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Abstract

The notion of bounded expansion captures uniform sparsity of graph classes
and renders various algorithmic problems that are hard in general tractable. In
particular, the model-checking problem for first-order logic is fixed-parameter
tractable over such graph classes. With the aim of generalizing such results to dense
graphs, we introduce classes of graphs with structurally bounded expansion, defined
as first-order interpretations of classes of bounded expansion. As a first step towards
their algorithmic treatment, we provide their characterization analogous to the
characterization of classes of bounded expansion via low treedepth decompositions,
replacing treedepth by its dense analogue called shrubdepth.

1 Introduction

The interplay of methods from logic and graph theory has led to many important
results in theoretical computer science, notably in algorithmics and complexity theory.
The combination of logic and algorithmic graph theory is particularly fruitful in the
area of algorithmic meta-theorems. Algorithmic meta-theorems are results of the form:
every computational problem definable in a logic L can be solved efficiently on any
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class of structures satisfying a property P. In other words, these theorems show that
the model-checking problem for the logic L on any class C satisfying P can be solved
efficiently, where efficiency usually means fixed-parameter tractability.

The archetypal example of an algorithmic meta-theorem is Courcelle’s theorem [1,2],
which states that model-checking a formula ϕ of monadic second-order logic can be
solved in time f(ϕ) · n on any graph with n vertices which comes from a fixed class
of graphs of bounded treewidth, for some computable function f . Seese [33] proved
an analogue of Courcelle’s result for the model-checking problem of first-order logic
on any class of graphs of bounded degree. Following this result, the complexity of
first-order model-checking on specific classes of graphs has been studied extensively in
the literature. See e.g. [5–7,9–12,15,19,20,22,24–26,33,34]. One of the main goals of
this line of research is to find a structural property P which precisely defines those
graph classes C for which model checking of first-order logic is tractable.

So far, research on algorithmic meta-theorems has focused predominantly on sparse
classes of graphs, such as classes of bounded treewidth, excluding a minor or which
have bounded expansion or are nowhere dense. The concepts of bounded expansion
and nowhere denseness were introduced by Nešetřil and Ossona de Mendez with the
goal of capturing the intuitive notion of sparseness. See [31] for an extensive cover
of these notions. The large number of equivalent ways in which they can be defined
using either notions from combinatorics, theoretical computer science or logic, indicate
that these two concepts capture some very natural limits of “well-behavedness” and
algorithmic tractability. For instance, Grohe et al. [22] proved that if C is a class of
graphs closed under taking subgraphs then model checking first-order logic on C is
tractable if, and only if, C is nowhere dense (the lower bound was proved in [9]). As
far as algorithmic meta-theorems for fixed-parameter tractability of first-order model-
checking are concerned, this result completely solves the case for graph classes which
are closed under taking subgraphs, which is a reasonable requirement for sparse but not
for dense graph classes.

Consequently, research in this area has shifted towards studying the dense case,
which is much less understood. While there are several examples of algorithmic meta-
theorems on dense classes, such as for monadic second-order logic on classes of bounded
cliquewidth [3] or for first-order logic on interval graphs, partial orders, classes of bounded
shrubdepth and other classes, see e.g. [13–15,17], a general theory of meta-theorems for
dense classes is still missing. Moreover, unlike the sparse case, there is no canonical
hierarchy of dense graph classes similar to the sparse case which could guide research
on algorithmic meta-theorems in the dense world.

Hence, the main research challenge for dense model-checking is not only to prove
tractability results and to develop the necessary logical and algorithmic tools. It is at
least as important to define and analyze promising candidates for “structurally simple”
classes of graph classes which are not necessarily sparse. This is the main motivation for
the research in this paper. Since bounded expansion and nowhere denseness form the
limits for tractability of certain problems in the sparse case, any extension of the theory
should provide notions which collapse to bounded expansion or nowhere denseness,
under the additional assumption that the classes are closed under taking subgraphs.
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Therefore, a natural way of seeking such notions is to base them on the existing notions
of bounded expansion or nowhere denseness.

In this paper, we take bounded expansion classes as a starting point and study two
different ways of generalizing them towards dense graph classes preserving their good
properties. In particular, we define and analyze classes of graphs obtained from bounded
expansion classes by means of first-order interpretations and classes of graphs obtained
by generalizing another, more combinatorial characterization of bounded expansion in
terms of low treedepth colorings into the dense world. Our main structural result shows
that these two very different ways of generalizing bounded expansion into the dense
setting lead to the same classes of graphs. This is explained in greater detail below.

Interpretations and transductions. One possible way of constructing “well-behaved”
and “structurally simple” classes of graphs is to use logical interpretations, or the
related concept of transductions studied in formal language and automata theory. For
our purpose, transductions are more convenient and we will use them in this paper.
Intuitively, a transduction is a logically defined operation which takes a structure as
input and nondeterministically produces as output a target structure. In this paper
we use first-order transductions, which involve first-order formulas (see Section 2 for
details). Two examples of such transductions are graph complementation, and the
squaring operation which, given a graph G, adds an edge between every pair of vertices
at distance 2 from each other.

We postulate that if we start with a “structurally simple” class C of graphs, e.g. a
class of bounded expansion or a nowhere dense class, and then study the graph classes D
which can be obtained from C by first-order transductions, then the resulting classes
should still have a simple structure and thus be well-behaved algorithmically as well as
in terms of logic. In other words, the resulting classes are interesting graph classes with
good algorithmic and logical properties, and which are certainly not sparse in general.
For instance, a useful feature of transductions is that they provide a canonical way of
reducing model-checking problems from the generated classes D to the original class C ,
provided that given a graph H ∈ D , we can effectively compute some graph G ∈ C that
is mapped to H by the transduction. In general, this is a hard problem, requiring a
combinatorial understanding of the structure of the resulting classes D .

The above principle has so far been successfully applied in the setting of graph
classes of bounded treewidth and monadic second-order transductions: it was shown by
Courcelle, Makowsky and Rotics [4] that transductions of classes of bounded treewidth
can be combinatorially characterized as classes of bounded cliquewidth. This, combined
with Oum’s result [32] gives a fixed-parameter algorithm for model-checking monadic
second-order logic on classes of bounded cliquewidth. More recently, the same principle,
but for first-order logic, has been applied to graphs of bounded degree [14], leading to
a combinatorial characterization of first-order transductions of such classes, and to a
model-checking algorithm.

Applying our postulate to bounded expansion classes yields the central notion of this
paper: a class of graphs has structurally bounded expansion if it is the image of a class
of bounded expansion under some fixed first-order transduction. This paper is a step
towards a combinatorial, algorithmic, and logical understanding of such graph classes.
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Low Shrubdepth Covers. The method of transductions is one way of constructing
complex graphs out of simple graphs. A more combinatorial approach is the method
of decompositions (or colorings) [31], which we reformulate below in terms of covers.
This method can be used to provide a characterization of bounded expansion classes
in terms of very simple graph classes, namely classes of bounded treedepth. A class of
graphs has bounded treedepth if there is a bound on the length of simple paths in the
graphs in the class (see Section 2 for a different but equivalent definition). A class C
has low treedepth covers if for every number p ∈ N there is a number N and a class of
bounded treedepth T such that for every G ∈ C , the vertex set V (G) can be covered
by N sets U1, . . . , UN so that every set X ⊆ V (G) of at most p vertices is contained in
some Ui, and for each i = 1, . . . , N , the subgraph of G induced by Ui belongs to T . A
consequence of a result by Nešetřil and Ossona de Mendez [29] on a related notion of
low treedepth colorings is that a graph class has bounded expansion if, and only if, it
has low treedepth covers.

The decomposition method allows to lift algorithmic, logical, and structural proper-
ties from classes of bounded treedepth to classes of bounded expansion. For instance,
this was used to show tractability of first-order model-checking on bounded expansion
classes [8, 21].

An analogue of treedepth in the dense world is the concept of shrubdepth, introduced
in [17]. Shrubdepth shares many of the good algorithmic and logical properties of
treedepth. This notion is defined combinatorially, in the spirit of the definition of
cliquewidth, but can be also characterized by logical means, as first-order transductions
of classes of bounded treedepth. Applying the method of decompositions to the notion
of shrubdepth leads to the following definition. A class C of graphs has low shrubdepth
covers if for every number p ∈ N there is a number N and a class B of bounded
shrubdepth such that for every G ∈ C , there is a p-cover of G consisting of N sets
U1, . . . , UN ⊆ V (G), so that every set X ⊆ V (G) of at most p vertices is contained
in some Ui and for each i = 1, . . . , N , the subgraph of G induced by Ui belongs to B.
Shrubdepth properly generalizes treedepth and consequently classes admitting low
shrubdepth covers properly extend bounded expansion classes.

It was observed earlier [27] that for every fixed r ∈ N and every class C of bounded
expansion, the class of rth power graphs Gr of graphs from C (the rth power of a graph
is a simple first-order transduction) admits low shrubdepth colorings.

Our contributions. Our main result, Theorem 15, states that the two notions
introduced above are the same: a class of graphs C has structurally bounded expansion
if, and only if, it has bounded shrubdepth covers. That is, transductions of classes of
bounded expansion are the same as classes with low shrubdepth covers (cf. Figure 1).
This gives a combinatorial characterization of structurally bounded expansion classes,
which is an important step towards their algorithmic treatment.

One of the key ingredients of our proof is a quantifier-elimination result (Theorem 16)
for transductions on classes of structurally bounded expansion. This result strengthens
in several ways similar results for bounded expansion classes due to Dvořák, Král’, and
Thomas [8], Grohe and Kreutzer [21] and Kazana and Segoufin [26]. Our assumption
is more general, as they assume that C has bounded expansion, and here C is only
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bounded treedepth

bounded treedepth covers
=(2) bounded expansion

transduction of bounded treedepth
=(1) bounded shrubdepth

low shrubdepth covers =(?)

structurally bounded expansion

cover
cover

transduction

transduction

Figure 1: The nodes in the diagram depict properties of graph classes, and the arrows
depict operations on properties of graph classes. Equality (1) is by [17]. Equality (2) is
by [29]. Equality (?) is the main result of this paper, Theorem 15.

required to have low shrubdepth covers. Also, our conclusion is stronger, as their results
provide quantifier-free formulas involving some unary functions and unary predicates
which are computable algorithmically, whereas our result shows that these functions
can be defined using very restricted transductions. Quantifier-elimination results of
this type proved to be useful for the model-checking problem on bounded expansion
classes [8, 21,26], and this is also the case here.

As explained earlier, the transduction method allows to reduce the model-checking
problem to the problem of finding inverse images under transductions, which is a hard
problem in general and depends very much on the specific transduction. On the other
hand, as we show, the cover method allows to reduce the model-checking problem for
classes with low shrubdepth covers to the problem of computing a bounded shrubdepth
cover of a given graph. In fact, as a consequence of our proof, in Theorem 40 we show
that it is enough to compute a 2-cover of a given graph G from a structurally bounded
expansion class, in order to obtain an algorithm for the model-checking problem for
such classes. We conjecture that such an algorithm exists and that therefore first-
order model-checking is fixed-parameter tractable on any class of graphs of structurally
bounded expansion. We leave this problem for future work.

Organization. In Section 2 we collect basic facts about logic, transductions, treedepth,
shrubdepth and the notion of bounded expansion. In Section 3 we provide the formal
definitions of structurally bounded expansion classes and classes with low shrubdepth
covers, and state the main results and their proofs using lemmas which are proved in
the following three sections. We consider algorithmic aspects in Section 7 and conclude
in Section 8. We aim to present an easy to follow proof of our main result. For this
reason, we present proofs of the key lemmas in the main body of the paper, while
rather technical results that disturb the flow of ideas are presented in full detail in the
appendix.
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2 Preliminaries

Basic notation. We use standard graph notation. All graphs considered in this paper
are undirected, finite, and simple; that is, we do not allow loops or multiple edges with
the same pair of endpoints. We follow the convention that the composition of an empty
sequence of (partial) functions is the identity function. For an integer k, we denote
[k] = {1, . . . , k}.

2.1 Structures, logic, and transductions

Structures and logic. A signature Σ is a finite set of relation symbols, each with pre-
scribed arity that is a non-negative integer, and unary function symbols. A structure A
over Σ consists of a finite universe V (A) and interpretations of symbols from the
signature: each relation symbol R ∈ Σ, say of arity k, is interpreted as a k-ary relation
RA ⊆ V (A)k, whereas each function symbol f is interpreted as a partial function
fA : V (A) ⇀ V (A). We drop the superscipt when the structure is clear from the
context, thus identifying each symbol with its interpretation. If A is a structure and
X ⊆ V (A) then we define the substructure of A induced by X in the usual way except
that a unary function f(x) in A becomes undefined on all x ∈ X for which f(x) 6∈ X.
The Gaifman graph of a structure A is the graph with vertex set V (A) where two
elements u, v ∈ A are adjacent if and only if either u and v appear together in some
tuple in some relation in A, or f(u) = v or f(v) = u for some partial function f in A.

For a signature Σ, we consider standard first-order logic over Σ. Let us clarify the
usage of function symbols. A term τ(x) is a finite composition of function symbols
applied to a variable x. In a structure A, given an evaluation of x, the term τ(x)
either evaluates to some element of A in the natural sense, or is undefined if during the
evaluation we encounter an element that does not belong to the domain of the function
that is to be applied next. In first order logic over Σ we allow usage of atomic formulas
of the following form:

• R(τ1(x1), . . . , τk(xk)) for a relation symbol R of arity k, terms τ1, . . . , τk, and
variables x1, . . . , xk;

• τ1(x1) = τ2(x2) for terms τ1, τ2 and variables x1, x2; and

• domf (τ(x)) for term τ and variable x.

Here, the predicate domf (τ(x)) checks whether τ(x) belongs to the domain of f . The
semantics are defined as usual, however an atomic formula is false if any of the terms
involved is undefined. Based on these atomic formulas, the syntax and semantics of
first order logic is defined in the expected way.

Graphs, colored graphs and trees. Graphs can be viewed as finite structures over
the signature consisting of a binary relation symbol E, interpreted as the edge relation,
in the usual way. For a finite label set Λ, by a Λ-colored graph we mean a graph enriched
by a unary predicate Uλ for every λ ∈ Λ. We will follow the convention that if C is
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a class of colored graphs, then we implicitly assume that all graphs in C are over the
same fixed finite signature. A rooted forest is an acyclic graph F together with a unary
predicate R ⊆ V (F ) selecting one root in each connected component of F . A tree is a
connected forest. The depth of a node x in a rooted forest F is the distance between x
and the root in the connected component of x in F . The depth of a forest is the largest
depth of any of its nodes. The least common ancestor of nodes x and y in a rooted tree
is the common ancestor of x and y that has the largest depth.

Transductions. We now define the notion of transduction used in the sequel. A
transduction is a special type of first-order interpretation with set parameters, which
we see here (from a computational point of view) as a nondeterministic operation that
maps input structures to output structures. Transductions are defined as compositions
of atomic operations listed below.

