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Preface

Spring school on Combinatorics has been a traditional meeting organized for over 30 years for faculty
and students participating in the Combinatorial Seminar at Faculty of Mathematics and Physics
of the Charles University. It is internationally known and regularly visited by students, postdocs
and teachers from our cooperating institutions in the DIMATIA network. As it has been the case
for several years, this Spring School is supported by Computer Science Institute (IÚUK) of Charles
University, the Department of Applied Mathematics (KAM) and by some of our grants (SVV,
UNCE). This year we are glad we can also acknowledge generous support by the RSJ Foundation.
The Spring Schools are entirely organized and arranged by our students (mostly undergraduates).
The topics of talks are selected by supervisors from the Department of Applied Mathematics (KAM)
and Computer Science Institute (IÚUK) of Charles University as well as from other participating
institutions. In contrast, the talks themselves are almost exclusively given by students, both under-
graduate and graduate. This leads to a unique atmosphere of the meeting which helps the students
in further studies and their scientific orientation.
This year the Spring School is organized in Jáchymov, a historic small town in Krušné hory (Ore
mountains) with a great variety of possibilities for outdoor activities.

Ondřej Pangrác, Robert Šámal, Martin Tancer

KAMKAM
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Series Talks

Pavel Dvořák
koblich@iuuk.mff.cuni.cz

Secret Sharing
as part of a serie Series on Secure Multi-Party Computation

Introduction
Informally, a (t+ 1)-out-of-n secret sharing scheme takes as input a secret s and outputs n shares,
with the property that it is possible to efficiently reconstruct s from every subset of t + 1 shares,
but every subset of t or less shares reveals nothing about the secret s.

Dealer D – secret s

P1 P2 Pt+1 Pn−t+1 Pn

r1 r2 rt+1 rn−t+1 rn

Can reconstruct s from shares. No information about s.

Reed-Solomon Code and Shamir’s Secret Sharing Scheme

• We fix a field F.

Definition 1 [n, k, d]-code over F is a set C ⊆ Fn s.t.

1. |C| = |F|k.

2. Hamming distance of every two codewords in C is at least d.

Reed-Solomon Code
Parameters: Distinct α1, . . . , αn ∈ F such that |F| > n.
Message: (m0, . . . ,mt) ∈ Ft.
Codeword: C(m) =

(
pm(α1), . . . , pm(αn)

)
,

where pm(x) = m0 +m1x+ · · ·+mtx
t.

Theorem 2 The Reed-Solomon code is a [n, t + 1, n − t]-code over F. Moreover, there exists an
efficient decoding algorithm that corrects up to n−t−1

2 errors.
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Shamir’s Secret Sharing Scheme
Dealer’s Input: A secret s ∈ F.
Common Input: Distinct, nonzero α1, . . . , αn ∈ F.
Dealer Computes: m0 = s.

m1, . . . ,mt are random elements of F.
q(x) = m0 +m1x+ · · ·+mtx

t.
Sharing: Party Pi gets q(αi).
Reconstruction: (t + 1) parties have together (t + 1) points of polynomial q, thus

they can compute q(0) = s.
Secrecy: If at most t of polynomial points are fixed, then each value of the

absolute term has the same probability.

What if Some Parties or Dealer are Dishonest?

• Let t < n/3, thus Reed-Solomon code can correct up to 3t+1−t−1
2 = t errors.

• If there is a honest dealer and at most t dishonest parties, then honest parties can reveal the
secret due to the Reed-Solomon code.

• Dealer have to embed the polynomial q(x) (from Shamir’s Secret Sharing Scheme) into a
bivariate polynomial S(x, y) such that honest parties can detect dishonest parties and dealer.

Verifiable Secret Sharing Scheme
Dealer’s Input: A polynomial q(x) ∈ F[x] of degree at most t (q(0) is the

secret).
Common Input: Distinct, nonzero α1, . . . , αn ∈ F.
Dealer Computes: S(x, y) is a random polynomial, such that S(0, z) = q(z).
Sharing: The party Pi gets polynomials fi(x) = S(x, αi) and gi(y) =

S(αi, y).
Consistency: The party Pi sends fi(αj) and gi(αj) to the party Pj.

The party Pj checks if fj(αi) = gi(αj) (= S(αi, αj)) and
fi(αj) = gj(αi).
If not, the party Pj makes a complaint about Pi to the dealer.

Resolve Complaints: Parties with the dealer resolve complaints and eliminate dis-
honest parties.

Output: If there is enough honest parties, then each party Pi sends
fi(0) = q(αi).
They reconstruct the secret from the shares due to the Reed-
Solomon code.
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Veronika Slívová
slivova@iuuk.mff.cuni.cz

Multi-Party Computation - Semi-Honest Adversary
as part of a serie Series on Secure Multi-Party Computation

Introduction
In the setting of secure multi-party computation n parties with (private) inputs want to securely
compute some function of their inputs in the presence of adversary. Where securely computation
means that the following properties are satisfied:

1. privacy – any party learns nothing from the protocol other than the output,

2. correctness – the output is distributed according to the prescribed functionality,

3. independence of inputs – parties cannot choose their inputs in dependence on other’s
inputs,

4. fairness and guaranteed output delivery – all parties receive the output.

There exist many different settings in which secure multi-party computation is studied:

1. according to adversary strategy

(a) semi-honest adversary – adversary follows the prescribed protocol, but tries to learn
more than they should by inspecting the protocol transcript,

(b) malicious adversary – adversary may follow an arbitrary strategy,

2. according to adversary computational power

(a) computational setting – the adversary is limited to polynomial time,
(b) information-theoretic setting – the adversary is unbounded,

3. according to the corrupted parties

(a) static – corrupted parties are fixed before the execution of protocol begins,
(b) adaptive – adversary may adaptively choose to corrupt a party during the execution of

the protocol,

4. according to the achieved security

(a) perfect security – there is zero probability of cheating – the result in the real world is
the same as in the ideal world,

(b) statistical security – the result in the real world is statistically close to the result in
the ideal world.

We denote the number of parties by n and the number of corrupted parties by t.
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Main result and basic definitions
Theorem 1 Consider a synchronous network with pairwise private channels and a broadcast chan-
nel. Then:

1. Semi-honest: For every n-ary functionality f , there exists a protocol for computing f with
perfect security in the presence of static semi-honest adversary controlling up to t < n/2
parties,

2. Malicious: For every n-ary functionality f , there exists a protocol for computing f in the
presence of a static malicious adversary controlling up to t < n/3 parties.

The communication complexity of the protocol is O(poly(n)|C|), where C is an arithmetic circuit
computing f , and the round complexity is linear in the depth of the circuit C.
Definition 2 (view) The view of the i-th party Pi during an execution of a protocol πon inputs ~x,
denoted by V IEW π

i (~x) is defined to be (xi, ri,mi1 , . . . ,mik), where xi is Pi’s private input, ri is its
internal coin tosses, and mij is the j-th message that was received by Pi in the protocol execution.
Definition 3 (t-privacy of n-party protocols – deterministic functionalities)) Let f : (0, 1∗)n →
(0, 1∗)n be a deterministic n-ary functionality and let π be a protocol. We say that π is t-private for
f if for every ~x ∈ (0, 1∗)n, where |x1| = . . . = |xn|,

OUTPUT π(x1, . . . , xn) = f(x1, . . . , xn)
and there exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n] (set of
corrupted parties) of cardinality at most t and every ~x ∈ (0, 1∗)n where |x1| = . . . = |xn| it holds
that:

{S(I, ~xI , fI(~x))} = {V IEW π
I (~x)}

Protocol for t-Private Computation in the Fmult-Hybrid Model

• Inputs: Each party Pi has an input xi ∈ F

• Auxiliary input: Each party Pi has an arithmetic circuit C over the field F computing
the functionality f . The parties aslo have a description of F and distinct nonzero values
α1, . . . , αn ∈ F.

• The protocol

1. Input-sharing stage Each party Pi chooses a polynomial qi(x) uniformly from the set
of all degree t polynomials with constant term xi. For every j: Pi sends qi(αj) to Pj and
records q1(αi), . . . , qn(αi).

2. Circuit emulation stage Let G1, . . . , G` be a predetermined topological ordering of
gates. For k = 1, . . . , `, let βki (and γki ) be the share(s) of input wire(s) held by Pi, the
parties works as follows:
(a) Gk is addition gate – Pi defines its share of output wire δki = βki + γki .
(b) Gk is multiplication by constant c – Pi defines its share of output wire δki = cβki
(c) Gk is multiplication – Pi sends βki , γki to the ideal functionality Fmult and receives

back the share of the output wire δki .
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3. Output reconstruction stage Let o1, . . . , on be output wires, where Pi’s output is oi.
Let βk1 , . . . , βkn be the shares that parties hold for wire ok. Then each Pi sends Pk the
share βki . Upon receiving all shares, Pi computes gk(x) and define its output to be gk(0).

t-Privately Computing Fmult

• Inputs: Each party Pi holds values βi, γi, such that β1, . . . βn as well as γ1, . . . γn determines
a polynomial of degree t.

• The protocol

1. Each party locally computes si = βiγi

2. Randomize: each party Pi sends λ (empty string) to F 2t
rand and receives σi

3. Reduce degree: each party Pi sends (si + σi) to F deg
reduce and receives δi.

4. Pi outputs δi.

Privately Computing F 2t
rand

• Inputs: Parties do not have inputs

• The protocol

1. Each Pi chooses a random polynomial qi(x) ∈R P0,2t. Then for every j ∈ {1, . . . , n} it
sends si,j = qi(αj) to party Pj.

2. Each Pi receives s1,i, . . . , sn,i and computes δi = ∑
j=1...n sj,i.

3. Party Pi outputs δi.

Bibliography

[1] Gilad Asharov, Yehuda Lindell A Full Proof of the BGW Protocol for Perfectly Secure Multiparty Computation
https://link.springer.com/article/10.1007%2Fs00145-015-9214-4
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Karel Král
kralka@iuuk.mff.cuni.cz

Malicious Adversary
as part of a serie Series on Secure Multi-Party Computation

Malicious Adversary
Definition 1 (Corruption-aware parallel VSS - F n

V SS) F n
V SS receives a set of indices I ⊆ [n]

and works as follows:

1. F n
V SS receives an input polynomial qj(x) from every honest Pj (j /∈ I).

2. F n
V SS sends the (ideal model) adversary the corrupted parties’ shares {qj(αi)}j /∈I for every
i ∈ I, based on the honest parties’ polynomials.

3. F n
V SS receives from the (ideal model) adversary an input polynomial qi(x) for every i ∈ I.

4. F n
V SS sends the shares (q1(αj), . . . , qn(αj)) to every party Pj (j = 1, . . . , n). If deg(qi(x)) > t

then ⊥ is sent in place of qi(αj).

