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118 00 Praha 1, Czech Republic.

bok@iuuk.mff.cuni.cz
2 Department of Mathematics, Institute of Chemistry and Technology, Prague,
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Abstract. In this paper we demonstrate that several theorems from [1]
and [3] do not hold as they are stated. These are the theorems regarding
forbidden subposet characterizations of certain classes of cover- incom-
parability graphs. In this paper we correct a mistake in the main theorem
of [1], reformulate the corresponding statements and present corrected
proofs. We further characterize posets whose cover-incomparability graphs
are interval graphs and unit interval graphs.

1 Introduction

In this paper we deal with posets and graphs associated to them. There are
several ways how to associate a graph G to a given poset P . The vertex set
V (G) is usually the set of points of P . Depending on the edge-set E(G), we
may obtain among others the comparability graph of P (x and y are adjacent iff
x < y or y < x), the incomparability graph of P (x and y are adjacent iff x and
y are incomparable), the cover graph of P (x and y are adjacent iff x covers y
or vice versa) or the cover-incomparability graph of P (x and y are adjacent iff
x covers y, or y covers x, or x and y are incomparable). The incomparability
graph of P is of course just the complement of its comparability graph, while
the cover-incomparability graph of P is the union of the cover graph and the
incomparability graph of G.

Cover graphs, comparability graphs and incomparability graphs are standard
ways how to associate a graph to a given poset, while the notion of cover-incom-
parability graph is new. It was introduced in [1]. This notion was motivated
by the theory of transit functions on posets. It turns out that the underlying
graph GP of the standard transit function TP on the poset P is exactly the
cover-incomparability graph of P (see [1] for details).

Cover-incomparability graphs have been sofar approached in two different
ways. One possibility is to try to characterize graphs that are cover-incomparability
graphs. In [6] it was proved that the recognition problem for cover-incomparability



graphs is in general NP-complete. On the other hand there are classes of graphs
(such as trees, Ptolemaic graphs, distance-hereditary graphs, block graphs, split
graphs or k-trees) for which the recognition problem can be solved in linear time
(see [2,3,7,8] for details and proofs).

Another approach is to study posets whose cover-incomparability graphs have
certain property. Posets whose cover-incomparability graphs are chordal, Ptole-
maic, distance-hereditary, claw-free or cographs were characterized in [1] and
[4]. Unfortunately, there is a mistake that originated in [1] and continued in [4]
and several statements from these papers do not hold as they are stated. In this
paper we correct the mistake and reformulate the corresponding statements so
that they hold.

It is known (see e.g. [10]) that a graph G is interval if and only if G is
chordal and the complement G admits a transitive orientation. As for any cover-
incomparability graph G its complement G must admit a transitive orientation
[6], it follows that a cover-incomparability graph is interval if and only if it is
chordal. In Section 5 we present another proof of this statement. Instead of using
the characterization of interval graphs from [10] (G is interval if and only if G is
chordal and the complement G admits a transitive orientation.), we start from
the characterization of interval graphs by forbidden induced subgraphs [5] and
obtain a characterization of posets whose cover-incomparability graphs are in-
terval. As this characterization is the same as for chordal graph, we immediately
obtain that a cover-incomparability graph is interval if and only if it is chordal.

Our paper is organized as follows. In Section 2 we give an overview of ter-
minology and basic properties of cover-incomparability graphs. In Section 3 we
present counterexamples to Theorem 4.1 from [3], Lemma 4.4 and 4.5 from [1]
and to Proposition 5.1 from [1]. In Section 4 we show that the mistake originated
in Theorem 2.4 [1]. We reformulate this statement and give a corrected proof of
it. In addition, we reformulate all the above mentioned statements so that they
hold. In Section 5 we characterize posets whose cover- incomparability graphs
interval graphs and unit interval graphs.

2 Terminology and basic properties

Let P = (V,≤) be a poset. We will use the following notation. For u, v ∈ V we
write:

– u < v if u ≤ v and u 6= v.

– u � v if u < v and there is no z ∈ V such that u < z < v. We say that v
covers u.

– u � � v if u < v and ¬(u � v).

– u ‖ v if u and v are incomparable.

