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Preface

Charles University in Prague and particularly Department of Applied Math-
ematics (KAM), Computer Science Institute of Charles University (IÚUK)
and its international centre DIMATIA, are very happy to host one of the
very few International REU programmes which were established ane are in
long term supported by the National Science Foundation.

Repeatedly, since the establishment of DIMACS–DIMATIA REU in
1999, it has been awarded for its accomplishments and educational excel-
lence.

On the Czech side, the programme was financed jointly by the RSJ foun-
dation, by the School of Computer Science of Faculty of Mathematics and
Physics of Charles University, in particular by KAM and IÚUK, and by our
grants CE–ITI P202/12/G061, ERCCZ LL1201 and SVV 202–09/260452.
We thank all the contributors and hope that the future will bring us a more
stable support. Nevertheless all our institutions are proud sponsors of this
unique activity.

This booklet reports just the programme in 2017. I thank to Jaroslav
Hančl, the Czech mentor of this year, for a very good work both during the
programme itself and after.

Prague, November 15, 2017
Jaroslav Nešetřil
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The DIMACS/DIMATIA Exchange program has been going on for many
years and is a valuable experience for all involved. This year, I was the
graduate coordinator from Rutgers, and it was a pleasure interacting with
all the participants involved. I can personally say I very much enjoyed the
exchange program, and learned and developed a great deal from helping to
coordinate the REU on the American side.

Of course, the exchange program is about the students, and all of the
Americans expressed their satisfaction. In particular, they learned a lot
and enjoyed the lectures delivered at Charles University to prepare them
for the Midsummer Combinatorial Workshop. In combination with seeing
a different country and experiencing a different culture, this was a very
valuable experience for them.

I would like to express my gratitude to the DIMATIA staff and the
Czech REU students involved in the exchange for being such welcoming
and generous hosts. The stay would have been much less enjoyable had it
not been for their time spent with us as guides to the Czech Republic.

Parker Hund,
Rutgers University
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DIMACS/DIMATIA Research Experiences for Undergraduates (REU)
is a joint program of the DIMATIA center, Charles University in Prague,
The Czech Republic and DIMACS center, Rutgers University, The State
University of New Jersey, NJ, USA.

This year’s participants from Charles University were students Matěj
Konečný, Jana Novotná, Jakub Pekárek, Václav Rozhoň, Jakub Svoboda
and Štěpán Šimsa. We spent our time in Piscataway together with more
than thirty students from universities all over the United States, Russia,
Mexico and Thailand. We participated in the first part of the program at
Rutgers University from May 30th to July 16th. This part of the program
mainly consists of open mathematical problems being solved by students
and led by their mentors. Our mentor was Periklis Papakounstantinou.
Students attended several lectures, workshops and tutorials. By the end
they also participated in a Field Trip to IBM Headquarters close to New
York.

In addition to the scientific program, an important part of the REU
is an intercultural experience. At the beginning, Czech students had time
to present Czech Republic, its customs and culture. On the other side
American students demonstrated culture and lifestyle of people in America.
Moreover, the students together participated in many sport activities, hiking
and several sightseeing trips.

Six American students were selected to join, together with their gradu-
ate coordinator, the Czech students in the second part of the REU which
took place at Charles University in Prague from July 20st to August 1st.
The US students were Yulia Alexandr, Kayla Cummings, Edgar Jaramillo-
Rodriguez, Marina Knittel, Aaron Zhang and their graduate coordinator
was Parker Hund.

In Prague, the students attended a series of lectures given by profes-
sors mainly from the Department of Applied Mathematics and the Com-
puter Science Institute of Charles University and Midsummer Combinatorial
Workshop XXII held from July 31th to August 4th.

Many results and thoughts from the last summer are still being im-
proved and some of them are going to be submitted to international con-
ferences. This booklet presents the results of the Czech students from the
REU programme and reports of the American students about their lectures
at Prague.

At the end, I would like to thank all the participating students, people
at DIMACS and other organizers. Also an important role played people
from the both our departments at Prague. I thank them for many helpful
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comments, encouraging advices and an overal support. For me it was a
perfect experience and I am glad that I could have been a part of this
program.

Prague, Winter 2017
Jaroslav Hančl,

Charles University in Prague

List of sponsors
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The participants of the Internation REU programme at Rutgers University.



The participants on the visit to IBM headquaers in US.

Midsummer Combinatorial Workshop XXII
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Convexity and Helly’s Theorem

Transcribed by Aaron Zhang from a lecture by Vı́t
Jeĺınek

1 Introduction

The notion of convexity finds many applications in mathematics and com-
puter science. We start by defining convex combinations and convex sets.

Definition 1.1. Let x1, ..., xn be points in Rd. A convex combination of
x1, ..., xn is a linear combination a1x1 + ...+ anxn where each ai is nonneg-
ative and

∑n
i=1 ai = 1.

For example, in R2, (2, 3) can be written as a convex combination of
(1, 0) and (4, 9) because (2, 3) = 2

3 (1, 0) + 1
3 (4, 9). However, (5, 12) is not a

convex combination of (1, 0) and (4, 9).

Definition 1.2. A set S ⊆ Rd is convex if, for any two points x1, x2 ∈ S,
every point on the line segment between x1 and x2 is also in S. In other
words, for 0 ≤ t ≤ 1, tx1 + (1− t)x2 ∈ S.

In terms of convex combinations, a set S is convex if it contains all
convex combinations of points in S. Note that the empty set and a set with
only one point satisfy the definition of convexity. Intuitively, a set is convex
if it has no dents. For example, in R2, the semicircle of points that lie above
the x-axis within distance 1 from the origin is a convex set. However, if
we made a dent by removing a smaller semicircle around the origin, the
set would no longer be convex, because a line segment between (−1, 0) and
(1, 0) would not be entirely contained in the set. Now, we define the convex
hull of a set of points.

Definition 1.3. The convex hull of a set S ⊆ Rd is the smallest convex
set containing S. Equivalently, the convex hull of S is the set of all convex
combinations of points in S.
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As the reader should verify, arbitrary intersections of convex sets are
convex, so the smallest set containing S is well defined and is the intersec-
tion of all convex sets containing S. We have now defined convexity, but
before we start proving properties of convex sets, let’s see some examples
of convexity in action.

2 Applications of convexity

Example 2.1. Suppose we have a function f : R→ R and we want to find
the value of x that minimizes f(x). For example, f(x) might represent the
fuel consumption of a vehicle during a trip if it travels at a speed x. If f
is differentiable, one reasonable approach to find the minimum is to start
at some value of x and evaluate f ′(x). If f ′(x) < 0, we know that nearby
points to the right of x will decrease the value of f , so we can increase x
by a small amount and repeat the process. Likewise, if f ′(x) > 0, we can
decrease x by a small amount and repeat the process. The generalization
of this idea to higher dimensions is called gradient descent and is one of the
most widely used optimization techniques in computer science.
In general, this algorithm might get stuck at a local minimum rather than
finding the global minimum. For example, consider the plot below of f(x) =
3x4 − 4x3 − x2 + x. If we start our algorithm at x = −0.5, we might get
stuck at the local minimum near x = −0.3, which is far from the global
minimum near x = 1.1.

However, suppose we have a different function f such that the region of

the plane above the graph of f is a convex set, for example f(x) = x2. In
this case, we call f a convex function. It turns out that, given a reasonable
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method of updating x based on f ′(x), gradient descent will converge to the
global optimum of a convex function from any starting point. Convexity is
useful in many other settings in optimization as well.

The study of convex functions and their properties is a well developed
area of research in mathematics and computer science. One particularly
useful result in probability is Jensen’s inequality, which bounds the value
of a convex function of the expectation of a random variable. Jensen’s
inequality and other properties of convex functions are often used to derive
the fundamental results in the field of information theory.

Example 2.2. Linear programming is another optimization framework in
computer science that is incredibly versatile and well studied. The goal is to
find a setting of variables x1, ..., xn that maximizes a given linear objective
function c1x1 + ... + cnxn. The settings of the variables are subject to a
collection of linear constraints, each of the form a1x1 + ... + anxn ≤ b for
some a1, ..., an, b. For example, suppose a company uses wood and metal to
produce chairs and tables. A chair requires 10 units of wood and 10 units of
metal and generates a profit of $20. A table requires 30 units of wood and
20 units of metal and generates a profit of $40. Suppose the company has
500 units of wood and 400 units of metal and must determine the number
of chairs c and tables t to produce to maximize the profit. This problem
can be formulated as a linear program: maximize 20c+ 40t subject to:

10c+ 30t ≤ 500,
10c+ 20t ≤ 400,

c, t ≥ 0.

How do we solve a linear program? The simplex algorithm is one of two
widely used methods and makes use of convexity. First, consider the set of
points (c, t) ∈ R2 that satisfy the constraints above. This set is called the
feasible region. The reader should prove that the feasible region is a convex
set in R2, and indeed, that the feasible region of any linear program is a
convex set in Rn, where n is the number of variables. In this example, the
feasible region is a convex polygon bounded by four sides that correspond
to the four constraints (sketch a diagram to visualize this). This polygon is
the convex hull of its four vertices. (The higher dimensional analogue of a
convex polygon is a convex polytope, and if the feasible region is a bounded
set, the convex polytope is again the convex hull of its vertices.) In fact,
the choice of (c, t) that maximizes the objective function must be at one of
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the vertices. (Given that the polygon is the convex hull of its vertices, what
can we say about the value of the objective function at any interior point?)
The simplex algorithm starts at an arbitrary vertex of the feasible region
and repeatedly moves to an adjacent vertex that increases the value of the
objective function until it reaches a vertex whose value is higher than the
value at all its neighbors. Think about why the value at such a vertex must
be the maximum value of the objective function.

With these examples in mind, it should be clear that studying the prop-
erties of convexity is both worthwhile for its own sake, and to develop the
theoretical foundations of many practical applications. Our focus here will
be proving and making use of Helly’s theorem, a classic result in discrete
geometry and convex analysis.

3 Helly’s theorem

Our main result will be

Theorem 3.1. (Helly’s Theorem) Suppose C1, ..., Cn is a finite family of
convex sets in Rd and n ≥ d+ 1. Then if the intersection of every d+ 1 of
these sets is nonempty, the intersection of all the Ci is nonempty.

In R2, try to come up with an example of a family of convex sets where
each pair of sets intersect, but the intersection of all the sets is empty. This
shows that d+ 1 cannot be replaced with d in the theorem. Helly’s theorem
says that if we require that each triplet of sets intersect, the intersection
of all the sets must be nonempty. We will prove Helly’s theorem using the
following lemma, which is interesting in its own right.

Lemma 3.2. (Radon’s Lemma) Let P ⊆ Rd be a set containing at least
d+ 2 points. Then we can partition P into two sets P+, P− such that the
convex hulls of P+ and P− intersect.