Definition 2 (Functionality FA
mat for matrix multiplication, with A ∈ Fn×m) The FA

mat func-
tionality receives as input a set of indices I ⊆ [n] and works as follows:

1. FA
mat receives the inputs of the honest parties {gj(x)}j /∈I ; if a polynomial gj(x) is not received

or its degree is greater than t, then FA
mat resets gj(x) = 0.

2. FA
mat sends shares {gj(αi)}j /∈I;i∈I to the (ideal) adversary.

3. FA
mat receives the corrupted parties’ polynomials {gi(x)}i∈I from the (ideal) adversary; if a

polynomial gi(x) is not received or its degree is greater than t, then FA
mat resets gi(x) = 0.

4. FA
mat computes ~Y (x) = (Y1(x), . . . , Ym(x)) = (g1(x), . . . , gn(x))A.

5. (a) For every j /∈ I, functionality FA
mat sends party Pj the entire length-m vector ~y = ~Y (0),

together with Pj’s shares (g1(αj), . . . , gn(αj)) on the input polynomials.
(b) In addition, functionality FA

mat sends the (ideal) adversary its output: the vector of poly-
nomials ~Y (x) and the corrupted parties’ outputs (~y together with (g1(αi), . . . , gn(αi)), for
every i ∈ I).

Protocol 6.5 (Securely computing FA
mat in the FV SS-hybrid model)

• Inputs: Each party Pi holds a polynomial gi(x).

• Common input: A field description F, n distinct non-zero elements α1, . . . , αn ∈ F, and a
matrix A ∈ Fn×m.

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing
the corruption-aware parallel VSS functionality F n

V SS is given the set of corrupted parties I.

12



• The protocol:

1. Each party Pi checks that its input polynomial is of degree-t; if not, it resets gi(x) = 0.
It then sends its polynomial gi(x) to F n

V SS as its private input.
2. Each party Pi receives the values g1(αi), . . . , gn(αi) as output from F n

V SS. If any value
equals ⊥, then Pi replaces it with 0.

3. Denote ~xi = (g1(αi), . . . , gn(αi)). Then, each party Pi locally computes ~yi = ~xiA
(equivalently, for every k = 1, . . . ,m, each Pi computes Yk(αi) = ∑n

`=1 g`(αi)a`,k where
(a1,k, . . . , an,k)T is the kth column of A, and stores ~yi = (Y1(αi), . . . , Ym(αi))).

4. Each party Pi sends ~yi to every Pj (1 ≤ j ≤ n).

5. For every j = 1, . . . , n, denote the vector received by Pi from Pj by ~̂Y (αj) = Ŷ1(αj), . . . , Ŷm(αj).
(If any value is missing, it replaces it with 0. We stress that different parties may hold
different vectors if a party is corrupted.) Each Pi works as follows:
For every k = 1, . . . ,m, party Pi locally runs the Reed-Solomon decoding procedure
(with d = 2t + 1) on the possibly corrupted codeword (Ŷk(α1), . . . , Ŷk(αn)) to get the
codeword (Yk(α1), . . . , Yk(αn)). It then reconstructs the polynomial Yk(x) and computes
yk = Yk(0).

• Output: Pi outputs (y1, . . . , ym) as well as the shares g1(αi), . . . , gn(αi).

Protocol t-Secure Computation in the (FV SS, Fmult)-Hybrid Model

• Inputs: Each party Pi has an input xi ∈ F.

• Common input: Each party Pi holds an arithmetic circuit C over a field F of size greater
than n, such that for every ~x ∈ Fn it holds that C(~x) = f(~x) where f : Fn → Fn. The parties
also hold a description of F and distinct non-zero values α1, . . . , αn in F.

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing
the (fictiously corruption-aware) functionality FV SS and the corruption-aware functionality
Fmult receive the set of corrupted parties I.

• The protocol:

1. The input sharing stage:

(a) Each party Pi chooses a polynomial qi(x) uniformly at random from the set of degree-
t polynomials with constant-term xi. Then, Pi invokes the FV SS functionality as
dealer, using qi(x) as its input.

(b) Each party Pi records the values q1(αi), . . . , qn(αi) that it received from the FV SS
functionality invocations. If the output from FV SS is ⊥ for any of these values, Pi
replaces the value with 0.

2. The circuit emulation stage: Let G1, . . . , G` be a predetermined topological ordering
of the gates of the circuit. For k = 1, . . . , ` the parties work as follows:
– Case 1 – Gk is an addition gate: Let βki and γki be the shares of input wires held by

party Pi. Then, Pi defines its share of the output wire to be δki = βki + γki .
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– Case 2 – Gk is a multiplication-by-a-constant gate with constant c: Let βki be the
share of the input wire held by party Pi. Then Pi defines its share of the output
wire to be δki = c · βki .

– Case 3 – Gk is a multiplication gate: Let βki and γki be the shares of input wires
held by party Pi. Then Pi sends (βki , γki ) to the ideal functionality Fmult and receives
back a value δki . Party Pi defines its share of the output wire to be δki .

3. The output reconstruction stage:

(a) Let o1, . . . , on be the output wires, where party Pi’s output is the value on wire oi.
For every i = 1, . . . , n denote by βi1, . . . , βin the shares that the parties hold for wire
oi. Then each Pj sends Pi the share βij.

(b) Upon receiving all shares, Pi runs the Reed-Solomon decoding procedure on the
possible corrupted codeword (βi1, . . . , βin) to obtain a codeword (βi1, . . . , β

i

n). Then
Pi computes reconstruct~α(βi1, . . . , β

i

n) and obtains a polynomial gi(x). Finally Pi
then defines its output to be gi(0).
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Pavel Hubáček
hubacek@iuuk.mff.cuni.cz

On Communication Complexity of Secure Computation
as part of a serie Series on Secure Multi-Party Communication

I will present some long-standing open problems about communication complexity of secure com-
putation and explain a lower bound on communication complexity for protocols securely computing
functions with a long output.
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Petr Gregor
gregor@ktiml.mff.cuni.cz

Introduction to Gray Codes as part of a serie Series on Gray Codes

Introduction
A Gray code for some combinatorial class (of bitstrings, permutations, partitions, trees, etc) is a
(cyclic) enumeration of all its elements so that every two consecutive elements differ in some specific
way. It corresponds to a Hamilton cycle in a suitably defined graph. We give a brief introduction to
the area of binary Gray codes. Then we present a short proof of the middle levels theorem obtained
in a joint work with Torsten Mütze and Jerri Nummenpalo [1].

Bibliography
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Introduction
A quasi-Gray code is a sequence of binary of strings over some alphabet (e.g. elements of Znm) such
that consecutive strings differ in only small number of position. Such codes are tightly connected to
the counters – a seemingly simple data structure that represents integer with increment operation.
When designing counters we try to minimize the number of cells we need to read in order to
increment, number of cells we need to write and we want to maximize the length of the counter
(how many different integers it can represent).
This article presents a novel approach to the construction of quasi-Gray codes (or counters) based
on algebraic tools. This leads to space-optimal quasi-Gray codes for odd-sized alphabet with log-
arithmic read complexity and write complexity 2. For binary alphabet, authors achieved similar
complexity, while the code misses only linearly many strings.
In this talk, we will focus on the first part of the article. We will show tools used for composing and
decomposing counters and we will use them to construct the quasi-Gray code for binary alphabet
mentioned above.

Preliminaries
Definition 1 (Counter) A counter of length l over domain D is a cyclic sequence C = (w1, w2, . . . , wl)
of distinct elements from D. We define successor function next(C,wi) such that next(C,wi) = wi+1
for every i ∈ [l − 1] and next(C,wl) = w1. If l = |D|, we say that counter is space-optimal.
Definition 2 (Gray code) A Gray code of length l over domain D = D1 × · · · × Dn is counter
of length l over D such that wi and next(C,wi) differ in exactly one coordinate. By allowing
consecutive tuples to differ in at most c coordinates for some fixed constant c ≥ 1, we get a c-Gray
code or quasi-Gray code if c is not specified.
Definition 3 (Decision Assignment Tree) Let Dn be a domain and 〈x1, . . . , xn〉 be a variables
for an elements of that domain. Decision Assignment Tree (DAT) is a rooted |D|-ary tree such that
each internal node is labeled by one of the xi variables and each outgoing edges are labeled with a
distinct element of D (these represent read operations on the input). Each leaf node is labeled by a
set of assignment instructions assigning some fixed values to a subset of variables.
The read complexity of DAT T , READ(T ), is the maximum length of any path from root to the
leaf. The write complexity, WRITE(T ), is the maximum number of assignments in any leaf node.

Length Read complexity Write complexity
2n n− 1 1
2n−1 log n+ 4 4
2n − 2n−t log n+ t+ 3 2

An example of few known constructions of (quasi-)Gray codes over Zn2 .
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Now, we can state the main results of the article (we will prove only the second one in this talk).
Theorem 4 Let m ∈ N be odd and n ∈ N be sufficiently large. Then there is a space-optimal
quasi-Gray code C over Znm such that next(C,w) can be implemented by DAT with read complexity
at most 4 logm n and write complexity 2.
Theorem 5 Let n ∈ N be sufficiently large. Then there is a quasi-Gray code C of length at least
2n − 20n over Zn2 such that next(C,w) can be implemented by DAT with read complexity at most
6 + log n and write complexity 2.

Chinese remainder theorem for counters
The first tool is based on the well-known Chinese remainder theorem. Using this tool, we can
compose efficient counters for small domains into the counter for larger domain, while keeping the
complexities reasonably small.
Theorem 6 (Chinese Remainder Theorem) Let n1, . . . , nk are pairwise co-prime integers, N =∏k
i=1 ni and a1, . . . , ak are arbitrary integers. Then there exists exactly one integer 0 ≤ x < N such

that x ≡ ai (mod n)i for every i = 1, . . . , k. In other words, there is a bijection (isomorphism in
fact) between ZN and Zn1 × Zn2 × · · · × Znk

.
Theorem 7 (Chinese Remainder Theorem for Counters) Let r ∈ N and Ci for i ∈ [r] are
counters of length li over Di computed by DAT Ti. Moreover, let l ≥ r − 1 and l2, . . . , lr are
pairwise co-prime. Then there exists a DAT T implementing counter C of length ∏r

i=1 li over
D1×· · ·×Dr. Furthermore READ(T ) = n1 +maxri=2(READ(Ti)) and WRITE(T ) = WRITE(T1)+
maxri=2(WRITE(Ti)), where n1 number of variables in T1.