Definition 1. For a given poset P = (V,≤), let GP = (V,E) be a graph with
E = {{u, v} | u � v or v � u or u ‖ v}. Then we say that GP is the cover-
incomparability graph of P (or the C-I graph of P for short).



Note that for any u, v ∈ V (GP ), u 6= v we have {u, v} /∈ E(GP ) ⇔ u �
� v or v � � u .

As this is crucial for the rest of our paper let us define properly the following
three concepts.

Definition 2. Let P = (VP ,≤P ) be a poset.

• We say that Q = (VQ,≤Q) is a subposet of P = (VP ,≤P ) if
1. VQ ⊆ VP and
2. for any u, v ∈ VQ we have u ≤Q v ⇔ u ≤P v.

• We say that R = (VR,≤R) is an isometric subposet of P = (VP ,≤P ) if
1. VR ⊆ VP and
2. for any u, v ∈ VR we have u ≤R v ⇔ u ≤P v and
3. for any u, v ∈ VR such that u ≤R v a chain of a shortest length between

u and v in P is also in R.
• We say that S = (VS ,≤S) is a �-preserving subposet of P = (VP ,≤P ) if

1. VS ⊆ VP and
2. for any u, v ∈ VS we have u ≤S v ⇔ u ≤P v and
3. for any u, v ∈ VS we have u �S v ⇔ u �P v.

Note that an isometric subposet is always �-preserving but there are �-
preserving subposets that are not isometric. For example, the poset P ′ depicted
in Fig. 1 is a nonisometric �-preserving subposet of P in Fig. 1.
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Fig. 1: A nonisometric �-preserving subposet.

Let us also mention a few easy observations about C-I graphs. They follow
immediately from the definition.

Lemma 1. Let P = (V,≤) be a poset and GP = (V,E) its C-I graph. Then the
following holds.

(i) GP is connected.
(ii) If U ⊆ V is an antichain in P then U induces a complete subgraph in GP .



(iii) If I ⊆ V is an independent set in GP then all points of I lie on a common
chain in P .

(iv) There are at most 2 vertices of degree 1 in GP .
(v) If P ∗ = (V,≤∗) is the dual poset to P (i.e. u ≤ v in P ⇔ v ≤∗ u in P ∗),

then G(P ∗) = GP .
(vi) If the vertices x, y, z form a triangle in GP then at least two of them are

incomparable.
(vii) Let x, y, z be vertices of GP such that xy ∈ E, xz /∈ E, yz /∈ E. Then

(x � � z and y � � z) or (z � � x and z � � y).

3 Counterexamples

In this section we present counterexamples to several statements from [1] and
[3]. Let us start with the easiest case, with Proposition 5.1 from [1].

3.1 A counterexample to Proposition 5.1 from [1]

First we cite the statement of this proposition in the original text:

Proposition (Proposition 5.1 [1]). Let P be a poset. Then GP contains an induced
claw if and only if P contains one of S1, S2 or S3 as an isometric subposet, see
Fig. 2.

S1 S2 S3

Fig. 2: Subposets S1, S2 and S3 and the claw.

This statement does not hold. Let P be the poset depicted in Fig. 3. Clearly,
neither S1 nor S2 are subposets of P . S3 is a subposet of P but it is not an
isometric subposet of P . This is because there is a chain of length 2 between u
and v in P while is no chain of length 2 between u and v in S3. Thus P does
not contain any of S1, S2 and S3 as an isometric subposet. But GP contains an
induced claw on vertices v, v1, v3, v5, a contradiction.

Counterexamples to other statements can be derived in a similar way:
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Fig. 3: A counterexample to Proposition 5.1.

3.2 A counterexample to Lemma 4.4 from [1]

Proposition (Proposition 4.4 in [1]). Let P be a poset. Then GP contains an
induced house if and only if P contains one of R1, R2, R3, R4 or R5 as an
isometric subposet, see Figure 4.

Let P be the poset depicted in Fig. 5. It is easy to see that it is a counterex-
ample to Lemma 4.4 [1]. Indeed, P does not contain any of the posets R1, R2,
R3, R4 or R5 as an isometric subposet. But GP contains an induced house
on vertices v1, v2, v4, v5, v7, a contradiction.