An extension operation is parameterized by a first-order formula ϕ(x1, . . . , xk)
and a relation symbol R. Given an input structure A, it outputs the structure A
extended by the relation R interpreted as the set of k-tuples of elements satisfying ϕ
in A. A restriction operation is parameterized by a unary formula ψ(x). Applied to a
structure A it outputs the substructure of A induced by all elements satisfying ψ. A
reduct operation is parameterized by a relation symbol R, and results in removing the
relation R from the input structure. Copying is an operation which, given a structure A
outputs a disjoint union of two copies of A extended with a new unary predicate which
marks the newly created vertices, and a symmetric binary relation which connects each
vertex with its copy. A function extension operation is parameterized by a binary
formula ϕ(x, y) and a function symbol f , and extends a given input structure by a
partial function f defined as follows: f(x) = y if y is the unique vertex such that ϕ(x, y)
holds. Note that if there is no such y or more than one such y, then f(x) is undefined.
Finally, suppose σ is function that maps each structure A to a nonempty family σ(A)
of subsets of its universe. A unary lift operation, parameterized by σ, takes as input a
structure A and outputs the structure A enriched by a unary predicate X interpreted
by a nondeterministically chosen set U ∈ σ(A).

We remark that function extension operations can be simulated by extension op-
erations, defining the graphs of the functions in the obvious way. They are, however,
useful as a means of extending the expressive power of transductions in which only
quantifier-free formulas are allowed, as defined below.

Transductions are defined inductively: every atomic transduction is a transduction,
and the composition of two transductions I and J is the transduction I; J that, given
a structure A, first applies I to A and then J to the output I(A). A transduction
is deterministic if it does not use unary lifts. In this case, for every input structure
there is exactly one output structure. A transduction is almost quantifier-free if all
formulas that parameterize atomic operations comprising it are quantifier-free1, and is
deterministic almost quantifier-free if it additionally does not use unary lifts.

1We use the adverb “almost” to indicate that such transductions still can access elements that are
not among its free variables via functions.
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If C is a class of structures, we write I(C ) for the class which contains all possible
outputs I(A) for A ∈ C . We say that two transductions I and J are equivalent on a
class C of structures if every possible output of I(A) is also a possible output of J(A),
and vice versa, for every A ∈ C .

It may happen that an atomic operation I is undefined for a given input structure A.
For example, for an extension operation parametrized by a first order formula ϕ using a
relation symbol R, if the input structure A does not carry the symbol R, then I(A) is
undefined according to the above definition. This will never occur in our constructions.
However, for completeness, we may define I(A) as a fixed structure ⊥ in such situations.

When considering a composition of atomic operations, we avoid overriding symbols
by later operations, i.e., we always assume that subsequent atomic operations create
relation symbols which are distinct from previously created relations symbols and also
from symbols in the original signature. Since every transduction I is a composition
of finitely many atomic operations, the result of I applied to a structure over a finite
signature Σ will be again a structure over a finite signature Γ, which depends on Σ
and I only (unless the result is undefined).

Example 1. Let C be the class of rooted forests of depth at most d, for some fixed
d ∈ N. We describe an almost quantifier-free transduction which defines the parent
function in C . First, using unary lifts introduce d + 1 unary predicates D0, ..., Dd,
where Di marks the vertices of the input tree which are at distance i from a root.
Next, using a function extension, define a partial function f which maps a vertex v in
the input tree to its parent, or is undefined in case of a root. This can be done by a
quantifier-free formula, which selects those pairs x, y such that x and y are adjacent
and Di(x) implies Di−1(y).

It will sometimes be convenient to work with the encoding of bounded-depth trees
and forests as node sets endowed with the parent function, rather than graphs with
prescribed roots. As seen in Example 1, these two encodings can be translated to each
other by means of almost quantifier-free transductions, which render them essentially
equivalent.

Normal forms. It will sometimes be useful to assume a certain normal form of
transductions. We will need two similar, yet slightly different normal forms: one for
general transductions and one for almost quantifier-free transductions. The proofs are
standard, for completeness, we give them in the appendix.

Lemma 2 (?). Let I be a transduction. Then I is equivalent to a transduction of the
form

L;C;F;E;X;R,

where

• L is a sequence of unary lifts;

• C is a sequence of copying operations;
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• F is a sequence of function extension operations, one for each function on the
output;

• E is a sequence of extension operations, one for each relation on the output;

• X is a single restriction operation; and

• R is a sequence of reduct operations.

Moreover, formulas parameterizing atomic operations in F;E;X use only relations and
functions that appeared originally on input or were introduced by L;C. In particular,
none of these formulas uses any function or relation introduced by an atomic operation
in F;E.

Lemma 3 (?). Every almost quantifier-free transduction is equivalent to an almost
quantifier-free transduction that first applies a sequence of unary lifts and then applies a
deterministic almost quantifier-free transduction.

2.2 Treedepth and shrubdepth

The treedepth of a graph G is the minimal depth of a rooted forest F with the same
vertex set as G, such that for every edge uv of G, u is an ancestor of v, or v is an
ancestor of u in F . A class C of graphs has bounded treedepth if there is a bound d ∈ N
such that every graph in C has treedepth at most d. Equivalently, C has bounded
treedepth if there is some number k such that no graph in C contains a simple path of
length k [31]. The notion of treedepth lifts to structures: a class C of structures has
bounded treedepth if the class of their Gaifman graphs has bounded treedepth.

Shrubdepth. The following notion of shrubdepth has been proposed in [17] as a
dense analogue of treedepth. Originally, shrubdepth was defined using the notion of
tree-models. We present an equivalent definition basing on the notion of connection
models, introduced in [17] under the name of m-partite cographs of bounded depth.

A connection model with labels from Λ is a rooted labeled tree T where each leaf x is
labeled by a label λ(x) ∈ Λ, and each non-leaf node v is labeled by a (symmetric) binary
relation C(v) ⊆ Λ× Λ. Such a model defines a graph G on the leaves of T , in which
two distinct leaves x and y are connected by an edge if and only if (λ(x), λ(y)) ∈ C(v),
where v is the least common ancestor of x and y. We say that T is a connection model
of the resulting graph G.

Example 4. Fix n ∈ N, and let Gn be the bi-complement of a matching of order n,
i.e., the bipartite graph with nodes a1, . . . , an and b1, . . . , bn, such that ai is adjacent
to bj if and only if i 6= j. A connection model for Gn is shown below:

a1 b1

∅

a2 b2

∅

a3 b3

∅

an bn

∅

{( )}, ) , ( ,
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We can naturally extend the definition above to structures with unary functions by
regarding each unary function by a binary relation selecting all (argument, value) pairs.

A class of graphs C has bounded shrubdepth if there is a number h ∈ N and a finite
set of labels Λ such that every graph G ∈ C has a connection model of depth at most h
using labels from Λ.

Shrubdepth can be equivalently defined in terms of another graph parameter, as
follows. Given a graph G and a set of vertices W ⊆ V (G), the graph obtained by
flipping the adjacency within W is the graph G′ with vertices V (G) and edge set which
is the symmetric difference of the edge set of G and the edge set of the clique on W .

The subset-complementation depth, or SC-depth, of a graph is defined inductively as
follows:

• a graph with one vertex has SC-depth 0, and

• a graph G has SC-depth at most d, where d > 1, if there is a set of vertices
W ⊆ V (G) such that in the graph obtained from G by flipping the adjacency
within W all connected components have SC-depth at most d− 1.

Example 5. A star has SC-depth at most 2: flipping the adjacency within the set
consisting of the vertices of degree 1 yields a clique, which in turn has SC-depth at
most 1.

The notion of SC-depth leads to a natural notion of decompositions. An SC-
decomposition of a graph G of SC-depth at most d is a rooted tree T of depth d with leaf
set V (G), equipped with unary predicates W0, . . . ,Wd on the leaves. Each child s of the
root in T corresponds to a connected component Cs of the graph G′ obtained from G by
flipping the adjacency within W0, such that the subtree of T rooted at s, together with
the unary predicates W1, . . . ,Wd restricted to V (Cs), form an SC-decomposition of Cs.

We will make use of the following properties, where the first one follows from the
definition of shrubdepth, and the remaining ones follow from [17].

Proposition 6. Let C be a class of graphs. Then:

1. If C has bounded shrubdepth then the class of all induced subgraphs of graphs
from C also has bounded shrubdepth.

2. C has bounded shrubdepth if and only if for some d ∈ N all graphs in C have
SC-depth at most d.

3. If C has bounded treedepth then C has bounded shrubdepth.

4. If C has bounded shrubdepth and I is a transduction that outputs colored graphs,
then I(C ) has bounded shrubdepth.

It is well-known (see [23]) that in the absence of large bi-cliques (complete bipartite
graphs) a graph of bounded cliquewidth has in fact bounded treewidth. The same holds
also for shrubdepth and treedepth. The lemma is proved by an easy induction on the
depth of the connection models.
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Lemma 7 (?). A class of graphs C has bounded treedepth if and only if graphs in C
have bounded shrubdepth and exclude some fixed bi-clique as a subgraph.

2.3 Bounded expansion

A graph H is a depth-r minor of a graph G if H can be obtained from a subgraph of G
by contracting mutually disjoint connected subgraphs of radius at most r. A class C of
graphs has bounded expansion if there is a function f : N→ N such that |E(H)|

|V (H)| 6 f(r)
for every r ∈ N and every depth-r minor H of a graph from C . Examples include the
class of planar graphs, or any class of graphs with bounded maximum degree.

We will use the following lemma.

Lemma 8. Let C be a class of (colored) graphs of bounded expansion and let C be a
copy operation. Then C(C ) is a class of colored graphs of bounded expansion.

Proof. Let G ∈ C . The Gaifman graph of C(G) is a subgraph of the so-called
lexicographic product of G with K2, i.e., it is constructed from the latter by replacing
every vertex with two clones of it. It is known that if a class of graphs C has bounded
expansion, then the class of lexicographic products of graphs from C with any fixed
graph H also has bounded expansion; see e.g., [31, Proposition 4.6]. �

The connection between treedepth and graph classes of bounded expansion can be
established via p-treedepth colorings. For an integer p, a function c : V (G) → C is a
p-treedepth coloring if, for every i 6 p and set X ⊆ V (G) with |c(X)| = i, the induced
graph G[X] has treedepth at most i. A graph class C has low treedepth colorings if for
every p ∈ N there is a number Np such that for every G ∈ C there exists a p-treedepth
coloring c : V (G)→ C with |C| 6 Np.

Theorem 9 ( [29]). A class of graphs C has bounded expansion if, and only if, it has
low treedepth colorings.

3 Main results

In this section we introduce two notions which generalize the concept of bounded
expansion. Then we state the main results and outline the proof. First, we introduce
classes of structurally bounded expansion. This notion arises from closing bounded
expansion graph classes under transductions.

Definition 10. A class C of graphs has structurally bounded expansion if there exists
a class of graphs D of bounded expansion and a transduction I such that C ⊆ I(D).

The second notion, low shrubdepth covers, arises from the low treedepth coloring
characterisation of bounded expansion (see Theorem 9) by replacing treedepth by its
dense counterpart, shrubdepth. For convenience, we formally define this in terms of
covers.
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Definition 11. A cover of a graph G is a family UG of subsets of V (G) such that⋃
UG = V (G). A cover UG is a p-cover, where p ∈ N, if every set of at most p vertices

is contained in some U ∈ UG. If C is a class of graphs, then a (p-)cover of C is a family
U = (UG)G∈C , where UG is a (p-)cover of G. The cover U is finite if sup{|UG| : G ∈ C }
is finite. Let C [U ] denote the class of graphs {G[U ] : G ∈ C , U ∈ UG}. We say that the
cover U has bounded treedepth (respectively, bounded shrubdepth) if the class C [U ] has
bounded treedepth (respectively, shrubdepth).

Example 12. Let T be the class of trees and let p ∈ N. We construct a finite p-cover U
of T which has bounded treedepth. Given a rooted tree T , let UT = {U0, . . . , Up},
where Ui is the set of vertices of T whose depth is not congruent to i modulo p+1. Note
that T [Ui] is a forest of height p, and that UT is a p-cover of T . Hence U = (UT )T∈T is
a finite p-cover of T of bounded treedepth.

In analogy to low treedepth colorings, we can now characterize graph classes of
bounded expansion using covers. We say that a class C of graphs has low treedepth
covers if for every p ∈ N there is a finite p-cover U of C with bounded treedepth. The
following lemma follows easily from Theorem 9.

Lemma 13 (?). A class of graphs has bounded expansion if, and only if, it has low
treedepth covers.

We now define the second notion generalizing the concept of bounded expansion.
The idea is to use low shrubdepth covers instead of low treedepth covers.

Definition 14. A class C of graphs has low shrubdepth covers if, and only if, for every
p ∈ N there is a finite p-cover U of C with bounded shrubdepth.

It is easily seen that Lemma 13 together with Proposition 6(3) imply that every
class of bounded expansion has low shrubdepth covers. Our main result is the following
theorem.

Theorem 15. A class of graphs has structurally bounded expansion if, and only if, it
has low shrubdepth covers.

As a byproduct of our proof of Theorem 15 we obtain the following quantifier-
elimination result, which we believe is of independent interest.

Theorem 16. Let C be a class of colored graphs which has low shrubdepth covers.
Then every transduction I is equivalent to some almost quantifier-free transduction J
on C .

We now outline the proof of Theorem 15 and Theorem 16. Both theorems follow
easily from Proposition 18 and Proposition 19 stated below. These are proved in
subsequent sections.

We start with the following lemma, which intuitively shows that covers commute
with almost quantifier-free transductions.

12



Lemma 17. If a class of graphs C has low shrubdepth covers and I is an almost
quantifier-free transduction that outputs colored graphs, then I(C ) also has low shrubdepth
covers.

Proof (sketch). The idea is that for any almost quantifier-free transduction I there
is a constant c such any induced substructure of I(G) on p elements depends only on
an induced substructure of G of size p · c. In particular, a (p · c)-cover of G induces a
p-cover of I(G). Moreover, as having bounded shrubdepth is preserved by transductions,
a low shrubdepth cover of C induces a low shrubdepth cover of I(C ). The details are
presented in Section 4. �

The main novel ingredient in our proof of Theorem 15 and Theorem 16 is the following
result, which intuitively states that classes with low shrubdepth covers are bi-definable
with classes of bounded expansion, using almost quantifier-free transductions.

Proposition 18. Suppose C is a class of graphs with low shrubdepth covers. Then there
is a pair of transductions S and I, where S is almost quantifier-free and I is deterministic
almost quantifier-free, such that S(C ) is a class of colored graphs of bounded expansion
and I(S(G)) = {G} for each G ∈ C .

