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Abstract. We consider mappings, which are structure consisting of a
single function (and possibly some number of unary relations) and ad-
dress the problem of approximating a continuous mapping by a finite
mapping. This problem is the inverse problem of the construction of
a continuous limit for first-order convergent sequences of finite map-
pings. We solve the approximation problem and, consequently, the full
characterization of limit objects for mappings for first-order (i.e. FO)
convergence and local (i.e. FOlocal) convergence.

This work can be seen both as a first step in the resolution of in-
verse problems (like Aldous-Lyons conjecture) and a strengthening of
the classical decidability result for finite satisfiability in Rabin class
(which consists of first-order logic with equality, one unary function,
and an arbitrary number of monadic predicates).

The proof involves model theory and analytic techniques.
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1. Introduction

We consider the following approximation problems: Given an infinite
structure with given first-order properties, as well as satisfaction proba-
bilities for every first-order formula, can one find a finite structure with
approximately similar properties and satisfaction probabilities? What if we
are not given the infinite structure, but only the satisfaction probability of
first-order formulas?

These problems are in general intractable, as (even when considering no
probabilities of satisfaction) it is known that deciding whether a sentence
satisfied by an infinite structure is also satisfied by a finite structure is (in
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general) undecidable. Intensive studies have been conducted to determine
decidable classes of structures and fragments of first-order logic. A maximal
example is the Rabin class, which consists of all first-order sentences with
arbitrary quantifier prefix and equality, one unary function symbol, and an
arbitrary number of unary relation symbols (but no function or relation sym-
bols of higher arity). The satisfiability problem and the finite satisfiability
problem for this class are both decidable, but not elementary recursive [1].

Another particular case of our problem was considered extensively in the
context of topological group theory, ergodic theory and graph limits, and
concerns the class of bounded degree graphs (one binary symmetric symbol)
and local first-order formulas with a single free variable. It can be formu-
lated as follows: consider a unimodular probability measure µ defined on the
set G∗ of all countable rooted connected graphs endowed with the metric de-
fined by the rooted neighborhood isomorphisms. Can µ be approximated by
finite graphs? This question is known as the Aldous–Lyons conjecture. It is
not just an isolated problem as a positive solution would have far-reaching
consequences, by proving that all finitely generated groups are sofic (answer-
ing a question by Weiss [23]), the direct finiteness conjecture of Kaplansky
[11] on group algebras, a conjecture of Gottschalk [8] on surjunctive groups
in topological dynamics, the Determinant Conjecture on Fuglede-Kadison
determinants, and Connes’ Embedding Conjecture for group von Neumann
algebras [3]. It is easily shown that Aldous-Lyons conjecture can be reduced
to the approximation problem for quantifier-free formulas on structures with
two functions f and g satisfying f2 = g3 = Id.

In this paper we solve the approximation problem for mappings, i.e. struc-
tures consisting of a set X and an (endo)function f : X → X, and more
generally we solve it for the whole Rabin class. At lest at first glance it
is perhaps surprising that such a seemingly special case is quite difficult to
handle.

Approximation problems recently appeared in the context of graph limits
as so called inverse problems. In order to make the connection clear, we take
time for a quick review of some of the fundamental notions and problems
encountered in the domain of graph limits, and how they are related to
the study of limits and approximations of algebras (that is of functional
structures).

A sequence of (colored) graphs with maximum degree at most d converges
if, for every integer r, the distribution of the isomorphism type of the ball of
radius r rooted at a random vertex (drawn uniformly at random) converges.
The limit object of a local convergent sequence of graphs is a graphing,
that is a graph on a standard Borel space, which satisfies a Mass Transport
Principle, which amounts to say that for every Borel subsets A,B it holds
that ∫

A
degB(v) dv =

∫
B

degA(v) dv.
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An alternative description of graphings is as follows: a graphing is defined by
a finite number of measure preserving involutions f1, . . . , fD on a standard
Borel space, which define the edges of the graphing as the union of the orbits
of size two of f1, . . . , fD.

The idea to conceptualize limits of structures by means of convergence
of the satisfaction probability of formulas in a fixed fragment of first-order
logic has been introduced by the authors in [17]. In this setting, a sequence
(An)n∈N of structures is convergent (or X-convergent) if, for every first-order
formula φ in a fixed fragment X the probability 〈φ,An〉 that φ is satisfied
in An for a random assignment of elements of An to the free variables of φ
converges as n grows to infinity. If X is the set of all first-order formulas,
then we speak about FO-convergence. This definition allowed us to consider
limits of general combinatorial structures, and was applied to limits of sparse
graphs with unbounded degrees [20, 18, 7, 21], matroids [12], and tree semi
lattices [2].

The main result of [19] is the construction of a limit object for FO-
convergent sequences of mappings (a mapping being an algebra with a single
function symbol and — possibly — finitely many unary predicates).

Theorem 1. Every FO-convergent sequence (Fn)n∈N of finite mappings
(with limn→∞ |Fn| =∞) has a modeling mapping limit L, such that

(1) the probability measure νL is atomless;
(2) the complete theory of L has the finite model property;
(3) L satisfies the finitary mass transport principle.

Let us explain the (undefined) notions appearing in this theorem:

(i) A modeling L is a totally Borel structure — that is a structure whose
domain L is a standard Borel space, such that every definable set is
Borel — endowed with a probability measure νL.

(ii) The measure νL is atomless (or continuous, or diffuse) if for every
v ∈ L it holds νL({v}) = 0. (As we consider only standard Borel
spaces, this condition is equivalent to the condition that for every
Borel subset A with νL(A) > 0 there exists a Borel subset B of
A with νL(A) > νL(B) > 0.) The necessity of this condition is
witnessed by the formula x1 = x2, as 〈x1 = x2,F〉 = 1/|F | holds for
every finite mapping F. This conditions is thus required as soon as
we consider QF-convergence.

(iii) the finitary mass transport principle (FMTP) means that for every
Borel subsets X,Y of L and every positive integer k it holds

(∀v ∈ Y ) |f−1(v) ∩X| = k ⇒ νL(f−1(Y ) ∩X) = kνL(Y )

(∀v ∈ Y ) |f−1(v) ∩X| > k ⇒ νL(f−1(Y ) ∩X) > kνL(Y )
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This condition can be reformulated as follows: the set of all y such
that f−1

F (y) is infinite has zero νF-measure, and for every Borel sub-

sets X and Y of L (with |f−1
F (y)| <∞ for all y ∈ Y ) we have

νF(X ∩ f−1
F (Y )) =

∫
Y
|f−1

F (y) ∩X| dνF(y). (1)

When X and Y are definable subsets, the above condition is
clearly required for being a limit.

(iv) the finite model property means that for every sentence θ satisfied
by L there exists a finite mapping F that satisfies θ. This is indeed
a necessary condition for L to be an elementary limit of finite map-
pings hence necessary as soon as we consider FO-convergence. As
mentioned, the problem of existence of a finite mapping F satisfying
a given sentence θ is decidable, though with huge time complexity.