Permutations and decomposition of counters
This tool is based on the fact, that counters are basically nothing more than a cycles in permutations.
By smart decomposition of the underlying permutation, we can design DAT with low complexity.
Lemma 8 Let D be a domain, σ1, . . . , σk permutations on D such that σ = σk ◦ σk−1 ◦ . . . σ1 is
cycle of length l and T1, . . . , Tk DATs implementing σ1, . . . , σk. Let D′ be domain and T ′ a DAT
implementing a counter C ′ of length k′ ≥ k over D′.
Then there exists a DAT T implementing a counter C of length k′l over D×D′ such that READ(T ) =
r′+ maxki=1(READ(Ti)) and WRITE(T ) = WRITE(T ′) + maxki=1(WRITE(Ti)), where r′ is number
of variables in T ′

Counters via linear transformation
Finally, we show the construction of a counter that gives the Theorem 5. The counter is defined
through a repeated application of a particular linear mapping – represented by a matrix of full rank.
By decomposing matrix into elementary matrices and using the lemma from previous section, we
get the desired counter.
Lemma 9 Every invertible matrix A ∈ Fn×n can be written as product of at most n2 + 4(n − 1)
elementary matrices.
Lemma 10 Let z ∈ Znq be a root of primitive polynomial and A be a matrix representing a mapping
x 7→ z · x. Then Znq = {0, 1, z, z2, . . . , zq

n−2} and A can be decomposed into at most n + 4(n − 1)
elementary matrices.
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Introduction
Generating Gray codes is a problem of constructing a cyclic listing of all bitstrings of a length n
with hamming distance of each two following bitstrings is one. This code has widespread use, e.g.
in circuit design and testing, signal processing and error correction etc.
In this talk we mention the middle 2l levels problem where we are looking for a Gray code of middle
2l levels of a hypercube Qn. This problem is connected to a cycle factor of middle 2l levels of Qn

which can be constructed from symmetric chain decomposition(SCD) of a hypercube Qn.
Apart from building Gray codes, SCD have many other interesting applications like construction
of rotation-symmetric Venn diagrams for n sets, where n is a prime number, a Littlewood-Offord
problem on sums of vectors, etc.
The talk will be mostly about a symmetric chain decomposition.

Notation
As Gray code we will understand a Hamiltonian cycle in some subset of n dimensional hypercube
Qn (vertices are bitstrings of a length n and two vertices are connected iff their Hamming distance
is 1) induced by 2l middle levels for l = 1, . . . , n+ 1.
A cycle factor is a collection of disjoint cycles which together visit all vertices of the graph. In
particular, Hamilton cycle is a cycle factor consisting only of a single cycle. This cycle factor can
be obtained from two edge-disjoint symmetric chain decompositions.
A symmetric chain in is a path (xk, xk+1, . . . , xn−k) in the n-cube where xi is from level i for all
k ≤ i ≤ n − k. A symmetric chain decomposition (SCD) is a partition of the vertices of Qn into
symmetric chains.

Middle 2l levels problem
Since introduction of binary reflected Gray code, there has been continued interest in developing
Gray codes for bitstrings of length n that satisfy various additional constraints. One of the studied
constraints is generating Gray code of middle two levels of a cube Qn [3], for cube without vertices
00 . . . 0 and 11 . . . 1 (middle 2n levels) [1] and middle 2(n− 1) levels [2].
Problem M (middle 2l levels problem.) For any n ≥ 1 and 1 ≤ l ≤ n+ 1 construct a cyclic listing
of all bitstrings of length 2n+ 1 with Hamming weights in the interval [n+ 1− l, n+ l] by flipping
a single bit in each step.
Theorem 1. For any n ≥ 1, the subgraph of the (2n + 1)-cube induced by the middle four levels
has a Hamilton cycle.
For general 2l levels a cycle factor can possibly be used as a starting point to Hamiltonian cycle.
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Theorem 2. For any n ≥ 1 and 1 ≤ l ≤ n + 1, the subgraph of the (2n + 1)-cube induced by the
middle 2l levels has a cycle factor.

Symmetric chain decomposition
A Symmetric chain decomposition can be used to find a cycle factor of middle 2l levels cube Qn.
There is well-known construction of two edge disjoint SCDs in the n-cube for any n ≥ 1. This raises
question how many of edge disjoint SCDs we can generate for any n-cube. In this paper we have
an answer for n ≥ 13 and some special cases in following theorems.
Theorem 3. For any even n ≥ 6, the n-cube contains four pairwise edge-disjoint SCDs.
Theorem 4. For n = 7 and any odd n ≥ 13, the n-cube contains four pairwise edge-disjoint SCDs.
Theorem 5. If Qa and Qb each contain k pairwise edge-disjoint SCDs, then Qa+b contains k
pairwise edge-disjoint SCDs.
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Introduction
In this talk we are going to describe a simple single-pass data algorithm using O(ε−2 log n) space
that returns a (α+ 2)(1 + ε) approximation to the size of the maximum matching in a graph of an
arboricity α.

Definitions & Notations
Let G = (V,E) be a graph.
Arboricity α of a graph G is the lowest number of forests into which its edges can be partitioned.
Let match(G) be the maximum size of a matching in a graph G.
Let Eα be the set of edges uv ∈ G where the number of edges incident to u or v that appear in the
stream after uv are both at most α.
Define H to be set of vertices with degree ≥ α+ 1. And we refer to these as the heavy vertices.
For u ∈ V , let Bu be the set of the last α + 1 edges incident to u that arrive in the stream.
An edge uv is good if uv ∈ Bu

⋂
Bv and wasted if uv ∈ Bu ⊕Bv, i.e., the symmetric difference.

We define w = number of good edges with no end points in H, x = number of good edges with
exactly one end point in H, y = number of good edges with two end points in H, z = number of
wasted edges with two end points in H.
Let Gt be the graph defined by the stream prefix of leght t and let Et

α be the set of good edges
with respect to this prefix.

Theorems & Lemmas & Corollaries
Theorem 1. match(G) ≤ |Eα| ≤ (α + 2)match(G)
Corollary of Edmonds’ Theorem. Recall that the Edmond’s Theorem implies that if the weight
of a fractional matching on any induced subgraph G(U) is at most (|U | − 1)/2, then the weight on
the entire graph is at most match(G).
Lemma 1. Let {ye}e∈E be a fractional matching where the maximum weight is ε. It holds that∑
e ye ≤ (1 + ε)match(G).

Theorem 2. With high probability, the algorithm outputs a (1 + ε) approximation of maxt|Et
α|.

Theorem 3. The size of the maximum matching of a graph with arboricity α can be (α+2)(1+ε)-
approximated with high probability using a single pass over the edges of G given O(ε−2 log n) space.
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The Algorithm
The algorithm is a modification of an algorithm for estimating |Eα| designed by Cormode et al. [1].

1 Initialize S ←− ∅, p = 1, estimate = 0
2 for each edge e = uv in the stream do
3 With probability p add e to S and initialize counters cue ←− 0 and cve ←− 0
4 for each edge e′ ∈ S, if e′ shares endpoint w with e do
5 Increment cwe′ ,
6 If cwe′ ≥ α, remove e′ and corresponding counters from S

7 if |S| > 40ε−2 log n then
8 p←− p/2
9 Remove each edge in S and corresponding counters with probability 1/2

10 estimate←− max(estimate, |S|/p)
11 return estimate
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Introduction
We investigate the problem of finding a minimum-area container for the disjoint packing of a set
of convex polygons by translations. In particular, we consider axis-parallel rectangles or arbitrary
convex sets as containers. For both optimization problems which are NP-hard we develop efficient
constant factor approximation algorithms.

Rectangular Containers
Definition 1 Let P be a set of convex polygons, height(p) := difference between maximum and
minimum y-coordinates of a polygon p, 0 < α < 1 and hmax := maxp height(p). We partition P
into height classes P0, P1, ... such that p ∈ Pi ⇐⇒ hi+1 < height(p) ≤ hi, where hi = αihmax.
Algorithm 1

1. Pack each height class Pi separately into a container Bi of height hi.

2. Replace each nonempty container Bi by a collection of axis-aligned mini-containers that are
not too wide. Pack all mini-containers into a single container B.

Lemma 2 The area of the container Bi computed for Pi satisfies
area(Bi) ≤ 2/α ·

∑
p∈Pi

area(p) + 2hi ·max
p∈Pi

width(p)

Theorem 3 Let P be a set of polygons in the plane with n vertices in total. We can pack P in
O(n log n) time into an axis-aligned rectangular container B such that area(B) ≤ 17.45 · OPT ,
where OPT is the minimum area of any axis-aligned rectangular container for P.

Convex Containers
Theorem 4 Let P be a set of convex polygons in the plane with n vertices in total. We can pack
P in O(n log n) time into a convex polygon B such that area(B) ≤ 27 · OPT , where OPT is the
minimum area of any convex container for P.
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Introduction
Lovász Local Lemma is a probabilistic technique to get an existence proof in settings where events
are only sparsely dependent. We will use this lemma to get an upper bound on variable strenght
covering array (VCA). We will compare this bound with known bounds on several classes of hyper-
graphs.
Definition 1 (VCA & VCAN) Let H = (V,E) be a hypergraph and let k = |V |. A variable
strength covering array, denoted V CA(n;H, v), is an n × k array M filled from Zv such that for
e = {v0, . . . , vt−1} ∈ E, the n × t subarray of columns indexed by e is covered, that is it has every
possible t-tuple in Zv as a row at least once. The variable-strength covering array number, written
V CAN(H, v), is the smallest n such that a V CA(n;H, v) exists.
Theorem 2 (Lovász local lemma - Symmetric Case) Consider a finite set of events A =
{A0, . . . , Am−1} in a probability space Ω such that each event occurs with probability at most p < 1,
and each event is independent of all but at most d of the other events. If ep(d+ 1) ≤ 1, where e is
the base of the natural logarithm, then the probability that none of the events occur is nonzero.