Clearly, Proposition 18 implies that C has structurally bounded expansion, since it can
be obtained as a result of transduction I to a class S(C ) of bounded expansion. Thus,
the right-to-left implication of Theorem 15 is a corollary of the proposition. The proof
of Proposition 18 is presented in Section 5. We sketch the rough idea below.

Proof (sketch). First, in Lemma 31 of Section 5.2, we prove the special case where C
is a class of graphs of bounded shrubdepth, and for those we prove bi-definability with
classes of trees of bounded depth. In particular, if D is a class of graphs of bounded
shrubdepth, then there is a pair of almost quantifier-free transductions T, I0 such that
T(D) is a class of colored trees of bounded depth and such that I0(T(H)) = {H} for all
H ∈ D . Lemma 31 is the combinatorial core of this paper.

To prove Proposition 18, we lift Lemma 31 to the general case using covers, as follows.
Let C be a class with low shrubdepth covers and let U be a 2-cover of C of bounded
shrubdepth, and let N be such that |UG| 6 N for G ∈ C . We apply the bounded
shrubdepth case to the class D = C [U ], yielding almost quantifier-free transductions T
and I0 as above. The transduction S works as follows: given a graph G ∈ C , introduce
N unary predicates marking the cover UG of G, and for each U ∈ UG, apply T to the
induced subgraph G[U ] of G, yielding a colored tree T(G[U ]). Define S(G) as the union
of the trees T(G[U ]), for U ∈ UG. As UG is a 2-cover of G, G is the union of the induced
graphs G[U ] for U ∈ UG. As each graph G[U ] can be recovered from the tree T(G[U ])
using the inverse transduction I0, it follows that G can be recovered from the union
S(G). This yields the inverse transduction I such that I(S(G)) = {G}. As S is almost
quantifier-free by construction, it follows from Lemma 17 that S(C ) is a class with
low shrubdepth covers. Moreover, each graph in S(C ) is a union of at most N trees,
so it does not contain KN+1,N+1 as a subgraph. It follows from Lemma 7 that the
low shrubdepth cover of S(C ) is in fact a low treedepth cover. Hence, S(C ) has low
treedepth covers, i.e., has bounded expansion. �
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Theorem 16, and the remaining implication in Theorem 15 are consequences of the
following result.

Proposition 19. Let C be a class of graphs of bounded expansion and let I be a
transduction. Then I is equivalent to an almost quantifier-free transduction J on C .

We note that Proposition 19 is a strengthening of similar statements provided by Dvořák
et al. [9] and of Grohe and Kreutzer [21], and could be derived by a careful analysis of
their proofs. In Section 6 we provide a self-contained proof, which we believe is simpler
than the previous proofs, and is sketched below.

Proof (sketch). We use the characterization of bounded expansion classes as those
which have low treedepth covers. We first prove Proposition 19 for forests of bounded
depth. This can be handled by a direct (although slightly cumbersome) combinatorial
argument, similarly as in [9]. In Appendix F.2 we present an argument using tree
automata.

The statement for classes of forests of bounded depth then easily lifts to classes
of bounded treedepth. Here we use the fact that in a graph of bounded treedepth
it is possible to encode a depth-first search forest of bounded depth, by using unary
predicates marking the depth of each node in the spanning forest.

We then lift the result from classes of bounded treedepth using covers. Specifi-
cally, suppose for simplicity that the transduction I is a single extension operation,
parametrized by a formula ψ. We then proceed by induction on the structure of the
formula ψ and show that it can be replaced by a quantifier-free formula, at the cost of
introducing unary functions defined by an almost quantifier-free transduction.

In the inductive step, the only nontrivial case is the one of existential quantification,
i.e., of formulas of the form

ψ(ȳ) = ∃x.ϕ(x, ȳ),

where ϕ(x, ȳ) may be assumed to be a quantifier-free formula involving unary functions,
by inductive assumption. We consider a p-cover U of C where p is a constant such
that there are at most p different terms occurring in ϕ(x, ȳ). Since C has bounded
expansion, we may assume that the cover U has bounded treedepth, and that there
is a constant N ∈ N such that |UG| 6 N for all G ∈ C . For a fixed graph G ∈ C ,
the existentially quantified variable x must be in one of the sets U ∈ UG. Therefore,
the formula ψ(ȳ) is equivalent to a disjunction of at most N formulas ψi(ȳ), for
i = 1, . . . , N , where each formula ψi(ȳ) performs existential quantification restricted
to the ith set in UG (where UG is ordered arbitrarily). By the special case of the
proposition proved for classes of bounded treedepth, ψi(ȳ) is equivalent to a quantifier-
free formula on C [U ] (the quantifier-free formula uses unary functions introduced by
almost quantifier-free transductions). Reassuming, ψ is equivalent on G to a disjunction
of quantifier-free formulas involving unary functions that are introduced by almost
quantifier-free transductions. This deals with the inductive step. �

We finally show how to conclude Theorem 15 and Theorem 16 from Lemma 17,
Proposition 18 and Proposition 19.
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Proof (of Theorem 15). As observed, the right-to-left implication of Theorem 15
follows from Proposition 18. We now show the left-to-right implication.

Let C be a class of bounded expansion and let I be a transduction that outputs
colored graphs. We show that I(C ) has low shrubdepth covers.

By Lemma 13, C has low treedepth covers. Applying Proposition 19 yields an
almost quantifier-free transduction J such that I(C ) = J(C ). As C in particular has
low shrubdepth covers (cf. Proposition 6 (3)), we may apply Lemma 17 to J and C to
deduce that J(C ) = I(C ) has low shrubdepth covers. �

Proof (of Theorem 16). Proposition 18 allows to reduce the theorem to the case of
classes of bounded expansion, as almost quantifier-free transductions are closed under
composition. The case of bounded expansion classes is handled by Proposition 19. �

It remains to provide the details of the proofs of Lemma 17, Proposition 18 and
Proposition 19. This is done in Section 4, Section 5 and Section 6, respectively.
After that, in Section 7 we conclude with a preliminary algorithmic result concerning
the model-checking problem for first-order logic on classes with structurally bounded
expansion.

4 Proof of Lemma 17 (almost quantifier-free transductions commute with
covers)

In this section we prove Lemma 17, which we restate for convenience.

Lemma 17. If a class of graphs C has low shrubdepth covers and I is an almost
quantifier-free transduction that outputs colored graphs, then I(C ) also has low shrubdepth
covers.

We start with formulating the following lemma which states that almost quantifier-
free transductions are, in a certain sense, local.

Lemma 20. For every deterministic almost quantifier-free transduction I there is a
constant c ∈ N such that the following holds. For every structure A and every element v
of I(A) there is a set Sv ⊆ V (A) of size at most c such that for any sets U,W with
W ⊆ V (I(A)) and U ⊆ V (A), if U ⊇

⋃
v∈W Sv, then

I(A)[W ] = I(A[U ])[W ].

In order to prove the lemma, we define the following notions of dependency and
support.

Definition 21. Suppose that τ(v) = (fp ◦ · · · ◦ f1)(v) is a term. For a structure A
carrying partial functions f1, . . . , fp, we say that an element v ∈ V (A) τ -depends with
respect to τ on itself and all elements of the form (fp ◦ · · · ◦ fi)(v) for i ∈ [p], whenever
defined. For a quantifier-free formula ϕ(x1, . . . , xk), an element v ∈ V (A) ϕ-depends on
all elements on which v τ -depends, for any term τ appearing in ϕ. For an element v,
the set of elements on which v ϕ-depends in A will be denoted by clAϕ (v); note that the
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size of this set is always bounded by a constant depending only on ϕ. Observe also that
given elements v1, . . . , vk, to check whether ϕ(v1, . . . , vk) holds in A it suffices to check
whether it holds in the substructure of A induced by all elements on which v1, . . . , vk
ϕ-depend.

With the auxiliary notion of dependency defined we can come to the definition of
support.

Definition 22. Suppose I is a deterministic almost quantifier-free transduction, and
let A be an input structure. For an element v ∈ V (I(A)) and a subset S ⊆ V (A), we
now define what it means that v is I-supported by S. We first define this for atomic
operations (note that unary lifts are excluded since I is assumed to be deterministic):

• If I is a reduct operation or a copy operation, then v is I-supported by S if and
only if v ∈ S.

• If I is a restriction or an extension operation, say parameterized by a formula ϕ,
then v is I-supported by S if and only if clAϕ (v) ⊆ S.

• Suppose I is a function extension operation, say introducing a partial function f
using a binary formula ϕ(x, y). Then v is I-supported by S if and only if clAϕ (v) ⊆ S
and the following holds:

– if there exists exactly one w ∈ V (A) for which ϕ(v, w) holds, then clAϕ (w) ⊆ S.

– if there are at least two elements w ∈ V (A) for which ϕ(v, w) holds, then
clAϕ (w) ⊆ S for at least two distinct such elements w.

Finally, for non-atomic deterministic almost quantifier-free transductions the notion
of I-supporting is defined by induction on the structure of the transduction. Suppose I
is the composition I1; I2 of two transductions. Then v ∈ V (I(A)) is I-supported by
S ⊆ V (A) if there exists a subset T ⊆ V (I1(A)) and, for each w ∈ T , a subset Sw ⊆ S
such that v is I2-supported by T and each w ∈ T is I1-supported by Sw.

The notion of supporting is trivially closed under taking supersets: if v is I-supported
by S, then v is also I-supported by any superset of S.

Proof (of Lemma 20). By induction on the definition of an almost quantifier-free
transduction I it is easy to see that for every v ∈ V (I(A)) there is a set Sv ⊆ V (A) such
that v is I-supported by Sv and |Sv| is bounded by a constant, possibly depending on I.

By induction we also observe that if W ⊆ V (I(A)) and U ⊆ V (A) are such that
every v ∈W is I-supported by U then

I(A)[W ] = I(A[U ])[W ].

This proves the lemma. �

We can now prove Lemma 0.
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Proof (of Lemma 0). Let C be a class with low shrubdepth covers and let I be an
almost quantifier-free transduction that outputs colored graphs. We show that I(C ) has
low shrubdepth covers. By normalizing I as described in Lemma 3, we may assume
that I is of the form L; J, where L is a sequence of unary lifts and J is deterministic
almost quantifier-free. As C has low shrubdepth covers, the class D = L(C ) also has
low shrubdepth covers (this is implied by Proposition 6(4)). Moreover, I(C ) = J(D).
Therefore, it suffices to focus on the deterministic almost quantifier-free transduction J
applied to the class D . Note that D is a class of colored graphs, i.e., graphs with unary
predicates on their vertices.

Let c be the constant provided by Lemma 20 for the transduction J. We need to find,
for every p ∈ N, a finite p-cover of J(D) of bounded shrubdepth, so let us fix p. Let U be
a finite (c · p)-cover of D of bounded shrubdepth. For a graph G ∈ D and U ∈ UG, let
WU ⊆ V (J(G)) be the set of those elements v of J(G) such that Sv ⊆ U , where Sv is as
obtained from Lemma 20 applied to the deterministic almost quantifier-free transduction
J.

Define a cover W = (WJ(G))G∈D of J(D) by letting

WJ(G) = {WU : U ∈ UG} for every graph G ∈ D .

Clearly |WJ(G)| 6 |UG|, so W is finite as well. We need to verify that W is a p-cover
and that it has bounded shrubdepth.

To see that W is a p-cover, take any p elements w1, . . . , wp of J(G). Let S =⋃p
i=1 Swi . Then |S| 6 c · p, hence there exists U ∈ UG with S ⊆ U . We conclude that
{w1, . . . , wp} ⊆WU ∈ WG.

To see that W is a bounded shrubdepth cover, observe that by assumption D [U ] has
bounded shrubdepth, hence by Proposition 6(4) we find that J(D [U ]) also has bounded
shrubdepth. By Lemma 20, for each G ∈ D and WU ∈ WJ(G), the induced substructure
J(G)[WU ] is equal to J(G[U ])[WU ]. Now it suffices to note that J(G[U ]) ∈ J(D [U ]),
hence J(G)[WU ] belongs to the hereditary closure of J(D [U ]), which also has bounded
shrubdepth by Proposition 6(1). �

5 Proof of Proposition 18 (bi-definability of classes with low shrubdepth
covers and classes of bounded expansion)

In this section we prove Proposition 18, which we repeat for convenience.

Proposition 18. Suppose C is a class of graphs with low shrubdepth covers. Then there
is a pair of transductions S and I, where S is almost quantifier-free and I is deterministic
almost quantifier-free, such that S(C ) is a class of colored graphs of bounded expansion
and I(S(G)) = {G} for each G ∈ C .

Clearly, Proposition 0 implies that C has structurally bounded expansion, since
it can be obtained as a result of transduction I to a class S(C ) of bounded expansion.
Thus, the right-to-left implication of Theorem 15 is a corollary of the proposition.

The idea of the proof of Proposition 0 is as follows. We first prove in Lemma 23 of
Section 5.1 that connected components in graphs of bounded shrubdepth are definable
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by almost quantifier-free transductions. We use Lemma 23 to first prove Proposition 0
for the special case where C is a class of graphs of bounded shrubdepth, and for those we
prove bi-definability with classes of trees of bounded depth. This is done in Lemma 31
of Section 5.2. Then, we conclude the general case in Section 5.3, by lifting Lemma 31
using covers.

5.1 Defining connected components in graphs of bounded shrubdepth

The following lemma is the combinatorial core of our proof of Proposition 0.

Lemma 23. Let C be a class of graphs of bounded shrubdepth. There is an almost
quantifier-free transduction F such that for a given G ∈ C , every output of F on G is
equal to G enriched by a function g : V (G)→ V (G) such that g(v) = g(w) if and only
if v and w are in the same connected component of G.

The rest of Section 5.1 is devoted to the proof of Lemma 23.

Guidance systems. We first introduce the notions of guidance systems and of func-
tions guided or guidable by them. This is a combinatorial abstraction for functions
computable by almost quantifier-free transductions.

Let G be a graph. A guidance system in G is any family U of subsets of the vertex
set of G. The size of a guidance system U is the cardinality of the family U . We say
that a partial function f : V (G) ⇀ V (G) is guided by the guidance system U if for every
x ∈ V (G) for which f(x) is defined and different than x, there is some U ∈ U such
that f(x) is the unique neighbor of v in U . Finally, a partial function f : V (G) ⇀ V (G)
is `-guidable, where ` ∈ N, if there is a guidance system U of size at most ` in G that
such that f is guided by U .

Observe that an `-guidable partial function maps each vertex v from its domain to
a vertex in the same connected component as v. The following lemmas will be useful
for operating on guidable functions.

Lemma 24 (?). Let G be a graph and suppose g : V (G) ⇀ V (G) is a partial function
such that the restriction g|C of g to each connected component C of G is `-guidable.
Then g is `-guidable.