Theorem 1 was proved as a combination of general results about limit
distributions from [17] and methods developed in [18] for the purpose of
graph-trees. This theorem has the following corollary.

Corollary 1. Every FOlocal-convergent sequence (Fn)n∈N of finite mappings
(with limn→∞ |Fn| =∞) has a modeling mapping FOlocal-limit L, such that

(1) the probability measure νL is atomless;
(2) L satisfies the finitary mass transport principle.

Proof. Consider an FO-convergent subsequence. Such a subsequence exists
by (sequential) compactness of FO-convergence. According to Theorem 1
this subsequence has a modeling mapping limit L satisfying all the require-
ments. This modeling limit is then a modeling FOlocal-limit of (Fn)n∈N. �

The inverse problems aim to determine which objects are limits of finite
mappings (for given types of convergence). The main contribution of this
paper is the solution of the inverse problems for mappings. Namely, for FO
and FOlocal-convergence we show how to approximate a modeling mapping
by a finite mapping. (For QF-convergence the inverse problem is much easier
and was solved in [19].)

Theorem 2. Every atomless modeling mapping L that satisfies the fini-
tary mass transport principle is the FOlocal-limit of an FOlocal-convergent
sequence of finite mappings.

Theorem 3. Every atomless modeling mapping L with the finite model prop-
erty that satisfies the finitary mass transport principle is the FO-limit of an
FO-convergent sequence of finite mappings.

Here is a rough outline of the proof of Theorem 3:

(1) reduce to the case where the mapping modeling L has no connected
component of measure greater than ε;

(2) consider a derived modeling mapping L′ obtained by removing all
the elements with zero-measure rank-R local type;
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(3) cut all the short circuits by means of interpretation;
(4) approximate the measure on the rank-R local types by a rational

measure µ;
(5) construct a finite mapping F such that the measure of each rank-r

local type t is equal to what is derived from µ;
(6) consider a finite mapping M, which is equivalent to L up to a huge

quantifier rank, and merge it with a great number of copies of F to
form an FO-approximation of L;

(7) deduce, using interpretation, an FO-approximation of the original
mapping modeling.

Theorem 2 is then proved by considering separately large and small con-
nected components, and following a similar strategy as the proof of Theo-
rem 3:

(1) every connected modeling mapping is close (in the sense of local con-
vergence) to a modeling mapping with finite height; such a modeling
mapping has the finite model property, hence maybe FO-approximated
thanks to Theorem 3;

(2-5) for a mapping modeling without connected components of measure
greater than ε, construct a finite mapping F as in the steps (2) to
(5) of the proof of Theorem 3;

(6) then complete F by means of small models of missing necessary local
types, merged with a great number of copies of F;

(7) the FOlocal approximation is obtained as the disjoint union of the
FOlocal approximations of large connected components and the FOlocal

1

approximation of the remaining components (after careful tuning of
the respective orders).

It should be noted that Theorems 2 and 3 allow to obtain approxima-
tions from a mapping modeling, which may have only finitely many unary
predicates in its signature. The case where we allow infinitely many unary
predicates easily restricts to this case, as (for given metrization of FO- and
FOlocal-convergence) for every ε > 0 there exist ε′ > 0 and C ∈ N such that
any ε′-approximation of the mapping considering only the first C unary
predicates is an ε-approximation of the mapping when considering all the
unary predicates. Hence Theorem 3 and 2 solves the approximation problem
for the Rabin class modelings.

As a pleasing consequence of our general methods we believe that Theo-
rems 2 and 3 can be formulated in a setting where we do not approximate
a particular modeling L but rather consider the satisfaction probability of
formulas. This would gives a full solution of the second type approximation
problem for the Rabin class.

2. Preliminaries
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2.1. Facts from Finite Model Theory. We recall some basic definitions
and facts from finite model theory. The interested reader is refereed to
[4, 9, 10, 14, 15, 16].

A signature σ is a list function or relation symbols with their arities. A σ-
structure A is defined by its domain A, its signature σ, and the interpretation
in A of all the relations and functions in σ. The Gaifman graph of a σ-
structure A is the graph with vertex set A, where two elements are adjacent
if they belong to a same relation or are related by a function application.
When we speak about the neighborhood of an element x in A or about the
distance between two elements x and y in A, we mean the set of elements
adjacent to x in the Gaifman graph of A or the graph distance between x
and y in the Gaifman graph of A. Also, for u ∈ A and r ∈ N we denote by
Br(A, u) the r-ball of u in A, that is the set of all elements of A at distance
at most r from u.

We denote by FO(σ) the set of all first-order formulas (in the language
defined by the signature σ). A formula φ (with p free variables) is local if
its satisfaction only depends on a fixed r-neighborhood of its free variables,
and we denote by FOlocal(σ) the set of all local formulas. Also, we denote
by QF(σ) the set of all quantifier free formulas. When we consider sub-
fragments where we restrict free variables to x1, . . . , xp, we will add p as a

subscript, as in FOp(σ) or FOlocal
p (σ).

For a first-order formula φ with p free variables and a σ-structure A be
define φ(A) as the set of all p-tuples of elements of A that satisfy the formula
φ in A, that is:

φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}.
In the following definition we consider signatures with a function symbol

and finitely many unary predicates. Although Rabin class allows infinitely
many unary predicates, this is not a real restriction in the context of ap-
proximation problems, but this assumption will make the definitions and
notations simpler.

Definition 1. A mapping is a σ-structure, where the signature σ consists of
a single unary function symbol f and (possibly) finitely many unary relation
symbols M1, . . . ,Mc.

Let F be a mapping. We denote by F the domain of F and by fF the
interpretation of the symbol f in F (thus fF : F → F ). Unary relations will
be denoted by MF

i (or simply just Mi). Note that the distance dist(u, v)
between two elements u, v in a mapping F is the minimum value a+ b such
that a, b ≥ 0 and faF(u) = f bF(v).

Every formula φ ∈ FOlocal
1 is logically equivalent to a formula with no

function composition. Such formulas we call clean.

Definition 2. The quantifier rank of a formula φ, denoted by qrank(φ), is
the minimum number of nested quantifiers in a clean formula equivalent to
φ.



APPROXIMATIONS OF MAPPINGS 7

The local rank of a local formula φ, denoted by lrank(φ), is the minimum
number of nested quantifiers in a clean formula equivalent to φ in which
quantification is restricted to previously defined variables and their neighbors.

It is easily checked that for a given finite signature σ there exist only
finitely many local formulas φ ∈ FOlocal

1 (σ) that have local rank at most r
(up to logical equivalence).

A local type is any maximal consistent subset t of FOlocal
1 (σ). The local

type of an element v of a mapping F is the local type t such that F |= φ(v)
holds for every φ ∈ t. A rank r local type is the subset of a all formulas with
rank at most r in a local type. We denote by Tr(σ) the set of all rank r
local types for signature σ. We denote by TypeFr (v) the rank r local type of
an element v in a mapping F.