Proof. Without loss of generality, let P = {p1, ..., pd+2} be a set of size d+2.
Define v1, ..., vd+1 where vi = pi − pd+2. Then v1, ..., vd+1 is a set of d + 1
vectors in Rd, and hence linearly dependent. Thus, we can find a1, ..., ad+1,
not all 0, such that a1v1 + ... + ad+1vd+1 = 0. Expanding the formula for
each vi, we have

a1p1 + ...+ ad+1pd+1 + (−a1 − ...− ad+1)pd+2 = 0 (1)
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Note that the sum of the coefficients in this linear combination is 0. Let P+

be the set of points in P with positive coefficients, and let P− be the rest
of the points in P . Rearrange equation 1 by moving the terms containing
points in P− to the right side. Now the sum of coefficients on each side
of the equation are equal, so divide both sides by the same amount so the
sum of coefficients on each side is 1. This gives us a convex combination of
points in P+ that is also a convex combination of points in P−.

We can now prove Helly’s theorem.

Proof. We proceed by induction on n. As a basis for the induction, note
that Helly’s theorem holds when n = d + 1. Now let n ≥ d + 2, and let
C1, ..., Cn be a family of convex sets satisfying the conditions in Helly’s
theorem. By the induction hypothesis, if we remove any one set from this
family, the remaining sets have a point in common. Let pi be the point
in common of the remaining sets when Ci is removed. Because p1, ..., pn is
a set of at least d + 2 points in Rd, Radon’s Lemma gives us a partition
P+, P− of these points such that the convex hulls of P+ and P− intersect.
Let p be any point in this intersection; we claim that p belongs to all of
C1, ..., Cn. Indeed, for each Ci, the point pi belongs to only one of the
partitions P+, P−, and thus Ci contains all points in the other partition.
Because Ci is convex, Ci also contains all points in the convex hull of the
other partition, including p.

Exercise 1. Prove the following variant of Helly’s theorem. Let C1, ..., Cn be
a family of convex sets in Rd with n ≥ d+ 1. Now suppose the intersection
of every d + 1 of these sets contains some ball of radius 1. Show that the
intersection of all the sets contains some ball of radius 1.

4 Applications of Helly’s theorem

Helly’s theorem may sound like a very particular statement, but in fact finds
many surprising applications in discrete geometry. Here we present two of
them.

Definition 4.1. Let X be a finite set of n points in Rd. For α ∈ [0, 1
2 ], an

α-centerpoint of X is a point y ∈ Rd such that every closed half-space with
y on the boundary contains at least αn points of X.
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Note that a centerpoint of X need not belong to X. For example, if X
is a triangle in R2, any point in the triangle is a 1

3 -centerpoint of X. In fact,
any finite set of points in R2 has a 1

3 -centerpoint. This is a consequence of
the following result, whose proof uses Helly’s theorem.

Theorem 4.2. If X is a finite set of points in Rd, then X has a 1
d+1 -

centerpoint.

Proof. Let n denote the size of X. We will prove the theorem in the case
n ≥ d + 2; the other case should be verified by the reader. Let F be the
family of subsets Y ⊆ X such that Y contains more than d

d+1n points
of X. Note that any d + 1 sets in Y intersect. We would like to apply
Helly’s theorem, so define a new family F ′ by taking the convex hull of each
set in F . Now Helly’s theorem guarantees a point p contained in all the
sets in F ′; we claim p is a 1

d+1 -centerpoint. If not, then there would be a
hyperplane through p such that one of the sets in F lies entirely on one side,
contradicting the fact that p is in the convex hull of each set in F .

The most interesting step in the last proof was finding an appropriate
family satisfying the conditions of Helly’s theorem. We will use this idea
again in the proof of the next result.

Definition 4.3. Let A,B ⊆ Rd. We say that a hyperplane separates A
and B if A and B lie entirely in opposite open half-spaces determined by
the hyperplane (the hyperplane cannot intersect A or B).

Theorem 4.4. (Kirchberger’s Theorem) Let A and B be finite subsets of
Rd. Suppose |A ∪ B| ≥ d + 2, and for every subset X ⊆ A ∪ B of size
d+ 2, there is a hyperplane separating X ∩ A and X ∩ B. Then there is a
hyperplane separating A and B.

In other words, if any d + 2 points of A and B are separable by a
hyperplane, the entire sets A and B are separable by a hyperplane.

Proof. We will prove Kirchberger’s theorem for d = 2; the reader should
verify that the result generalizes to higher dimensions. For a, b, c ∈ R with
a and b not both 0, let L+

a,b,c be the set of points (x, y) in R2 such that

ax + by > c. Similarly, define L−a,b,c to be those points (x, y) such that

ax + by < c. L+
a,b,c and L−a,b,c are the two open half-spaces separated by

the line ax + by = c. Let A = {p1, ..., pn}, and let B = {q1, ..., qm}. For
each pi ∈ A, let Xi = {(a, b, c) ∈ R3 : pi ∈ L+

a,b,c}. Similarly, for each
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qj ∈ B, let Yj = {(a, b, c) ∈ R3 : qj ∈ L−a,b,c}. We wish to find a point

(a, b, c) ∈ R3 that lies in the intersection of all the Xi and Yj . Each Xi and
Yj is convex (verify this!), and the conditions of Kirchberger’s theorem tell
us that any 4 of these sets intersect. Helly’s theorem guarantees a point in
the intersection of all these sets.

5 Variants of Helly’s theorem

Helly’s theorem has inspired research toward a number of similar results.
We start by stating an infinite version of Helly’s theorem for compact convex
sets.

Theorem 5.1. Let F be an infinite family of compact convex sets in Rd.
Then if every d+ 1 sets in F intersect, all the sets in F intersect.

The compactness condition is necessary. Try to find an example in R of
an infinite family of convex sets that are closed but not bounded, such that
any two sets intersect but there is no point that lies in all the sets. Likewise,
try to find an example of an infinite family of convex sets that are bounded
but not closed where the conclusion of the theorem fails. The proof of the
infinite version of Helly’s theorem, which we omit, follows from the finite
version of Helly’s theorem and some facts from analysis about compact sets.
The following is a quantitative version of Helly’s theorem:

Theorem 5.2. For each d ∈ N, there exists εd > 0 such that the following
holds. Let C1, ..., Cn be a finite family of convex sets in Rd. If n ≥ 2d and
every 2d sets in the family have an intersection with volume at least 1, then
the volume of the intersection of all the sets is at least εd.

We omit the proof, but encourage the reader to think about why we
cannot replace 2d with 2d− 1 in the theorem. Try to find 4 convex sets in
R2 such that any 3 sets have an intersection with infinite area, but the area
of the intersection of all 4 sets can be arbitrarily small. Then generalize this
to higher dimensions.
Finally, we encourage the reader to look up the notion of a Helly family,
which pertains to a collection of Helly-type results beyond discrete geometry.
We present one such example in graph theory.

Theorem 5.3. (Helly property of trees) If T is a tree and T1, ..., Tk are
pairwise intersecting subtrees of T , then T has a vertex that belongs to all
of the Ti.
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Exercise 2. Prove the Helly property of trees. It may be helpful to use
the same proof structure as the proof of Helly’s theorem on convex sets:
induction on the size of the family, in this case k.

Exercise 3. A useful result in mathematics and computer science is that,
given any n-vertex tree, we can find a vertex whose deletion leaves subtrees
each of size at most n

2 . Many proofs of this result are known, and most are
algorithmic: they specify a procedure to find such a vertex. Try to use the
Helly property of trees to provide a short combinatorial proof of this result.

There is much more to explore in the study of convexity and discrete
geometry. The speaker recommends the two series of lectures on discrete
geometry by Matoušek in the references below.
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Group isomorphism problem and

nondeterministic space-bounded

classes

Matěj Konečný, Jakub Pekárek, Václav Rozhoň,
Štěpán Šimsa

1 Introduction

The graph isomorphism problem (GI) is the following problem: one is given
two graphs and has to decide whether they are isomorphic or not. Although
easy to state, the graph isomorphism problem is one of the few problems
known to be in NP for which we do not know whether it is NP-complete or it
is in P, although it is strongly believed that the problem is not NP-complete.
One reason for this is the recent celebrated quasipolynomial algorithm by
Babai [5], the other is a famous result from complexity theory stating that
if GI is NP-complete, then the polynomial hierarchy collapses to the second
level (PH = Σ2) [6]. The key component of the proof is an Arthur-Merlin
interactive proof protocol [3, 7] for the graph nonisomorphism problem.

The group isomorphism problem (ΓI) is the problem of deciding whether
two groups are isomorphic. The problem can be reduced by polynomial
reduction to GI [8]. This means that also for ΓI one can show that if it is
NP-complete, the polynomial hierarchy collapses to the second level. It is
believed, though, that ΓI is strictly easier than GI. One reason for this is
that ΓI ⊆ NSC2, a class that is believed to be substantially smaller than
NP.

We study the group isomorphism problem from the complexity-theory
point of view. The tools we use are mainly the ones that were used to prove
the above-mentioned complexity-theoretical result on GI and for brevity we
usually do not give full proofs, mainly when they go along similar lines as
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the appropriate proofs of results concerning graph isomorphism (for details,
see, e.g. [2] or [4]).

Besides ΓI we also study the quantifier hierarchy defined over space
bounded classes SCk = TIMESPACE(poly(n), logk(n)). The classes of our
interest are SC1 = L (which was already extensively studied and seems
to be well-understood), and SC2 that we study with respect to the group
isomorphism problem. We use the notation NSCk for the nondeterministic
variant of SCk.

The starting point of this enterprise is the following unpublished result
due to Papakonstantinou.

Theorem 1.1. ΓI is in NSC2.

Sketch of proof. Each group can be generated by O(log(n)) of its elements.
Guess the generators of both the first and the second group (we need
O(log2(n)) bits to store them), close the both sets under the inverse op-
eration. Further guess the isomorphism of these two generating sets. With
a help of a deterministic algorithm for finding paths (Reingold’s algorithm)
we can deterministically express each element of a group as a product of the
generators (path in the corresponding Cayley graph). Then we can easily
check whether the guessed function is really an isomorphism.

For believing that a problem is easy, it is valuable to know that not
only the problem itself lies in a class of relatively easy problems, but also
its complement does. To this end we define space bounded analogues of so-
called interactive proof systems in Section 2. This is done in a non-standard
way as the standard approach would give classes that are too weak for our
methods. We believe that our approach may be of its own interest, as it
closely relates to the standard polynomial hierarchy. In the subsequent
Sections 3 and 4 we then place the group non-isomorphism problem in
classes defined by space-bounded interactive proofs with public and private
coins, respectively.

2 Different models

While the following results are stated for the Σ hierarchy (starting with ex-
istential quantifier), one can extend the results to Π hierarchy in a straight-
forward manner.
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Definition 2.1. (Strong and weak hierarchy) For class of problems C =
TIMESPACE(f, g) we define two types of hierarchies. Weak hierarchy is
the hierarchy defined by alternations and we will denote its levels ΣCk and

ΠC
k . Strong hierarchy is defined in a similar manner and we use symbols ΣCk

and ΠC
k to denote its levels.

We say that a multi-tape Turing machine M is nondeterministic-read-
only, if it has one input tape that can be read in both directions, one one-way
write-only output tape and several one-way read-only nondeterministic (or
random) tapes (i.e. it reads the bits in the given order and each can be read
only once). The nondeterministic tapes are not space-bounded.