Lemma 25 (?). Let G be a graph and let g1, . . . , gs : V (G) ⇀ V (G) be partial functions,
where gi is `-guidable for each i ∈ [s]. If g : V (G) ⇀ V (G) is a partial function such that
for every x ∈ V (G) there is some i ∈ [s] such that g(x) = gi(x), then g is (` · s)-guidable.

Finally, guidable functions can be computed using almost quantifier-free transduc-
tions.

Lemma 26 (?). Let C be a class of graphs and let ` ∈ N be fixed. Suppose that each
G ∈ C is equipped with an `-guidable function fG : V (G) ⇀ V (G). Then there exists
an almost quantifier-free transduction which given G ∈ C has exactly one output: the
graph G enriched with fG.
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We will use the following fact stating that graphs of bounded shrubdepth do not
admit long induced paths.

Lemma 27 ( [16]). For every class C of graphs of bounded shrubdepth there exists a
constant r ∈ N such that no graph from C contains a path on more than r vertices as
an induced subgraph. Consequently, for every graph G ∈ C every connected component
of G has diameter at most r.

Spanning forests. For a graph G and a function g : V (G) → V (G), we say that g
defines a spanning forest of depth r on G if g is guarded by G and the r-fold composition
gr : V (G)→ V (G) is constant when restricted to each connected component of G. In
particular, two vertices u, v ∈ V (G) are in the same connected component of G if and
only if gr(u) = gr(v).

The following lemma states that guidance systems can define shallow spanning
forests in graph classes of bounded shrubdepth.

Lemma 28. For every class C of graphs of bounded shrubdepth there exist constants
q, r ∈ N such that for every G ∈ C there is a function fG : V (G) → V (G) which is
q-guidable as a partial function on G and defines a spanning forest of depth r on G.

We first show how Lemma 23 follows from Lemma 28.

Proof (of Lemma 23). By Lemma 26, there is an almost quantifier-free transduction I
which, given a graph G ∈ C on input, constructs the function fG obtained from
Lemma 28. Now let g = f rG be the r-fold composition of f . Clearly, g can be computed
by an almost quantifier-free transduction using a single function extension operation,
making use of the function fG constructed by I. As g is constant on every connected
component of G, Lemma 23 follows. �

It remains to prove Lemma 28.

Constructing guidable choice functions. Lemma 28 will follow easily from the
fact that connected components of graphs of bounded shrubdepth have bounded diameter
by Lemma 27, and from the following lemma, essentially stating that every total binary
relation whose graph has bounded shrubdepth contains a guidable choice function.

Lemma 29. For every class C of graphs of bounded shrubdepth there exists a constant
p ∈ N such that the following holds. Suppose G ∈ C and A and B are two disjoint
subsets of vertices of G such that every vertex of A has a neighbor in B. Then there is
a function f : A→ B which is p-guidable as a partial function on G.

We found two conceptually different proofs of this result. We believe that both
proofs describe complementary viewpoints on the problem, so we present both of them.
To keep the presentation concise, in the main body of the paper we give only one proof,
using the characterization of classes of bounded shrubdepth using connection models,
and their close connection to bi-cographs. We present the second proof in Appendix D.2,
which provides an explicit greedy procedure leading to the construction of f .
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We first prove a special case of Lemma 29 for graphs which have a connection model
using two different labels α and β, where one part of G has label α and the other part
has label β. Such graphs are called bi-cographs (cf. [18]).

Lemma 30. Let G be a bi-cograph with parts A,B and with a connection model of
height h where vertices in A have label α and vertices in B have label β. Suppose further
that every vertex in A has a neighbor in B. Then there is a function f : A→ B which
is h-guidable as a partial function on G.

Proof. By Lemma 24, it is enough to consider the case when G is connected. Let T
be the assumed connection model of height h.

We prove that there is an h-guidable function f : A → B. The proof proceeds by
induction on h. The base case, when h = 1 is trivial, because then every vertex of A
is adjacent to every vertex of B, so picking any w ∈ B the function f : A→ B which
maps every v ∈ A to w is guided by the guidance system consisting only of {w}.

In the inductive step, assume that h > 2 and the statement holds for height h− 1.
Since G is connected, either the label C(r) of the root r contains the pair (α, β), or r
has only one child v. In the latter case, the subtree of T rooted at v is a connection
model of G of height h− 1, so the conclusion holds by inductive assumption. Hence, we
assume that (α, β) ∈ C(r).

Let S be the set of bipartite induced subgraphs H of G such that H is defined by
the connection model rooted at some child of r in T . As (α, β) ∈ C(r), it follows that if
H1, H2 ∈ S are two distinct graphs, then every vertex with label α in H1 is connected
to every vertex with label β in H2. We consider two cases, depending on whether S
contains more than one graph H containing a vertex with label β, or not.

In the first case, there are at least two graphs H1, H2 ∈ S such that H1 and H2 both
contain a vertex with label β. Pick w1 ∈ V (H1) and w2 ∈ V (H2), both with label β.
Then every vertex in A is adjacent either to w1 or to w2. Let f : A→ B be a function
which maps a vertex v ∈ A to w1 if v is adjacent to w1, and to w2 otherwise. Then f is
guided by the guidance system consisting of {w1} and {w2}.

In the second case, there is only one graph H ∈ S which contains a vertex with
label β. Pick an arbitrary vertex w with label β in H. Notice that every vertex in
V (G)−V (H) is adjacent to w. The graph H has a connection model of height h− 1, so
by inductive assumption, there is a guidance system U ⊆P(V (H)) of size at most h−1
and a function f0 : V (H) ∩ A → V (H) ∩ B which is guided by U . Then the function
f : A→ B which extends f0 by mapping every vertex in V (G)− V (H) to w is guided
by U ∪ {{w}}. In either case, we have constructed a h-guidable function f : A→ B, as
required. �

We now prove Lemma 29 in the general case.

Proof (of Lemma 29). Let C be a class of graphs of bounded shrubdepth. Hence,
there is a finite set of labels Λ and a number h ∈ N such that every graph G ∈ C has a
connection model of height h using labels from Λ. For α ∈ Λ, let Vα denote the set of
vertices of G which are labeled α.
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Define a function µ : A → Λ2 as follows: for every vertex v define µ(v) as (α, β),
where α is the label of v, and β ∈ Λ is an arbitrary label such that v has a neighbor
in B with label β.

For every pair of labels α, β, consider the bipartite graph Gαβ which is the subgraph
of G consisting of µ−1((α, β)) on one side and B ∩ Vβ on the other side, and all edges
between these sets; note that they are disjoint, as one is contained in A and second
in B. Observe that Gαβ is a bi-cograph with a connection model of height h, such that
every vertex in V (Gαβ) ∩ A has a neighbor in V (Gαβ) ∩ B. By Lemma 30 there is a
function fαβ : µ−1((α, β)) → B ∩ Vβ which is h-guidable in Gαβ. Observe that fαβ is
also h-guidable when treated as a partial function on G; it suffices to take the same
guidance system, but with all its sets restricted to B.

Finally, define the function f : A → B so that if v ∈ A and µ(v) = (α, β), then
f(v) = fαβ(v). By Lemma 25, the function f is (h · |Λ|2)-guidable. This concludes the
proof of Lemma 29. �

Constructing guidable spanning forests. We are ready to complete the proof of
Lemma 28 stating that shallow spanning forests on classes of bounded shrubdepth are
definable by guidance systems.

Proof (of Lemma 28). Let C be a class of graphs of bounded shrubdepth, and let r
and p be constants provided by Lemma 27 and Lemma 29, respectively, for the class C .
Let R0 ⊆ V (G) be a set of vertices which contains exactly one vertex in each connected
component C of G. By Lemma 27, we may assume that every vertex in G is at distance
at most r from a unique vertex in R0. For i = 1, . . . , r, let Ri be the set of vertices of G
whose distance to some vertex in R0 is equal to i. Then the sets R0, R1, . . . , Rr form a
partition of the vertex set of G. Furthermore, observe that for i = 1, . . . , r, every vertex
of Ri has a neighbor in Ri−1.

Fix a number i ∈ {1, . . . , r}. Apply Lemma 29 to Ri as A and Ri−1 as B. This
yields a function fi : Ri → Ri−1 which is p-guidable in G[Ri ∪Ri−1]. In particular, fi
is also a p-guidable partial function fi : V (G) ⇀ V (G). Let f0 be a partial function
from V (G) to V (G) that fixes every vertex of R0 and is undefined otherwise. Then f0

is guided by the guidance system {R0}, hence it is 1-guidable in G.
Consider now the function fG : V (G)→ V (G) such that for u ∈ V (G), fG(u) = fi(u)

if fi(u) is defined for some i ∈ {0, . . . , r}. By the first item of Lemma 25 we find that fG
is p(r+1)-guidable. By construction, fG is guarded, and f rG maps every vertex v ∈ V (G)
to the unique vertex in R0 which lies in the connected component of v. This proves
that fG defines a spanning forest of depth r on G. �

This completes the proof of Lemma 23.

5.2 Proposition 0 for classes of bounded shrubdepth

In this section, we prove Proposition 0 in the special case when C is a class of graphs
of bounded shrubdepth:
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Lemma 31. Let B be a class of graphs of bounded shrubdepth. Then there is a class T
of colored trees of bounded height and a pair of transductions T and B such that T is
almost quantifier-free, B is deterministic almost quantifier-free, T(B) ⊆ T , B(T ) ⊆ B,
and

B(T(G)) = {G} for all G ∈ B and T(B(t)) 3 t for all t ∈ T .

Moreover, for any G ∈ B, every t ∈ T(G) is an SC-decomposition of G.

We remark that in Lemma 31, every output of the transduction T is an SC-
decomposition of the input graph of bounded depth, whereas the transduction B
recovers the graph from its SC-decomposition.

In other words, the lemma allows to construct the SC-decomposition of a graph from
a class of graphs of bounded shrubdepth using an almost quantifier-free transduction.
This argument is the combinatorial cornerstone of our approach. Conceptually, it shows
that bounded-height decompositions of graphs from classes of bounded shrubdepth
can be defined in a very weak logic, as essentially the whole information about the
decomposition can be pushed to unary predicates on vertices (added using unary
lifts), and from this information the decomposition can be reconstructed using only
deterministic almost quantifier-free formulas.

We need one more auxiliary lemma which allows to apply a transduction in parallel
to a disjoint union of structures. Suppose K is a set of structures over the same
signature. The bundling of K is a structure obtained by taking the disjoint union

⋃
K

of the structures in K, extended with a set X disjoint from V (
⋃
K) and a function

f : V (
⋃
K)→ X such that f(x) = f(y) if and only if x, y belong to the same structure

in K. We denote such a bundling by
⋃
KX . We now prove that an almost quantifier-free

transduction working on each structure separately can be lifted to their bundling.

Lemma 32 (?). Let I be an almost quantifier-free transduction. Then there is an
almost quantifier-free transduction I? such that if the input to I? is the bundling

⋃
KX

of K, then I?(
⋃
KX) is the set containing the bundling of every set formed by taking

one member from I(K) for each K ∈ K.

We can now give a proof of Lemma 31.

Proof (of Lemma 31). Let Bd be the class of graphs of SC-depth at most d. We
prove the statement for B = Bd, yielding appropriate transductions Bd and Td. Observe
that this implies the general case: if B is any class of graphs of bounded shrubdepth,
then by Proposition 6(2) there is a number d such that every graph from B has SC-depth
at most d, hence we may set B = Bd, T = Td, and T = T(B).

The proof is by induction on d. The base case, when d = 0, is trivial. In general,
every output of Td will be an SC-decomposition of the input graph of depth d. That is,
it is a tree of height d, here encoded as a structure by providing its parent function.
The leaves of this tree are exactly the original vertices of the input graph G. They are
colored with d unary predicates W0,W1, . . . ,Wd−1, corresponding to flip sets used on
consecutive levels of the SC-decomposition.
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Now, given an almost quantifier-free transduction Td we construct an almost
quantifier-free transduction Td+1. The transduction Td+1, given a graph G, nondeter-
ministically computes a rooted tree tG as above in the following steps. Implementing
each of them using an almost quantifier-free transduction is straightforward, and to
keep the description concise, we leave the implementation details to the reader.

• Since G ∈ Bd+1, there is a vertex subset W ⊆ V (G) such that in the graph G′

obtained from G by flipping the adjacency within W every connected component
belongs to Bd. Using a unary lift, introduce a unary predicate W0 selecting the
set W and compute G′ by flipping the adjacency within W0.

• Let g : V (G′)→ V (G′) be the function given by Lemma 23, applied to the graph G′.
Note that g can be constructed using an almost quantifier-free transduction. Using
copying and restriction, create a copy X of the image of g. By composing g with the
function that maps each element of the image of g to its copy (easily constructible
using function extension), we construct a function g′ : V (G′) → X such that
g′(v) = g′(w) if and only if v and w are in the same connected component of G′.
Hence, g′ : V (G′) → X defines a bundling of the set of connected components
of G′.

• Apply Lemma 32 to the transduction Td yielding a transduction T?d. Our trans-
duction Td+1 now applies T?d to the bundling given by g′, resulting in a bundling
of the family of colored trees tC , for C ranging over the connected components
of G′.

• Using extension, mark the roots of the trees tC with a new unary predicate; for C
ranging over the connected components of G′ these are exactly elements that do
not have a parent. Create new edges which join each such a root r with g′(r). In
effect, for every connected component C of G′, all the roots of the trees tC are
appended to a new root rC . At the end clear all unnecessary relations from the
structure. Note that the obtained tree tG retains all unary predicates W1, . . . ,Wd

that were introduced by the application of the transduction T?d to G′, as well as
the predicate W0 introduced at the very beginning. All these predicates select
subsets of leaves of tG.

This concludes the description of the almost quantifier-free transduction Td+1. The
transduction Bd+1 is defined similarly, and reconstructs G out of tG recursively as
follows:

• Let r be the root of tG; it can be identified as the only vertex that does not have
a parent. Remove r from the structure, thus turning tG into a forest t′G, where
the roots of t′G are children of r in tG.

• Using function extension, add a function f which maps every vertex v to its unique
root ancestor in t′G. This can be done by taking f to be the d-fold composition of
the parent function of t′G with itself (assuming each root points to itself, which
can be easily interpreted).
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• Copy all the roots of trees in t′G and let X be the set of those copies. Construct a
function f ′ : V (t′G) → X that maps each vertex v to the copy of f(v). Observe
that f ′ defines a bundling of the trees of t′G.

• Apply the transduction B?d obtained from Lemma 32 to the above bundling. This
yields a bundling of the family of connected components of G′, where G′ is obtained
from G by flipping the adjacency within W0.

• Forgetting all elements of the structure apart from the bundled connected compo-
nents of G′ yields the graph G′. Construct the graph G by flipping the adjacency
inside the set W0. Note here that since the remaining vertices are exactly the
leaves of the original tree tG, the predicate W0 is still carried by them. Finally,
clean the structure from all unnecessary predicates.