Note that for every rank r local type t ∈ Tr there exists a clean formula
ϕt ∈ t (in which quantification is restricted to previously defined variables
and their neighbors) such that ϕt is logically equivalent to the conjunction
of all the formulas in t. (The formula ϕt will always have this meaning.)
Thus for every σ-structure F and every v ∈ F it holds that

TypeFr (v) = t ⇐⇒ F |= ϕt(v).

For r < r′, t ∈ Tr(σ) and t′ ∈ Tr′(σ) we say that t′ refines t, and write
t′ ≺ t, if ϕt′ ` ϕt (i.e. if t′ ⊇ t).

Given two mappings F and F′, it is well known that F and F′ satisfy the
same sentences with quantifier rank at most r, what is denoted by F ≡r F′, if
and only if Duplicator has a winning strategy for the r-rounds Ehrenfeucht–
Fräıssé game.

Given two elements v ∈ F and v′ ∈ F ′, testing whether TypeFr (v) =

TypeF
′
r (v′) can be done using a variant of a Ehrenfeucht–Fräıssé game: We

start by defining u0 = v and u′0 = v′. At each round 1 ≤ k ≤ r, Spoiler
chooses in F an element uk adjacent to some of u0, . . . , uk−1 (or in F ′ an el-
ement u′k adjacent to some of u′0, . . . , u

′
k−1). Then Duplicator should choose

u′k ∈ F ′ (or uk ∈ F ) so that for every 0 ≤ i, j ≤ k it holds

F |= ui = uj ⇐⇒ F′ |= u′i = u′j

F |= f(ui) = uj ⇐⇒ F′ |= f(u′i) = u′j

Spoiler wins if Duplicator cannot make such a choice and k ≤ r; otherwise,
Duplicator wins. It is easily checked that TypeFr (v) = TypeF

′
r (v′) if and only

if Duplicator has a winning strategy. We call this variant of Ehrenfeucht–
Fräıssé game the local Ehrenfeucht–Fräıssé game.

For r ≤ r′ we define the natural projection πr mapping an r′-type t to
the r-type πr(t), which is just the subset of all formulas in t with rank at
most r. Obviously, if r′ > r then πr(Type

F
r′(v)) = TypeFr (v).

Let σ, σ′ be signatures of mappings. Let M1, . . . ,Ma be the symbols of
the unary symbols in σ′ (as usual f is the function symbol). The following
is a standard definition.
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Definition 3. A basic interpretation I of σ′-structures into σ-structures is
defined by a formulas κ1, . . . , κa with a single free variable, and a formula
η with two free variables defining the graph of an endofunction, that is such
that

` ∀x ∃y
(
η(x, y) ∧ (∀z)(η(x, z)→ (z = y))

)
.

For every σ-structure A, the σ′-structure B = I(A) has same domain as
A (i.e. B = A), its relations are defined by

B |= Mi(v) ⇐⇒ A |= κi(v)

and fB is (implicitly) defined by

B |= f(u) = v ⇐⇒ A |= η(u, v).

The interpretation I is trivial if η(x, y) := (f(x) = y) (hence fB = fA).

For every first order formula φ with p free variables (on the language of
σ′-structures) the first-order formula I(φ) is obtained by replacing (in a clean
formula logically equivalent to φ) terms Mi(x) by κi(x) and terms f(x) = y
by η(x, y). The formula I(φ) is such that for every σ-structure A and every
v1, . . . , vp ∈ B it holds

B |= φ(v1, . . . , vp) ⇐⇒ A |= I(φ)(v1, . . . , vp).

Note that if φ and all the formulas defining I are local then I(φ) is local and

lrank(I(φ)) ≤ lrank(φ) + max(lrank(κ1), . . . , lrank(κa), lrank(η)).

2.2. Structural Limits. We recall here some definitions and notations
from [17].

Recall that a σ-structure is Borel if its domain is a standard Borel space,
and all the relations and functions of the structure are Borel. For instance,
the mapping F is Borel if the function fF : F → F and the subsets Mi(F) =
{v ∈ F : F |= Mi(v)} are Borel;

A stronger notion has been proposed in [17]:

Definition 4. A σ-modeling (or a modeling when σ is implied) is a σ-
structure M, whose domain M is a standard Borel space endowed with a
probability measure νM, and with the property that every definable subset of
a power of M is Borel.

If F is a finite structure, it will be practical to implicitly consider a uniform
probability measure νF on F , for the sake of simplifying the notations.

Note that every modeling mapping is obviously Borel, but the converse
does not hold true in general, as shown by the next example.

Example 1. A counter-example of Lebesgue’s belief that the projection to
R of a Borel subset of R2 is Borel has been given by Souslin. It follows
that there exits a Borel subset S ⊆ (0, 1] × (0, 1], whose first projection (on
(0, 1]) is not Borel. Consider the mapping F with domain [0, 1]× [0, 1], and
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signature σ = (f,M) (where f is the function symbol and M is a unary
relation), with M(F) = S and

fF(x, y) =

{
(x, 0) if y 6= 0

(0, 0) otherwise

The mapping M is obviously Borel, but fails to be a modeling, as the set
fF(S) is first-order definable but not Borel.

Definition 5. Let F be a Borel σ-structure with associated probability mea-
sure νF, and let φ ∈ FO(σ) be a formula with p free variables, such that
φ(F) is a Borel subset of F p.

The Stone pairing of φ and F is the satisfaction probability of φ in F for
independent random assignments of elements of F to the free variables of φ
with probability distribution νF, that is:

〈φ,F〉 = ν⊗pF (φ(F)), (2)

where ν⊗pF stands for the product measure

p times︷ ︸︸ ︷
νF ⊗ · · · ⊗ νF on F p.

Note that if F is finite (meaning that F is finite) it holds that

〈φ,F〉 =
|φ(F)|
|F |p .

Definition 6. Given a fragment X of FO(σ), a sequence (Fn)n∈N of finite
σ-structures is X-convergent if, for every φ ∈ X the limit limn→∞〈φ,Fn〉
exists.

Moreover, a modeling L is a modeling X-limit of the sequence (Fn)n∈N

and we note Fn
X−→ L if, for every first-order formula φ ∈ X it holds that

〈φ,L〉 = lim
n→∞

〈φ,Fn〉.

Note that if L is a modeling X-limit of (Fn)n∈N, the pairing 〈φ,L〉 is
defined for every first-order formula φ, but its value is required to be equal
to limn→∞〈φ,Fn〉 only when φ is in X.

Given a fragment X of FO(σ) (closed under ∨,∧, and ¬) the equivalence
classes of X for logical equivalence form an at most countable Boolean al-
gebra, the Lindenbaum-Tarski algebra LX of X. The Stone dual to this
algebra is denoted by S(LX). This is a Polish space, the clopen sets of
which are in bijection with the elements of LX , the topology of which is
generated by its clopen sets, and the points of which are the maximal con-
sistent subsets of LX (that is Boolean algebra homomorphisms from LX to
the 2 elements Boolean algebra). For instance, if X = FOlocal

1 then S(LX)
is the space of local types. Considering the Borel σ-algebra gives S(LX) the
structure of a standard Borel space.