Both hierarchies (where either S = ΣCk or S = ΣCk ) can be defined as sets
of languages such that L ∈ S if and only if there exists a nondeterministic-
read-only machine M with resources in C and

x ∈ L⇐⇒ ∃a1∀a2, . . . , Qak : M(x, a1, a2, . . . , ak) = 1.

The difference between the weak and strong hierarchies is how the ma-
chine M gets the nondeterministic bits. In the weak hierarchy they are all
on one tape written in the same order as is the order of quantifiers1, while
in the strong hierarchy there is one tape for every ai.

The following observations can be seen immeadiately from the definition:

Observation 2.2. For any C ⊆ C ′ we have ΣCk ⊆ ΣC
′

k and ΣCk ⊆ ΣC
′

k .

Moreover, ΣC1 = ΣC1 and ΣCk ⊆ ΣCk .

We can also easily observe that the two notions are the same for C =
TIMESPACE(poly, poly), because the machine can start by copying the
content of its non-deterministic tape(s) on the worktape.

Observation 2.3.
ΣP
k = ΣP

k .

In the following paragraphs we are going to use the interactive proof
classes MA and AM. For precise definitions see [2]. Here, by (∃+x)ϕ(x)
we mean that for at least 2

3 -fraction of feasible choices of x, the formula
ϕ(x) is satisfied. Using this notation, one can say that a language L is
in MA if there is a polytime computable formula ϕ(x, a, r) and x ∈ L ↔

1this is the usual definition
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(∃a)(∃+r)ϕ(x, a, r) and x /∈ L↔ (∀a)(∃+r)¬ϕ(x, a, r), for AM the order of
the quantifiers is reversed.

The classes MA and AM can be also defined in both the weak and the
strong sense in a completely analogous manner to the SCk hierarchy. We
will use MASCk is in AMSCk for the strong classes.

Note that due to the space restriction we are not able to amplify the
probability of success in the weak notion of AM and MA by grouping more
than constant number of rounds of the same protocol in one interaction.

Because of this, we choose to work with the strong notion with multi-
ple tapes. In this notion we can amplify probabilistic protocols by their
repeated application and by an argument completely analogous to the one
that MAP ∈ AMP [2] one can prove that MASCk is in AMSCk , as switching
the order of quantifiers does not alter the arrangement of the tapes.

However, we show that this notion of hierarchy is very strong, as SAT ∈
MAL:

Proposition 2.4. NP ⊆ MAL.

Proof. (sketch) We solve SAT by a machine from MAL. Note that any
problem from NP is reducible to SAT by L-reductions.

Nondeterministic tape of our machine contains an assignment of vari-
ables of the formula. We uniformly randomly choose one of m clauses from
the formula and verify that the clause is satisfied by the non-deterministic
assignment. If the assignment is not satisfactory, then there is at least
one unsatisfied clause, and a probability at least 1/m of choosing it and
hence answering correctly. We amplify the probability by repeating this
protocol.

Similarly, one can easily observe that NP ⊆ ΣL2 . Note that the classical
property of the weak hierarchy is that for every C = TIMESPACE(f, g)
it holds that ΣC1 = ΠC

1 implies
⋃n
i=1 ΣCi = ΣC1 [2], this does not seem to

hold in the strong notion of hierarchy. This is because for an L machine we
actually know that that the premise is true (NL = coNL), but we will soon
see that the consequence of an analogous result would mean that PH = NL.

Another nonstandard feature of the model is that derandomization of
MAL (i.e., proof of MAL = NL) would imply that NP = NL, as SAT ∈
MAL (choose randomly a clause from input formula and verify that it is
satisfied; this proccess can be repeated to amplify sufficiently the probability
of rejecting wrong input).
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We follow by clasifying the complete problems for both the weak and the
strong notion of the hierarchy in the interesting case when the underlying
complexity class C is equal to SCk = TIMESPACE(poly(n), logk(n)).

2.1 Complete problems for the hierarchy

The complete problem for ΣSCm
k is similar to the complete problem for the

polynomial hierarchy. Its corresponding language contains formulas with
their pathwidth bounded by logm(n) satisfying:

ϕ ∈ L⇐⇒ (∃a1)(∀a2) . . . (Qak)ϕ(a1, a2, . . . , ak) = 1.

For the proof of the case with k = 1, as well as the definition of pathwidth
for formulas see [1, 9]. Note that the formula has to be given together with
its path decomposition. The general case can be easily proved in the same
way.

The complete problem for ΣSCm
k is the same as the complete problem for

ΣSCm
k with the additional restriction that in the pathwidth decomposition

there are at first the bags with variables from a1, then variables from a2,
etc. (variables from ai and ai+1 can intersect in one bag). The proof is
straightforward and similar to the previous case.

2.2 Strong hieararchy and PH

In this section we prove that there is a strong relation between the strong
hierarchy over L and the standard PH hierarchy. Specifically, we prove the
following theorem:

Theorem 2.5. For every k ≥ 2:

ΣP
k−1 ⊆ ΣL

k

First recall that any problem in ΣP
k is L-reducible to ΣP

kSAT (the k-
quantifier satisfiability problem). Now we define an auxiliary model of the

hierarchy Σ̃L
k that is defined as ΣL

k except that we do not restrict the machine
to read the nondeterministic tapes only once.

Lemma 2.6. ΣP
kSAT ⊆ Σ̃L

k .
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Proof. We propose a Σ̃L
k machine solving ΣP

kSAT. Suppose the formula is
already in the CNF form (otherwise we construct an equivalent CNF for-
mula in an online manner). We interpret the nondeterministic tapes as the
assignments of corresponding variables, take the clauses one by one and for
each we check whether the assignment is correct (we scan the nondetermin-
istic tape once each time we need a nondeterministic variable).

Now we are ready to prove Theorem 2.5. Although quite technical when
written down, the idea behind the proof is very easy. We want to prove the

inclusion Σ̃L
k−1 ⊆ ΣL

k . This we will simply do by repeating the nondetermin-
istic bits on each tape enough times so that we can simulate multiple reads.
Then, of course, one has to check whether all the copies are the same. To
do that for, say, (∀a)ϕ(x, a), one can devise new equi-satisfiable formula

(∀a)(∃i) (some copies in a differ on the i-th bit ∨ ϕ(x, a)) .

If the copies differ, then the bits on tape a are not part of what we want
to check, so we simply accept. Otherwise we can simulate multiple reads
by having enough copies of the nondeterministic bits. For the existential
quantifier, one universally (over index i) checks whether all the bits on
position i are the same and the formula is satisfied at the same time.

The formal proof follows:

Proof of Theorem 2.5. By Lemma 2.6 we know that ΣP
k−1 ⊆ Σ̃L

k−1, so it is

enough to show that Σ̃L
k−1 ⊆ ΣL

k . Let M be a machine working in Σ̃L
k−1 and

L(M) the corresponding language. We will construct a machine M ′ in ΣL
k

such that L(M ′) = L(M).
Denote the nondeterministic tapes of M resp. M ′ as t1, . . . , tk−1 resp.

t′1, . . . , t
′
k (in the order of the corresponding quantified variables). We know

there exists a polynomial P (n) such that M does at most P (n) steps for
|x| = n. We will treat every tape t′1, . . . , t

′
k as having two sections. First

of them will be long dlog(P (N))e = O(log(n)) bits and the second one will
have P (n) parts of P (n) bits. The first tape does not have the first section
and the last tape, t′k, has only the first section. We will start by reading the
first sections and storing them to our work tape (so for every tape 2 ≤ i ≤ k
we have some number bi). Now M ′ simulates M step-by-step, but after each
step it jumps to the next part of the second section of each nondeerministic
tape.

24



Whenever we read part of some tape i we remember its bi+1-th bit and
check if it is equal to the bi+1-th bit of the previous part of same the tape
(for any tape we remember at most two bits for every tape by throwing
away old bits).

If we found two bits that were not equal on the first (existential) tape,
we reject. Otherwise, if we found two bits that were not equal on the second
(universal) tape, we accept. Generally, if there was no difference on tapes
t′1, . . . , t

′
l−1 and there is a difference on tape t′l we reject if l as an existential

tape and accept otherwise.
If we did not find any not matching bit on any of the tapes we ac-

cept/reject base on our simulation of M .
We now prove that L(M) = L(M ′).
We know that

x ∈ L(M)⇐⇒ (∃a1)(∀a2) . . .M(x, a1, a2, . . . , ak−1) = 1. (2)

We have M ′ and the content of the first tape is a′1, the content of the
second tape is b2a

′
2, third tape b3a

′
3, and so on until the last tape contains

only bk.
First suppose that x ∈ L(M). We want to show that x ∈ L(M ′). We

will choose a′1 (the content of first tape of M ′) as a
P (n)
1 where a1 is what

we get from Equation 2 (a
P (n)
1 means P (n) copies of a1 padded with zeros

to length P (n)). That means that no matter what b2 is we will not find
a difference between two parts on the first tape and so we will not reject
because of this.

Then there are two possibilities for a′2. Either a′2 = cP (n) for some c or
not. If not then we can choose b3 such that we find a difference between
two different parts of a′3 and then we accept (as we wanted). Otherwise we
take a2 = c and Equation 2 gives us a3. Now we continue with choosing

a′3 = a
P (n)
3 and proceed the same as with a′1.

When we constructed a′k−1 and bk we either accepted because of some
difference in a′2l or all the tapes a′1, . . . , a

′
k−1 contain P (n) exact copies of

a1, . . . , ak−1 for which M accepts. But then our machine M ′ simulates the
machine M with the access to the same inputs and because M accepted,
M ′ will accept as well.

The second part of the proof x 6∈ L(M) =⇒ x 6∈ L(M ′) can be done
analogically.

Trivially, the second inclusion would be true for any class L ⊆ C ⊆ P

and then ΣL
k ⊆ ΣCk so the Theorem 2.5 is true for any such class C.
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Theorem 2.7. For every k ≥ 1:

ΣL
k ⊆ ΣP

k−1

Proof. For k = 1 we get the well-known theorem NL ⊆ P. For general k
the proof goes along the same lines. State of the machine at each step of
computation can be described by the content of work tape, position of heads
reading input/work/nondeterministic tapes and the transition state of the
machine. All of this information can be described by O(log(n)) bits.

Now when simulating a ΣL
k machine M by ΣP

k−1 machine M ′ we at first
guess the assignment of the first k−1 tapes of M on the k−1 corresponding
tapes of M ′. Then we build the state graph of the machine M of size poly(n)
(the same as in the proof NL ⊆ P). Because the content of the first k − 1
tapes is fixed now the only states with outdegree two in the state graph are
those that correspond to reading the last nondeterministic tape while all of
the other states have outdegree one. Now the existence of the content such
that M accepts is clearly equivalent to existence of an appropriate path in
the state graph that can be found in polynomial time.

3 ΓNI is in IPSC2

In this section we give an interactive protocol for group nonisomorphism for
machine in SC2. The proof goes along the same lines as the classical proof
of graph nonisomorphism from [2] (choose one group at random, permute
its elements and send it to the prover asking him what group we have sent).
However, as the memory of the verifier is limited, it cannot store the whole
information of the chosen permutation of the group. We overcome this
problem by not sampling uniformly from the set of all permutations, but
rather we choose only from a subset of permutations that are generated
from the partial permutation of the generating sets of size O(log n). This
set of generators can be stored in the limited memory of an SC2 machine.