It is straightforward to see that transductions Td and Bd satisfy all the requested
properties. This concludes the proof of Lemma 31. �

5.3 Proposition 0 for classes of with low shrubdepth covers

We now prove Proposition 0 in the general case. As noted earlier, this will finish the
proof of the right-to-left implication in Theorem 15.

Proof (of Proposition 0). Let C be a class of graphs with low shrubdepth covers.
We fix a finite 2-cover U of C such that C [U ] has bounded shrubdepth. Let N =
sup{|UG| : G ∈ C }, and for G ∈ C let Ĝ be the extension of G by unary predicates
U1, . . . , UN such that {U1, . . . , UN} = UG. Let Ĉ = {Ĝ : G ∈ C }. Then the class
B = Ĉ [U ] has bounded shrubdepth.

Apply Lemma 31 to the class C [U ], yielding almost quantifier-free transductions T
and B. It is easy to construct an almost-quantifier free transduction S′ such that for
G ∈ C , the structure S′(Ĝ) is the union of the trees TU ∈ T(G[U ]), one tree per each
U ∈ UG, where the union is disjoint apart from the vertices which belong to V (G) (the
leaves of the trees). Indeed, we process U1, . . . , UN in order, and for each consecutive Ui
we apply the transduction T to G[Ui], appropriately modifying all its atomic operations
so that the elements outside of Ui are ignored and kept intact. Recall all the constructed
trees have depth bounded by a constant, say d.

Now obtain S from S′ by precomposing with a sequence of unary lifts introducing the
predicates U1, . . . , UN , and appending the following operations. First, using extension
operations introduce unary predicates Di,` for i ∈ {1, . . . , N} and ` ∈ {0, 1, . . . , d} such
that Di,` selects nodes at depth ` in the tree TUi . Next, using an extension operation
that introduces an adjacency relation binding every pair of elements u, v such that
f(u) = v for some function f in the signature (the parent functions). Finally, use a
sequence of reduct operations which drop all functions and non-unary relations from
the signature, apart from adjacency. Thus every output of S is a colored graph.

Let F = S(C ). By Lemma 0, F has low shrubdepth covers. Furthermore, each
graph H ∈ S(G) for some G ∈ C is the union of at most N trees, hence H is N -
degenerate and in particular excludes the biclique KN+1,N+1 as a subgraph.
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Hence by Lemma 7 we infer that S(C ) has low treedepth covers, so by Lemma 13,
S(C ) is a class of bounded expansion.

We are left with constructing a deterministic almost quantifier-free transduction I
satisfying I(S(G)) = {G}. This transduction should take on input a graph H ∈ S(G)
and turn it back to G. The vertex set of H consists of V (G) and trees TU for U ∈ UG,
each built on top of the subset U of V (G) and of depth at most d. Using predicates Di,`

it is easy to use a sequence of quantifier-free function extension operations to construct,
for each U ∈ UG, the parent function of TU , thus turning the substructure induced by
the nodes of TU back into TU . Similarly as before, it is now straightforward to construct
a transduction I′ that applies the transduction B to each colored tree TU , thus turning
the set of its leaves into G[U ]. Since U was a 2-cover, for every edge e of G there exists
U ∈ UG that contains both endpoints of e. Hence, applying I′ to the current structure
recovers the graph G; this concludes the construction of I. Note that I is deterministic
almost quantifier-free. �

6 Proof of Proposition 19 (quantifier elimination for classes of bounded
expansion)

In this section we prove Proposition 19, which we repeat for convenience.

Proposition 19. Let C be a class of graphs of bounded expansion and let I be a
transduction. Then I is equivalent to an almost quantifier-free transduction J on C .

We note that Proposition 0 is a strengthening of similar statements provided by
Dvořák et al. [9] and of Grohe and Kreutzer [21], and could be derived by a careful
analysis of their proofs, and by using the Lemma 33 below.

For a graph G and a partial function f : V (G) ⇀ V (G), we say that f is guarded
by G if for every vertex in the domain of f is mapped to itself or to its neighbor.

Lemma 33 (?). Let C be a class of graphs which has 2-covers of bounded treedepth, and
for each G ∈ C , let Ĝ be the graph G extended by a partial function f : V (G) ⇀ V (G)
which is guarded by G. Then there is an almost quantifier-free transduction F using
only unary lifts and a single function extension such that F(G) = Ĝ.

To derive Proposition 0 from [9], one would need to prove that the unary functions
constructed in their proofs can be obtained as compositions of guarded functions, and
conclude using Lemma 33. Rather then doing that, below we provide a self-contained
proof of Proposition 0, which we also believe is simpler than the existing proofs, among
other reasons, thanks to the notion of covers. In Section 6.1 we outline how the result
of Dvořák, Král’, and Thomas can be deduced from our proof.

We will use the following restricted form of transductions. A faithful transduction is
a transduction which does not use copying and restrictions. A guarded transduction is
a faithful transduction which given a structure A, produces a structure whose Gaifman
graph is a subgraph of the Gaifman graph of A. In the following lemmas, we identify a
first-order formula ϕ(x̄) with the transduction which inputs a structure A and outputs A
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extended with a single relation, consisting of those tuples ā which satisfy ϕ(x̄) in A
(this transduction is a composition of an extension operation followed by a sequence of
reduct operations which drop all the symbols from the input structure).

Lemma 34. Let ϕ(x̄) be a first-order formula and let C be a class of graphs of bounded
expansion. Then there is a guarded transduction I which adds unary function and
relation symbols only, and a quantifier-free formula ϕ′(x̄), such that ϕ is equivalent to
I;ϕ′ on C .

Before proving Lemma 34, we first show how to conclude Proposition 0 using it.

Proof (of Proposition 0). For simplicity we assume that the signature produced
by I consists of one relation P ; lifting the proof to signatures containing more relation
and function symbols is immediate. By Lemma 2, we may express I as

I = L;C;E;X;R,

where

• L is a sequence of unary lifts,

• C is a sequence of copying operations,

• E is a single extension operation introducing the final relation P using some
formula ϕ(x̄),

• X is a single universe restriction operation using some formula ψ(x) that does not
use symbol P , and

• R is a sequence of reduct operations that drop all relations and functions apart
from P .

From Lemma 8 it follows that the class C(L(C )) of colored graphs is a class of bounded
expansion, and therefore, we may apply Lemma 34 to it, and to the formulas ϕ(x̄) and
ψ(x) considered above.

Using Lemma 34 we replace the formulas ϕ(x̄) and ψ(x) by quantifier-free formulas,
at the cost of introducing additional guarded transductions which introduce unary
function and relation symbols. Using Lemma 33, every such transduction is equivalent
to an almost quantifier-free transduction. Hence, the transductions E and X can be
replaced in I by almost quantifier-free transductions, yielding an almost quantifier-free
transduction J that is equivalent to I on C . �

As explained, Proposition 0 together with Proposition 0 yields Theorem 16. It
remains to prove Lemma 34. Similarly as in [9, 21], we first prove the statement for
classes of colored forests of bounded depth:

Lemma 35 (?). Let ϕ(x̄) be a first-order formula and let F be a class of colored rooted
forests of bounded depth. Then there is a transduction Iϕ which, given a rooted forest
F ∈ F extends it by the parent function of F and some unary predicates, and there
exists a quantifier-free formula ϕ′(x̄) such that ϕ is equivalent to Iϕ;ϕ′ on F .
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Let us remark that the presented proof of Lemma 35 is based on the automata approach
and is conceptually different from the ones used in [9,21]. Note that the transduction Iϕ
produced in Lemma 35 is in particular a guarded transduction, since the parent of a
vertex in a forest is in particular a neighbor of that vertex.

The next step is to lift Lemma 35 to classes of structures of bounded treedepth. We
first observe that classes of bounded treedepth are bi-definable with classes of forests of
bounded depth, using almost quantifier-free transductions. This result is similar, but
much simpler to prove than Lemma 31, which is an analogous statement for classes of
bounded shrubdepth.

Lemma 36. Let C be a class of structures of bounded treedepth. There is a pair of
faithful transductions T and C and a class F of colored rooted forests of bounded depth
such that T(C ) ⊆ F , C(F ) ⊆ C and C(T(A)) = {A} for A ∈ C . Moreover, the
transduction T is guarded, and C is deterministic almost quantifier-free.

Proof. We follow the well-known encoding of structures of bounded treedepth inside
colored forests, where a structure A ∈ C is encoded in a depth-first search forest of its
Gaifman graph, as follows.

A depth first-search (DFS) forest of a graph G is a rooted forest F which is a
subgraph of G, such that every edge of G connects an ancestor with a descendant in F .

It is known that a graph G of treedepth at most d has a DFS forest of depth at
most 2d. If A is a structure over a fixed signature Σ, G is its Gaifman graph and F is
a DFS forest of G of depth 2d, then A can be encoded in F using a bounded number
of additional unary predicates by labeling every node v of F by the isomorphism type
of the substructure of A induced by v1, . . . , vt, where v1, . . . , vt are the nodes on the
path from a root of F to v, v = vt and t 6 2d. The number of used unary predicates
depends only on the signature Σ and d.

If C be a class of structures of treedepth at most d, then the transduction T, given a
structure A ∈ C outputs a DFS forest F of the Gaifman graph of A of depth at most 2d,
extended with unary predicates encoding A, as described above. The structure A can
be recovered from F (together with the unary predicates) using a deterministic almost
quantifier-free transduction, which first introduces the parent function, and then uses a
quantifier-free formula to determine the quantifier-free type of a tuple of vertices. �

Using Lemma 36 we easily lift the quantifier-elimination result from forests of
bounded depth to classes of low treedepth.

Lemma 37. Let ϕ(x̄) be a first-order formula and let C be a class of structures of
bounded treedepth. Then there is a guarded transduction Iϕ and a quantifier-free formula
ϕ′(x̄) such that ϕ is equivalent to Iϕ;ϕ′ on C .

Proof. Let C,T and F be as in Lemma 36. Since C(T(A)) = {A} and C is deter-
ministic, there is a formula ψ(x̄) such that ϕ is equivalent to T;ψ on C . Now, apply
Lemma 35 to the class F and the formula ψ(x̄), yielding a guarded transduction J and
a quantifier-free formula ψ′(x̄), such that ψ is equivalent to J;ψ′ on F . By composition,
ϕ is equivalent to T; J;ψ′ on C . Note that T; J is a guarded transduction, since T and J
are such. This proves the lemma. �
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Finally, we lift the quantifier elimination procedure to classes with low shrubdepth
covers using Lemma 20 and a reasoning very similar to the proof of Lemma 0. Again,
conceptually this lift is exactly what is happening in [9, 21], however, our approach
based on covers makes it quite straightforward. The key observation is encapsulated in
the following lemma.

Lemma 38. Let D be a class of structures with unary relation and function symbols
only, and let ϕ(x̄) be a quantifier-free formula with p free variables, involving c distinct
terms. Then there is a quantifier-free formula ϕ′(x̄) such that following conditions are
equivalent for a structure A ∈ D, a c · p-cover UA of the Gaifman graph of A, and a
p-tuple ā of elements of A :

1. A, ā |= ϕ(x̄),

2. there is some U ∈ UG containing ā such that A[U ], ā |= ϕ′(x̄).

Proof. We first consider the special case when ϕ(x̄) is an atomic formula. Each term t
occurring in ϕ(x̄) defines a partial function tA : V (A) ⇀ V (A) on a given structure A,
in the natural way. Let T denote the set of terms occurring in ϕ(x̄). By assumption,
|T | 6 c. For a tuple ā = (a1, . . . , ap) of elements of a structure A, denote by TA(ā) the
set {tA(ai) : t ∈ T , 1 6 i 6 p}. Then |TA(ā)| 6 c · p.

Since ϕ(x̄) is an atomic formula, for any p-tuple ā of elements of A and any set
U ⊆ V (A) containing TA(ā) we have the following equivalence:

A, ā |= ϕ(x̄) ⇐⇒ A[U ], ā |= ϕ(x̄).

Take ϕ′(x̄) = ϕ(x̄). The equivalence of the two items then follows by assumption
that UG is a p · c-cover of A, so for every ā, there is some set U ∈ UG containing TA(ā).

To treat the general case of a quantifier-free formula, we take ϕ′(x̄) to be a conjunction
of ϕ(x̄) and a formula which verifies that all the values in TA(ā) are defined. We leave
the details to the reader. �

We are ready to prove Lemma 34.

Proof (of Lemma 34). The proof proceeds by induction on the structure of the
formula ϕ(x̄). In the base case, ϕ(x̄) is a quantifier-free formula, so we may take I to be
the identity transduction.

In the inductive step, we consider two cases. If ϕ(x̄) is a boolean combination of
simpler formulas, then the statement follows immediately from the inductive assumption.
The interesting case is when ϕ(x̄) is of the form ∃y.ψ(x̄, y), for some formula ψ(x̄, y). We
consider this case below. Denote by p the number of free variables in the formula ψ(x̄, y).

Apply the inductive assumption to the formula ψ(x̄, y), yielding a guarded trans-
duction Iψ and a formula ψ′(x̄, y). Let c be the number of distinct terms (including
subterms) appearing in the formula ψ′(x̄, y). Let D = Iψ(C ). Note that every structure
in D has unary function and relation symbols only, and is guarded by some graph in C .
By Lemma 0, we can pick a finite c · p-cover U of C , so that the class C [U ] has bounded
treedepth. As Iψ is guarded, it follows that also the class D [U ] has bounded treedepth.
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Apply Lemma 38 to D and ψ′(x̄, y), yielding a formula ψ′′(x̄, y) such that for every
graph G ∈ C , p-tuple of vertices (ā, b) and the c · p-cover UG of G ∈ C , the following
equivalences hold:

G, ā, b |= ψ(x̄, y) ⇐⇒ Iψ(G), ā, b |= ψ′(x̄, y)

⇐⇒ Iψ(G)[U ], ā, b |= ψ′′(x̄, y) for some U ∈ UG containing ā, b.

Apply Lemma 37 to the class D [U ] and the formula ∃y.ψ′′(x̄, y), yielding a guarded
transduction F and quantifier-free formula ρ(x̄) such that for every A ∈ D [U ] and tuple
ā ∈ V (A)|x̄|,

A, ā |= ∃y.ψ′′(x̄, y) ⇐⇒ F(A), ā |= ρ(x̄).

Claim 1. For each graph G ∈ C and tuple ā ∈ V (H)|x̄|, the following conditions are
equivalent:

1. G, ā |= ∃y.ψ(x̄, y),

2. there is some U ∈ UG containing ā such that F(Iψ(G)[U ]), ā |= ρ(x̄).

Proof. We have the following equivalences:

G, ā |= ∃y.ψ(x̄, y) ⇐⇒ G, ā, b |= ψ(x̄, y) for some b ∈ V (G)

⇐⇒ Iψ(G)[U ], ā, b |= ψ′′(x̄, y) for some U ∈ UG containing ā, b

⇐⇒ Iψ(G)[U ], ā |= ∃y.ψ′′(x̄, y) for some U ∈ UG containing ā

⇐⇒ F(Iψ(G)[U ]), ā |= ρ(x̄) for some U ∈ UG containing ā.