Main result
Theorem 3 Let H = (V,E) be a hypergraph with rank(H) = t ≥ 1, and let d be an integer such
that no edge of H intersects more than d other edges of H. Then, for any v ≥ 2, we have:

V CAN(H, v) ≤
 ln (d+ 1) + t ln v + 1

ln vt

vt−1

 (1)

Definition 4 A design is a pair (X,A) such that the following properties are satisfied: X is a set
of elements called points, and A is a collection (i.e., multiset) of nonempty subsets of X called
blocks.
Definition 5 Let v, k, and λ be a positive integers such that v > k ≥ 2. A t-(v, k, λ) balanced
incomplete block design (BIBD) is a design (X,A) such that the following properties are satisfied:
|X| = v, each block contains exactly k points, each t-element subset of X is contained in exactly λ
blocks.
Sometimes we use notation (v, b, r, k, λ) to emphasize number of blocks r and in how many blocks
each point occurs r. These two parameters depend only on v, k, λ.
Definition 6 The cyclic consecutive hupergraph is Hk,t

c = (V,E) with V = {0, . . . , k − 1} and
E = {{i, i+ 1 mod k, . . . , i+ t− 1 mod k} : 0 ≤ i ≤ k − 1}
Definition 7 A triangulation hypergraph of the sphere, T = (V,E) is a rank-3 hypergraph which
corresponds to a planar graph all of whose faces are triangles; the rank-3 hyperedges are precisely
the faces of the planar embedding.
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A short and visual report on an elegant improvement of the plane coloring problem (Hadwiger-
Nelson problem). We will state the problem, recall the known simple upper and lower bounds, and
sketch the main idea of a construction showing that the chromatic number of the plane is at least 5.
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Abstract
Wiles’s proof of Fermat’s Last Theorem (FLT) has stimulated a lively discussion on how much
is actually needed for the proof. Despite the fact that the original proof uses set-theoretical as-
sumptions unprovable in Zermelo-Fraenkel set theory with axiom of choice (ZFC) - namely, the
existence of Grothendieck universes - it is widely believed that "certainly much less than ZFC is
used in principle, probably nothing beyond Peano arithmetic, and perhaps much less than that."
(McLarty)
In this talk, I will present a joint work with V. Kala. We studied (un)provabiliy of FLT and
Catalan’s conjecture in arithmetical theories with weak exponentiation, i.e. in theories in the
language L = (0, 1,+, x, exp,<) where the (0, 1,+, x, <)-fragment is usually very strong (often
even the complete theory Th(N) of natural numbers in that language) but the exponentiation
satisfies only basic arithmetical properties and not much of induction. In such theories, Diophantine
problems such as FLT or Catalan’s conjecture, are formalized using the exponentiation exp instead
of the exponentiation definable in the (0, 1,+, x, <)-fragment.
I will present a natural basic set of axioms Exp for exponentiation (consisting mostly of elemen-
tary identities) and show that the theory T = Th(N) + Exp is strong enough to prove Catalan’s
conjecture, while FLT is still unprovable in T . This gives an interesting separation of strengths of
the two famous Diophantine problems. Nevertheless, I show that by adding just one more axiom
for exponentiation (the, so called, "coprimality" of exp) the theory becomes strong enough to prove
FLT, i.e. FLT is provable in T+"coprimality". (Of course, in the proof of this, we use the Wiles’s
result too.)
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Abstract
Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans’ ability to represent
the mental states of others, including their desires, beliefs, and intentions. We propose to train
a machine to build such models too. We design a Theory of Mind neural network – a ToMnet –
which uses meta-learning to build models of the agents it encounters, from observations of their
behaviour alone. Through this process, it acquires a strong prior model for agents’ behaviour, as
well as the ability to bootstrap to richer predictions about agents’ characteristics and mental states
using only a small number of behavioural observations. We apply the ToMnet to agents behaving
in simple gridworld environments, showing that it learns to model random, algorithmic, and deep
reinforcement learning agents from varied populations, and that it passes classic ToM tasks such
as the “Sally-Anne” test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that
others can hold false beliefs about the world. We argue that this system – which autonomously
learns how to model other agents in its world – is an important step forward for developing multi-
agent AI systems, for building intermediating technology for machine-human interaction, and for
advancing the progress on interpretable AI.
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Introduction
Maximum Induced Matching Width (or mim-width for short) is a width parameter for graphs that
was introduced by Vatshelle in 2012 [3]. One of its distinguishing features is that many well-studied
graph classes such as e.g. Interval, Permutation or Circular Arc graphs have constant mim-
width [1]. In fact, the linear mim-width of Interval and Permutation graphs is just 1, whereas
these classes contain graphs whose clique-width is proportional to the square-root of the number of
their vertices. In this talk we discuss a recently observed characterization of graphs of linear mim-
width 1 in terms of linear orders defined with respect to neighborhood containment; and invite to
further investigation.

Preliminaries
For a positive integer n, we let [n] = {1, . . . , n}. Let G be a graph. For two (disjoint) vertex sets
X, Y ⊆ V (G), we denote by G[X, Y ] the bipartite subgraph of G with bipartition (X, Y ) such that
for x ∈ X, y ∈ Y , x and y are adjacent in G[X, Y ] if and only if they are adjacent in G. For
a vertex set X ⊆ V (G), we denote by mimG(X) the maximum size of any induced matching in
G[X, V (G) \X].
Definition 1 Let G be an n-vertex graph and σ : V (G) → [n] a linear order on its vertices. Let
v1, . . . , vn denote the vertices of G ordered according to σ. The maximum induced matching width of
σ is defined as maxi∈[n−1] mimG({v1, . . . , vi}). The linear mim-width of G is defined as the minimum
mim-width over all linear orders of V (G).
Definition 2 Let G be an n-vertex graph and σ : V (G)→ [n] a linear order and denote by v1, . . . , vn
the vertices of G ordered according to σ. A linear order ρ : V (G)→ [n] is called

1. a left neighborhood nesting w.r.t. σ if for all i ∈ [n] and x, y ∈ {v1, . . . , vi} with ρ(x) ≤ ρ(y),
N(x) ∩ {vi+1, . . . , vn} ⊆ N(y) ∩ {vi+1, . . . , vn}, and

2. a right neighborhood nesting w.r.t. σ if for all i ∈ [n] and x, y,∈ {vi, . . . , vn} with ρ(x) ≤ ρ(y),
N(x) ∩ {v1, . . . , vi−1} ⊆ N(y) ∩ {v1, . . . , vi−1}.

If ρ is a left (right) neighborhood nesting w.r.t. σ then we also say that σ admits the left (right)
neighborhood nesting ρ.
The following observation is made from the fact that a bipartite graph has maximum induced
matching size 1 if and only if it is a bipartite chain graph.
Observation 3 Let G be a graph and σ : V (G)→ [n] a linear order.

1. There is a left neighborhood nesting w.r.t. σ if and only if there is a right neighborhood nesting
w.r.t. σ.

2. The order σ has linear mim-width 1 if and only if σ admits a neighborhood nesting.
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Characterizations of LM-1 Graph Classes
Investigating graph classes of linear mim-width 1 through the lens of neighborhood nestings, we
find the following characterization of Interval graphs.
Lemma 4 An n-vertex graph G is an Interval graph if and only if there exists a linear order
σ : V (G)→ [n] that admits a neighborhood nesting ρ with σ = ρ.
For Permutation graphs, we have the following (partial) characterization, where for a linear order
ρ : V (G)→ [n], its reverse rev(ρ) = ρ′ is defined as ρ′(x) = n− ρ(x) + 1 for all x ∈ V (G).
Proposition 5 If an n-vertex graph G is a Permutation graph then there exists a linear order
σ : V (G)→ [n] that admits a left neighborhood nesting ρL and a right neighborhood nesting ρR such
that ρR = rev(ρL).
We expect the condition stated in the previous proposition to be a precise characterization for
Permutation graphs. We therefore pose the following conjecture.
Conjecture 6 A graph G is a Permutation graph if and only if there exists a linear order
σ : V (G)→ [n] that admits a left neighborhood nesting ρL and a right neighborhood nesting ρR such
that ρL = rev(ρR).
On all graph classes that are known to have linear mim-width 1 the Hamiltonian Cycle problem
is solvable in polynomial time. Very recently, a superset of the authors showed that Hamiltonian
Cycle is NP-complete on graphs of linear mim-width 1 [2], implying that there are more graphs
of linear mim-width 1. Neighborhood nestings might be a useful tool in further identifying natural
(sub-) classes of graphs that have linear mim-width 1.
Open Question 7 Can other relations (and operations) on neighborhood nestings lead to more
characterizations of natural graph classes of linear mim-width 1?
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Introduction
In 1981, Jaeger proposed the following conjecture (Circular Flow Conjecture or Modulo Orientation
Conjecture):
Conjecture 1 Every 4p-edge-connected graph admits a modulo (2p+ 1)-orientation
Kochol also suggested a seemly weaker conjecture:
Conjecture 2 Every (4p+ 1)-edge-connected graph admits a modulo (2p+ 1)-orientation.
We will show, that these conjectures are generally not true. Jaeger’s conjecture doesn’t hold for
p ≥ 3 and Kochol’s conjecture for p ≥ 5.
Theorem 3 For every integer p ≥ 3, there exists a 4p-edge-connected graph admitting no modulo
(2p+ 1)-orientation.
Theorem 4 For every integer p ≥ 5, there exists a (4p + 1)-edge-connected graph admitting no
modulo (2p+ 1)-orientation.

Definitions
Let D be an orientation of edges of graph G, let E+

D(v) be the set of outgoing edges from v and
E−D(v) be the set of ingoing edges to v.
Definition 5 Orientation D of graph G is called modulo k-orientation if for every v ∈ V (G) holds:

|E+
D(v)| ≡ |E−D(v)| (mod k)

In the construction of counterexamples we will use simple operation, which makes from smaller
graphs with no modulo (2p+ 1)-orientation the new graph with the same property. The operation
is called 2-sum.
Definition 6 Let H1 and H2 be two graphs with u1, v1 ∈ V (H1), u2, v2 ∈ V (H2), such that number
of parallel edges between u1 and v1 is at least (2p− 1). Define H = H1 ⊕H2, the 2-sum of H1 and
H2, to be the graph obtained from H1 and H2 by deleting 2p− 1 edges between u1 and v1 in H1 and
then identifying u1 and u2 to be a new vertex u, and identifying v1 and v2 to be a new vertex v.

Construction for theorem 3
Construction starts with complete graph K4p on 4p vertices which does not admit modulo (2p+ 1)-
orientation. Let p ≥ 3 be an integer and {v1, v2, . . . v4p} be the vertex set of the complete graph
K4p.
Steps of construction are as follows:

1. Construct the graph G1 from K4p by adding an additional set T of edges such that V (T ) =
{v1, v2, . . . , v3(p−1)} and each component of the edge-induced subgraph G1[T ] is a triangle.
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2. Construct a graph G2 from G1 by adding two new vertices z1 and z2, adding one edge z1z2,
adding (p − 2) parallel edges connecting v4p and zj for j = 1, 2 and adding one edge vizj for
each 3p− 2 ≤ i ≤ 4p− 1 and j = 1, 2.

3. Denote by C4p+1 the cycle of length 4p + 1 with V (C) = {ci : i ∈ Z4p+1} and E(C4p+1) =
{cici+1 : i ∈ Z4p+1}. Let W = (2p − 1)C4p+1 · K1 be the graph obtained from C4p+1 by
replacing each edge cici+1 with 2p− 1 parallel edges and then adding a center vertex joining
each vertex ci in the cycle.

4. For each ci, ci+1 (i ∈ Z4p+1) in W and z1, z2 in copy of G2, apply the 2-sum operation. Let M
be the resulting graph.

In the proof we show that graphs G1, G2 and W admit no modulo (2p+1)-orientation. The validity
of the theorem then comes from property of 2-sum operation and the fact, that M is 4p-edge-
connected graph.

Construction for theorem 4
The construction and the proof of theorem 4 are almost the same as for the theorem 3. The main
difference is that p ≥ 5 and instead of graph G2 we are using another graph G3 with no edge-cut of
size 4p not separating z1 and z2.
Graph G3 is constructed as follows:

1. Construction starts with complete graph K4p with vertices {v1, v2, . . . v4p}.

2. Let q = d2p−1
3 e. Construct graph G′ from the complete graph K4p by adding an additional

set T ′ of edges such that V (T ′) = {v1, v2, . . . , v3q} and each component of the edge-induced
subgraph G′1[T ] is a triangle.