The reason why we can use the notion of generating sets is the following
simple lemma (it can be viewed as the special case of the Alon-Roichmann
theorem).

Lemma 3.1. Let Γ be a group with at least two elements. Then for each
ε there is a cε such that at most ε fraction of subsets of Γ of size cε log(n)
is not generating.
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Sketch of proof. One by one, we will randomly pick elements into the set
A ⊆ Γ. As the set generated by A is a subgroup of Γ, either 〈A〉 = Γ and
we have a generator, or by Lagrange’s theorem |〈A〉| ≤ |Γ|/2, hence the
probability, that in the next step we pick an element outside of 〈A〉 is at
least 1

2 and thus enlarge the size of the generated subgroup at least by a
factor of two (again by Lagrange’s theorem). Then it is enoug to pick a
suitable cε to get the probability of failure below ε.

As we have already stated, the crucial idea is to sample a permutation of
group elements only from the limited set induced by a partial permutation of
a small generating set. The heart of the argument is then to show that if our
two groups are isomorphic, then the resulting distribution of the generated
Cayley tables for the first group is the same as the one for the second group.

Definition 3.2. For a permutation π : {1, . . . , n} → {1, . . . , n} we define π̃
to be the corresponding permutation matrix.

Theorem 3.3. There is a machine M ∈ SC2 such that

• M takes as an input a Cayley table CΓ and an ordered set of indices
(si)

k
i=1;

• M outputs NO if elements (si)
k
i=1 do not generate Γ;

• otherwise M outputs C̄Γ = π̃CΓ for some permutation π, where the
elements of C̄Γ are canonically renumbered 0, 1, 2, . . . in this order and
the elements of si form an initial segment of the table following the
order s1, . . . , sk; and

• π̃M(CΓ, (si)
k
i=1) = M(π̃CΓ, (πsi)

k
i=1) holds for every permutation π

of group elements.

Moreover, for π an injective function from the generating set (si)
k
i=1 to Γ

it holds that M(CΓ, (si)
k
i=1) = M(CΓ, (πsi)

k
i=1) if and only if π (uniquely)

extends to an automorphism of Γ.

To propose such an algorithm we use a Cayley graph representation of
Γ. As a subroutine we use Reingold’s algorithm. We will need that this
algorithm satisfies a natural property that its output does not depend on
the underlying representation of the graph it uses (i.e. on the order of the
vertices).
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Definition 3.4. Let G be a k-regular graph. We define S(G) as a rep-
resentation of G via an ordered set of ordered lists of neighbors of each
vertex, i.e. S(G)i = (v1, v2, . . . , vk), where vertices {i, vj} ∈ E(G) for every
j ∈ {1, . . . , k}.

Definition 3.5. For permutation π : {1, . . . , n} → {1, . . . , n} we define
π(S(G)) as permutation of vertices of G while preserving the order of edges
incident to every vertex. So for every i ∈ {1, . . . , n}:

π(S(G))π(i) = (π(v1), π(v2), . . . , π(vk)),

where S(G)i = (v1, . . . , vk).

Proposition 3.6 (s, t connectivity in small space). There is a machine
Mst ∈ L such that

• Mst takes as an input S(G) and two vertices s and t of G,

• Mst outputs list of indices from S(G) defining path from s to t or
false if no such path exists,

• π(Mst(S(G), s, t)) = Mst(π(S(G)), π(s), π(t)) for every permutation
π of vertices of G

Proof. One can check that the Reingold’s algorithm has all the desired prop-
erties.

Now we use this algorithm to prove Theorem 3.3.

Sketch of proof of Theorem 3.3. First we close the (si)
k
i=1 under taking in-

verse and add the unit element, such that the closure order the original
elements of si go first, then the unit element (if not present in si already)
and then all the missing inverses, again following the order si. We get an
l-tuple of logarithmic size (from now on by s we mean s = (si)

l
i=1 con-

taining these new elements). Now we can define a Cayley graph G from
this l-tuple and represent it as S(G), where the order of neighbours of each
vertex is the same as the order in this l-tuple. We can use machine Mst

from Proposition 3.6 to produce a path from every element in G to 1. If
one of these paths does not exist than the graph is not connected and that
is equivalent to the fact that the original k-tuple was not a generating set.
In this case we return NO. Otherwise, for every element g in the group we
define its position in the Cayley table we output as follows – if g = si then
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it is i and otherwise it is l + x where x is the number of elements among
Γ \ {si} that are smaller than g with respect to lexicographical order of the
paths from 1 to g. To compare two elements with respect to this order we
run two instances of Mst simultaneously. We return the Cayley table CΓ

element by element. To find the index stored at position (i, j) we find the
two elements with indices i and j in our lexicograhical order, multiply them
(we use the Cayley table from input tape) and return the index of the new
element in our order.

Now the fourth property of the theorem follows from Proposition 3.6.
The last property follows from the fact that the permutation of generators
has a unique extension to the whole group. If the equality M(CΓ, (si)

k
i=1) =

M(CΓ, (πsi)
k
i=1) holds, then the permutation of generators uniquely extends

to an automorphism of Γ. On the other hand, no automorphism other than
identity is identical on any set of generators.

Now we can easily build the sampling procedure with the desired prop-
erty that if the two groups are isomorphic, then the distribution of groups
we sample does not depend on the group we choose to sample from.

Theorem 3.7. ΓNI has an interactive protocol with private bits and verifier
from SC2.

Idea. Pick p ∈ {0, 1} uniformly at random. Pick c · log(n) different group
element indices si, s2, . . . , sc logn at random. Generate CΓp permuted ac-
cording to (si) one element at a time using the algorithm from 3.3 and send
it to the prover. Prover replies with q ∈ {0, 1} indicating which group on
the input is isomorphic to the group defined by CΓp . Accept if and only
if p = q. This can be easily amplified in such a way that the probability
of success can be any constant (combine several rounds of interaction in
one).

4 ΓNI is in AMSC2

Definition 4.1. (AMSC2
model) Input tape (random access), random tape

(read once), non-deterministic tape (read once), memory log2(n), run-time
poly(n).

As in the corresponding proof of GI we use the so-called lower bound
method, where we choose a suitable set representing symmetries of our two
groups and then argue that the set is substantially larger if the two groups
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are non-isomorphic. As in the case of the IP protocol from the previous
section we choose only a suitable subset of symmetries that can be described
in small space – in this we differ from the corresponding proof for GI where
one works with the set of all permutations of the given graph.

The suitable set S is defined as a union of S1 and S2 where for i ∈
{1, 2} we have Si = {(Γ̃, π) | Γ̃ = M(CΓi , s1, . . . , sk), (s1, . . . , sk) ∈ Γki , π ∈
aut(Γ̃)} where M is the machine from Theorem 3.3.

Observe that

|Si| = |{s1, . . . , sk ∈ Γi : s1, . . . , sk are disjoint and generating}|.

This immediately follows from the last part of Theorem 3.3, as we know
that M(CΓi , s1, . . . , sk) = M(CΓi , t1, . . . , tk) iff the partial function map-
ping each si to ti extends to an automorphism π of Γi. On the other hand,
any automorphism of Γ also specifies uniquely a partial automorphism of
its first k elements.

From Lemma 3.1 we can easily infer that there is a suitable c such that
after defining k = c log n we have

0.9 · n(n− 1) · · · (n− k + 1) ≤ |{s1, · · · , sk ∈ Γi, disjoint and generating}|
≤ n(n− 1) · · · (n− k + 1).

In other words, most of the sets are generating.
Further observe that if Γ1 ' Γ2 then |S| ≤ n(n − 1) . . . (n − k + 1).

If Γ1 6' Γ2 then |S| ≥ 1.8 · n(n − 1) . . . (n − k + 1). Thus we are in the
right situation for the set lower bound protocol. Note that any member of
the disjoint union S1 t S2 can be represented by the sequence s1, . . . , sk,
π restricted to this set and one bit b stating whether the sequence refers
to the element of the first or the second group. Thus, any member of S
can be represented by O(log2 n) bits. For successful application of the set
lower bound protocol we first need to verify that given such a representation
(s1, . . . , sk), π, b we can verify that this is, indeed, a member of S. Then we
need to find an appropriate 2-universal family of hash functions such that
for given y we can check whether h(s1, . . . , sk, π, b) = y. The latter problem
is subject to the following proposition.

Proposition 4.2. There is a 2-universal family of hash functions H from
{0, 1}p(n) to {0, 1}k with p(n) being a polynomial in n and k = O(log2(n))
such that:
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• Computation of h(x), h ∈ H is in SC2 if we have random access to
bits of x.

• The random bits required to choose h from H can be read only once.

Sketch. Define H as the set of functions hb1,...,bk,β(x) for all bi ∈ {0, 1}p(n),
β ∈ {0, 1}k, where the result of each hb1,...,bk,β is defined as a concatenation
of k bits, each computed by scalar product < bi|x > for x 6= 0 or the
hb1,...,bk,β(x) = β for x = 0. Note that we can choose our function h ∈ H
just by reading the strings b1, b2, . . . and compute each dot product in a
streaming fashion, thus we do not need to store any bit from the bi’s.

Theorem 4.3. ΓNI ∈ AMSC2

Sketch. This is done by following the classical lower bound protocol.

• Arthur chooses y from a suitable range.

• Merlin sends a message containing x = ((s1, . . . , sk), π, b), where π is
a permutation of {1, . . . k} and b is a bit representing which group to
sample from.

• Arthur first verifies that x is valid by checking that

M(CΓb , (si)
k
i=1) = M(CΓb , (π(si))

k
i=1),

where M is the machine from Theorem 3.3. Then he checks that
h
(
(M(CΓb , (si)

k
i=1), π)

)
= y following Proposition 4.2.

The protocol can be repeated to give an exponentially small probability
of failure.
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Growth of Meandric Numbers

Transcribed by Yulia Alexandr, Kayla Cummings
and Edgar Jaramillo Rodriguez from a lecture of

Martin Klazar

1 Introduction and Early Results

This talk concerns the enumeration of meanders with 2n crossings. We
begin with some relevant definitions.

Definition 1.1. A meander is a closed, simple curve in the plane crossing
a line l at 2n points.

A meander M with 2n vertices can be thought of in terms of its upper
and lower halves, where each half is a set of n non-intersecting edges con-
necting the 2n crossing points. We see that this formulation is similar to
the definition of a non-crossing matching.

Definition 1.2. A matching on [2n] = {1, 2, . . . , 2n} is a 1-regular ordered
graph G = ([2n], E) such that each edge is vertex-disjoint. A matching N
on 2n vertices is non-crossing if N = ([2n], E) such that 1 ≤ a < b < c <
d ≤ 2n implies {a, c} ∧ {b, d} /∈ E. (see Figure III.1, below)

Of course we must be careful as not every pair of matchings in the
upper and lower halves will produce a meander. For example, making the
upper and lower halves both equal to the first example in Figure III.1 would
produce two closed curves. However, we can use our knowledge of meanders
to develop an upper bound for the number of meanders with 2n crossings.
For this we must make use of the following lemma.