This proves the claim. y

Let N = sup{|UG| : G ∈ C }. For each graph G ∈ C , fix an enumeration U1, . . . , UN
of the cover UG.

Claim 2. There is a guarded transduction F′ and quantifier-free formulas ρ1(x̄), . . . , ρN (x̄)
such that given a graph G ∈ C , a number i ∈ {1, . . . , N} and a tuple ā of elements
of Ui,

F′(G), ā |= ρi(x̄) ⇐⇒ F(Iψ(G)[Ui]), ā |= ρ(x̄).

Proof. We construct a guarded transduction F′ which, given a graph G ∈ C , first
applies the guarded transduction Iψ, then introduces unary predicates marking the
sets U1, . . . , UN , and then, for each such unary predicate Ui, applies to the structure
Iψ(G)[Ui] the transduction F, modified so that each function symbol f is replaced by a
new function symbol f i.

Then the formula ρi(x̄) is obtained from the formula ρ(x̄), by replacing each function
symbol f by the function symbol f i. y

Combining Claim 1 and Claim 2 we get the following equivalence:

F′(G), ā |=
N∨
i=1

ρi(x̄) ⇐⇒ G, ā |= ϕ(x̄),

concluding the inductive step. This finishes the proofs of Lemma 34 and Proposition 0.
�
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6.1 Effectivity

As a side remark, we note that we can easily derive the result of Dvořák, Král’, and
Thomas, by observing that the above proof of Lemma 34 is effective, and can be
leveraged to construct a transduction I which is a linear time computable function.

We say that a transduction I is a linear time transduction if there is an algorithm
which, given a structure A as input, produces some structure B ∈ I(A) in linear time.
Here, the structure A is represented using the adjacency list representation, i.e., for a
colored graph, the size of the description is linear in the sum of the number of vertices
and the number of edges in the graph.

We show the following, effective variant of Lemma 34.

Lemma 39. Let ϕ(x̄) be a first-order formula and let C be a class of graphs of bounded
expansion. Then there is a guarded transduction I which adds unary function and
relation symbols only, and a quantifier-free formula ϕ′(x̄), such that ϕ is equivalent to
I;ϕ′ on C . Moreover, I is a linear time transduction.

Proof. To prove Lemma 39, we observe that the transduction I in Lemma 34 is a
linear time transduction. The proof follows by tracing the proof of Lemma 34, and
observing the following.

1. In Lemma 35, the constructed transduction I is a linear time transduction. This
is because the transduction only adds the parent function (which is clearly linear-
time computable, given a rooted forest) and some unary predicates, each of which
can be computed in linear time, since each unary predicate is produced by running
a deterministic threshold tree automaton on the input tree.

2. In Lemma 36, the transduction T is a linear time transduction, since it amounts
to running a depth-first search on the input graph.

3. In Lemma 37, the produced transduction J = T; J is a linear time transduction,
as a composition of two linear time transductions.

4. In the proof of Lemma 34, the nontrivial step is in the inductive step, in the
case of an existential formula. In this case, the constructed transduction F′ is a
linear time transduction, assuming C has bounded expansion, as F′ amounts to
introducing unary predicates denoting the elements of a cover UG, and applying
transductions Iψ and F which are linear time transductions, respectively, by the
inductive assumption, and by the effective version of Lemma 37 discussed above.

We note that if C has bounded expansion then for any fixed p > 0 there is a
finite p-cover U of C of bounded treedepth such that UG can be computed from
a given G ∈ C in time f(p) · |V (G)|, for some function f depending on C (the
function f may not be computable). To compute UG, we may first compute a
g(p)-treepdepth coloring of G for some function g (as required in the proof of
Lemma 13) and observe that it can be converted to a cover in linear time, as in
the proof of Lemma 13. A p-treedepth coloring can be computed in linear time,
cf. [8, 30,31]. �
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7 Algorithmic aspects

In this section we give a preliminary result about efficient computability of transductions
on classes with structurally bounded expansion. When we refer to the size of a structure
in the algorithmic context, we refer to its total size, i.e., the sum of its universe size
and the total sum of sizes of tuples in its relations.

Call a class C of graphs of structurally bounded expansion efficiently decomposable
if there is a finite 2-cover U of C and an algorithm that, given a graph G ∈ C , in linear
time computes the cover UG and for each U ∈ UG, an SC-decomposition SU of depth at
most d of the graph G[U ], for some constant d depending only on C . Our result is as
follows.

Theorem 40. Suppose J is a deterministic transduction and C is a class of graphs
that has structurally bounded expansion and is efficiently decomposable. Then given a
graph G ∈ C , one may compute J(G) in time linear in the size of the input plus the size
of the output.

We remark that instead of efficient decomposability we could assume that the
2-cover UG of a graph G and corresponding SC-decompositions for all U ∈ UG is given
together with G as input. If only the cover is given but not the SC-decompositions,
we would obtain cubic running time because bounded shrubdepth implies bounded
cliquewidth and we can compute an approximate clique decomposition in cubic time [32].
Then, SC-decompositions of small height are definable in monadic second-order logic,
and hence they can be computed in linear time using the result of Courcelle, Makowski
and Rotics [3].

Observe that the theorem implies that we can efficiently evaluate a first-order
sentence and enumerate all tuples satisfying a formula ϕ(x1, . . . , xk) on the given input
graph, since this amounts to applying the theorem to a transduction consisting of
a single extension operation. This strengthens the analogous result of Kazana and
Segoufin [25] for classes of bounded expansion.

Proof (sketch). We will make use of transductions S and I constructed in the proof
of Proposition 0. Recall that S(C ) is a class of colored graphs of bounded expansion, I
is deterministic, and I(S(G)) = {G} for each G ∈ C . Observe that J is equivalent to
S; I; J on C . Defining K as I; J, we get that J(G) = K(S(G)) for G ∈ C . Moreover, since I
is deterministic, it follows that K is deterministic.

Let G ∈ C be an input graph. By efficient decomposability of C , in linear time we
can compute a cover UG of G together with an SC-decomposition SU of depth at most d
of G[U ], for U ∈ UG. Each SU is a colored tree, and by the construction described in the
proof of Proposition 0, the trees SU for U ∈ UG, glued along the leaves form a structure
belonging to S(G). As J(G) = K(S(G)), it suffices to apply the enumeration result of
Kazana and Segoufin for classes of bounded expansion [25] to the colored graph S(G)
and to all formulas occurring in the transduction K. �
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8 Conclusion

In this paper we have provided a natural combinatorial characterization of graph
classes that are first-order transductions of bounded expansion classes of graphs. Our
characterization parallels the known characterization of bounded expansion classes by
the existence of low treedepth decompositions, by replacing the notion of treedepth
by shrubdepth. We believe that we have thereby taken a big step towards solving
the model-checking problem for first-order logic on classes of structurally bounded
expansion.

On the structural side we remark that transductions of bounded expansion graph
classes are just the same as transductions of classes of structures of bounded expan-
sion (i.e., classes whose Gaifman graphs or whose incidence encodings have bounded
expansion). On the other hand, it remains an open question to characterize classes
of relational structures, rather than just graphs, which are transductions of bounded
expansion classes. We are lacking the analogue of Lemma 31; the problem is that within
the proof we crucially use the characterization of shrubdepth via SC-depth, which works
well for graphs but is unclear for structures of higher arity.

Finally, observe that classes of bounded expansion can be characterized among
classes with structurally bounded expansion as those which are bi-clique free. It follows,
that every monotone (i.e., subgraph closed) class of structurally bounded expansion
has bounded expansion. Exactly the same statement holds characterizing bounded
treedepth among bounded shrubdepth, and the second item holds for treewidth vs
cliquewidth. In particular, for monotone graph classes all pairs of notions collapse.

We do not know how to extend our results to nowhere dense classes of graphs, mainly
due to the fact that we do not know whether there exists a robust quantifier-elimination
procedure for these graph classes.
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A Normalization lemmas for transductions

In this section we give proofs omitted from Section 2.1.

Proof (of Lemma 2 and of Lemma 3). We give appropriate swapping rules that
allow us to arrange the atomic operations comprising I into the desired normal form.

We start with putting all the unary lifts at the front of the sequence. Observe that
whenever an atomic operation is followed by a unary lift, then these two operations may
be appropriately swapped. This is straightforward for all atomic operations apart from
copying. For this last case, observe that copying followed by a unary lift introducing a
unary predicate X is equivalent to a transduction that does the following. First, using
unary lifts introduce two auxiliary unary predicates X1 and X2, interpreted to select
vertices that are supposed to be selected by X in the original universe, respectively
in the copy of the universe. Then perform copying. Finally, use extension and reduct
operations to appropriately interpret X and drop predicates X1, X2.

Having applied the above swapping rules exhaustively, the formula is rewritten
into the form L; I′ where I′ does not contain any lifts. Observe that if I was almost
quantifier-free, then I′ is deterministic almost quantifier-free. This proves Lemma 3.

Next, we perform swapping within I′ so that all copying operations are put at the
front of the sequence of atomic operations. Again, it suffices to show that whenever
an atomic operation is followed by copying, then the two operations may be swapped.
For reducts this is obvious, while for extensions and restrictions one should modify the
formula parameterizing the operation in a straightforward way to work on each copy
separately. Thus we have rewritten I into the form L;C; I′′ where I′′ does not use lifts or
copying.

Now consider I′′. It is clear that all reduct operations can be moved to the end of
the transduction, since it does not harm to have more relations in the structure. Next,
we move all restriction operations to the end (before reduct operations) by showing that
each restriction operation can be swapped with any extension or function extension
operation. Suppose that the restriction is parameterized by a unary formula ψ, and
it is followed by an extension operation (normal or function), say parameterized by
a formula ϕ. Then the two operations may be swapped provided we appropriately
relativize ϕ as follows: add guards to all quantifiers in ϕ so that they run only over
elements satisfying ψ, and for every term τ used in ϕ add guards to check that all the
intermediate elements obtained when evaluating τ satisfy ψ.

Applying these swapping rules exhaustively rewrites I′′ into the form I′′′;X′;R,
where I′′′ is a sequence of extension and function extension operations, X′ is a sequence
of restriction operations, and R is a sequence of reduct operations. We now argue
that X′ can be replaced with a single restriction operation X. It suffices to show how
to do this for two consecutive restriction operations, say parameterized by ψ1 and ψ2,
respectively. Then we may replace them by one restriction operation parameterized by
ψ1 ∧ ψ′2, where ψ′2 is obtained from ψ2 by relativizing it with respect to ψ1 just as in
the previous paragraph.

We are left with treating the extension and function extension operations within I′′′.
Whenever a formula ϕ parameterizing some extension or function extension operation
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within I′′′ uses a relation symbol R introduced by some earlier extension operation
within I′′′, say parameterized by formula ϕ′, then replace all occurrences of R in ϕ
with ϕ′. Similarly, if ϕ uses some function f that was introduced by some earlier
function extension operation within I′′′, say using formula ϕ′(x, y), then replace each
usage of f in ϕ by appropriatiely quantifying the image using formula ϕ′(x, y). Perform
the same operations on the formula parameterizing the restriction operation X.

Having performed exhaustively the operations above, formulas parameterizing all
atomic operations in I′′′;X use only relations and functions that appear originally in the
structure or were added by L;C. Hence, all extension and function extension operations
within I′′′ which introduce symbols that are later dropped in R can be simply removed
(together with the corresponding reduct operation). It now remains to observe that all
atomic operations within I′′′ commute, so they can be sorted: first function extensions,
then (normal) extensions. �

B Proof of Lemma 7

In this section we prove Lemma 7. One implication is easy: it is known [17] that
every class of bounded treedepth also has bounded shrubdepth, and moreover the
bi-clique Ks,s has treedepth s+ 1, so every class of bounded treedepth excludes some
bi-clique.

We need to prove the reverse implication: any class of bounded shrubdepth that
moreover excludes some bi-clique has bounded treedepth. We will use the following
well-known characterization of classes of bounded treedepth (see [31, Theorem 13.3]).

Lemma B.41. A class of graphs C has bounded treedepth if and only if there exists a
number d ∈ N such that no graph from C contains a path on more than d vertices as a
subgraph.

By Lemma B.41 and Proposition 6(3), to prove Lemma 7 it is sufficient to prove
the following.

Lemma B.42. There exists a function g : N × N × N → N such that the following
holds. For all integers h,m, s ∈ N, if a graph G does not contain the bi-clique Ks,s as
a subgraph and admits a connection model of height at most h using at most m labels,
then G does not contain any path on more than g(h,m, s) vertices as a subgraph.

Proof. We proceed by induction on the height h. For h = 0, only one-vertex graphs
admit a connection model of height 0, so we may set g(0,m, s) = 1.

For the induction step, suppose G does not contain Ks,s as a subgraph and admits a
connection model T of height h > 1 and using m labels. Call two vertices u and v of G
related if they are contained in the same subtree of T rooted at a child of the root of G,
and unrelated otherwise. Whenever u and v are unrelated, their least common ancestor
is the root of T , so whether they are adjacent depends solely on the pair of their labels.

Let P = (v1, . . . , vp) be a path in G. A block on P is a maximal contiguous subpath
of P consisting of vertices that are pairwise related. Thus, P breaks into blocks
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B1, . . . , Bq, appearing on P in this order. Note that each block Bi is a path that is
completely contained in an induced subgraph of G that admits a connection model of
height h− 1 and using m labels. Hence, by the induction hypothesis we have that each
block Bi has at most g(h− 1,m, s) vertices.

For a non-last block Bi (i.e. i 6 q), define the signature of Bi as the pair of labels
of the following two vertices: the last vertex of Bi and of its successor on P , that is,
the first vertex of Bi+1. The following claim is the key point of the proof.

Claim 3. For any signature, the number of non-last blocks with this signature is at
most 4(s− 1).

Proof. Let σ = (λ1, λ2) be the signature in question and let B be the set of blocks
with signature σ; suppose for the sake of contradiction that |B| > 4(s− 1). Consider the
following random experiment: independently color each subtree of T rooted at a child
of the root black or white, each with probability 1/2. Call a block Bi ∈ B split if the
last vertex of Bi is white and the first vertex of Bi+1 is black. Since these two vertices
are unrelated (by the maximality of Bi), each block Bi is split with probability 1/4,
implying that the expected number of split blocks is |B|/4 > s− 1. Hence, some run of
the experiment yields a white/black coloring of subtrees rooted at children of the root
of T and a set S ⊆ B of s blocks that are split in this coloring.