3.3 A counterexample to Lemma 4.5 from [1]

Proposition (Proposition 4.5 in [1]). Let P be a poset. Then GP contains an
induced domino if and only if P contains one of D1, D2, D3, D4, D5, D6 or D7

as an isometric subposet, see Fig. 6.

Let P be the poset depicted in Figure 7. Clearly that it is a counterexample
to Lemma 4.5. [1]. Indeed, P does not contain any of the posets D1, D2, D3, D4,
D5, D6 or D7 as an isometric subposet. But GP contains an induced domino on
vertices v1, v2, v4, v5, v7, a contradiction.

3.4 A counterexample to Theorem 4.1 from [3]

Theorem (Theorem 4.1 [3]). Let P be a poset. Then GP is a cograph if and
only if P contains neither any of Q1, Q2, . . . , Q7 nor duals of Q2 or Q5 as an
isometric subposet, see Fig. 8.

Let P be the poset depicted in Fig. 7. It is easy to see that it is a coun-
terexample to Theorem 4.1 [3]. Indeed, P contains neither any of the posets Q1,
Q2, . . . , Q7 nor the duals of Q2 or Q5 as an isometric subposet. But GP con-
tains an induced path on four vertices v1, v2, v3, v4. Thus, GP is not a cograph,
a contradiction.



R1 R2 R3 R4 R5

Fig. 4: Subposets Ri, i = 1, . . . 5 and the house.
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Fig. 5: A counterexample to Lemma 4.4.



D1 D2 D3 D4

D5 D6 D7

Fig. 6: Subposets Di, i = 1, . . . 7, and the domino graph.
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Fig. 7: A counterexample to Lemma 4.5.



Q1

Q2 Q3 Q4

Q5 Q6 Q7

Fig. 8: Subposets Qi, i = 1, . . . 7.

tt
tt t
�
�
�

@
@
@

v1

v2

v3

v4

x

Poset P

tt
tt t
�
�
���
�

PPP

@
@
@

v1

v2

v3

v4

x

C-I graph GP

Fig. 9: A counterexample to Theorem 4.1



4 Restatements and proofs

The mistake originated in Theorem 2.4 [1].

Theorem (Theorem 2.4 [1]). Let G be a class of graphs with a forbidden induced
subgraphs characterization. Let P = {P | P is a poset with GP ∈ G}. Then P
has a forbidden isometric characterization.

If we go carefully through the proof of this theorem in [1] we notice that it is
not proved that the poset P contains one of the constructed posets {Pi}i∈I as
an isometric subposet. The condition of isometry is too strong and it has to be
replaced by the weaker concept of �-preserving subposet. See Section 2 for the
definition.

Theorem 1 (corrected version of Theorem 2.4 [1]). Let G be a class of
graphs with a characterization by forbidden induced subgraphs. Let P = {P | P is
a poset with GP ∈ G}. Then P has a characterization by forbidden �-preserving
subposets.

For the proof of this theorem we need a slightly stronger version of Lemma 2.3 [1].

Lemma 2 (corrected version of Lemma 2.3 [1]). Let Q be a C-preserving
subposet of a poset P . Then GQ is isomorphic to a subgraph of GP induced by
the points of Q.

Proof. Let H be the subgraph of GP induced by the points of Q. Let u and v
be arbitrary points in Q. We show that

{u, v} ∈ E(H)⇔ {u, v} ∈ E(GQ).

First suppose that {u, v} ∈ E(H). This happens if and only if either u�P v,
or v �P u, or u ‖P v. As Q is a C-preserving subposet of P we have

u �P v ⇒ u �Q v ⇒ {u, v} ∈ E(GQ),

v �P u⇒ v �Q u⇒ {u, v} ∈ E(GQ),

u ‖P v ⇒ u ‖Q v ⇒ {u, v} ∈ E(GQ).

Thus if {u, v} ∈ E(H) then also {u, v} ∈ E(GQ).
Now suppose that {u, v} /∈ E(H). Then u � �P v or v � �Pu. As Q is

a C-preserving subposet of P it follows that u � �Qv or v � �Qu, and thus
{u, v} /∈ E(GQ).