Lemma 1.3. The number of non-crossing matchings on 2n vertices is equal
to the nth Catalan number cn.
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Figure III.1: (A) examples of a non-crossing matching on [4], (B) example
of a crossing matching on [4]

Proof. It is a well known result that the nth Catalan number cn encodes the
number of Dyck words of length 2n. A Dyck word is a string consisting of n
X’s and n Y ’s such that no initial segment of the string has more Y ’s than
X’s. For example, the string: XXY Y XY is a Dyck word of length 6. Now
let f be a function from the set of non-crossing matchings on [2n] to the set
of Dyck words of length 2n. We define f such that for each for each edge
{a, b} in our matching (with a < b) we label a as X and label b as Y . This
produces a string of X’s and Y ’s of length 2n. This string is clearly a Dyck
word because the X’s and Y ’s denote the left and right endpoints of each
edge and it is impossible to see more right endpoints than left endpoints
when reading the labels from left to right. It is left as an exercise to show
that f is a bijection, which implies that the size of the two sets are equal
as desired.

From this we see that the number of meanders on 2n vertices, mn, is at
most c2n, so

mn ≤ c2n ≤ (4n)2 = 16n.

However, by exhaustive calculation the first few meandric numbers are
{1, 2, 8, 47, 262, 1828, 13820, . . . }, so we see that our bound is not tight. The
rest of this talk introduces one attempt to tighten this bound in the limit.

2 The Meandric Constant

Observe that an appropriate lower bound for mn is simply the number of
non-crossing matchings (number of ”upper halves”) which grows similarly
as 4n in the limit. Pairing this with our upper bound of 16n, motivates us
to believe that the growth of the meandric numbers should be of the form
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µn where µ is some number between 4 and 16. This leads to the following
definition.

Definition 2.1. Let the meandric constant µ be defined as follows.

µ := lim
n→∞

m1/n
n

To prove that µ exists, we will make use of supermultiplicative form of
Fekete’s Lemma, here provided without proof.

Lemma 2.2 (Fekete’s Lemma, supermultiplicative form). Let mn be a
sequence of real numbers such that mn ≥ 1 for all n. If mamb ≤ ma+b for
all a, b, then

lim
n→∞

m1/n
n = sup{m1/i

i : i ∈ N}.

We are now equipped to prove the existence of µ.

Proof. Let Mk denote the set of meanders with 2k crossings. Consider
the map f : Ma ×Mb → Ma+b defined as follows. For M1,M2 meanders
in Ma and Mb, respectively, first reindex M2 by shifting each index by a.
You now have two adjacent and disjoint meanders. Leave the bottom non-
crossing matchings of each meander alone. From the upper non-crossing
matching select the two adjacent (”middle”) edges and connect them, then
add another edge to the upper half connecting the two remaining crossing
points (See Figure III.2). This map is clearly injective so it must be that
|Ma×Mb| ≤ |Ma+b|. It follows from Fekete’s Lemma and the upper bound
developed earlier that µ exists.

Figure III.2: ”Rewire” adjacent edges

We have thus established the existence of µ. However, as of now this
constant still has not been computed precisely. In fact, it is not even known
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whether the constant is computable. As of now, it has been shown that
11.38 ≤ µ ≤ 12.901. The problem of whether we can improve these bounds
is still open.
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Ramsey Number for Binary Matrices

Jaroslav Hančl Jr., Jana Novotná, Jakub Pekárek

1 Introduction

A Ramsey number R(G) of a graph G is a well studied graph parameter de-
scribing the complexity of a graph. More recently, ordered Ramsey number
[1] and [3] for ordered graphs is of a particular interest. For any ordered
graph Γ = (Γ,≺) an ordered Ramsey number R(Γ) is a minimal n such that
every ordered complete graph with n vertices and with edges colored by two
colors contains a monochromatic copy of Γ. Clearly R(G) ≤ R(Γ) for any
ordering Γ of a graph G.

In this paper we study a similar structure for tables. Let T and T ′ be
two tables with black and white cells. We say that T contains T ′, or T ′

is a minor of T , if T ′ can be obtained from T by deleting some rows and
columns.

Let M be a k×k matrix and T be an n×n table. We say that T coversM
if T contains a k×k subtable T ′ such that all ones in M are monochromatic
in T ′. A Ramsey number R(M) of a matrix M is the smallest n such that
any n × n table covers M . Throughout the paper we use the notation of
Ramsey number only for matrices until specified otherwise.

Since any graph G can be ordered and characterised by its adjacency
matrix MG we have R(G) ≤ R(MG). On the other hand, probabilistic
argument shows that matrix J consisting only of ones has Ramsey number
exponential in a size of J .

Permutation matrices is of special interest. Given permutation π on k
elements, a permutation matrix Mπ is a square binary matrix whose entry
(i, j) is 1 whenever π(i) = j and 0 otherwise. Balko, Jeĺınek and Valtr [2]
remarked that R(Mπ) ≤ k2 for any permutation matrix. On the other hand,
they showed that almost any permutation asymptotically satisfy R(Mπ) ≥
O(k2/ log2 k).
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We present the bounds on a Ramsey number for a special classes, resp.
particular matrices. In the second section we discuss methods using Dirich-
let principle and derive bounds for lines, diagonals and L-shape matrices.
Third section is devoted to the block scheme which gives us bounds to more
general shapes. Section 4 deals with concatenation of permutation matrices
and matrices that are formed via recursion. Finally, the last two sections
shows tight bounds for small matrices, almost-diagonal matries and conjec-
tures a connection to the shortest permutations paths.

Notation

For our purposes we use Ik the identity matrix of size k and Jk the k × k
matrix with all entries 1. By diagonal (of length l) we mean any elements
of a matrix, resp. table, in the form (a + i, b + i), where a, b are positive
integers and i ∈ {1, 2, . . . , l}. In a notion of antidiagonal we just reverse one
coordinate; that means its elements are in the form (a+ i, b− i).

Let Lk,t denote horizontal line of width t and length k. That is a matrix
of ones and dimensions t× k.

2 Dirichlet’s principle

Dirichlet’s princeple tells us that in 2k − 1 elements of two colors, there is
one dominating color shared among at least k elements.

2.1 Lines and diagonals

Consider diagonal matrix Ik of length k. Using the Dirichlet’s principle, it
is trivial to show that R(Ik) = 2k − 1. Consider the diagonal of a table
of size 2k − 1 there are at least k cells of one of the colors, giving a Ik
minor. On the other hand, if we take a table of size 2k, we may split it
into two halves (either diagonally, horizontally or vertically) and color each
half with a different color. Such table clearly does not contain Ik minor of
either color. Essentially the same arguments apply when instead of Ik we
consider Lk.

Corollary 2.1. R(Ik) = R(Lk) = 2k − 1.
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2.2 Thick lines and diagonals

The previous idea can be expanded to lines and diagonals of width greater
than one.

To construct an upped bound for R(Lk,t) for a thick line, we use iter-
ated Dirichlet’s principle. Consider the first row of our table, there is one
dominating color. Let us delete all columns where the first line has a cell of
the non-dominating color. We obtained a subtable of at least half the width
of the original table with monochromatic first row. We repeat this process
on lower rows to obtain 2t− 1 consecutive monochromatic rows, each time
obtaining a subtable of at least half width compared to the previous step.
Finally, out of these 2t−1 monochromatic rows at least t of them are of the
same color, forming a Lk,t minor.

From the construction we may see, that the width of the original table
must be (roughly) at least k ∗22t−1. Thus a constant-width line has a linear
Ramsey number. While the constants are certainly not tight, the bound
cannot be asymptotically improved in general, as for a line of width 1 it
corresponds to the previous bound up to O(1) additive error, and for linear-
width line we have an exponential upper bound, which is complemented by
an exponential lower bound which can be shown through standard proba-
bilistic method argument.

Corollary 2.2. R(Lk,t) ≤ k · 22t−1 while also R(Lk,t) ∈ Ω(k · 2t)

Consider the same idea for diagonals, let Ik,t denote diagonal of width
t and length k. We consider this diagonal to be composed of the t longest
diagonals in a matrix k × k, where for t even we choose either of the two
possibilities. By the same argument as above, we may obtain an arbitrary
amount of monochromatic parallel diagonals. The last step is however more
complicated.

Suppose case for Ik,2. From the first part of the construction we have
three monochromatic diagonals out of which two are of a dominant color. If
the two diagonals are neighbouring, we get the minor trivially. If however
the middle diagonal has a non-dominant color, we have to delete some rows
and columns to bring two diagonals together. When they are together,
each two consecutive elements of the top diagonal give a row and a column
which intersect in a cell from the bottom diagonal. As the elements from
the bottom diagonal are at distance two, we need to delete (roughly) every
other row and column. Similarly, if the two diagonals we need to bringing
together had j diagonals of the opposite color in between them, we would
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need to keep only every (j + 1)-th row and column (deleting all the other).
In general case of Ik,t we can assume that there are at most t− 1 diago-

nals of the non-dominant color forming gaps (in some non-specific way) in
between the diagonals of the dominant color. Omitting the details we may
say that each gap composed of j non-dominantly colored diagonals reduces
the number of rows and columns of our table to roughly 1/(j+1). The total
decrease of size is the product of the reductions over all the gaps. As the
sizes of the gaps sum up to at most t− 1, it is easy to see that the maximal
reduction occurs when all the gaps are of size exactly 1. Although in such
a specific configuration we may design a more sophisticated approach, we
get an general upper bound on the reduction is at most 1/2t−1.

Counting the number of rows and columns necessary for the final sub-
table to have size at least k, we conclude that this construction requires
k · 22t−1 · 2t−1 = k · 23t−2. As with the previous upper bound for Lk,t, while
the bounds are not tight in terms of constants, they cannot be improved
asymptotically in general case.

Corollary 2.3. R(Ik,t) ≤ k · 23t−2 while also R(Ik,t) ∈ Ω(k · 2t)

2.3 Rows and columns with dominant colors:
”L”-matrix

Sometimes we use the Dirichlet’s principle to divide rows and columns into
two groups depending on the dominant color in some small subsection. To
illustrate this approach, together with a few other ideas, we present a specific
upper bound. In this section, let Lk denote an L-shaped k × k matrix, in
other words a matrix with the left-most column and the bottom row filled
with ones. We will show that R(Lk) ≤ 5k − 5.

Let us consider a table T colored by black and white colors of size 5k−4.
Let us assume for contradiction that it has no L minor. We cut the table
once in each dimension into parts of size 3k − 1 and 2k − 3, resulting in
four rectangles A, T,R,Z, where A is the left-bottom rectangle and has
dimensions 3k − 2 × 3k − 2, Z is the right-top rectangle of dimensions
2k− 3× 2k− 3, T is the rectangle on top of A and R is to rectangle to the
right of A. We will not consider the contents of Z.

For every column of T there exists a dominant color with at least k − 1
elements. The same applies for every row of R. Every cell in A corresponds
to an intersection of one column from T and one row from R and vice versa.
Whenever we consider one row from R and one column from T of the same
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dominant color, then the associated cell in A must have the opposite color,
otherwise we would get an L minor. Therefore, whenever there are at least
k rows of R and at least k columns of T with the same dominating color,
we get a monochromatic subtable of A of size at least k× k in the opposite
color. As there are 3k − 1 rows and columns in R and T , we conclude that
R has at least 2k− 1 rows of one dominant color, and T has at least 2k− 1
columns of the opposite color. Let B be the subtable of A corresponding to
intersections of these rows and columns.