The following representation theorem was proved in [17]:
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Theorem 4. To every finite σ-structure or σ-modeling F corresponds a
unique probability measure µF on S(LX), such that for every formula φ ∈ X
it holds that

〈φ,F〉 =

∫
S(LX)

IK(φ)(t) dµF(t), (3)

where IK(φ) denotes the indicator function of the clopen subset K(φ) of
S(LX) dual to φ. Moreover, a sequence (Fn)n∈N is X-convergent if and only
if the corresponding sequence of probability measures on S(LX) is weakly
convergent.

Note that if the fragment X includes all the fragment FO0 of all first-order
sentences the support of µF projects into a single point Th(µF) of S(LFO0),
which is (equivalently) characterized by the property

∀t ∈ Supp(µF) Th(µF) = t ∩QF0. (4)

We call Th(µF) the complete theory of µF, as this is nothing but the complete
theory of F retrieved from µF.

In this paper we shall be particularly interested by the probability mea-
sures µloc

F defined by a σ-structure F on the space T∞(σ) of local types
(which is dual to the Lindenbaum-Tarski algebra of local formulas with a

single free variable) and µ
loc(r)
F defined by a σ-structure F on the (finite)

space Tr(σ) of rank r local types (which is dual to the Lindenbaum-Tarski
algebra of local formulas with a single free variable and local rank at most
r).

We denote by πr the projection from the space of consistent subsets of
FOlocal

1 to the space of consistent subsets of FOlocal
1 with maximum quantifier

rank at most r.
πr(t) = {φ ∈ t : lrank(φ) ≤ r}.

Note that πr maps local types to local types with local rank at most r.

The mapping t 7→ πr(t) is measurable and it is immediate that µ
loc(r)
F is

the pushforward π∗r (µ
loc
F ) by πr of the probability measure µloc

F (and that a

similar statement holds with any of the probability measures µ
loc(r′)
F with

r′ > r).
For an integer r and a σ-modeling F, the following easy consequence of

(2) and (3) will be helpfull: for every t ∈ Tr(σ) it holds that

µ
loc(r)
F (t) = νF(ϕt(F)) = 〈ϕt,F〉. (5)

2.3. Measuring Proximity. The topology of FO-convergence can be met-
rized by using the following ultrametric

dFO(M,N) =
∑
p≥0

∑
r≥0

2−(p+r)Distp,r(M,N), (6)

where

Distp,r(M,N) = sup
{
|〈φ,M〉 − 〈φ,N〉| : φ ∈ FOp, qrank(φ) ≤ r

}
. (7)
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The following lemma is a direct consequence of [20, Theorem 13], which
in turn follows from Gaifman locality theorem.

Lemma 1. A mapping modeling L is the FOp-limit of a sequence of finite

mappings if and only if it is both the FOlocal
p -limit of a sequence of finite

mappings and the elementary limit of a sequence of finite mappings.

For elementary convergence, the appropriate notion of proximity is the
notion of r-equivalence, and it holds that Dist0,r(M,N) = 0 if and only
M ≡r N.

For local convergence, we define the following distances (for integers p ≥ 1
and r ≥ 0):

Distlocal
p,r (M,N) = sup

{
|〈φ,M〉 − 〈φ,N〉| : φ ∈ FOlocal

p , lrank(φ) ≤ r
}
. (8)

Note that (by Theorem 4) this is nothing but twice the total variation
distance between the probability measures defined by M and N on the Stone
dual of the algebra of local formulas with free variables within x1, . . . , xp and
local rank at most r.

The following lemma is a direct consequence of Lemma 1.

Lemma 2. For every fixed signature σ, every integers p, r, and every posi-
tive real ε > 0 there exist an integer r′ and a positive real ε′ > 0, such that
for every σ-modelings M,N it holds

M ≡r′ N and Distlocal
p,r′ (M,N) < ε′ =⇒ Distp,r(M,N) < ε. (9)

In sufficiently sparse structures, where the probability that two random
elements are close is small, we can further reduce the computation of the
local distance to the case of local formulas with a single free variable:

Lemma 3. Let δr(x1, x2) be the formula dist(x1, x2) ≤ r. Then for every
integers p, r and every modelings M,N it holds

Distlocal
p,r (M,N) ≤ 2pDistlocal

1,r (M,N) +

(
p

2

)(
〈δ2r,M〉+ 〈δ2r,N〉

)
. (10)

Proof. Let φ be a local formula with local rank at most r. The satisfaction
of φ only depends on the r-neighborhood of the free variables x1, . . . , xp. It
follows that there exists a finite family F ⊆ T pr such that if dist(vi, vj) > 2r)
for every 1 ≤ i < j ≤ p then it holds that

M |= φ(v1, . . . , vp) ⇐⇒ M |= φ̂(x1, . . . , xp),

where φ̂ is the local formula

φ̂(x1, . . . , xp) :=
∨

(t1,...,tp)∈F

p∧
i=1

ϕti(xi).
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Moreover, φ̂(M) only differs from
⋃

(t1,...,tp)∈F
∏p
i=1 ϕti(M) on tuples

(v1, . . . , vp) with dist(vi, vj) ≤ 2r for some 1 ≤ i < j ≤ p. It follows that∣∣∣〈φ,M〉 − ∑
(t1,...,tp)∈F

p∏
i=1

〈φti ,M〉
∣∣∣ < (p

2

)
〈δ2r,M〉,

as the probability that two random elements of M are at distance at most 2r
is bounded (by union bound) by

(
p
2

)
times the probability that two random

elements are at distance at most 2r, that is by the right hand side of the
inequality.

Of course, the same holds for the modeling N.
Let µM (resp. µN) be the probability measure defined by M (resp. N)

on Tr(σ). As ∑
(t1,...,tp)∈F

p∏
i=1

〈φti ,M〉 = µ⊗pF (F),

and as it is well known that if ρ, λ are probability measures on a finite set
it holds that

‖ρ⊗p − λ⊗p‖TV ≤ p‖ρ− λ‖TV

we deduce

1

2

∣∣∣ ∑
(t1,...,tp)∈F

p∏
i=1

〈φti ,M〉 −
∑

(t1,...,tp)∈F

p∏
i=1

〈φti ,N〉
∣∣∣ ≤ ‖µ⊗pM − µ

⊗p
N ‖TV

≤ pDistlocal
1,r (M,N).

The statement of the lemma follows. �

2.4. The Finitary Mass Transport Principle. The domain of a map-
ping F is partitioned into countably many subsets

Fi = {x ∈ F : |f−1
F (x)| = i}

for i = 0, 1, . . . , and

F∞ = {x ∈ F : |f−1
F (x)| =∞}.

The mass transport principle for mappings takes the following form.

Definition 7. The Finitary Mass Transport Principle (FMTP) for F is the
satisfaction of the following conditions:

• νF(F∞) = 0;
• for every measurable subsets A,B of F \ F∞ it holds that

νF(A ∩ f−1
F (B)) =

∫
B
|f−1

F (y) ∩A|dνF(y) (11)
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Note that a direct consequence of the FMTP is that for every measurable
subset A of F it holds that νF(A) ≥ νF(fF(A)).