We conclude that H and GQ are isomorphic graphs as stated. ut

Now we are ready to prove Theorem 1.

Proof ((of Theorem 1)). Let Gforb be one of the forbidden induced subgraphs for
the class G. Let P ∈ P be any poset in the class P. By the definition of P, GP

does not contain Gforb as an induced subgraph. By Lemma 2, P does not contain
any �-preserving subposet Q such that GQ is isomorphic to Gforb. Hence any



subposet Q s.t. GQ is isomorphic to Gforb is forbidden for P. Repeating this for
all the forbidden induced subgraphs for G we find a list of forbidden �-preserving
subposets {Qi}i∈I .

We will show that the class P is characterized by forbidden �-preserving
subposets {Qi}i∈I .

First, let P ∈ P. Then P clearly contains no Qi as a �-preserving subposet.
Otherwise (by Lemma 2) the graph GP would contain a forbidden induced sub-
graph for G.

Conversely, suppose that P contains no Qi as a �-preserving subposet. Then
(by the construction of {Qi}i∈I) GP contains no forbidden subgraph for G. Thus
GP ∈ G, and hence P ∈ P. ut

The previous theorem can be applied for various graph classes that admit a
characterization by forbidden induced subgraphs, such as chordal graphs, claw-
free graphs, distance-hereditary graphs, Ptolemaic graphs etc.

Theorem 2 (corrected Proposition 5.1 [1]). Let P be a poset. Then GP

contains an induced claw if and only if P contains one of S1, S2, S3 or S∗2 (the
dual of S2) as a �-preserving subposet, see Fig. 2.

Proof. If P contains one of the posets S1, S2, S3 or S∗2 as a �-preserving subposet
then clearly GP contains an induced claw.

Conversely, suppose that GP contains an induced claw. We want to find S1,
S2, S3 or S∗2 as a �-preserving subposet of P . Let us denote by x the middle
vertex and by u, v, w the other vertices of the claw. By Lemma 1(iii), as u, v, w
form an independent set in GP they lie on a common chain in P . Without loss
of generality we may suppose that u � � v � �w.

Note that x� v is not possible, otherwise x��w and hence {x,w} /∈ E(GP ),
a contradiction. Similarly, it is not possible that x � u, v � x or w � x. Thus
there are only five cases to distinguish:

– Case 1 x ‖ u, x ‖ v, x ‖w. Then P obviously contains S3 as a �-preserving
subposet.

– Case 2 u � x, x‖v, x‖w. Then P obviously contains S2 as a �-preserving
subposet.

– Case 3 x � w, x‖v, x‖u. Then P obviously contains S∗2 as a �-preserving
subposet.

– Case 4 u� x, x� w, x‖v and the length of the shortest chain in P between
u and w is equal to 4. Then P obviously contains S3 as a �-preserving
subposet.

– Case 5 u� x, x� w, x‖v and the length of the shortest chain in P between
u and w is greater than 4. Then P obviously contains S2 as a �-preserving
subposet.

ut
Now let us restate the corresponding statements from [1] and [3]. We skip

their proofs as they are the same as the ones presented in [1] and [3], the only
mistake was claiming that the forbidden subposets must be isometric subposets
of P .



Theorem 3 (corrected Proposition 4.4 [1]). Let P be a poset. Then GP

contains an induced house if and only if P contains one of R1, R2, R3, R4, R5

or its duals as a �-preserving subposet, see Fig. 4.

Theorem 4 (corrected Proposition 4.5 [1]). Let P be a poset. Then GP

contains an induced domino if and only if P contains one of D1, D2, D3, D4,
D5, D6, D7 or its duals as a �-preserving subposet, see Fig. 6.

Theorem 5 (corrected Theorem 4.1 [3]). Let P be a poset. Then GP is a
cograph if and only if P contains neither any of Q1, Q2, . . . , Q7 nor duals of
Q2 or Q5 as a �-preserving subposet, see Fig. 8.

Theorem 6 (reformulated Theorem 3.1 [3]). Let P be a poset. Then GP

is a chordal if and only if P contains neither any of P1, P2, P3 nor P ∗2 (the dual
of P2) as a �-preserving subposet, see Fig. 10.