3. Construct a graph G′2 from G′1 by adding two new vertices z′1 and z′2, adding one edge z′1z′2,
adding (3q − 2p + 2) parallel edges connecting v4p−1 and z′j for j = 1, 2 and adding one edge
viz
′
j for each 3q + 1 ≤ i ≤ 4p− 2 and j = 1, 2.

4. Let G1
2, G

2
2, G

3
2 be three copies of G′2. Construct a graph G3 from these three copies of G′2

by identifying the corresponding z′1 in G1
2 and G2

2 to be a new vertex y1 identifying the
corresponding z′2 in G2

2 and G3
2 to be a new vertex y2, and adding a triangle connecting the

corresponding vv4’s of G1
2, G

2
2 and G3

2. Relabel z′2 in G1
2 as x1 and z′1 in G3

2 as x2.

The last step is to apply the 2-sum operation for each ci, ci+1 (i ∈ Z4p+1) in W and x1, x2 in copy
of G3. Let M ′ be the resulting graph.
Outline of the proof is basically the same as for the theorem 3.
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Parameterized Algorithm for Eternal Vertex Cover
(https://www.sciencedirect.com/science/article/pii/S0020019010001602)

Introduction
In this paper, we will talk about a combinatorial game played on a graph. The first player controls
a set of guards, which he initially places on vertices of the graph. The second player repeatedly
chooses one edge on which he attacks. The first player must defend against the attack by moving
one of his guards along the attacked edge, otherwise he loses the game. During his turn, he can
move each guard into a neighboring vertex. Note that if some configuration of guards is able to
defend against any attack, the vertices on which the guards are placed create a vertex cover. Eternal
Vertex Cover is a configuration of guards, which can defend the graph against any infinite sequence
of attacks.
The main result is a parameterized algorithm for deciding, whether k guards can eternally defend
the graph. We do that by showing that the problem admits a kernel of size 4k(k+ 1) + 2k and also
show that the problem is fixed parameter tractable. We also present a proof of NP-hardness for the
problem and a 2-approximation algorithm.

Parameterized complexity
Definition 1 FPT (fixed parameter tractable) is a class of problems, which may be solved in time
f(k)nO(1), where n is the size of the input, k is some parameter of the input and f is some computable
function.
Definition 2 Kernelization is transformation of instance of some problem into a smaller instance,
for which the result is the same as for the original instance. The resulting smaller instance is called
a kernel.

Definitions
Definition 3 Eternal Vertex Cover is a set of guards placed on vertices of the graph, which,
given certain rules, can eternally defend G from attacks on any of its edges. The rules are as
follows:

• At the beginning of each turn, only one edge will be attacked.

• At least one of the guards must move along the attacked edge.

• A guard can move from his vertex to any neighboring vertex.

• Any amount of guards can move in the same turn.

• The resulting configuration of guards must again be an Eternal Vertex Cover.

Notation
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vc(G) denotes the size of the smallest vertex cover on G.
evcn(G) dontes the size of the smallest Eternal Vertex Cover on G.

Theorems
Lemma 4 For any graph G, vc(G) ≤ evcn(G) ≤ 2vc(G).
Proposition 5 It is NP-hard to decide whether k guards can eternally protect all the edges of a
graph.
Lemma 6 There is a 2-approximation algorithm for finding evcn(G) with running time O(

√
n ·m),

where n is the number of vertices and m is the number of edges of the input graph.
Lemma 7 Deciding whether (I, J ) is an e-edge in the configuration graph G can be done in time
nO(1).
Lemma 8 For a graph G, evcn(G) ≤ k ⇐⇒ the configuration graph G = (V , E) for G and k is
non-empty after recursively removing all the unsafe vertices of G, and this property can be checked
in time O(|E| · |V|).
Theorem 9 Given a graph G on n vertices, it is possible to compute evcn(G) in time O(64n ·nO(1))
Lemma 10 Let G be a graph on n vertices and m edges. Then evcn(G) ≤ k ⇐⇒ evcn(G(S)) ≤ k,
where G(S) is the kernel for G and G(S) can be constructed in time O(nm).
Theorem 11 Given a graph G on n vertices and m edges and integer k, we can obtain a kernel
for Eternal Vertex Cover with at most k′ = 4k(k + 1) + 2k vertices in time O(nm).
Theorem 12 Let G be a graph on n vertices and m edges and k be a positive integer. It is possible
to check whether evcn(G) ≤ k in time O(2O(k2) + nm).
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Edge Colouring of Cubic Graphs

Abstract
We discuss selected ideas and algorithms that can be used to improve running times of the al-
gorithms deciding the chromatic index of cubic graphs. We show two ways how to transform a
3-edge-coloring into improper 2-vertex coloring using balanced valuations [1, 2] or embeddings into
orientable surfaces. Finally, we sketch how Hilbert’s Nullstellensatz can be used to provide a cer-
tificate that a graph is not 3-edge-colourable.
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Abstract
The paper consider the following problem for a fixed graph H: given a graph G and two H-colorings
of G, i.e. homomorphisms from G to H, can one be transformed (reconfigured) into the other by
changing one color at a time, maintaining an H-coloring throughout. This is the same as finding
a path in the Hom(G,H) complex. For H = Kk this is the problem of finding paths between
k-colorings, which was shown to be in P for k ≤ 3 and PSPACE-complete otherwise by Cereceda
et al. 2011. We generalize the positive side of this dichotomy by providing an algorithm that
solves the problem in polynomial time for any H with no C4 subgraph. This gives a large class of
constraints for which finding solutions to the Constraint Satisfaction Problem is NP-complete, but
finding paths in the solution space is P.
The algorithm uses a characterization of possible reconfiguration sequences (paths in Hom(G,H),
whose main part is a purely topological condition described in algebraic terms of the fundamental
groupoid of H seen as a topological space.

Figures

Figure 1: A sequence of 3-colorings of C5 and the same sequence seen as a K3-recoloring sequence
of homomorphisms from C5 to K3 (a graph with three vertices: striped red, checkered green, dotted
blue). One vertex of C5 is thickened for clarity.
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Figure 2: Examples of two walks (in a ’dumbbell’ graph H on 10 vertices) which reduce to the
same, bottom left one. The bottom right one is a different reduced walk; when its endpoints are
fixed, it cannot be distorted as a curve to give any of the others.

· =

· =

Figure 3: Examples of · multiplication in the fundamental groupoid of H = C5.

q

α qβ S(q)

Figure 4: A realizable walk for α, β : K2 → H and q. Note that the shortest walk from α(q) to β(q)
(of length 3) is not realizable because of parity.
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u
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α

u

v

β S(u)

S(v)α(u) S(u)

S(v)

α(W ) β(W )

Figure 5: Intuitively, if α can be transformed to β by reconfiguration, then it can by a homotopy
ϕ : [0, 1] × [0, |W |] → H such that ϕ(0, ·) = α(W ) and ϕ(1, ·) = β(W ). Let S(u) = ϕ(·, 0) and
S(v) = ϕ(·, |W |). Since ϕ is a continuous mapping of a rectangle to H and since the boundary
of the rectangle can be contracted to a point, the image of this boundary can also be contracted:
α(W )−1 · S(u) · β(W ) · S(v)−1 = ε.

Figure 6: Left: walking along the 10 edges of the thin black graph gives a tight walk containing
all vertices, so no reconfiguration step is possible. Middle: walking along one cycle, the bridge, the
second cycle, and then back along the bridge, gives a tight closed walk containing all vertices, so no
reconfiguration step is possible. Right: no closed walk is tight, but the 4 middle vertices are frozen.

v3
v2

v1

q

α

v3

v2v1

q

β S(q)?
Figure 7: Two H-colorings α, β of an 8-cycle, where H is the gray graph on 9 vertices. Even though
no vertex is frozen, α cannot be reconfigured to β. The red and green walks are not realizable for
α, β, q because of parity. The blue walk has good parity, but is not topologically valid (imagine
continuously deforming the 8-cycle by pulling q along the blue path—the cycle would necessarily
end up stretched around the triangle).
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as part of a serie Series on Gray Codes
(https://arxiv.org/abs/1712.01834v1)

Introduction
A quasi-Gray code is a sequence of binary of strings over some alphabet (e.g. elements of Znm) such
that consecutive strings differ in only small number of position. Such codes are tightly connected to
the counters – a seemingly simple data structure that represents integer with increment operation.
When designing counters we try to minimize the number of cells we need to read in order to
increment, number of cells we need to write and we want to maximize the length of the counter
(how many different integers it can represent).
This article presents a novel approach to the construction of quasi-Gray codes (or counters) based
on algebraic tools. This leads to space-optimal quasi-Gray codes for odd-sized alphabet with log-
arithmic read complexity and write complexity 2. For binary alphabet, authors achieved similar
complexity, while the code misses only linearly many strings.
In this talk, we will focus on the first part of the article. We will show tools used for composing and
decomposing counters and we will use them to construct the quasi-Gray code for binary alphabet
mentioned above.

Preliminaries
Definition 1 (Counter) A counter of length l over domain D is a cyclic sequence C = (w1, w2, . . . , wl)
of distinct elements from D. We define successor function next(C,wi) such that next(C,wi) = wi+1
for every i ∈ [l − 1] and next(C,wl) = w1. If l = |D|, we say that counter is space-optimal.
Definition 2 (Gray code) A Gray code of length l over domain D = D1 × · · · × Dn is counter
of length l over D such that wi and next(C,wi) differ in exactly one coordinate. By allowing
consecutive tuples to differ in at most c coordinates for some fixed constant c ≥ 1, we get a c-Gray
code or quasi-Gray code if c is not specified.
Definition 3 (Decision Assignment Tree) Let Dn be a domain and 〈x1, . . . , xn〉 be a variables
for an elements of that domain. Decision Assignment Tree (DAT) is a rooted |D|-ary tree such that
each internal node is labeled by one of the xi variables and each outgoing edges are labeled with a
distinct element of D (these represent read operations on the input). Each leaf node is labeled by a
set of assignment instructions assigning some fixed values to a subset of variables.
The read complexity of DAT T , READ(T ), is the maximum length of any path from root to the
leaf. The write complexity, WRITE(T ), is the maximum number of assignments in any leaf node.

Length Read complexity Write complexity
2n n− 1 1
2n−1 log n+ 4 4
2n − 2n−t log n+ t+ 3 2

An example of few known constructions of (quasi-)Gray codes over Zn2 .
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Now, we can state the main results of the article (we will prove only the second one in this talk).
Theorem 4 Let m ∈ N be odd and n ∈ N be sufficiently large. Then there is a space-optimal
quasi-Gray code C over Znm such that next(C,w) can be implemented by DAT with read complexity
at most 4 logm n and write complexity 2.
Theorem 5 Let n ∈ N be sufficiently large. Then there is a quasi-Gray code C of length at least
2n − 20n over Zn2 such that next(C,w) can be implemented by DAT with read complexity at most
6 + log n and write complexity 2.