Intuitively, the FMTP describes the interplay of two measures: the proba-
bility measure νF on F used to randomly select an element, and the counting
measure (implicitly) used to count, for instance, the degree of an element.
This principle ultimately relies of the fact that the local type of an element
is (at least partly) determined by the local type of any of its neighbors.

Definition 8. The transport operator ξ is a mapping from the space of
consistent subsets of FOlocal

1 to itself, defined by

ξ(t) = {φ(x) ∈ FOlocal
1 : [(∃z) (z = f(x) ∧ φ(z))] ∈ t}.

A fundamental property of the transport operator is that if r′ > r then
for every σ-structure F it holds that

TypeFr ◦ fF = πr ◦ ξ ◦ TypeFr′ , (12)

what is depicted by the following diagram:

F
fF //

TypeFr′

��

F

TypeFr ��
Tr(σ) rank r local types

ξ(Tr′(σ))

πr

OO

Tr′(σ)

ξ

66

rank r′ local types

In other words, the rank r local type of the image by f of an element v
is exactly the projection of the image by the transport operator of the rank
r + 1 (or any rank r′ > r) local type of v.

We now focus on another aspect of the FMTP.
Let R > 2r be positive integers, and let ρ be a probability measure on

TR(σ) (and by extension on Tr(σ)). Define

TR(ρ) = {τ ∈ Tr : ρ(τ) > 0}.
For τ ∈ TR(ρ) and t ∈ Tr(ρ) define

adm+(τ, t) =

{
1 if ϕτ (v) ` ϕt(f(v))

0 otherwise

and let adm−(τ, t) be the maximum integer a ∈ {0, . . . , r + 1} such that

ϕτ (v) ` ∃x1, . . . , xa

( ∧
1≤i≤a

(
ϕt(xi) ∧ f(xi) = v

)
∧

∧
1≤i<j≤a

(xi 6= xj)
)
.
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Definition 9. The probability measure ρ satisfies the (R, r)-restricted FMTP
if there exists a function s : TR(ρ) × Tr(ρ) → {0, 1, . . . , r} ∪ (r,∞), called
companion function of ρ, such that for every τ ∈ TR(ρ) and t ∈ Tr(ρ) it
holds

min(r, adm−(τ, t)) = min(r, s(τ, t)) (13)∑
τ1≺t1

adm+(τ1, t2)µ(τ1) =
∑
τ2≺t2

s(τ2, t1)µ(τ2). (14)

This notion is justified by the next lemma.

Lemma 4. Let R > 2r be positive integers.
Let L be mapping modeling L that satisfies the FMTP and let µ be the

probability measure on TR defined by µ(τ) = νL(ϕτ (L)).
Then µ satisfies the (R, r)-restricted FMTP.

Proof. For τ ∈ TR(µ) and t ∈ Tr(µ) define

w(τ, t) =
νL(f−1

L (ϕτ (L)) ∩ ϕt(L))

νL(ϕτ (L))
. (15)

According to FMTP we have the following set of equations (where τ ∈
TR(µ) and t ∈ Tr(µ)):

min(adm−(τ, t), r) = min(w(τ, t), r) (16)∑
τ1≺t1

adm+(τ1, t2)µ(τ1) =
∑
τ2≺t2

w(τ2, t1)µ(τ2). (17)

�

2.5. The Finite Model Property. An infinite σ-structure M has the
Finite Model Property if every sentence θ satisfied by M has a finite model.
In other words, M has the Finite Model Property if, for every integer r,
there exists a finite σ-structure F with F ≡r M.

Deciding wether an infinite structure has the finite model property is
extremely difficult, as deciding wether a sentence has a finite model is un-
decidable in general, see Trakhtenbrot [22].

However, it is clear from our definition that if a modeling M is an FO-limit
of a sequence of finite structures then M does have the finite model property.
When considering the problem of constructing an FO-approximation of a
modeling M, we will not only assume that the modeling M has the finite
model property, but that we can ask an oracle to provide us (for each integer
r) with a finite structure F that is F ≡r M.

In some very particular cases, deciding whether a structure has the finite
model property and constructing an elementary approximation can be easy.
For instance, Lemma 21 below asserts that every mapping with finite height
has the finite model property and describes how to construct an elementary
approximation. The case of mappings is intermediate between the case
of bounded height trees (which have the finite model property) and the



APPROXIMATIONS OF MAPPINGS 15

case of relational structures with at least one relation symbol with arity
at least two, for which satisfiability problem is undecidable. The Rabin
class [all, (ω), (1)]= of first-order logic with equality, one unary function and
monadic predicates does not have the finite model property. (For instance,
one can consider a sentence expressing that there exists a unique element
which is not the image of another element, but that every other element is
the image of exactly one element.) However, satisfiability problem and finite
satisfiability problem for Rabin class are both decidable, though with huge
complexity (the first-order theory of one unary function is not elementary
recursive). For a general discussion on classical decision problems we refer
the reader to [1].

2.6. Derived Modelings. Let F be a modeling mapping and let X be a
non-zero measure first-order definable subset of F . We denote by F �X the
restriction of F, which is the modeling mapping with domain X, probability
measure νF�X = 1

νF(X)νF and

fF�X (v) =

{
fF(v) if fF(v) ∈ X
v otherwise

Remark 1. The condition that X is first-order definable ensures that F �X
is a modeling. The condition that X is a Borel subset of F would not be
sufficient: Consider the modeling mapping F with F = [0, 1] × [0, 1] and
fF maps (x, y) to (x, 0), and νF be the usual measure. Then F is clearly
a modeling. Let X0 be a Borel subset of (0, 1) × (0, 1) such that fF(X) is
not a Borel subset of [0, 1]× {0} (such a set can be derived from a standard
example of non-Borel Σ1

1 sets), and let X = X0 ∪ [0, 1]×{0}. Then F �X is
not a modeling as the definable subset {v : (∃x) (x 6= v)∧ (f(x) = v)} is not
Borel.

Lemma 5. Let F be a mapping modeling and let X be a non zero-measure
first-order definable subset of F . If F satisfies the FMTP then so does F �X .

Proof. Let A,B be Borel subsets of X. Let Z = {v ∈ X : fF(v) /∈ X}. As
F satisfies the FTMP it holds

νF�X (A ∩ f−1
F�X

(B)) = νF�X (A ∩ f−1
F�X

(B \ Z)) + νF�X (A ∩ f−1
F�X

(B ∩ Z))

=
1

νF(X)

(
νF(A ∩ f−1

F (B \ Z)) + νF(A ∩B ∩ Z)
)

=
1

νF(X)

(∫
B\Z
|f−1

F (y) ∩A|dνF(y) + νF(A ∩B ∩ Z)

)

=

∫
B
|f−1

F�X
(y) ∩A|dνF�X (y)

Thus the FMTP holds for F �X . �

We also note the following:
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Lemma 6. Let M be a modeling and let M+ be obtained from M by marking
exactly one element of M with a new unary relation. Then

(1) M+ is a modeling;
(2) M+ satisfies the FMTP if and only if M satisfies the FMTP;
(3) M+ has the finite model property if and only if M has the finite

model property.