P1 P2 P3 C4

Fig. 10: Subposets P1, P2, P3 and C4

Let us remark that for P1, P2, P3 and P ∗2 the notion of isometric subposet
and �-preserving subposet coincide. More precisely, a poset P contains P1, P2,
P3 or P ∗2 as an isometric subposet if and only if P contains P1, P2, P3 or P ∗2 as
a �-preserving subposet. This is because the length of the longest chain in P1,
P2, P3 and P ∗2 is only two. Hence, Theorem 3.1. [3] holds as it was stated in [3].

5 Interval and unit interval C-I graphs

In this section we characterize posets whose cover incomparability graphs are
interval or unit interval graphs. We start from the characterization of interval
graphs by forbidden induced subgraphs [5].

Interval graphs are the intersection graphs of a set of intervals on the real
line. That is, the graph has one vertex for each interval in the set, and an edge
between every pair of vertices corresponding to intervals that intersect. Unit
interval graphs are interval graphs that can be represented by intervals of the



bipartite claw umbrella cycle Cn, n ≥ 4

n-net graph (n ≥ 2)

n-tent graph (n ≥ 1)

u
v a b w

x1 x2 xnx3 x4

Fig. 11: Forbidden induced subgraphs for the class of interval graphs.

same length. Interval graphs (resp. unit interval graphs) can be characterized by
a set of forbidden induced subgraphs.

Theorem 7 ([5]). A graph G is an interval graph if and only if G does not
contain any of the following graphs (depicted in Fig. 11) as an induced subgraph:
the bipartite claw, n-net for n ≥ 2, umbrella, n-tent for n ≥ 3, and cycle Cn for
n ≥ 4.

It is well known since the seminal paper of Roberts [9] that an interval graph
G is unit interval if and only if it does not contain induced K1,3. Thus, by
excluding graphs that contain induced K1,3 from the graphs depicted in Fig. 11,
we immediately obtain the set of forbidden induced subgraphs for unit interval
graphs:

Corollary 1. A graph is a unit interval graph if and only if it contains no
induced K1,3, 2-net, 3-tent, or Cn, for any n ≥ 4.

For an undirected graph G = (V,E) an orientation G is the oriented graph
D = (V,A) that arises from G by replacing each edge uv by one of the arcs −→uv
or −→vu. The orientation D is said to be transitive if for any two consecutive arcs−→uv ∈ A(D), −→vw ∈ A(D) also −→uw ∈ A(D).

Now, let us turn our attention back to cover-incomparability graphs. If H
is an induced subgraph of a C-I graph G then the complement H admits a
transitive orientation. Indeed, if uv /∈ E(H) (and thus also uv /∈ E(GP )) then
u� � v or v� � u in P . We define an orientation D on the non-edges of H (i.e.
edges of H) by −→uv ∈ A(D)⇔ u � � v.



As the relation �� is transitive, D is a transitive orientation of H. In fact, H is
an induced subgraph of a C-I graph G if and only if the complement H admits
a transitive orientation (see [6] for the proof of the other implication).

Now we will prove that the complements of the most of the above mentioned
forbidden induced subgraphs do not admit a transitive orientation, and hence
cannot occur as induced subgraphs of any C-I graph. We will repeatedly use the
following easy observation.

Lemma 3. Let G be a graph and let D be a transitive orientation of the G. Let
u, v, w be vertices such that {u, v} ∈ E(G), {u,w} /∈ E(G) and {v, w} /∈ E(G).
If (u,w) ∈ D then also (v, w) ∈ D. If (w, u) ∈ D then also (w, v) ∈ D.

Lemma 4. The complement of the bipartite claw does not admit a transitive
orientation.