The subtable B has size at least 2k − 1 × 2k − 1, above each row of B
there are at least k − 1 elements of some color a and to the right of every
row of B there are at least k − 1 elements of another color b. The subtable
B itself must have a dominant color, without loss of generality, let it be
the color b, the case for a is symmetric. Since b is dominant, then there is
at least one column with dominant color b, and therefore at least k cells in
color b. The left-most of them has at least k−1 cells of color b above it and
so forms the bottom-left corner of an L minor.

On the other hand, consider a different table T of size 3k − 3 × 3k − 3
defined as following. We color each anti-diagonal (left-bottom to top-right)
in one color. On the left edge of the matrix, the first 2k − 3 cells are white
and the remaining k cells are black. On the bottom, the first k− 1 cells are
black and the remaining 2k − 2 cells are white. Thus the table consists of
top and bottom white triangles and a black band in between. We observe
that Lk minor has ones on all 2k − 1 of its anti-diagonals. There are not
enough black diagonals. At the same time, both white triangles consist
of only 2k − 2 white diagonals. Therefore, an Lk minor has to be white
and take white cells from both triangles. We observe that the left-most
white cell in the bottom triangle has only k− 2 white cells above it and the
same is true for any other cell to the right that lies under the top triangle.
Symmetrical observation applies to the bottom white cell of the top triangle.
We conclude that T contains no Lk minor.

Corollary 2.4. 3k − 3 ≤ R(Lk) ≤ 5k − 5.

3 Block scheme

Let R(A,B) denote the minimum number n such that for each table of size
n× n colored in two colors, there is either a minor A in the first color or a
minor B in the other color. For the purposes of this section, let us call the
first color black, and the other color white.
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The base idea of this section is that every block of size k × k is either
purely white or contains at least one black cell.

3.1 Permutations in O(k2)

Fact 3.1. Let M be a permutation matrix k× k. Then R(M) ≤ k2−O(k)

This fact follows from a simple construction. Let us have a table of size
k2×k2 and split it into blocks of size k×k. Each block is either monochro-
matic, in which case it contains a monochromatic minor M , or contains at
least one element of each color. Since in M there are no two elements in
the same column or row, we now take the blocks corresponding to each one
in M and delete all rows and columns incident with this block except one
containing a cell of the desired color. This way we have constructed the
minor M .

This simple idea allows minor improvements, for instance one of the
blocks can be only of size 1× 1 as we can switch the meaning of the colors
so that is it the desired color without deleting any rows or columns. This
reduces the total size of the table to k2 − k + 1.

Note that this construction can be interpreted as an upper bound for
R(M,Jk).

3.2 Few ones off diagonal

Let M be a permutation matrix M with only a fixed amount of ones placed
off the diagonal. Let j denote the number of ones off the diagonal.

First we use the Dirichlet’s scheme to find a subtable with a monochro-
matic diagonal of length k+2jk−j. We can do this in every table of size at
least 2k+ 4jk− 2j − 1. To find the M minor in this subtable, we associate
each element of M that is not on the diagonal with a k×k block. Each k×k
block contains either a monochromatic Jk, and therefore a monochromatic
M minor, or at least one element of each color. By deleting all rows and
columns incident with this block except one with the cell of appropriate
color. This shortened the diagonal by 2(k − 1) element, while we found
one element off the diagonal whose position (in respect to the remaining
subtable) depends solely on our choice of the location of the block.

If we do this for all the j element, each time we shorten the diagonal by
2(k−1) element, which leaves us with a diagonal of length exactly k and all
of the j elements. It is clear that given a long enough diagonal we may place
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all of the blocks appropriately in a non-incident manner, although detailed
description is a bit technical as each block removes two pars of the diagonal
simultaneously. Note that since M is permutation, we never choose any row
or column into two blocks and so we never delete previously found elements.

Corollary 3.2. Let M be a permutation matrix k × k with at most j
elements off its diagonal, or a union of Ik and at most j more one-elements
with at most one in each row and column. Then R(M) ≤ 2k+ 4jk−2j−1.

Note that if there are asymptotically many one-elements placed only a
small constant off the diagonal, we may use a Dirichlet’s scheme to find a
thick diagonal in the beginning and then find all the remaining elements
with higher distance.

3.3 Lines of fixed color

Suppose we want to find a (horizontal) line of length l in a given color, or a
monochromatic square matrix of size m×m. In other words, we are looking
for an upper bound to R(Ll, Jm).

Let us take a large-enough table and consider only the first m columns.
In this section of the table, at most m− 1 rows can be all-white, otherwise
we have m rows of width m, forming a white Jm minor. We delete these
at most m − 1 white rows. In the resulting submatrix, each row has at
least one black cell in the first m columns. We iterate this process to each
m-tuple of columns, each time increasing the minimal number of black cells
in each row of the whole table and deleting at most m− 1 rows each time.

In order to reach an Ll black minor, we need to iterate l times and
ensure that at least one row is remaining at the end of the process. The
total width of the area we use is clearly exactly l ·m. The total number of
deleted rows is at most l · (m− 1), so if we start with at least l · (m− 1) + 1
rows, we must find one of the two minors in the prescribed color.

Corollary 3.3. Every rectangle table of size at least l · (m − 1) + 1 × lm
colored in black and white colors contains either l black cells in one row or
a white Jm minor.

Since we expect every m columns to produce only one black cell in the
worst case, we may generalize this construction. In particular, we may split
the line of length l into an arbitrary number of parts with each gap of
arbitrary width. We do this by simply adding the correct amount of gap-
columns in between any two m-tuples of columns from the construction.
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The construction is oblivious to the existence and positions of these extra
columns and will conserve them while constructing the line.

Corollary 3.4. Let T be any table of size at least (l ·(m−1)+1)×(lm+g)
colored in black and white colors with a given decomposition of the table
into l m-tuples of columns and additional g columns in any order. Then T
either has a white Jj minor or a row minor such that it contains exactly
one black cell from every m-tuple and one cell from each of the additional
g columns.

3.4 Matrices with column-wise limited ones

Claim 3.5. Let M be a matrix with at most c ones in each column. Then
R(M,Jj) ≤ k · jc.

The idea of this construction is based on the previous construction of
lines of fixed color. We are looking for either a black M minor or a white
Jj minor. First, we split the table into k vertical bands of the same width.
Each band corresponds to a column of M . We now go through the rows of
M one by one and process all the band of the table in parallel.

The high-level idea is that in each band we eventually find the corre-
sponding column of M as a minor. However, in order to construct the whole
M minor, these individual column minors have to use the same rows of the
table. In each step we take one row of M and find an appropriate row in the
table, such that it has a long black horizontal line in every band where M
has a one. In doing so we delete all the other columns from these particular
bands. This ensures that all the remaining columns have a black cell on the
desired row. To find each line, we consider a group of the top non-processed
rows (rows not previously used) of the table, all of which except one get
deleted during the step.

We define a property called width for every one in M as ji where i counts
the number of ones under this one in the same column. So each bottom one
has width 1 and each top one has width at most jc−1. The width of each one
corresponds to the width of the line we want to find in the corresponding
band when processing this element in our construction. The bottom ones
having width 1 means exactly that we only need one column left from every
band in the end.

Note that we start with all bands of width jc. From the Corollary 3.3
we know that in order to find a line of length l, it suffices to have an area of
width lj. Thus each band is wide enough to find a black line of the width
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of the first one in the corresponding column, which is in turn long enough
to allow us to find the next line and so on until we go through all the levels.
So far we do not consider the height of the table needed.

However, for every row of M , we need to find all the lines for all the
one elements simultaneously. This is where the Corollary 3.4 shows that we
can ignore all the bands where we are not looking for a line and find all the
lines simultaneously in all of the relevant bands, reducing the width of each
band to exactly a fraction of 1/j. In other words, the price of the higher
complexity of the pattern is that we delete more rows, but we delete the
same amount of columns from each band as if we were trying to find the
lines individually.

It is clear that the width of the bands is sufficient. Let us analyze the
number of rows used. According to Corollary 3.4 in each step we need to
use block of l · (j − 1) + 1 rows, where l denotes the sum of lengths of
the lines we are looking for. All of these lines except one are deleted in
the step. While the value of l varies greatly for each row of M , we can
sum up the requirements over the whole matrix M (processed in k steps)
as L · (j − 1) + k where L denotes the sum of all lines we need to find
during the whole construction. Thus L corresponds to the sum of widths
of all ones in M , which can be estimated by sum over columns of M as
L ≤ k · (1 + j + j2 + ... + jc−1). Plugging this bound into the previous
expression we obtain the bound on the number of used rows kj̇c.

3.5 Unions of permutations

Let M1,M2, ...,Mc be permutation matrices k × k. We define the union of
M1, ...,Mc as a matrix M of dimensions k× k so that each position of M is
a one if and only if one of the permutation matrices has a one at the same
position. From the previous section we have an immediate corollary.

Corollary 3.6. LetM be a union of c permutation matrices. Then R(M) ≤
kc+1.

3.6 Multiple colors

Let us consider a more general task when the table is colored using χ colors.
We can use the previous construction to bound the Ramsey number even
in this setting. The idea is that for any matrix M with at most c ones per
column we use the result 3.5 in the following way. We pick one particular
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color and look for either M minor in this particular color or a Jw minor
composed of only the remaining colors. We choose the constant w so that if
we find the Jw minor, we may iterate the same process within the resulting
subtable with a number of colors decreased by one.

Let Rχ(A,B) denote the minimum size of a table colored by χ colors
needed to guarantee an existence of either a monochromatic A minor in the
first color or a B minor in the union of all the other colors. Let Rχ(M)
denote the minimum size of a table colored by χ colors needed to guarantee
an existence of a monochromatic M minor in any color.

Let M be a matrix k×k with at most c ones per column. From the idea
presented above we have the following simple relations.

R2(M) ≤ kc+1

R3(M) ≤ R3(M,JR2(M)) ≤ k ·R2(M)c ≤ k · kc(c+1) = kc
2+c+1

...
Rχ(M) ≤ Rχ(M,JRχ−1(M)) ≤ k ·R(χ−1)(M)c ≤= kc

χ−1+cχ−2+...+c+1 =

k(cχ−1)/(c−1)

Corollary 3.7. Let M be a matrix with at most c ones in each column.
Then Rχ(M) ≤ k(cχ−1)/(c−1).

Our multi-color construction reduces the number of colors by one at
a time by dividing the colors into two groups one of which has only one
element. It would seem that there could exist a similar idea where the
groups of colors would be roughly the same size resulting in a recursion of
only a logarithmic depth. This could intuitively reduce the bound (doubly-
exponential in χ) to a bound simply exponential in χ. We remark that
such result cannot be acquired in such a way. By division of colors into two
groups (essentially treating them as two colors), we want to find either a Jw
minor in one set of colors or the same Jw minor in the other set of colors.
The symmetry is a crucial difference, as R(Jw) is exponential in w for two
colors. This would cause the bound to have a form of a tower function (of
logarithmic height) rather than a simple exponential function.