Proof. The first item was proved in [17]. The second item is obvious as M
and M+ have the same Gaifman graph. As M is a trivial interpretation of
M+, the finite model property for M+ implies the finite model property for
M. Conversely, assume F ≡r+1 M and start a Ehrenfeucht-Fräıssé game by
choosing the element that is marked in M+. Assume Duplicator follows a
winning strategy for the (r + 1)-rounds game, and mark the vertex chosen
by Duplicator in F. Then (continuing the game) we get that the marked
structure is r-equivalent to M+. �

2.7. List of Symbols. Here is a list of the main symbols defined in this
section.

Symbol Signification

Introduced in Section 2.1
σ signature
F mapping (Definition 1)
F domain of structure F

φ(F) set of tuples satisfying φ in F
Br(F, u) r-ball of u in F

FO all first-order formulas
FOp first-order formulas with free variables within x1, . . . , xp
FO0 sentences

FOlocal local first-order formulas

FOlocal
p local first-order formulas with free variables within x1, . . . , xp

QF quantifier free first-order formulas
lrank(φ) local rank of formula φ (Definition 2)
t, τ Local types
Tr(σ) set of all rank r local types

TypeFr (v) rank r local type of v in F
ϕt(x1) characteristic formula of local type t

δr(x1, x2) formula expressing dist(x1, x2) ≤ r
I interpretation (Definition 3)

Introduced in Section 2.2
νF Probability measure on the domain F of F (Definition 4)
〈φ,F〉 Stone pairing of φ and F (Definition 5)
S(LX) Stone dual of Lindenbaum-Tarski algebra of X
µF Representation measure of F (Theorem 4)

µloc
F Representation measure of structure F for FOlocal

1 fragment
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Symbol Signification

Th(µF) Complete theory of µF
πr Projection to consistent subsets of FOlocal

1 with quantifier
rank at most r

µ
loc(r)
F Pushforward of µloc

F by πr

Introduced in Section 2.4
ζ Transport operator (Definition 8)

adm+(τ, t) Does ϕτ (v) imply ϕt(f(v))?
adm−(τ, t) How many distinct u with ϕt(u) and f(u) = v if ϕτ (v)?

3. First-Order Approximation

The aim of this section is to prove Theorem 3. The general strategy of
the proof is depicted in Fig. 1:

(1) Reduction L → L1, where L1 is ε2-residual (i.e. has no connected
component of measure greater than ε2), with recovery interpretation
I1.

(2) restriction L1 7→ L2 to no zero-measure rank-r3 local types.
(3) Transformation L2 7→ L3 killing all short circuits. Interpretation

L3
I2−→ L̃2, with local statistics close to L2.

(4) Approximation of the rank-R local type measure µ of L3 by a rational
measure µ̂, still satisfying mass transport principle.

(5) Construction of an exact model F3 of µ̂, providing a finite approxi-
mation F3 of L3.

(6) Rewiring the short cycles by means of interpretation I2, leading to
an approximation F2 of L2.

(7) Construction of an elementary approximation E1 of L1.
(8) Merge of E1 with a great number of copies of F2 to form an FO-

approximation F1 of L1.

(9) Interpretation F1
I1−→ F to get an FO-approximation of the original

mapping modeling L.

We shall reduce the complexity of the approximation problem by requiring
more and more properties on the mapping modeling we want to approximate.
The different properties we will consider for our mapping modeling are:

(P1) the modeling measure is atomless;
(P2) the modeling satisfies the FMTP;
(P3) the modeling has the finite model property;
(P4) the modeling is ε2-residual;
(P5) the modeling is r3-clean;
(P6) the modeling has no cycle of length smaller than r4.
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Original modeling L

��

F Finite approximation of L

ε-residual L1

I1

VV

��

!!

F1

I1

OO

Finite approximation of L1

E1

OO

Elementary approximation of L1

Clean L2

��

≈r3 L̃2 F2 Finite approximation of L2

No short circuits L3

��

I2

>>

F3

I2

OO

��

Finite approximation of L3

Stone measure µ // µ̂

UU

Rational Stone measure

Figure 1. Strategy for the proof of Theorem 3.

During the reduction process, we shall make use of additional unary rela-
tions to keep track of the properties of the original mapping. Therefore we
shall consider larger and larger signatures:

σ is the signature of both L and F. This signature contains a single
unary function symbol f and (possibly) finitely many unary relation
symbols.

σ1 is the signature of L1, E1, and F1. It is obtained by adding to σ the
unary relation symbols (Ai)1≤i≤2dε−1

2 e
and (Bi)1≤i≤2dε−1

2 e
.

σ2 is the signature of L2, L̃2 and F2. It is obtained by adding to σ1

unary relations (Rt)t∈Tr3 (σ1).
σ3 is the signature of L3 and F3. It is obtained by adding to σ2 unary

relations (Ui)1≤i≤r4 and unary relations (Tt)t∈Tr3 (σ2).

We fix integers p, r and a positive real ε > 0. Our aim is to construct
a finite mapping F such that Distp,r(L,F) < ε, that is such that for every
first-order formula φ with at most p free variables and quantifier rank at
most r, it holds that

|〈φ,L〉 − 〈φ,F〉| < ε.

We first reduce the problem by separately considering local first-order
formulas and sentences. It follows from Lemma 2 that there exist an integer
r1 and a positive real ε1 > 0 such that if L ≡r1 F and Distlocal

p,r1 (L,F) < ε1
then it holds Distp,r(L,F) < ε. We further require ε1 < 1/16.

Let r2 = 4r2
1, r3 = 2r2 + 1, r4 = r3!, ε2 = ε1/p

2, ε3 = ε1/4p, ε4 = ε5 =

ε1/4p, N1 = 2dε−1
2 e, r5 = r1r3N1|Tr3(σ3)|.

3.1. From L to L1: Reduction to ε-residual case. For positive real
ε > 0, a modeling M is ε-residual if every connected component of M has
measure at most ε.
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We consider a signature augmented by 4dε−1
2 e marks A1, . . . , A2dε−1

2 e
and

B1, . . . , B2dε−1
2 e

, and the basic interpretation I1 defined by

η(x, y) :=

(f(x) = y)) ∧ ¬
2dε−1

2 e∨
i=1

Ai(x)

 ∨ 2dε−1
2 e∨

i=1

(Ai(x) ∧Bi(y)).

We construct a mapping modeling L1 from L as follows.
We start by letting L1 be a copy of L, j = dε−1

2 e+ 1, and we modify L1

as follows: We consider the connected component Ci (1 ≤ i ≤ N ≤ 1/ε) of
L1 with measure ci = νL(Ci) > ε2. If Ci contains a non-trivial cycle, we
arbitrarily select a vertex v on it, mark v with mark Ai, mark fL1(v) by
mark Bi, and let fL1(v) = v. For u ∈ Ci let

E(u) =
⋃
i≥1

f−kL1
(u).