Let u1, . . . , us be the last vertices of blocks from S and v1, . . . , vs be their successors
on the path P , respectively. By assumption, all vertices ui have label λ1 and all
vertices vi have label λ2. Further, all vertices ui are white and all vertices vi are black,
implying that ui and vj are unrelated for all i, j ∈ [s]. Since ui is unrelated and adjacent
to vi, it follows that ui is adjacent to all vertices vj , j ∈ [s], as these vertices are
also unrelated to ui and have the same label as vj . We conclude that u1, . . . , us and
v1, . . . , vs form a bi-clique Ks,s in G, a contradiction. �

Since the number of possible signatures is m2, by Claim 3 we infer that the total
number of blocks is at most 4(s − 1)m2 + 1. As we argued, each block has at most
g(h− 1,m, s) vertices, implying p 6 (4(s− 1)m2 + 1) · g(h− 1,m, s). As P was chosen
arbitrarily, we may set

g(h,m, s) := (4(s− 1)m2 + 1) · g(h− 1,m, s).

This concludes the inductive proof. �

C Proof of Lemma 13

Proof (of Lemma 13). We will prove that a graph class C has low treedepth colorings
if and only if it has low treedepth covers. The result then follows from Theorem 9.

We start with the left-to-right direction. Assume C has low treedepth colorings. Then
for every graph G ∈ C and p ∈ N we may find a vertex coloring γ : V (G)→ [N ] using N
colors where every i 6 p color classes induce in G a subgraph of treedepth at most i;
here, N depends only on p and C . Assuming without loss of generality that N > p,
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define a p-cover UG of size at most
(
N
p

)
as follows: UG = {γ−1(X) : X ⊆ [N ], |X| = p}.

Then U = (UG)G∈C is a finite p-cover of C of bounded treedepth.
Conversely, suppose that every graph G ∈ C admits a p-cover UG of size N where

G[U ] has treedepth at most d for each U ∈ UG; here, N and d depend only on p and C .
Define a coloring χ : V (G) → P(UG) as follows: for v ∈ V (G), let χ(v) be the set of
those U ∈ UG for which v ∈ U . Thus, χ is a coloring of V (G) with 2N colors. Take
any p subsets X1, . . . , Xp ⊆ UG such that χ−1(Xi) 6= ∅ for each i ∈ [p]. Arbitrarily
choose any xi ∈ χ−1(Xi). Since UG is a p-cover of G, there exists U ∈ UG such that
{x1, . . . , xp} ⊆ U . Consequently, for each i ∈ [p] we have that U ∈ Xi, implying
χ−1(Xi) ⊆ U . Hence G[χ−1({X1, . . . , Xp})] is an induced subgraph of G[U ], whereas
the latter graph has treedepth at most d by the assumed properties of UG. We conclude
that every p color classes in χ induce a subgraph of treedepth at most d.

It remains to refine this coloring so that we in fact obtain a coloring such that
every at most i 6 p color classes induce a subgraph of treedepth at most i. As every p
color classes in χ induce a subgraph of treedepth at most d, we can fix for every p
color classes I of χ a treedepth decomposition YI of height at most d. We define the
coloring ξ such that every vertex v gets the color {(I, hI) : I is a subset of p color classes
containing v and hI is the depth of v in the decomposition YI}. Note that since the
number of colors of χ is finite, the number of colors used by ξ is also finite.

We now prove that in the refined coloring, any i 6 p colors in ξ have treedepth
at most i. Fix any i 6 p colors in ξ and denote the tuple of colors by J . As ξ is a
refinement of χ, there exists a tuple I of at most p colors in χ which contains all vertices
of G[J ]. Furthermore, the i selected colors of J are contained in i levels of the treedepth
decomposition YI . Taking the restriction of these i levels yields a forest of height at
most i, which is a witness that G[J ] has treedepth at most i. �

D Proofs of Section 5.1

In this section we present the missing proofs of Section 5.1 as well as a second proof for
Lemma 29.

D.1 Guided and guidable functions

Proof (of Lemma 24). For each connected component C of G we may find a guidance
system UC = {UC1 , . . . , UC` } that guides g|C . Since g|C is undefined for vertices outside
of C, we may assume that UCi ⊆ V (C) for each i ∈ [`]. It follows that g is guided by
the guidance system U = {U1, . . . , U`} defined by setting Ui to be the union of UCi
throughout connected components C of G. �

Proof (of Lemma 25). Let Ui be a guidance system of size at most ` that such
that gi is guided by Ui. Then U =

⋃s
i=1 Ui is a guidance system of size at most ` · s. It

is easy to see that U guides the partial function g. �

Proof (of Lemma 26). Let U be a guidance system of size at most ` such that fG is
guided by U . For each vertex x such that f(x) is a neighbor of x, pick an arbitrary set
V (x) ∈ U such that f(x) is the unique neighbor of x in V (x).
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We now present an almost quantifier-free transduction that constructs fG. First,
for each U ∈ U use a unary lift to introduce a unary predicate that selects the vertices
of U . Next, introduce two unary predicates, Null and Self, which select the vertices x
such that f(x) is undefined or f(x) = x, respectively. Finally, for each V ∈ U
introduce a unary predicate GV that selects vertices x with V (x) = V . Now, for each
U ∈ U , construct the partial function dU which maps every vertex x to its unique
neighbor in U (if it exists) using the function extension operation parameterized by the
formula E(x, y) ∧ U(y). Finally, construct fG using the function extension operation
parameterized by the formula α(x, y) stating that x 6∈ Null and either x ∈ Self and
y = x, or x ∈ GV and y = dU (x). �

D.2 Greedy proof of Lemma 29

We now present the second proof of Lemma 29. As asserted by Lemma 27, graphs from
a fixed class of bounded shrubdepth do not admit arbitrarily long induced paths. We
need a strengthening of this statement: classes of bounded shrubdepth also exclude
induced structures that roughly resemble paths, as made precise next.

Definition D.43. Let G be a graph. A quasi-path of length ` in G is a sequence of
vertices (u1, u2, . . . , u`) satisfying the following conditions:

• uiui+1 ∈ E(G) for all i ∈ [`− 1]; and

• for every odd i ∈ [`] and even j ∈ [`] with j > i+ 1, we have uiuj /∈ E(G).

Note that in a quasi-path we do not restrict in any way the adjacencies between ui
and uj when i, j have the same parity, or even when i is odd and j is even but j < i− 1.
We now prove that classes of bounded shrubdepth do not admit long quasi-paths; note
that since an induced path is also a quasi-path, the following lemma actually implies
Lemma 27.

Lemma D.44. For every class C of graphs of bounded shrubdepth there exists a constant
q ∈ N such that no graph from C contains a quasi-path of length q.

Proof. It suffices to prove the following claim.

Claim 4. There exists a function f : N × N → N such that no graph admitting a
connection model of height h and using m labels contains a quasi-path of length larger
than f(h,m).

The proof is by induction on h. Observe first that graphs admitting a connection
model of height 0 are exactly graphs with one vertex, hence we may set g = f(0,m) = 1
for all m ∈ N.

We now move to the induction step. Assume G admits a connection model T of
height h > 1 where λ : V (G)→ Λ is the corresponding labeling of V (G) with a set Λ
consisting of m labels. Call two vertices u, v ∈ V (G) related if in T they are contained
in the same subtree rooted at a child of the root of T ; obviously this is an equivalence
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relation. The least common ancestor of two unrelated vertices is always the root of T ,
hence for any two unrelated vertices u, v, whether u and v are adjacent depends only
on the label of u and the label of v.

Now suppose G admits a quasi-path Q = (u1, . . . , u`). A block in Q is a maximal
contiguous subsequence of Q consisting of pairwise related vertices. Thus Q is partitioned
into blocks, say B1, . . . , Bp appearing in this order on Q. Observe that every block Bi
either is a quasi-path itself or becomes a quasi-path after removing its first vertex. Since
vertices of Bi are pairwise related, they are contained in an induced subgraph of G
that admits a tree model of height h− 1 and using m labels, implying by the induction
hypothesis that

every block has length at most f(h− 1,m) + 1. (1)

Next, for every non-last block Bi (i.e. i 6= p), let the signature of Bi be the following
triple:

• the parity of the index of the last vertex of Bi,

• the label of the last vertex of Bi, and

• the label of its successor on Q, that is, the first vertex of Bi+1.

The next claim is the key step in the proof.

Claim 5. There are no seven non-last blocks with the same signature.

Proof. Supposing for the sake of contradiction that such seven non-last blocks exist,
by taking the first, the fourth, and the seventh of them we find three non-last blocks
Bi, Bj , Bk with sames signature such that 1 6 i < j < k < p and j− i > 2 and k−j > 2.
Let 1 6 a < b < c < ` be the indices on Q of the last vertices of Bi, Bj , Bk, respectively.
By the assumption, λ(ua) = λ(ub) = λ(uc), λ(ua+1) = λ(ub+1) = λ(uc+1), and a, b, c
have the same parity. Suppose for now that a, b, c are all even; the second case will
be analogous. Further, the assumptions j − i > 2 and k − j > 2 entail b > a+ 2 and
c > b+ 2.

Observe that ua+1 and ub have to be related. Indeed, ua has the same label as ub,
while it is unrelated and adjacent to ua+1. So if ua+1 and ub were unrelated, then they
would be adjacent as well, but this is a contradiction because a+ 1 is odd, b is even, and
a+ 2 < b. Similarly ua and uc+1 are related and ub and uc+1 are related. By transitivity
we find that ub and ub+1 are related, a contradiction.

The case when a, b, c are all odd is analogous: we similarly find that ua is related
to ub+1, ua is related to uc+1, and ub is related to uc+1, implying that ub is related to
ub+1, a contradiction. This concludes the proof. �

Since there are 2m2 different signatures, Claim 5 implies that

the number of blocks is at most 12m2 + 1. (2)
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Assertions Equation 1 and Equation 2 together imply that ` 6 (f(h−1,m)+1)(12m2+1).
As Q was chosen arbitrarily, we may set

f(h,m) := (f(h− 1,m) + 1) · (12m2 + 1).

This concludes the proof of Claim 4 and of Lemma D.44. �

Now Lemma 29 immediately follows from the following (essentially reformulated)
statement.

Lemma D.45. For every class C of graphs of bounded shrubdepth there exists a constant
p ∈ N such that the following holds. Suppose G ∈ C and A and B are two disjoint
subsets of vertices of G such that every vertex of A has a neighbor in B. Then there
exist subsets B1, . . . , Bp ⊆ B with the following property: for every vertex v ∈ A there
exists i ∈ [p] such that v has exactly one neighbor in Bi.

Proof. Call a vertex u ∈ B a private neighbor of a vertex v ∈ A is u is the only
neighbor of v in B. Consider the following procedure which iteratively removes vertices
from A and B until A becomes empty. The procedure proceeds in rounds, where each
round consists of two reduction steps, performed in order:

1. B-reduction: As long as there exists a vertex u ∈ B that is not a private neighbor
of any v ∈ A, remove u from B.

2. A-reduction: Remove all vertices from A that have exactly one neighbor in B.

Observe that in the B-reduction step we never remove any vertex that is a private
neighbor of some vertex in A, so during the procedure we maintain the invariant that
every vertex of A has at least one neighbor in B. Note also that in any round, after
the B-reduction step the set B remains nonempty, due to the invariant, and then every
vertex of B is a private neighbor of some vertex of A. Thus, the A-reduction step will
remove at least one vertex from A per each vertex of B, so the size of A decreases in
each round. Consequently, the procedure stops after a finite number of rounds, say `,
when A becomes empty.

Let B1, . . . , B` be subsets of the original set B such that Bi denotes B after the
ith round of the procedure. Further, let A1, . . . , A` be the subsets of the original set A
such that Ai comprises vertices removed from A in the ith round. Note that A1, . . . , A`
form a partition of A. The following properties follow directly from the construction:

1. Every vertex of Ai has exactly one neighbor in Bi, for each 1 6 i 6 `.

2. Every vertex of Ai has at least two neighbors in Bi−1, for each 2 6 i 6 `.

3. Every vertex of Bi has at least one neighbor in Ai, for all 1 6 i 6 `.

For Property 2 observe that otherwise such a vertex would be removed in the previous
round.
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Property 1 implies that subsets B1, . . . , B` satisfy the property requested in the
lemma statement. Hence, it suffices to show that `, the number of rounds performed by
the procedure, is universally bounded by some constant p depending on the class C
only.

Take any vertex v` ∈ A`. By Property 1 and Property 2, it has at least two neighbors
in B`−1, out of which one, say u`, belongs to B`, and another, say u`−1, belongs to
B`−1−B`. Next, by Property 3 we have that u`−1 has a neighbor v`−1 ∈ A`−1. Observe
that v`−1 cannot be adjacent to u`, because v`−1 has exactly one neighbor in B`−1 by
Property 1 and it is already adjacent to u`−1 6= u`. Again, by Property 1 and Property 2
we infer that v`−1 has another neighbor u`−2 ∈ B`−2 − B`−1. In turn, by Property 3
again u`−2 has a neighbor v`−2 ∈ A`−2, which is non-adjacent to both u`−1 and u`,
because u`−2 is its sole neighbor in B`−2. Continuing in this manner we find a sequence
of vertices

(v1, u1, v2, u2, . . . , v`, u`)

with the following properties: each two consecutive vertices in the sequence are adjacent
and for each i < j, vi is non-adjacent to uj . This is a quasi-path of length 2`. By
Lemma D.44, there is a universal bound q depending only on C on the length of
quasi-paths in G, implying that we may take p = bq/2c. �

E Proof of Lemma 32

Proof (of Lemma 32). It is enough to consider the case when I is an atomic operation.
We assume that the input structure is a bundling

⋃
KX of K, given by a function

f : V (
⋃
K)→ X. Note that elements of V (

⋃
K) can be identified in the structure as

those that are in the domain of f .
Let ∼ be the equivalence relation on V (

⋃
K), where x ∼ y if and only if f(x) = f(y).

Note that ∼ can be added to the structure by an extension operation parameterized by
the formula f(x) = f(y). We now consider cases depending on what atomic operation I is.

• If I is a reduct or restriction operation, then we set I? = I (we may assume that a
restriction does not remove elements of X by appropriate relativization, so that I?

indeed outputs a bundling).

• If I is an extension operation parameterized by a quantifier-free formula ϕ(x1, . . . , xk),
then set I? to be the extension operation parameterized by the formula ϕ(x1, . . . , xk)∧∧
i,j∈[k](xi ∼ xj).

• If I is a function extension operation parameterized by a formula ϕ(x, y), then set I?

to be function extension operation parameterized by the formula ϕ(x, y)∧ (x ∼ y).

• If I is a copy operation, then I? is defined as the composition of a copy operation
and a function extension operation that introduces a new function f? in place
of f defined as follows. We first define a function origin(x) as follows. Recall that
when copying, we introduce a new unary predicate, say P , marking the newly
created vertices and each vertex is made adjacent to its new copy. We let origin(x)

43



be defined by ψorigin(x, y) := P (x) ∧ E(x, y). We now define f?(x) = f(origin(x)).
The resulting bundling is given by the function f?.