4 Operations

Union of intersections is in block schemes.
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4.1 Concatenation

A concatenation of two matrices M1 and M2 is a matrix

M =

(
M1 0
0 M2

)
We denote the oncatenation M as M1|M2. Recall definition of R(A,B)

as the minimum size of table necessary to always find A minor in the first
color of B minor in the other.

Let M1,M2, ...,Mm denote square matrices, k1, k2, ..., km their sizes and
si = k1 + k2 + ...ki the prefix sums of ki.

Let us first consider the case when M = M1 = M2 = ... = Mm, then
R(M1|...|Mm) ≤ (2m − 1)R(M). We simply split the table into blocks of
size R(M1) each of which has to contain M1 minor in one or the other color.
Considering only the blocks on the diagonal and using Dirichlet’s principle
we get at least m monochromatic copies of M in concatenation.

In the general setting we consider the following construction. We find
all the M1|...|Mm minor incrementally, finding the individual M1, ...Mm mi-
nors one by one from the top-left corner of the table. First we use block of
the table of size R(M1) to find a monochromatic M1 minor. If we consider
only the columns and rows to to left and down from the used block, we
again take a block the top-left corner of this area to find M2 minor. The
problem now is that using a block of size R(M2) might give us a M2 minor
in the opposite color than the previous M1 minor. Instead we use a block
of size R(M2, Js2), thus we either find the M2 minor in the correct color,
or a big monochromatic subtable big enough to contain the whole M1|M2.
We iterate this approach and in each iteration we either extend the previ-
ous partial minor or find a completely new extended partial minor in the
opposite color. We obtain the following relations:

S(M1|...|Mm) ≤ S(M1) + S(M2, Jss) + ...+ S(Mm, Jsm) ≤ Σmi=1S(Mi, Jsi)

In case when M1, ...,Mm permutations, we have R(Mi, Jsi) ≤ k1 ·si from
3.5. The previous relation can then be simplified as follows:

S(M1|...|Mm) ≤ Σmi=1ki · si = Σmi,j=1ki · kj
Further supposing that k = k1 = k2 = ... = km (thus Mis are permuta-

tion matrices of the same size) we get:
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S(M1|...|Mm) ≤ Σmi,j=1ki · kj ≤ km(m+ 1)/2

These results can of course be generalized to matrices with a limited
number of ones in colums or rows (independently) using the general state-
ment of 3.5.

4.2 Recursion

Let π and σ be two permutations. We define their matrix composition
π ◦ σ by its permutation matrix M in the following way. We start with a
permutation matrix Mπ, replace any position with one by the matrix Mσ

and any position with zero by the appropriate zero matrix. Now we observe
the following lemma

Lemma 4.1. Let π and σ be two permutations then

R(Mπ◦σ) ≤ R(Mπ)R(Mσ).

Proof. First we divide the table in the blocks of size R(Mσ). Note that the
number of such a blocks is R(Mπ)2. In each block there can be found a
monochromatic copy of matrix Mσ as a submatrix, hence we mark those
blocks as white or black (if both, we choose one color arbitrary). In this
way we obtain the R(Mπ)×R(Mπ) block matrix. Finally, this block matrix
contains a monochromatic copy of a matrix Mπ, thus we have found a
monochromatic copy of Mπ◦σ.

Particulary, consider Mπ to be a general permutation matrix of size c
and Mσ = Ik/c. Since block schemes implies R(Mπ) ≤ c2 − c + 1 and
R(Ik/c) = 2k/c− 1 then

R(M) ≤ 2kc− c2 − 2k + c+ 2k/c− 1. (3)

Example 4.2. Let M be a permutation matrix created by recursion from
I2 and an anti-diagonal matrix of size k/2 (we suppose k is even). Then
5
2k − 3 ≤ R(M) ≤ 3k − 3. The upper-bound we obtain from the inequality
(3) above and the lower-bound we obtain from the construction on Figure
IV.1.

This process can be generalized. Let i ∈ [t] and πi be a permutation on
set {1, 2, . . . , vi} with permutation matrix Mi. Set π = π1 ◦ π2 ◦ · · · ◦ πt to
be their matrix composition then

R(Mπ) ≤ R(Mπ1
) ·R(Mπ1

) · . . . ·R(Mπt).
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Figure IV.1: Lower bound

5 Bounds of specific matrices

5.1 Almost-diagonal precisely

Let Ak be a permutation matrix of a permutation (1, 2, 3, . . . , k−2, k, k−1),
where only last two elements are switched. Although this matrix is highly
similar to the identity Ik, its Ramsey number differs by a square root factor.

Claim 5.1. 2k +
√

2k − 3 < R(Ak) ≤ 2k +
√

2k

Proof. First we show the upper bound. Let T be a (2k+
√

2k)× (2k+
√

2k)
table and let s be the smallest number such that there is k − 2 elements of
the same color, say black, in the first k− 2 + s diagonal elements. Then the
last 3× 3 table must contain an antidiagonal of length 2 in the white color.

First suppose that s = 0. Let t =
√

2k + 2. We focus on the number of
black cells in the latter (k + t) × (k + t) table V . Any diagonal of V that
starts on the element with coordinates (1, j), resp. (j, 1), should have at
least t − (j − 1) black cells. Summing over all starting cells we obtain at
least t2 black cells. However, all black cells of V should avoid antidiagonal
of length two, hence there should be maximum of 2(k + t) − 1 black cells.
Comparing those two lines we obtain t2 ≤ 2(k + t) − 1 which is not true.
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Now assume that s 6= 0. The bound on the number of black cells are now
t2 ≤ 2(k + t− s)− 1, which is worst then the previous case.

Let n = 2k+
√

2k− 3. For the lower bound we construct an n×n table
T ′ which avoids Ak in the following way. First k − 2 rows and columns of
T ′ are black. In the residual square table V ′ we color all cells white but the
east-south path P from the upper leftmost cell. The path consists of first√

2k in the first row, then continues 2
√

2k − 2 cells down, then 2
√

2k − 4
cells right, 2

√
2k − 6 cells down, etc. So there is

√
2k +

√
2k∑

j=1

2
√

2k − 2j = 2k

black sells meaning that P ends somewhere inside V ′.
Matrix Ak is not covered by black colored cells of T ′ because the path P

avoids antidiagonal of length 2. And finally we show that Ak is not covered
by white colored cells of T ′. For contrary we suppose that it is covered.
Suppose that the sequence of chosen columns of this cover is lexicographi-
cally the smallest one. Then we did not choose the first row of V ′ because
its first white cell is at distance less than k from the right boundary. So we
choose the cell (2, 1) for the first one of Ak and continue choosing white cells
on this diagonal till we hit path P again. We cannot choose the column of
the path because it would mean we are too low (we would have not chosen√

2k rows of V ′). So we skip this column of the path P and continue with
the white cell (

√
2k+ 1,

√
2k+ 1) on the main diagonal of V ′. We continue

hitting the path P and do not choose its rows and columns (justifying that
there would not be enough space for the rest of Ak). In the end, we have
crossed path P 2

√
2k-times, did not choose any of its

√
2k rows and

√
2k

columns hence we have only k − 1 choices for rows and k − 1 choices for
columns. Contradiction.

Remark 4. Upper bound in the previous case can be improved to 2k+
√

2k−1
when we reduce the last 3× 3 table with a black antidiagonal of length 2 to
the size 3× 2.

5.2 Small matrices

First let us define small permutation matrices. Any permutation matrix of
size k < 5 is isomorphic (its permutation matrix is symmetric) to one of
those:
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P 1
2 =

(
•
•

)
, P 1

3 =

• •
•

 , P 2
3 =

• •
•

 , P 1
4 =


•
•
•
•



P 2
4 =


•
•

•
•

 , P 3
4 =


•

•
•

•

 , P 4
4 =


•

•
•

•



P 5
4 =


•

•
•

•

 , P 6
4 =


•

•
•
•

 , P 7
4 =


•

•
•

•


We have found the Ramsey numbers for all permutation matrices of size

k < 5 except P 6
4 and P 7

4 . All diagonal matrices of length k has Ramsey
number 2k − 1 due to 2.1, hence R(P 1

1 ) = 1, R(P 1
2 ) = 3, R(P 1

3 ) = 5 and
R(P 1

4 ) = 7.

Lemma 5.2. Ramsey numbers for all small non-diagonal permutation ma-
trices are R(P 2

3 ) = 6, R(P 2
4 ) = 8, R(P 3

4 ) = R(P 4
4 ) = R(P 5

4 ) = 9, R(P 6
4 ) ∈

{9, 10} and R(P 6
4 ) ∈ {9, 13}.

Proof. All lower bounds can be checked in the Table 1. We deal with the
upper bounds one by one but usually we use some kind of block argument.

1. R(P 2
3 ) ≤ 6: The lowest rightmost 3×3 table contains an antidiagonal

of length at least 2 in one color, say black. If there is a black cell in
the top leftmost 3× 3 table then with the black diagonal it forms P 2

3 .
If not, there is a block 3× 3 of white color and we are done.

2. R(P 2
4 ) ≤ 8: The lowest rightmost 6 × 6 table V covers P 2

3 enforcing
the top leftmost 2× 2 table to be monochromatic, say black. Then V
cannot contain black antidiagonal of length 2. Hence in a division of
V into two blocks of size 3, in any of these blocks you can find both
white diagonal and white antidiagonal, which enforces (P 2

4 in white
color.
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(a) P 2
3

(b) P 2
4

(c) P 3
4

(d) P 4
4 (e) P 5

4

(f) P 6
4 (g) P 7

4

Table 1: Lower bounds for small non-diagonal permutation matrices

3. R(P 3
4 ) ≤ 9: Same argumentation as in the case of P 2

3 . There is a
monochromatic antidiagonal of length 3 in the lowest rightmost 5× 5
table meaning that the top leftmost 4×4 table either has one element
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of this color enforcing P 3
4 or it is monochromatic and the conclusion

is trivial.

4. R(P 4
4 ) ≤ 9: The lowest rightmost 6×6 table V covers P 2

3 enforcing the
top leftmost 3× 3 table to be monochromatic, say black. Then there
is either a black cell in V or V is white, both cases easily concludes
monochromatic P 3

4 .

5. R(P 5
4 ) ≤ 9: We divide the 3 × 3 matrix into blocks of size 3. Any of

the diagonal blocks have to contain a monochromatic antidiagonal of
length 2 and at least two of those colors must be the same enforcing
P 6

4 .

6. R(P 6
4 ) ≤ 10: There is a monochromatic P 2

3 in the lowest rightmost
6 × 6 table meaning that the top leftmost 4 × 4 table either has one
element of this color enforcing P 6

4 or it is monochromatic and the
conclusion is trivial.

7. R(P 7
4 ) ≤ 13: It is a simple consequence of block scheme. We pick the

color of the cell with coordinates (1, 5), say black. Then we consider
4× 4 blocks on the ”appropriate” positions given by matrix P 6

4 with
no common rows and columns. Then there is either one black cell in
all these blocks or the whole block is white, both cases enforcing P 7

4 .

6 Shortest permutation paths

In order to find the Ramsey number for given matrices we have studied the
several matrix parameters. Shortest permutation path is the most reason-
able one.