Suppose there exists v ∈ Ci s.t. νL1(E(v)) > ε2. As

νL1(E(v)) = lim
k→∞

νL1

( ⋃
1≤i≤k

f−kL1
(u)
)
,

there exists some k s.t.∑
u∈f−k(v)

νL1(E(u)) = νL1

(
E(v) \

⋃
1≤i≤k

f−kL1
(v)
)
≤ ε2.

Therefore, there is some u s.t. νL1(E(u)) > ε2 and νL1(E(x)) ≤ ε2 for all
x ∈ f−1

L1
(u).

Note that there exist at most ci/ε2 elements u ∈ Ci such that νL1(E(u)) ≥
ε2 and νL1(E(x)) < ε for every x ∈ f−1

L1
(u). For each such element u,

denoting W = fL1(u), we mark u by a mark Bj , every element in W by
mark Aj , increase j by one, and redefine fL1(w) = w for every w ∈ W .
As W is first-order definable with a parameter, the structure L1 is still a
modeling. Doing this, the component C gives rise to (possibly uncountably
many) small connected components of measure smaller than ε2, and at most
one connected component with measure ε2. At the end of the day, we have
used up to 2dε−1

2 e pairs of marks Ai and Bi, L1 is ε2-residual, and L = I1(L1).

Lemma 7. L1 satisfies the properties (P1) to (P4) and L = I1(L1).

Proof. As νL1 = νL, (P1) holds for L1. The satisfaction of the FMTP for L
obviously implies the satisfaction of the FMTP for L1 hence (P2) holds for
L1.

The Finite Model Property for L implies the one for L1 (thus (P3) holds):
For r ∈ N, let F be a finite mapping such that F ≡r+2dε−1

1 e
L. Start a

Ehrenfeucht-Fräıssé game of length r+2dε−1
1 e by selecting in L the elements

v1, . . . , vN marked B1, . . . , BN (N ≤ 2dε−1
1 e) in L1, and let z1, . . . , zN be the

corresponding elements of F chosen by Duplicator. We construct F1 from
F by marking zi by mark Bi, by marking every element in Yi = f−1

F (zi) by
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mark Ai and letting fF1(y) = y for every y ∈ Yi (for 1 ≤ i ≤ N). Then
it is easily checked that Duplicator’s winning strategy for the remaining r
steps of the Ehrenfeucht-Fräıssé game between L and F defines a winning
strategy for the r-step Ehrenfeucht-Fräıssé game between L1 and F1 hence
F1 ≡r L1.

Property (P4) holds by construction, as well as the property that L =
I1(L1). �

3.2. From L1 to L2: Cleaning-up.

Definition 10. Let r ∈ N. A mapping modeling L is r-clean if, for every
formula φ ∈ FOlocal

1 with rank at most r it holds that

L |= (∃x)φ(x) ⇐⇒ 〈φ,L〉 > 0.

In other words, a mapping modeling L is r-clean if every local type realized
in L occurs with non zero probability.

We have proved that L1 satisfies (P1) to (P4). We now construct L2.
Define

T = {t ∈ Tr3(σ1) : 〈ϕt,L1〉 > 0},
let X =

∨
t∈T ϕt(L1) — that is X is the subset of elements of L1 whose r3-

local type appears in L1 with no zero probability — and let L2 be obtained
from L1 �X by adding marks Rt (t ∈ Tr3(σ1)), in such a way that for all
t ∈ Tr3(σ1) and v ∈ L2 it holds that

L2 |= Rt(v) ⇐⇒ L1 |= ϕt(v) ⇐⇒ TypeL1
r3 (v) = t.

Lemma 8. The mapping modeling L2 satisfies properties (P1) to (P5).

Proof. Let L̂1 be the σ2-mapping obtained by the trivial interpretation

adding marks Rt in such a way that Rt(L̂1) = ϕt(L1). As we made use

of a trivial interpretation, L̂1 is a modeling and properties (P1) to (P4) still

hold. Note that L2 = L̂1 �X . It is immediate that (P1) and (P4) hold. Ac-
cording to Lemma 5, (P2) holds. If F is a finite elementary approximation

of L̂1 then F �X is a finite elementary approximation of L2 hence L2 has the
finite model property (P3). An easy r3-step local Ehrenfeucht-Fräıssé game
easily shows that if u, v ∈ L2 have same rank ε2 local type in L1 then they
have the same rank r3 local type in L2. It follows that L2 is r3-clean thus
(P5) holds. �

3.3. From L2 to L3: Cutting the short cycles. Cutting the short cycles
will allow to handle mapping modelings that are locally acyclic, which will
strongly simplify the proofs. A natural procedure would be to consider a
Borel transversal of all short cycles (which exists thanks to Borel selection
theorem [13, p. 78]), to mark it, and to use an interpretation to kill the cycles
at the mark. However, such an approach fails as marking a Borel subset of
a modeling does not in general keep the property of being a modeling (see
Example 1). We shall use a different approach. Let Γ be the set [r4]. We
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Figure 2. Construction of L3

consider the σ3-mapping modeling L3 with domain L3 = L2 × Γ, measure
νL3 = νL2 ⊗ δΓ (where δΓ is the uniform measure on Γ), with (x, i) marked
by Ui, TTypeL2

r3
(x)

, and

fL3(x, i) = (fL2(x), i+ 1 mod r4).

An example of construction of L3 is shown on Fig. 2.

Lemma 9. The mapping modeling L3 satisfies (P1) to (P6).

Proof. Property (P1) obviously holds.
As L2 satisfies the FMTP, so does L3. Indeed, let A,B be Borel subsets

of L3 such that degL3
B (v) is bounded for v ∈ A and degL3

A (v) is bounded for
v ∈ B. Then we can write A =

⋃
iAi×{i} and B =

⋃
j Bj ×{j}, where the
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Ai’s and the Bj ’s are Borel subsets of L2. Then it holds that

νL3(A ∩ f−1
L3

(B)) =
1

r4

∑
i

νL2(Ai ∩ f−1
L2

(Bi+1 mod r4))

=
1

r4

∑
j

∫
Bj

|f−1
L2

(y) ∩Aj−1 mod r4 |dνL2(y)

=

∫
B
|f−1

L3
(y) ∩A|dνL3(y)

Hence (P2) holds.
It is immediate that if for some R ∈ N it holds that F ≡R L2 then if F′ is

obtained from F in the same way that L3 is obtained from L2 it holds that
F′ ≡R L3 (Duplicator’s strategy immediately follows from its strategy in an
Ehrenfeucht-Fräıssé game between F and L2). Thus (P3) holds.

It is easily checked that the measure of a connected component of L3 is
at most the measure of its projection on L2. Thus (P4) holds.

As r4 > r3, an easy Ehrenfeucht-Fräıssé game shows that if two elements
x, y of L2 have the same r3 local type in L2 and 1 ≤ i, j ≤ the (x, i) and
(y, j) have the same r3 local type in L3. Thus, as L2 is r3-clean so is L3.
Hence (P5) holds for L3.

By construction, L3 has no cycle of length smaller than r4 thus (P6)
holds. �

For 1 ≤ ` ≤ r3 let Z` be the subset of all the t ∈ Tr3(σ2) that contain the
formula

[
(f `(x) = x) ∧∧i<`(f

i(x) 6= x)
]

(which means that x belongs to a
cycle of length `).