Chinese remainder theorem for counters
The first tool is based on the well-known Chinese remainder theorem. Using this tool, we can
compose efficient counters for small domains into the counter for larger domain, while keeping the
complexities reasonably small.
Theorem 6 (Chinese Remainder Theorem) Let n1, . . . , nk are pairwise co-prime integers, N =∏k
i=1 ni and a1, . . . , ak are arbitrary integers. Then there exists exactly one integer 0 ≤ x < N such

that x ≡ ai (mod n)i for every i = 1, . . . , k. In other words, there is a bijection (isomorphism in
fact) between ZN and Zn1 × Zn2 × · · · × Znk

.
Theorem 7 (Chinese Remainder Theorem for Counters) Let r ∈ N and Ci for i ∈ [r] are
counters of length li over Di computed by DAT Ti. Moreover, let l ≥ r − 1 and l2, . . . , lr are
pairwise co-prime. Then there exists a DAT T implementing counter C of length ∏r

i=1 li over
D1×· · ·×Dr. Furthermore READ(T ) = n1 +maxri=2(READ(Ti)) and WRITE(T ) = WRITE(T1)+
maxri=2(WRITE(Ti)), where n1 number of variables in T1.

Permutations and decomposition of counters
This tool is based on the fact, that counters are basically nothing more than a cycles in permutations.
By smart decomposition of the underlying permutation, we can design DAT with low complexity.
Lemma 8 Let D be a domain, σ1, . . . , σk permutations on D such that σ = σk ◦ σk−1 ◦ . . . σ1 is
cycle of length l and T1, . . . , Tk DATs implementing σ1, . . . , σk. Let D′ be domain and T ′ a DAT
implementing a counter C ′ of length k′ ≥ k over D′.
Then there exists a DAT T implementing a counter C of length k′l over D×D′ such that READ(T ) =
r′+ maxki=1(READ(Ti)) and WRITE(T ) = WRITE(T ′) + maxki=1(WRITE(Ti)), where r′ is number
of variables in T ′

Counters via linear transformation
Finally, we show the construction of a counter that gives the Theorem 5. The counter is defined
through a repeated application of a particular linear mapping – represented by a matrix of full rank.
By decomposing matrix into elementary matrices and using the lemma from previous section, we
get the desired counter.
Lemma 9 Every invertible matrix A ∈ Fn×n can be written as product of at most n2 + 4(n − 1)
elementary matrices.
Lemma 10 Let z ∈ Znq be a root of primitive polynomial and A be a matrix representing a mapping
x 7→ z · x. Then Znq = {0, 1, z, z2, . . . , zq

n−2} and A can be decomposed into at most n + 4(n − 1)
elementary matrices.
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Introduction
Connected Vertex Cover is one of the classical problems of computer science. In the talk we first
prove that the number of minimal connected vertex covers of a general graph is at most 1.8668n
and show an algorithm that enumerates these sets in time O(1.8668n). Second, we show that for
chordal graphs there exist a tight bound on the maximum number of minimal connected vertex
covers. And we show the relation between maximum numbers of minimal vertex cover and minimal
connected vertex cover.

Definitions
We use the following notation. For a vertex v, we denote by NG(v) the (open) neighborhood of v,
i.e., the set of vertices that are adjacent to v in G. The closed neighborhood is NG[v] = NG(v)∪{v}.
We useG[U ] to denote the subgraph ofG induced by U ⊂ V (G), we use G−U to denoteG[V (G)\U ].
A set of vertices U ⊆ V (G) is a vertex cover of G if for every uv ∈ E(G), u ∈ U or v ∈ U . A vertex
cover U is connected if U is a connected set. A (connected) vertex cover U is minimal if no proper
subset of U is a (connected) vertex cover. A set of vertices is an independent set if there is no edge
between any pair of these vertices.
A vertex v is a cut vertex of a connected graph G if G− v is disconnected.
A graph G is chordal if the length of a longest induced cycle in G is at most three.
Note 1 U is a (minimal) vertex cover of G if and only if V (G) \ U is a (maximal) independent
set of G.
Note 2 If v is a cut vertex, then v belongs to every connected vertex cover.

Theorems and algorithms
Theorem 3 The maximum number of minimal vertex covers of an arbitrary graph is at most 3n/3,
and these can be enumerated in time O(3n/3).
Algorithm: EnumMIS(S, F)
Input: Two disjoint sets S, F ⊆ V (G).
Output: Maximal independent sets of G such that they contains S.
1. if F = ∅ then output S if S is a maximal independent set, stop;
2. if ∃v in F such that it has no neighbours in F then EnumMIS(S ∪ {v}, F \ {v});
3. else if ∃v in F such that it has exactly one neighbour u in F then

EnumMIS(S ∪ {v}, F \ {u, v}), EnumMIS(S ∪ {u}, F \ {NG[u]})
4. else (every vertex v in F has at least two neighbours in F ) pick any v ∈ F ,

for every vertex u in NG[v] do EnumMIS(S ∪ {u}, F \NG[u]);

;
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Theorem 4 The maximum number of minimal connected vertex covers of an arbitrary graph is at
most 1.8668n, and these can be enumerated in time O(1.8668n).
Algorithm: EnumCVC(S, F)
Input: Two disjoint sets S, F ⊆ V (G).
Output: Minimal connected vertex covers U such that S ⊆ U ⊆ S ∪ F .
1. if S is a minimal connected vertex cover then return S and stop;
2. if F = ∅ then stop;
3. if there are two adjacent vertices u, v ∈ F then branch as follows;

1. select u, i.e., set S ′ = S ∪ {u}, F ′ = F \ {u}, call EnumCVC(S ′, F ′)

2. discard u and select its neighbours, i.e., set S ′ = S ∪NG(u), F ′ = F \NG[u], call
EnumCVC(S ′, F ′)

4. if F is an independent set then
let s be the number of components of G[S]. Consider every nonempty set X ⊆ F of size
at most s− 1 and output S ∪X if S ∪X is minimal connected vertex cover.

Theorem 5 The maximum number of minimal connected vertex covers of a chordal graph is at
most 3n/3, and these can be enumerated in time O(3n/3).
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Introduction
In modern algorithm design, often data is high-dimensional, and one seeks to first pre-process
the data via some dimensionality reduction scheme that preserves geometry in such a way that
is acceptable for particular applications. The lower-dimensional embedded data has the benefit of
requiring less storage, less communication bandwith to be transmitted over a network, and less time
to be analyzed by later algorithms.
A cornerstone dimensionality reduction result is the following Johnson-Lindenstrauss (JL) lemma [1].

Theorem 1 (JL lemma) Let X ⊂ Rd be any set of size n, and let ε ∈ (0, 1/2) be arbitrary. Then
there exists a map f : X → Rm for some m = O(ε−2 lg n) such that

∀x, y ∈ X, (1− ε) ‖x− y‖2
2 ≤ ‖f(x)− f(y)‖2

2 ≤ (1 + ε) ‖x− y‖2
2 . (2)

Main Result
In this paper, the authors settle the optimality of the JL lemma for almost the full range of ε.

Theorem 2 For any integers n, d ≥ 2 and ε ∈ (lg0.5001 n/
√

min{n, d}, 1), there exists a set of points
X ⊂ Rm of size n such that any map f : X → Rm providing the guarantee (2) must have

m = Ω(ε−2 lg(ε2n)).

Ingredients
Let e1, . . . , ed denote the standard unit vectors in Rd. For any set S ⊂ [d] of k = ε−2/256 indices,
define a vector yS = ∑

j∈S ej/
√
k. Let Q = n − d − 1. For every Q-tuple γ of sets S1, . . . SQ ⊂ [d]

define a point sequence Pγ as (0, e1, . . . , ed, yS1 , . . . , ySQ
). Our goal is to show that images of these

sequences must be very different via an encoding argument.
Lemma 3 Let T be an origin symmetric convex body in Rm. For any 0 < ε < 1, one can cover T
using at most 2m lg(1+2/ε) translated copies of εT .
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Introduction
Definition 1 A subset S of V is said to be a connected vertex cover if it is a vertex cover and S
induces a connected subgraph.
The Connected Vertex Cover problem is to determine a minimum vertex cover of a graph G
that induces a connected subgraph.
Definition 2 Let H be a graph, then another graph G is H-free if in G there is no induced subgraph
isomorphic to H.
Definition 3 A linear forest is a graph formed from the disjoint union of paths.
This is a well-studied problem, known to be NP -complete for restricted graph classes, and, in
particular, for H-free graphs if H is not a linear forest. We prove that Connected Vertex
Cover is polynomial-time solvable for sP1 + P5-free graphs for each integer s ≥ 0, providing an
explicit algorithm.
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Introduction
The paper “proposes a combinatorial approach to planning non-colliding trajectories for a polyg-
onal bar-and-joint framework. It is based on a new class of simple motions induced by expansive
one-degree-of-freedom mechanisms, which guarantee noncollisions by moving all points away from
each other. Their combinatorial structure is captured by pointed pseudo-triangulations, a class
of embedded planar graphs for which we give several equivalent characterizations and exhibit rich
rigidity theoretic properties. The main application is an efficient algorithm for the Carpenter’s Rule
Problem: convexify a simple bar-and-joint planar polygonal linkage using only non-self-intersecting
planar motions.” (Streinu, 2005)

Pseudo Triangulations
Definition 1 A vertex in an embedded graph is called pointed, if all edge vectors around that
vertex are strictly contained in one half-plane. A pointed graph is an embedding (in R2), such
that all vertices are pointed. A simple polygon is a planar embedding of a cycle graph.
Definition 2 A pseudo-triangle is a simple polygon with exactly 3 convex vertices (corners).
Definition 3 A pseudo-triangulation is a graph-embedding whose outer face is convex and all
interior faces are pseudo-triangles.
Aminimum-pseudo-triangulation has the least number of edges among all pseudo-triangulations
on the same point set.
A pointed pseudo-triangulation is pointed as a graph.

Figure 8: Pointed and non-
pointed vertex.

Figure 9: Pseudo triangle
(three convex corners)

Figure 10: Pseudo Triangu-
lation, that is pointed.

Theorem 4 (Characterisation of Pseudo-Triangulations) G = (V,E) an embedded graph,
then the following are equivalent:

1. G is a minimum-pseudo-triangulation.

2. G is a pointed pseudo-triangulation.
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3. G is a pseudo-triangulation with 2n− 3 edges (and equivalently n− 2 faces).