Let Mπ be a permutation matrix. The shortest permutation path (SPP)
is the shortest path in the Manhattan metric which starts in an one element
of Mπ and visits all the one elements of Mπ. We denote its length; that is
the number of elements the SPP visits, by SPP (Mπ).

Trivially SPP (Ik) = 2k − 1 and for most of small and well behaved
permutations, the value of SPP can be computed easily. So there is a wise
question on the correlation or connection of SPP and Ramsey number. On
one hand, Ramsey number and length of SPP coincides for all permutations
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of length at most 4 except permutation P 7
4 , where we were not able to find

the Ramsey number and hence prove the equality.
On the other hand one can easily check that SPP (Ak) = 2k but Claim

5.1 implies R(Ak) = 2k+
√

2k+O(1). That means we cannot bound Ramsey
number by SPP from below. However, that was expected since Balko,
Jeĺınek and Valtr [2] remarked that R(Mπ) ≥ O(k2/ log2 k) holds for almost
any sufficiently large permutation and one can check that SPP (Mπ) =
O(k
√
k). Indeed, we divide Mπ to the blocks of size

√
k and define a path

P which go through all ones such that it visits all ones in a single block and
then moves to the consecutive block, visit all ones, move etc. All subpaths
of path P between two consecutive ones are either inside one block or move
to the adjacent block; in both cases the length is at most 3

√
k. Hence the

path P has length at most 3k
√
k implying SPP (Mπ) ≤ 3k

√
k.

There might still be a hope for an lower bound of Ramsey number using
the value of SPP as there seems to be some connection between the two.
We may predict that a matrix with large SPP could have big (superlinear)
Ramsey number. We suspect this connection might give rise to constructive
lower bounds for Ramsey numbers. As of now, we would be interested in
the following k × k permutation matrix

Q =



•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•


which is formed by dividing the matrix into a blocks

√
k ×
√
k and in each

(i, j)-th block there is exactly one one with the coordinates (with respect
to the given block) (j, i). We know that SPP (Q) = (k − 1)(

√
k + 1) which

could imply at least some kind of non-trivial lower bound on R(Q).
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REU Log

Jakub Svoboda

Prologue

I was really happy when I heard that I was accepted to REU DIMS program.
Yeah, that was February. My life was pure and unspoiled with real

science. Now, I am here sitting on my bed and thinking about future, and
past. How I got here and what I will do.

I don’t know if I can make it, so I am writing this log to future generation
to avoid my mistakes.

Beginning

This week we travelled from cozy little Czech Republic to this place. We
were welcomed warmly and with pizza.

But during the night, I realized. We need to publish, otherwise, we are
doomed and we must put to the KAM-ITI series any filler we will find.
Everyone was really friendly, but I recognized hidden threat behind their
eyes. I woke up very early, partly because of jet lag, but also because of the
fear of not publishing.

The next day we met Periklis. He was really friendly and presented three
problems for us. When I was sitting in this conference room, I was feeling
hope. Maybe, just maybe, we are not doomed after all. But then Periklis
disappeared and with him, hope.

Then the nightmare started, bureaucracy. It is not their fault, they
wouldn’t do if they didn’t have to. Even papers seemed harmless, but I
can read between the lines. And as I read, I started sweating, with ice cold
sweat.
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From the beginning Radim had mental breakdown. He didn’t think that
he would publish paper. One day, he started talking nonsenses, something
about gender studies. We thought that the next day, he will be better, but
last time we have seen him running to the woods and licking Poison Ivy.

Even though we lost Radim we had really productive beginning. We
were thinking about some sparse matrices and we had some results. Then
we realized that we made a huge mistake, we were discussing the problem in
the corridor. There was probably someone who could hear us and plagiarize
our work. This feeling was multiplied by the fact, that in the corner there
was person with cape taking notes.

Working days

Working days were all similar. We went to the CoRE building and stayed
in freezing temperatures until 4 to 5 pm. We studied some books, talked
about problems or wrote nonsenses on the board to confuse proof stealers.

During afternoon we relaxed. We did sports and insanity. Sometimes
we went to the gym. It was nice. Every time they swiped our ID card in
entrance, it said: ”Rejected”. It worked for five weeks, but after that they
said that we cant go to the gym, because we haven’t paid. We still don’t
know how they knew it...

Sometimes, in CoRE was some event. With food. This was our happy
day. After the event we sneaked to the room with food and took care of it.
We lived from it for another two days.

Once a week, there was lecture. The lecture was given by interesting
people, but they wanted to popularize their stuff instead to tell us every-
thing. So it wasn’t every time so good.

Weekend trips

During working day we worked, learned and so on. But we came here also
for the taste of America. So during weekends, we tried to visit as much
we could. We had yet another reason for this, we took all the papers and
moved randomly so no one can spy on us.
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Appalachian trail

On weekends, Rutgers U is very dangerous place. So we decided to play a
little trick on all paper stealers. We left two expendables (yes, Matěj was
one of them) in Silvers and we went to Appalachian trail with all proofs and
unpublished papers. We hoped that no stealer will suspect that.

We went to New York (dangerous, too much people, too hot, our papers
almost self-ignited) and then to Garrison. Our plan was to sleep in a shelter
near the rail road. This seemed like a good idea before we had seen that the
shelter is actually bower for weddings and for endings of romantic movies
my mom watches. But it was dark and we didn’t have other place to sleep,
so we settled there. The bower was like five meters (3.342210−11 AU if you
want your crazy units) from Hudson River, so during night it got colder...

After a good night’s sleep (if you count lying awake freezing in your
sleeping bag) we hit the road. First day went well. We remains of the Fort
Montgomery, famous place of American defeat. They tried to impress us,
but we weren’t impressed at all. In the Czech Republic, almost every hill
or valley is famous place of Czech defeat, so for us it was quite boring.

After Fort Montgomery we climbed Bear Mountains (no bear seen). And
then we sometimes happy, sometimes exhausted, continued to Fingerboard
shelter next to Lake Tioraki (no bear seen). We went to sleep peacefully,
only bit afraid of bears (no bear seen). Jardáč was the most frightened, but
after I told him that by the bears, they only mean koala bears, he calmed
a little bit.

When I woke up next morning our bags were ripped and someone ate
our breakfast. Personally, I blame Jardáč, but he said that he had seen a
bear eating it (one bear seen).

The rest of the trip was relatively boring. Only Štěpán was hungry and
tired, but we were in the hurry, so we left him on some random train station.
He will starve to the death soon to stop his suffering.

Boston

After previous weekends we decided that this week, the main group with all
our proofs will be truly random.

We went to New York and wandered around. We visited Central park
(Hey, New Yorkers reading this, you have very fat squirrels, you should do
something about it.), then down town. The views was beautiful, but we
wanted to see the Statue of Liberty. We kinda knew where Statue is, but
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nobody told us that it is on the island. We got to the down town Manhattan
and suddenly, sea. That was a problem, but we weren’t desperate. Yet.

There was some building with sign ”Ferry” on it, so we, as good Czechs,
asked about the price of the ticket. We were really excited, that ticked was
free, so we boarded immediately.

Yea, we were pretty excited... Maybe too much.
Maybe, we should have asked where is ferry sailing before boarding.
We learned our lesson about ten minutes later, when we were passing

by Liberty island.
If you are from New York, you probably know that we were sailing for

about thirty minutes to Staten island.
Actually, you probably don’t know this, because who in the right mind

would go to the Staten island?
We were there, so we decided to be irrational and take a stroll. There

was nothing much interesting around.
But we got hungry and returned back, we ate in the best restaurant of

its kind in down town Manhattan. It was cheap thought... maybe because
the kind of restaurant was McDonald and it was only 3.5 star rating among
3.3 star rating Macs.

Then we visited Brooklyn bridge and part of Brooklyn, because our
tickets to Boston were bought for 3am, Sunday. We had some time in
Brooklyn, so we decided to be lost for a while. The plan went really well.
We made it till 3am only because we were running from Brooklyn bridge.

In 7am we were in morning Boston. It was nice, so we took a nap in a
park.

We discovered freedom trail. It was really good. We learned many
interesting things about Boston and generally about US history. Too bad
for Janča, she refused to visit any ”historical” site if it isn’t at least 500
years old, yea, she is spoiled European.

MIT and Harvard was also nice but best was McDonald at the bus
station. We loved it. It provided us shelter for the night until our bus
departed.

The biggest challenge on Monday was not to fall asleep during the lec-
ture. I failed it miserably... But with delight!

Washington D.C.

Another weekend we decided, that we will visit Washington (D.C., poor
Janča, she confused that and flew to the west.). We had some good experi-
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ences with night rides from New York. So we bought our tickets to 3:30am
on Sunday.

I wanted visit New York with Vašek, but I had to do my workout. I
tried to do it as fast as possible, but Vašek left during workout and I had
to go to the shower.

Running, in the middle of college ave I realized that the shower was
pointless. I was wet as I got from the shower.

Starring at the empty New Brunswick platform, I realized that even
running was pointless. Train and Vašek were gone. So I had 40 minutes to
contemplate about my mistakes and how to find Vašek.

I tried to message him, but he didn’t replied. So I decided to do some
sightseeing in New York alone. During the day my main hobby was to
imagine post apocalyptic New York. How would look the clans in New
York if the society collapsed.

I really thought it through. My favourite clan would be Defenders of
the High Line. My second favourite would be The Battery Park Battalion.

New York was nice, but truly interesting things happens after midnight.
I gave up sightseeing and settled myself near Madison Square Garden and
read.

While I was reading first chapter, some woman was changing clothes...
mildly said. ”OK, this is different culture, probably it is fine.” And I con-
tinued reading.

While I was reading second chapter, some weird guy appeared. He didn’t
bother me, but went to other guys seated in front of me. He looked like
a beggar, but weird. He was whispering something to other guys. They
replied. Only thing I caught was ”You want cocaine?”. When he nodded
and gave them money and received one white pill in return.

I haven’t read third chapter there. I did quick computation and lin-
ear regression in my head. Only thing that could top the other would be
shooting and I don’t want to be there during shooting. So I left.

Only later somebody pointed out that there is more common sequence
that goes: ”sex, drugs and rock’n’roll”. I regretted this, I would love to
hear some rock’n’roll.

So I slowly walked to the Time square and played chess there. I have
won and because of that world was beautiful. Even the guys in pose I would
describe as typical New York pose were bearable. Typical New York pose is
when you are lying on the pavement and have one hand in your pants (not
protecting your wallet thought, probably protecting something different).

Washington was also nice, we only didn’t understand one thing, why is
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Capitol closed on Sunday. We spend a lot time in museums. They were
free!

In Washington there are very nice and polite security guys. As we were
falling asleep on various locations they only softly reminded us that we
shloudn’t sleep there. So if you weren’t, you should go and sleep there in
the park.

Conclusion

From previously mentioned follows that we liked our stay in Rutgers. We
also learned a lot, especially about hardness and polynomial hierarchy.

Our surveys show that after the stay, we like computer science in the
average 7% more. We are thinking about getting PhD about 11% more and
we like Scarlet Knights 94665% more.

On the other hand, we like bureaucracy 17% less and average free food
0.4% less (but this can be attributed to abundance of the high quality free
food.
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The US participants on the trip to Český Krumlov.