• If I is a unary lift, say parameterized by a function σ, then set I? to be the unary
lift parameterized by the function σ? that applies σ to each structure from K
separately, investigates all possible ways of picking one output for each structure
in K, and returns the set of bundlings of sets formed in this way.

F Quantifier elimination

In this section we provide the missing proofs of the lemmas from Section 6.

F.1 Proof of Lemma 33

Proof (of Lemma 33). We show that if C is a class of graphs of bounded expansion,
G ∈ C and f : V (G) ⇀ V (G) is a partial function that is guarded by G, then f is
`-guidable, for some ` depending only on C . Then the claim of the lemma follows by
Lemma 26.

First, consider the special case when C is a class of treedepth h, for some h ∈ N.
For each G ∈ C , fix a forest F of depth h with V (F ) = V (G) such that every edge in G
connects comparable nodes of F . Label every vertex v of G by the depth of v in the
forest F , using labels {1, . . . , h}. It is easy to see that the corresponding partition of
V (G) is a guidance system of order h for f .

Now the general case, when C is a class which has a 2-cover U of bounded treedepth.
Let N = sup{|UG| : G ∈ C }, and let h be the treedepth of the class C [U ]. Let G ∈ C
be a graph and let f : V (G)→ V (G) be a function which is guarded by G. Then f |U is
h-guidable by the previous case, and hence f is (h ·N)-guidable by Lemma 25. �

F.2 Proof of Lemma 35: quantifier elimination on trees of bounded
depth

We first give a quantifier elimination procedure for colored trees of bounded depth. In
the following, we consider Σ-labeled trees, that is, unordered rooted trees t where each
node is labeled with exactly one element of Σ. We write t(v) for the label of a node v in
the tree t. In this section we model trees by their parent functions, that is, we consider
them as structures where the universe of the structure is the node set, there is a unary
relation for each label from Σ, and there is one partial function that maps each node to
its parent (the roots are not in the domain). A Γ-relabeling of a Σ-labeled tree t is any
Γ-labeled tree whose underlying unlabeled tree is the same as that of t. As usual, a
class of trees T has bounded height if there exists h ∈ N such that each tree in T has
height at most h.

For convenience we now regard sets of free variables of formulas, instead of traditional
tuples. That is, if ϕ is a formula with free variables X and ν : X → V (t) is a valuation
of variables from X in a tree t, then we write t, ν |= ϕ if the formula ϕ is satisfied in t
when its free variables are evaluated as prescribed by ν.
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Our quantifier elimination procedure is provided by the following lemma, which
implies Lemma 35.

Lemma F.46. Let T be a class of Σ-labeled trees of bounded height and let ϕ be a
first-order formula over the signature of Σ-labeled trees with free variables X. Then
there exists a finite set of labels Γ, a Γ-relabeling t̂ of t, and a quantifier-free formula ϕ̂
over the signature of Γ-labeled trees with free variables X, such that for each valuation
ν of X in t we have

t, ν |= ϕ if and only if t̂, ν |= ϕ̂.

The result immediately lifts to classes of forests of bounded depth, which are modeled
the same way as trees, i.e., using a unary parent function.

Corollary F.47. The same statement as above holds for a class F of Σ-labeled forests
of bounded height and a first-order formula ψ over the signature Σ-labeled forests.

Proof. Let F be a class of Σ-labeled forests of bounded height and let ψ be a first-order
formula with free variables X. Construct a class of Σ-labeled trees T , by prepending
an unlabeled root rf to each forest f in F , yielding a tree tf . We may rewrite the
formula ψ to a first-order formula ϕ such that f, ν |= ψ if and only if tf , ν |= ϕ, for
every f ∈ F and every valuation ν of X in f .

Apply Lemma F.46 to T , yielding a relabeling t̂ of each tree t in T , using some
finite set of labels Γ. This relabeling yields a relabeling f̂ of each forest f ∈ F , where
each non-root node v is labeled by a pair of labels: the label of v in the tree t̂f , and the
label of the root of t̂f . Furthermore, we have tf , ν |= ϕ if and only if t̂f , ν |= ϕ̂, for every
valuation ν. Note that all quantifier-free properties involving the prepended root rf in

the Γ-labeled tree t̂f can be decoded from the labeled forest f̂ : the unary predicates

that hold in rf are encoded in all the vertices of f̂ , and rf is the parent of the roots

of f̂ (the elements for which the parent function is undefined). It follows that we may
rewrite the formula ϕ̂ to a formula ψ̂ such that t̂f , ν |= ϕ̂ if and only if f̂ , ν |= ψ̂, for

every valuation ν of X in f . Reassuming, f, ν |= ψ if and only if f̂ , ν |= ψ̂, for every
f ∈ F and every valuation ν of X in f . �

Corollary F.47 immediately implies Lemma 35. It remains to prove Lemma F.46. Before
proving Lemma F.46, we recall some standard automata-theoretic techniques.

We define tree automata which process unordered labeled trees. Such automata
process an input tree t from the leaves to the root assigning states to each node in the
tree. The state assigned to the current node v depends only on the label t(v) and the
multiset of states labeling the children of v, where the multiplicities are counted only
up to a certain fixed threshold. Because of that, we call these automata threshold tree
automata.

We develop all the simple facts about tree automata needed for our purposes below.
We refer to [28] for a general introduction. Note that what is usually considered under
the notion of tree automata are automata which process ordered trees, i.e., trees where
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the children of each node are ordered. Tree automata collapse in expressive power to
threshold tree automata in the case when they are required to be independent of the
order, i.e., if A is a tree automaton with the property that for any two ordered trees t, t′

which are isomorphic as unordered trees, either both t and t′ are accepted by A or
both t and t′ are rejected by A, then the language (i.e., set) of trees accepted by A
is equal to the language of trees accepted by some threshold automaton. Therefore,
the theory of threshold tree automata is a very simple and special case of that of tree
automata. We now recall some simple facts about such automata.

Fix a set of labels Q. A Q-multiset is a multiset of elements of Q. If τ is a number
and X is a Q-multiset, then by X � τ we denote the maximal multiset X ′ ⊆ X where
the multiplicity of each element is at most τ . In other words, for every element whose
multiplicity in X is more than τ , we put it exactly τ times to X ′; all the other elements
retain their multiplicities.

We define threshold tree automata as follows. A threshold tree automaton is a tuple
(Σ, Q, τ, δ, F ), consisting of

• a finite input alphabet Σ;

• a finite state space Q;

• a threshold τ ∈ N;

• a transition relation δ, which is a finite set of rules of the form (a,X, q), where
a ∈ Σ, q ∈ Q, and X is a Q-multiset in which each element occurs at most τ
times; and

• an accepting condition F , which is a subset of Q.

A run of such an automaton over a Σ-labeled tree t is a Q-labeling ρ : V (t)→ Q
of t satisfying the following condition for every node x of t:

If t(x) = a, ρ(x) = q and X is the multiset of the Q-labels of the children
of x in t, then (a,X � τ , q) ∈ δ.

The automaton accepts a Σ-labeled tree t if it has a run ρ on t such that ρ(r) ∈ F ,
where r is the root of t. The language of a threshold tree automaton is the set of
Σ-labeled trees it accepts. A language L of Σ-labeled trees is threshold-regular if there
is a threshold tree automaton whose language is L; we also say that this automaton
recognizes L.

An automaton is deterministic if for all a ∈ Σ and all Q-multisets X in which each
element occurs at most τ times there exists q such that (a,X, q) ∈ δ and whenever
(a,X, q), (a,X, q′) ∈ δ, then q = q′. Note that a deterministic automaton has a unique
run on every input tree.

The next lemma explains basic properties of threshold tree automata and follows
from standard automata constructions. In the lemma we speak about monadic second-
order logic (MSO), which is the extension of first-order logic by quantification over
unary predicates.

46



Lemma F.48. The following assertions hold:

(1) For every threshold automaton there is a deterministic threshold automaton with
the same language.

(2) Threshold-regular languages are closed under boolean operations.

(3) If f : Σ → Γ is any function and L is a threshold-regular language of Σ-labeled
trees, then the language f(L) comprising trees obtained from trees of L by replacing
each label by its image under f is also threshold-regular.

(4) For every MSO sentence ϕ in the language of Σ-labeled trees there is a determin-
istic threshold automaton Aϕ whose language is the set of trees satisfying ϕ.

Proof. Assertion (1) follows by applying the standard powerset determinization con-
struction. For assertion (2), it follows from (1) that every threshold-regular language is
recognized by a deterministic threshold tree automaton. Then, for conjunctions we may
use the standard product construction and for negation we may negate the accepting
condition. For assertion (3), an automaton recognizing f(L) can be constructed from
an automaton recognizing L by nondeterministically guessing labels from Σ consistently
with the given labels from Γ, so that the guessed Σ-labeling is accepted by the automa-
ton recognizing L. Now assertion (4) follows from (1), (2), and (3) in a standard way,
because every MSO formula can be constructed from atomic formulas using boolean
combinations and existential quantification (which can be regarded as a relabeling f
that forgets the information about the quantified set). �

Let X be a finite set of (first-order) variables and let ΣX = Σ ×P(X). Given a
tree t and a partial valuation ν : X ⇀ V (t), let t⊗ ν be the ΣX -tree obtained from t, by
replacing, for each node u of t, the label a of u by the pair (a, Y ) where Y = ν−1(u) ⊆ X.

Toward the proof of Lemma F.46, consider a first-order formula ϕ over Σ-labeled
trees with free variables X. We can easily rewrite ϕ to a first-order sentence ψ over
ΣX -labeled trees such that t, ν |= ϕ if and only if t⊗ ν |= ψ for every Σ-labeled tree t
and valuation ν : X → V (t). By Lemma F.48(4) there is a deterministic threshold
automaton Aψ whose language is exactly the set of ΣX -labeled trees satisfying ψ.

Denote by Q the set of states and by K the threshold of Aψ, and let M = K + |X|.
Denote by ∆ the set of Q-multisets in which every element occurs at most M times.

Given a Σ-labeled tree t and a partial valuation ν : X ⇀ V (t), define ρν as the
Q-labeling of t which is the unique run of Aψ over t⊗ ν. For a node u of t, let Cν(u)
be the Q-multiset defined as follows:

Cν(u) = {ρν(w) : w is a child of u in t}.

Define a new set of labels Γ = Σ×∆, and a Γ-relabeling t̂ of t as follows: for each
u ∈ V (t), say with label a ∈ Σ in t, the label of u in t̂ is the pair (a,C∅(u)�M ), where ∅
is the partial valuation that leaves all variables of X unassigned. Our goal now is to
prove that this relabeling t̂ of t satisfies the conditions expressed in Lemma F.46. To
this end, given a valuation ν of X in t̂, let t̂|ν denote the ΓX -labeled tree obtained from
t̂⊗ ν by restricting the node set to the set of ancestors of nodes in the image ν(X) of ν.
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Lemma F.49. There is a set of ΓX-labeled trees R such that for every Σ-labeled tree t
and valuation ν of X in t,

t, ν |= ϕ if and only if t̂|ν ∈ R.

Proof. Fix a tree t and a valuation ν of X in t. We say that a node u of t is nonempty
if it has a descendant which is in the image of ν. For node u of t define the following
Q-multisets:

N∅(u) = {ρ∅(w) : w is a nonempty child of u},
Nν(u) = {ρν(w) : w is a nonempty child of u}.

Note that since there are at most |X| nonempty children of a given node u, there is a
finite set Z independent of t and ν such that the functions Nν and N∅ take values in Z.
Fix a node u of t.

Claim 6. The state ρν(u) is uniquely determined by the label of u in t⊗ ν, and the Q-
multisets C∅(u)�M , N∅(u) and Nν(u), i.e., there is a function f : ΣX ×∆×Z ×Z → Q
such that for every tree t, valuation ν and node u,

ρν(u) = f( label of u in t⊗ ν , C∅(u)�M , N∅(u) , Nν(u) ). (3)

Proof. Clearly N∅(u) ⊆ C∅(u), as multisets. Moreover, the following equality among
multisets holds:

Cν(u) = (C∅(u)−N∅(u)) +Nν(u). (4)

This is because the automaton Aψ is deterministic and therefore ρν(w) = ρ∅(w) for
all nodes w which are not nonempty. From Equation 4, the fact that N∅(u) has at
most |X| elements and M = K + |X|, it follows that

((C∅(u)�M −N∅(u)) +Nν(u))� K= (Cν(u))� K . (5)

By definition of the run of Aψ on t⊗ν, the state ρν(u) is determined by the label of u in
t⊗ ν and by (Cν(u))� K . It follows from Equation 5 that ρν(u) is uniquely determined
by the label of u in t⊗ ν, (C∅(u))�M , and the Q-multisets N∅(u) and Nν(u), proving
the claim. �

From Claim 6 it follows that the state ρν(r), where r is the root of t, depends only on
the tree t̂|ν . Indeed, we can inductively compute the states ρν(u) and ρ∅(u), moving from
the leaves of t̂|ν towards the root, as follows. Suppose u is a node of t̂|ν such that ρν(v)
and ρ∅(v) have been computed for all the nonempty children v of u (in particular, this
holds if u is a leaf of t̂|ν). Then, we can determine the multisets Nν(u) and N∅(u) using
their definitions, and consequently, we can determine ρν(u) by Equation 3, whereas ρ∅(u)
only depends on C∅(u)� K and on the label of u in t. Note that both the label of u in t
and the multiset C∅(u)� K are encoded in the label of u in t̂.

As shown above, for any tree t and valuation ν, the state of ρν at the root depends
only on t̂|ν . On the other hand, t, ν |= ϕ if and only if the state of ρν(r) at the root is
an accepting state. Hence, whether or not t, ν |= ϕ, depends only on the tree t̂|ν . This
proves the lemma. �
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Finally, we observe the following.

Lemma F.50. For each ΓX-labeled tree s there exists a quantifier-free formula ψs over
the signature of Γ-labeled trees with free variables X such that the following holds: for
every Γ-labeled tree t and valuation ν of X in t, we have

t, ν |= ψs if and only if t|ν is isomorphic to s.

Proof. Observe that the ancestors of nodes in ν(X) may be obtained by applying the
parent function to them. Thus, using a quantifier-free formula we may check whether
each node of ν(X) lies at depth as prescribed by s, whether its ancestors have labels as
prescribed by s, and whether the depth of the least common ancestor of every pair of
nodes of ν(X) is as prescribed by s. Then t|ν is isomorphic to s if and only if all these
conditions hold. �

With all the tools prepared, we may prove Lemma F.46.

Proof (of Lemma F.46). Let Rh be the intersection of R with the class of trees of
height at most h. Since each tree from R has at most |X| leaves by definition, Rh
is finite and its size depends only on |X| and h. By Lemma F.49, it now suffices to
define ϕ̂ as the disjunction of formulas ψs provided by Lemma F.50 over s ∈ Rh. �
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