Proof. Let us denote the vertices of the bipartite claw by x1, x2, y1, y2, z1, z2
and c as it is depicted in Fig. 11. Suppose for contradiction that the complement
graph admits a transitive orientation D. Without loss of generality we may
assume that (x2, y2) ∈ D. By successive application of Lemma 3 we get that
(x2, y1) ∈ D, (x2, c) ∈ D, (x2, z1) ∈ D, (x2, z2) ∈ D. Now again by successive
application of Lemma 3 we get that (x1, z2) ∈ D, (c, z2) ∈ D, (y1, z2) ∈ D,
(y2, z2) ∈ D. And similarly that (x1, y2) ∈ D, (c, y2) ∈ D, (z1, y2) ∈ D, (z2, y2) ∈
D. Thus we have that both and (y2, z2) ∈ D and (z2, y2) ∈ D, a contradiction.

ut

Lemma 5. The complement of the n-net does not admit a transitive orientation
for any n ≥ 2.

Proof. Let us denote the vertices of the n-net, n ≥ 2, by u, v, w x1, . . . xn and
c as it is depicted in Fig. 11. Suppose for contradiction that the complement
graph admits a transitive orientation D. Without loss of generality we may
assume that (u, v) ∈ D. By successive application of Lemma 3 we get that
(x1, v), . . . , (xn−1, v) ∈ D. Furthermore (c, v) ∈ D and (w, v) ∈ D. Similarly, we
get that (u, xn), . . . , (u, x2) ∈ D. Also (u, c) ∈ D and (u,w) ∈ D. That implies
(x1, w), . . . , (xn, w) ∈ D and (v, w) ∈ D, a contradiction. ut

Lemma 6. The complement of the umbrella does not admit a transitive orien-
tation.

Proof. Let us denote the vertices of the umbrella by u, x1, . . . x5 and v as it is
depicted in Fig. 11. Suppose for contradiction that the complement graph admits
a transitive orientation D. Without loss of generality we may assume that (u, v) ∈
D. By successive application of Lemma 3 we get that (u, x1), (u, x2), (u, x4), (u, x5) ∈
D. It follows that (x3, x1) ∈ D and (x3, x5) ∈ D. Furthermore (x3, x1) ∈ D
implies that (x4, x1) ∈ D and (x5, x1) ∈ D while (x3, x5) ∈ D implies that
(x2, x5) ∈ D and (x1, x5) ∈ D, a contradiction. ut

Lemma 7. The complement of the n-tent does not admit a transitive orienta-
tion for any n ≥ 3.



Proof. Let us denote the vertices of the n-tent, n ≥ 3, by x1, . . . xn, u, v, w, a
and b as it is depicted in Fig. 11. Suppose for contradiction that the complement
graph admits a transitive orientation D. Without loss of generality we may
assume that (u, v) ∈ D. By successive application of Lemma 3 we get that
(u, x1) ∈ D, (u, x2) ∈ D, . . . (u, xn) ∈ D, (u,w) ∈ D. Now by applying Lemma 3
to the triple of vertices u, v, b, we get that (b, v) ∈ D. Similarly, by applying
Lemma 3 to the triple u, w, a, we get that (a,w) ∈ D. Now we apply Lemma 3
to the triple a, v, w and get (v, w) ∈ D. Similarly, by applying Lemma 3 to the
triple b, v, w, we get (w, v) ∈ D, a contradiction. ut

For the proof of the following lemma see [1] or [6].

Lemma 8. Let G be a graph that contains Cn, n ≥ 5 as an induced subgraph.
Then G cannot be the C-I graph of any poset.

Using Lemmas 4 up to 8 we get that from all the posets depicted in Fig. 11
only C4 can appear as induced subgraph of a C-I graph. Combining this fact
with Theorem 6 we get the following statement.

Theorem 8. Let P be a poset. Then GP is an interval graph if and only if P
contains neither any of P1, P2, P3 nor dual of P2 as a �-preserving subposet,
see Fig. 10.

As the set of forbidden �-preserving subposets is the same both for the inter-
val graphs and for chordal graphs. We obtain an alternative proof for the state-
ment that a cover-incomparability graph is interval if and only if it is chordal.
As a consequence of this theorem and Corollary 1 we get the following charac-
terization of poset whose C-I graphs are unit interval graphs.

Theorem 9. Let P be a poset. Then GP is a unit interval graph if and only if
P does not contain any of P1, P2, P3, P

∗
2 (the dual of P2), S1, S2, S3 or S∗2 (the

dual of S2) as a �-preserving subposet, see Fig. 10 and Fig. 2.
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