4. G is planar, pointed and has 2n− 3 edges.

5. G is planar, pointed and maximal (w.r.t. edge-inclusion) with that property.

Moreover, if one of the above conditions holds, then G is a Laman-Graph.
Definition 5 A Laman-minus-one graph, is a Laman-graph, with one edge removed.
Subgraphs, that induce exactly 2n′ − 3 edges, are called r-components. (These are Laman-graphs
themselves.)
Lemma 6 The edge set of a Laman-minus-one graph is partitioned into (disjoint) r-components.

Figure 11: A Laman-minus-one graph and its r-components

Rigidity
Definition 7 A (bar-and-joint) framework (G,L) is a graph G = (V,E) together with a set of
strictly positive weights L = {`e : e ∈ E} (edge lengths).
An realisation G(P) of (G,L) on a set of points P = {p1, . . . , pn} ⊂ R2 is a mapping i 7→ pi of
vertices to points, s.t. ‖pi − pj‖ = `e, where e = (ij).
Definition 8 The set of all possible realisations of a framework p = (x1, y1, . . . , xn, yn) ∈ R2n (up
to rigid motion), is called its configuration space
The dimension of the component of the configuration space, containing a framework (realisation)
G(P) is called number of degrees of freedom.
If that is component an isolated point, G(P) is called rigid, otherwise it is flexible.
Definition 9 A rigid framework is called minimal, if removing any edge would make it flexible.
Definition 10 v = (v1, . . . , vn) is called infinitesimal movement, if

〈pi − pj , vi − vj〉 = 0

A framework is called infinitesimal flexible, if there is a non-trivial infinitesimal movement,
otherwise it is called infinitesimal rigid.
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Figure 12: Framework with a rigid and a flexible
embedding (due to symmetry).

Figure 13: Rigid frameworks which have an in-
finitesimal motion

Edge Map and Rigidity Matrix
Edge map fG : R2n 7→ Rm

fG(p1, . . . , pn) = (‖pi − pj‖2)ij∈E
fG(p1x , p1y , . . . , pnx , pny) = ((pix − pjx)2 + (piy − pjy)2)ij∈E

Rigidity matrix

M := 1
2dfG(p) =


1 . . . i . . . j . . . n

. . . . . . . . .

ij 0 . . . pi − pj . . . pj − pi . . . 0
. . . . . . . . .



=


1x 1y . . . ix iy . . . jx jy . . . nx ny

. . . . . . . . .

ij 0 0 . . . pix − pjx piy − pjy . . . pjx − pix pjy − piy . . . 0 0
. . . . . . . . .


Subspace of infinitesimal movement

kerM = {v ∈ R2n : Mv = (〈pi − pj, vi − vj〉)ij∈E = 0} ⊂ R2n

Modification factor
dij = 〈pi − pj, vi − vj〉 for ij ∈ E

then
ImM = {d ∈ Rm : d = Mv} ⊂ Rm

A Self-Stress on a frameworks G(P) is an assignment of scalars wij ∈ R to edges ij ∈ E, s.t.

∀i ∈ V :
∑
ij∈E

wij(pi − pj) = 0.

Then the subspace of self-stress vectors is
kerMT = {w ∈ Rm : MTw = 0} ⊂ Rm
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By the fundamental theorem of linear algebra we know:
ImM ⊥ kerMT

kerM ⊥ ImMT

dim kerM + dim ImMT = 2n
dim ImM + dim kerMT = m

dim ImM = dim ImMT

Observe: Vector space of infinitesimal movements always contains at least translations and rota-
tions, so dim kerM ≥ 3.
Lemma 11 Let m = 2n− 3. Then dim kerM = 3 ⇔ dim kerMT = 0.
In that case the framework G(P) is infinitesimal rigid, iff it has no self-stress.
Lemma 12 If m ≤ 2n− 4, then there exists a non-trivial infinitesimal movement.
Lemma 13 If m ≥ 2n− 2, then there exists a non-trivial self-stress.
Theorem 14 (1dof-Mechanism) Let G be a Laman-minus-one graph (i.e. m = 2n − 4) with a
generic (i.e. regular and self-stress-free) realisation G(P).
Then the corresponding component of its configuration space is one-dimensional and smooth in the
neighbourhood of the given generic embedding.
Definition 15 A framework satisfying the conditions of the theorem is called a 1dof-mechanism
(one degree of freedom mechanism).

Self-Stress and Maxwell-Lifting

Definition 16 A 3-dim lifting of a planar framework G(P) is an
assignment of a “height” zi ∈ R to each vertex i ∈ V , s.t. after
“lifting” the graph the faces are planar.

Theorem 17 (Maxwell 1864) A planar framework has a non-trivial 3-dimensional lifting, if and
only if it has non-trivial self-stress.
Moreover, the lifting maps edges with positive self-stress to mountain-edges, edges with negative
self-stress to valley-edges and edges with zero self-stress to flat edges.

Bows construction: For every crossing introduce a new vertex and divide edges.
That construction preserves all self-stress properties.

In every non-trivial 3-dim lifting of an planar polygon all vertices of maximal
height are convex vertices (corners).

Theorem 18 Pointed pseudo-triangulations are always infinitesimal rigid.
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Expansion Signature
Definition 19 A 1dof mechanism is called infinitesimal expansive, if there is an infinitesimal
movement s.t. all free diagonals are expanded.
Recall:
an infinitesimal movement v expands a diagonal ij ⇔ dij = 〈pi − pj, vi − vj〉 > 0
s = (sij)ij∈E with sij := sign dij is called expansion signature.

Figure 14: Expansion signature sij is constant on an open interval, changes only in singularities
and whenever dij becomes zero.

Want to show: Laman-minus-one graph 1dof mechanism is expansive.
Therefor consider relation between modification factor dij and self-stress wij.
Consider:

self-stress subspace kerMT ⊥ ImM image space

It follows ∀w = (wij) ∈ Rm and ∀v ∈ R2n

0 = 〈w,Mv〉 =
∑
ij∈E

wij〈pi − pj, vi − vj〉 =
∑
ij∈E

wijdij

So, in the non-trivial case there exist edges (ij) and (kl), s.t. wijdij < 0 ⇔ wkldkl > 0. From that
the next Lemma follows (one can also derive it from Farkas’ Lemma or programming duality).
Lemma 20 (Farkas’ Lemma for self-stress) Let G(P) be a realisation of a Laman graph with
an additional diagonal e and let v be an infinitesimal movement, which maintains edge length of
2n− 4 edges and infinitesimally changes the ones of e, ec.

Then G(P) has a self-stress and the signatures of the two flexible edges
(e, ec) fulfil one of the following conditions:

1. we · wec > 0 and de · dec < 0
or

2. we · wec < 0 and de · dec > 0

Theorem 21 The framework of a pseudo-triangulation, where one edge of the convex hull was
removed, is an infinitesimal 1dof expansive mechanism.
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Algorithm
Input: planar polygon on set of points P
Output: convexified polygon; sequence of movements, given by pseudo-triangulations with one
edge removed

1. compute initial pseudo-triangulierung on P and remove arbitrary edge on convex hull, which
is not a polygon edge

2. Repeat until polygon is convex:

(a) Pin down arbitrary edge. Move 1dof mechanism in expansive direction, until an align-
ment event occurs

(b) perform a “Flip” or “Freeze” operation, reconfigure (if necessary) the pseudo-triangulation
and continue.

There are 3 types of alignment events:

Freeze: Two adjacent edges of the polygon become collinear. Then freeze the joint, eliminating one
vertex of the polygon.

Flip: Two adjacent added diagonals or one diagonal and an edge of the polygon become collinear.
Then perform a flip in the pseudo-triangulation to obtain a pseudo-triangulation with a semi-
simple face.

False: The missing convex hull edge aligns with another edge. Then continue the motion and do not
consider this a proper event.

Figure 15: A flip event

Figure 16: A freeze event
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Presented paper by Timothy M. Chan
Approximation Schemes for 0-1 Knapsack

(https://pdfs.semanticscholar.org/7c66/6b3d8197b52b836ca876d33d67731c4efd72.pdf)

Introduction and definitions
We revisit the standard 0-1 knapsack problem. This is well known NP hard problem, but we can
create fully polynomial-time approximation scheme. In the talk, you will see simple algorithm with
approximation factor 1 + ε and running time near O(n+

(
1
ε

) 5
2 ).

Definition 1 In the 0-1 knapsack problem, we are given a set of n items where the i-th item has
weight wi ≤ W and profit pi > 0, and we want to select a subset of items with total weight bounded
by W while maximizing the total profit. In other words, we want to maximize ∑n

i=1 piζi subject to
the constraint that ∑n

i=1wiζi ≤ W over all ζ1, ζ2, . . . , ζn ∈ {0, 1}.
Definition 2 Fully polynomial-time approximation schemes (FPTASs) are algorithms with approx-
imation factor 1 + ε for any given parameter ε ∈ (0, 1), taking time polynomial in n and 1

ε
.

Building blocks
Observation 3 We may discard all items with pi ≤ ε

n
maxj pj.

We can round all items to power of 1 + ε.
Definition 4 Let function

fi(x) = max
{

n∑
i=1

piζi :
n∑
i=1

wiζi ≤ x, ζ1, ζ2, . . . , ζn ∈ {0, 1}
}

for all x ∈ R be knapsacking function.
Definition 5 We say that a step function is p-uniform if the function values are of the form
−∞, 0, p, 2p, . . . , pl for some l.
Furthermore, we say that a p-uniform function is pseudo-concave if the sequence of differences of
consecutive x-breakpoints is nondecreasing.
Lemma 6 Let f and g be monotone step functions with total complexity O(l) (i.e., with O(l) steps).
We can compute f ⊕ g in

• l2/2Ω(
√

log l) time if f and g are p-uniform.

• O(l) time if f is p-uniform and g is p-uniform and pseudo-concave.

• O((l + l′ · p′

p
) log p′

p
) time if f is p-uniform, and g is p′-uniform and pseudo concave with

complexity l′ and p′ is multiple of p.

Lemma 7 Let f and g be monotone step functions with total complexity and ranges contained in
{−∞, 0} ∪ [A,B]. Then we can compute a monotone step function that approximates f ⊕ g with
factor 1 +O(ε) and complexity O(1

ε
) in

• O(l +
(

1
ε

)2
/2Ω
√

log 1
ε

)) time in general.
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• O(l + 1
ε
) time if g is p-uniform and pseudo-concave.

Lemma 8 Let f1, f2, . . . , fm be monotone step functions with total complexity O(n) and ranges
contained in {−∞, 0} ∪ [A,B]. Then we can compute a monotone step function that approximates
f1 ⊕ · · · ⊕ fm with complexity O(1

ε
) in

• O(l +
(

1
ε

)2
m/2Ω(

√
log 1

ε
)) time in general.

• O(l + 1
ε
m2) time if g is p-uniform and pseudo-concave.

