FO-convergent sequence (A,,),en of finite structures. Assume
that every element in A has at least b neighbours in B and every element in B has
at most a neighbours in A.

The strong finitary mass transport principle asserts that in such a case it should
hold

(14) brr(A) <avy(B).

It is easily checked that if both A and B are first-order definable (without pa-
rameters) then (14) holds: let A = ¢(L) and B = 1(L). Define

¢ (@) == ¢(w) A (G .. /\( v D) A A\ i A )

1<j<b
a+1
W(@) = 9@ A=y yar) A (@i~ Ao A N\ A )
i=1 i<j<a+1

Then vy, (A) = vL(¢'(L)) and vi,(B) = v (¢’ (L)). As b(¢', A,) < a(y’, A,) holds
for every integer n (as A,, is finite), by continuity we deduce bvy,(A) < avy(B).

However, it is not clear whether an FO-convergent sequence of graphs from a
nowhere dense class has a modeling limit that satisfies the strong finitary mass
transport principle. This can be formulated as

Congecture 3. One can require a version of the strong mass transport principle.

6.2. Characterization. In this context, it is natural to propose the following gen-
eralization of Aldous-Lyons conjecture.

Conjecture 4. Let L be a modeling such that:

e the theory of L has the finite model property.
e every interpretation of L satisfies the finitary mass transport principle.
Precisely, for every first-order formulas «, 3,y such that

b

a(x) b Gyr-ow) A\ (Vo) MBI A N i # 1))

i=1 i<j<b
a+1

B(x) F =1 - yar1) \ (7(357%') o)A N\ (i # yj))
i=1 1<j<a+l

it holds
b{a,L) <a(p,L).

e for every integer d there is an integer N such that L does not contain the
d-th subdivision of K.
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Then L is the FO-limit of a sequence of finite graphs.

Note that there may be weaker versions of the finitary mass transport principle
non-trivially equivalent for it. See for instance what happens with mappings [32].

Note that the last condition implies that there exists no integer d such that L
includes the d-subdivision of Ky  ox0, thus L has a countable skeleton, that is there
are Si,...,8p, -+ € L such that for every integer d and every € > 0 there is N with
the property

sup vL(Ba(L — {s1,...,sn},v)) < e
vEL—{s1,...,sN }

6.3. L(Q.,)-Theory of Modelings.

Conjecture 5. For a modeling A, the knowledge of all (¢, A) (for first-order formulas
@) is sufficient to deduce the complete £(Q,,)-theory of A.

As a support for Conjecture 5 consider the following £(Q,,) sentences (where ¢
is a first-order formula):

D (Fy) (Qmz) ¢z, y)
Then it is easily checked that

M = & — ((3y) d(z1,9) A ¢(x2,y), M) >0
MET Jim ((3y) ~d(1,9) V-V ~glax,y), MYVF =0
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