Final touch
Theorem 9 Let f1, . . . , fm be monotone step functions with total complexity O(n) and ranges con-
tained in {−∞, 0} ∪ [A,B]. If every fi is pi-uniform and pseudo-concave for some pi, then we
can compute a monotone step function that approximates f1 ⊕ · · · ⊕ fm with factor 1 + O(ε) and
complexity O(1

ε
) in O

(
n+

(
1
ε

) 3
2 m/2Ω(

√
log 1

ε
)
)
time.
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Presented paper by Tsvi Kopelowitz, Ely Porat
A Simple Algorithm for Approximating the Text-To-Pattern Hamming

Distance
(http://drops.dagstuhl.de/opus/volltexte/2018/8308/)

Definitions
Let h : Σ→ Σ′ and S a string such that S = s1s2 · · · sn. Then h(S) = h(s1)h(s2) · · ·h(sn).
T – the text.
P – the pattern.
n – the length of T .
m – the length of P .
Ti = T [i, · · · , i+m− 1]

The Hamming distance H(s, t) of strings s, t is the number of aligned character mismatches netween
the two strings.

Results
Goal: find i, such that the Hamming distance between Ti and P is smallest possible.
Proven in the paper:
Theorem 1 There exists an algorithm that with high probability solves the pattern-to-text approx-
imate Hamming distance problem and runs in O(n

ε
log n logm) time.

Importent theorem used in the paper:
Theorem 2 [1] Given a binary text T of size n and a binary pattern P of size m, there exists an
O(n logm) time algorithm that computes for all locations i in T the number of times that a 1 in Ti
is aligned with a 1 in P .

ApproxHAM(Tj, P , ε)
for i = 1 to c log n

do Pick a random h : Σ→ {1, 2, · · · , 2
n
}.

compute xi = HAM(h(Tj), h(P ))
return max1≤i≤c logn{xi}

Bibliography

[1] M.J. Fischer and M.S. Paterson String matching and other products. Complexity of computation. In SIAM–AMS
Proceedings, vol. 7, page 113–125, 1974.
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Presented paper by P. Schweitzer, P. Schweitzer
Minimal Asymmetric Graphs

(https://arxiv.org/pdf/1605.01320.pdf)

Abstract
In this talk we show that up to isomorphism there are exactly 18 minimal asymmetric graphs. We
also show that these graphs are exactly the minimal involution-free graphs.

Introduction
In 1998 Nešetřil conjectured that there exists only a finite number of minimal asymmetric graphs.
Since then Nešetřil and Sabidussi showed that there are exactly nine minimal asymmetric graphs
containing P5, the path of length 4, as an induced subgraph and identified 18 minimal asymmetric
graphs in total. They also conjectured that the set of minimal asymmetric graphs and set of minimal
involution-free graphs are the same.
In 2017, Pascal Schweitzer and Patrick Schweitzer confirmed the two conjectures showing that
there are exactly 18 minimal involution-free graphs and that the minimal involution-free graphs are
exactly the minimal asymmetric graphs.
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Presented paper by Dana Angluin, James Aspnes, David Eisenstat
A Simple Population Protocol for Fast Robust Approximate Majority

(https://link.springer.com/article/10.1007/s00446-008-0059-z)

Abstract
Population protocol is a model for distributed computing in which randomly-chosen agents with
little computational power interact with each other. This model can describe a network of very
simple sensors, chemical reactions or can be implemented by DNA computations. This paper discuss
the majority problem – whether there are more X’s or Y ’s in the initial configuration.

Population Protocols
A population protocol consists of a set of n agents, each in some initial state. A configuration is
the global state of the algorithm – it describes number of agents in each state. In each step of the
computation two agents are picked uniformly at random and their states are changed according
to the algorithm. The goal is to achieve convergence to some configuration, which represents the
output, with high probability.
Complexity of an algorithm can be meassured in parallel time (number of iterations divided by n)
and space (number of states of agents).
Byzantine agents models agents with some kind of error. More formally, Byzantine agent can
simulate any state in an interaction. The chosen state can depend on the global configuration as
well as on the state of the second chosen agent.

Algorithm for Majority
The algorithm uses just three states - X, Y and B, where B are blank/undecided agents. The rules
are as follow:

X + Y → X +B

Y +X → Y +B

X +B → X +X

Y +B → Y + Y.

Theorem 1 Algorithm converges to all X’s or all Y ’s in O(n log n) w.h.p.
Theorem 2 If the difference between initial majority and minority populations is ω(

√
n log n), the

algorithm converges to correct output w.h.p.
Theorem 3 The algorithm can tolerate O(

√
n) Byzantine agents and converge in O(n log n) w.h.p.

(there still could be a few agents in a wrong state – for example the Byzantine ones)
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Towards a Polynomial Kernel for Directed Feedback Vertex Set
(http://drops.dagstuhl.de/opus/volltexte/2017/8112/pdf/LIPIcs-MFCS-2017-36.pdf)

Introduction
In this paper authors study the Directed Feedback Vertex Set (DFVS for short) problem.
The DFVS is one of the central problems in parameterized complexity; many questions regarding
DFVS were major research problems that resisted solving for a long time or still stand open. One
of remaining open questions is whether DFVS admits a polynomial kernel. The authors make a
progress towards answering the question by showing an existence of a polynomial kernel for a weaker
parameterization.

Parameterized complexity basics
In parameterized complexity we measure the running time not only with respect to the size of input
but also with respect to some parameter (think of: size of the solution, treewidth of input graph. . . ).
Formally, parameterized problem is a language Π ⊆ Σ∗×N, where Σ is a finite alphabet. A problem
is fixed-parameter tractable if it admits an algorithm which decides whether an instance (I, k) is in
Π in time f(k)poly(|I|) for some computable function f .
A kernelization for a problem Π is a polynomial-time algorithm that given an instance (I, k) returns
an instance (I ′, k′) such that

• (I, k) ∈ Π if and only if (I ′, k′) ∈ Π and

• |I ′|+ k′ ≤ g(k), where g is a computable function.

The function g is referred to as the size of the kernel.

Notation
To distinguish between directed and undirected edges, directed edges will be referred to as arcs. If
D is a digraph, we denote by D the underlying undirected graph. Note that if D has arcs (u, v)
and (v, u) then D will contain two parallel u-v edges. The size of the undirected feedback vertex
set S on input is denoted by k.

Directed Feedback Vertex Set parameterized by FVS (DFVS[FVS])
Input: A directed graph D, an integer p and a set S such that S is an undirected feedback
vertex set of D.
Parameter: |S|
Task: Determine whether there is a directed feedback vertex set of D of size at most p

Theorem 1 The here is a kernel of O(k4) vertices for DFVS[FVS].
Reduction Rule 1 If a vertex v has a loop, delete v and decrease p by one.
Reduction Rule 2 If a vertex v is a source or a sink, delete v.
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Reduction Rule 3 If an arc e is incident to a vertex with outdegree 1 or indegree 1, contract e.
Reduction Rule 4 Let u and v be two (not necessarily distinct) vertices in S such that there are
at least k + 1 internally vertex-disjoint directed u-v paths in D. Then add an arc from u to v.
Definition 2 Let (u, v) be an ordered pair of vertices in S if u 6= v, we refer to (u, v) as a potential
arc in D[S] and if additionally (u, v) /∈ D then we refer to (u, v) as non-arc. If on the other hand
u = v, we refer to (u, v) as self-loop.
We say that a vertex v contributes to a potential arc or self-loop (u,w), if (u, v) ∈ E(D) and
(v, w) ∈ E(D).
We now partition the vertices of D \ S in terms of their total degree in D \ S. Let A0, A1, A2, and
A≥3 be the sets of all vertices in D \ S that have total degree 0, 1, 2, and at least 3, respectively,
in D \ S. Furthermore, we denote by A′i the set of vertices in Ai that do not contribute to some
self-loop of D[S].
Reduction Rule 5 If v does not contribute to a non-arc of D[S], then we remove v from D.
Reduction Rule 6 If v ∈ A′1 does not contribute to a non-arc of D[S], then

• if v is a source in D \ S, then we delete all arcs from v to S,

• if v is a sink in D \ S, then we delete all arcs from S to v.

Definition 3 Let P = (v1, . . . , vr) be a directed path of maximum length in D \ S whose internal
vertices are in A2 Then we say that P is a path segment in D \ S. We further say that P is an
outer path segment if at least one of its endpoints is not in A2; otherwise we say that P is an inner
path segment.
We say that a path segment P contributes to a potential arc (s, s′) of D[S] if there are i, j with
1 ≤ i ≤ j ≤ r such that (s, vi) ∈ E(D) and (vj, s′) ∈ E(D).
Reduction Rule 7 If an inner path segment does not contribute to a non-arc or a self-loop of
D[S], we remove all internal vertices of P .
Definition 4 Let s ∈ S and let P = (v1, . . . , vr) be an induced directed path in D\S, whose internal
vertices are in A2 and that satisfies:

• (s, v1) ∈ E(D) and (s, vr) ∈ E(D) and v1 is a balanced vertex in A2,

• for every i with 1 < i < r it holds that (s, vi) /∈ E(D).

Such a P is called an out-segment for s. We say that P contributes to a potential arc or a self-loop
(s, s′) in D[S] if there is an index i with 1 ≤ i < r such that (vi, s′) ∈ E(D).
Reduction Rule 8 Let s ∈ S and let P = (v1, . . . , vr) be an out segment for s. If P does not
contribute to a non-arc or a self-loop of D[S], we remove the arc (s, v1).
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The Firefighting on Trees and Cayley Graphs

(https://arxiv.org/pdf/1707.01224.pdf)

Introduction
Autor presents results for Hartnell’s firefighter problem on infinite trees and Cayley graphs with
connection to branching number of tees. We also draw some connections with paper by Danny Dyer,
Eduardo Martinez.Pedroza and Brandon Thorne on geometry of firefighter problem referenced in
the main paper.
Preliminaries: Oriented graphs, Cayley graphs, locally finite graphs, flows in graphs.
We now state some basic definitions from the paper for better understanding of given problem,
because in the lecture we want to draw same other connection between the papers.

Definitions
Firefighter problem: Let G = (V,E) be locally finite graph and fn be sequence of positive
integers. We are given finite set X0 of vertices. These vertices are labeled as burning. At every step
n, we can label set |Vn| ≤ fn of verticies which are not burning as guarded. After this all adjacent
vertices to burning vertices are labeled burning. This process stops when the set of all burning
vertices does not change.
fn-containment If there exists finite number of steps after which process stops for every finite set
X0, then we say that graph G satisfies fn-containment. We say that graph G satisfies exponential
containment of rate λ if there is fn = O(λn).
ball of radius k We define ball of radius k with center r as a set Br(k) := {v ∈ V ; |v| ≤ k}, where
|v| is distance from r.
branching number For a tree rooted at r define

brT := sup
{
λ; ∃ non-zero flow θ from r to ∞ : θ(e) = λ−|e|

}
,

where |e| is distance of edge e from r.
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