Now we consider the basic interpretation I2, with

η(x, y) :=

[ r3∨
`=1

(ζ`(x) ∧ (y = f `−1(x))

]
∨
[
(y = f(x)) ∧ ¬

r3∨
`=1

Ui(x)

]
,

where

ζl(x) := Ul(x) ∧
∨
t∈Z`

Tt(x),

which also forgets the marks Ui and Tt. Let L̃2 = I2(L3).

Lemma 10. For every φ ∈ FOlocal
1 with rank at most r3 it holds that

〈φ, L̃2〉 = 〈φ,L2〉.
Proof. It is straightforward that for every v ∈ L2 and every i ∈ Γ it holds
that

TypeL̃2
r3 (v, i) = TypeL2

r3 (v).

Hence for every φ ∈ FOlocal
1 with rank at most r3 it holds that

〈φ, L̃2〉 = 〈φ,L2〉.
�
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3.4. From µ to µ̂: Approximating the Stone measure.

Let µ = µ
loc(r3)
L3

. As L3 satisfies the FMTP, according to Lemma 4, the

probability measure µ satisfies the (r3, r2)-restricted FMTP.

Lemma 11. There exists a rational probability measure µ̂ on Tr3(σ3) with
same support as µ, that satisfies the (r3, r2)-restricted MTP, and such that
‖µ− µ̂‖TV < ε5.

Proof. Let w be a companion function for µ, and let

Q1 = {(τ, t) ∈ Tr3(µ)× Tr2(µ) : w(τ, t) ≤ r2}
Q2 = {(τ, t) ∈ Tr3(µ)× Tr2(µ) : w(τ, t) > r2}

Consider the following set of Diophantine equations and inequalities with
variables xτ (τ ∈ Tr3(µ)) and yτ,t ((τ, t) ∈ Q2):

xτ > 0,
∑
τ∈Tr3

xτ = 1, yτ,t ≥ 0,

∑
τ1≺t1

adm+(τ1, t2)xτ1 =
∑
τ2≺t2

(τ1,t2)∈Q1

adm−(τ1, t2)xτ2 +
∑
τ2≺t2

(τ1,t2)∈Q2

(r2xτ2 + yτ1,t2)

Then this set defines a convex polytope containing a solution for xτ = µ(τ)
and yτ,t = (w(τ, t)− r2)µ(τ).

Since this polytope has rational vertices, either the aforementioned so-
lution is rational, or there is a strictly positive rational solution in any
of its neighborhood. Let (x̂τ , ŷτ,t) be such a rational solution, such that∑

τ∈Tr3 (σ3) |xτ − x̂τ | < ε5.

Define µ̂(τ) = x̂τ . Then µ̂ has same support as µ and ‖µ − µ̂‖TV < ε5,
and µ̂, with companion function s(τ, t) = r2 + ŷτ,t/x̂τ , satisfies the (r3, r2)-
restricted FMTP. �

3.5. Constructing F3. It is possible, by means of a (relatively low local
rank) local formula, to specify that in the neighborhood of an element v,
related in a given way (by means of a digraph D indicating which element
is the image of which element), one finds an element u1 with rank ρ1 local
type t1, an element u2 with rank ρ2 local type t2,. . . , and an element uk
with rank ρk local type tk. This is the aim of the following definition.

Definition 11. Let σ be a mapping signature, let k ∈ N, ρ1 > ρ2 > · · · >
ρk ≥ 0, t1 ∈ Tρ1(σ), . . . , tk ∈ Tρk(σ), and let D ⊆ [k + 1]× [k + 1] be the arc
set of a digraph with outdegrees at most 1 and connected underlying graph.
We define the characteristic formula θ ∈ FOlocal

1 (σ) of ((ρi)i∈[k], (ti)i∈[k], D)
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inductively as follows:

θk+1(x1, . . . , xk+1) :=
∧

1≤i<j≤k+1

(xi 6= xj) ∧
∧

(i,j)∈D

f(xi) = xj

θi(x1, . . . , xi) := ∃yi [ϕρiti (yi) ∧ θi+1(x1, . . . , xi, yi)] (1 ≤ i ≤ k)

θ(x) := θ1(x)

Note that the rank of θ is at most ρ1 + 1 = max{ρi + i : 1 ≤ i ≤ k}.
Lemma 12. Let F be a σ3-mapping with no cycle of length 1 < ` ≤ r4, and
let Υ : F → Tr3(σ) be such that

(1) for every unary mark M in the signature and every v ∈ F , M(v)
holds in F if and only if M(x) ∈ Υ(v);

(2) for every 1 ≤ ` ≤ r4 and every v ∈ F it holds that [f i(x) = x] /∈ Υ(v).
(3) for every v ∈ F it holds that

adm+(Υ(v), πr2(Υ(fF(v)))) = 1;

(4) for every v ∈ F and t ∈ Tr2(σ3) it holds that

min
(
r2, adm−(Υ(v), t)

)
= min

(
r2, |{u ∈ f−1

F (v) : πr2(Υ(u)) = t}|
)
.

Then for every v ∈ F it holds that TypeFr2(v) = πr2(Υ(v)).

Proof. First note that Property 3 implies that for every 0 ≤ i ≤ r2 and every
v ∈ F it holds that

(πi ◦Υ) ◦ fF = ξ ◦ (πi+1 ◦Υ)x.

Note that this is analog to (12), which states that for every non-negative
integer i and every mapping M it holds that

TypeMi ◦ fM = ξ ◦ TypeMi+1.

For v ∈ F , let M be a countable model of (∃x)ϕΥ(v)(x), and let z ∈ M
be such that M0 |= ϕΥ(v)(z), that is TypeM0

r3 (z) = Υ(v). By Property 3 it

holds that fd(x) = x belongs to no Υ(u) at distance at most r3 − d from z.
Considering the ball of radius r3 + 1 around z we deduce that there exists a
connected mapping M with a special element z, which has no cycle of length
> 1 (hence the Gaifman graph of M is a tree), at most one fixed point at
distance r3 + 1 from z, and such that TypeMr3(z) = Υ(v).

In order to prove TypeFr2(v) = πr2◦Υ(v) = TypeMr2(z) it is sufficient to prove
that Duplicator has a winning strategy for the r2 steps local Ehrenfeucht-
Fräıssé game between (F, v) and (M, z).

Assume that for some 0 ≤ k < r2 we have v0, . . . , vk ∈ F and z0, . . . , zk ∈
M with v0 = v and z0 = z, such that vi 7→ zi is a partial isomorphism, and
such that for every 0 ≤ i ≤ k it holds that

TypeMr2−i(zi) = πr2−i ◦Υ(vi).

Now consider a Spoiler move. There are six cases:
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i) Spoiler chooses vk+1 ∈ F , and there exists 0 ≤ a < k + 1 such that
fF(va) = vk+1.

In this case, TypeMr2−a(za) = πr2−a ◦Υ(va) implies

TypeMr2−a−1 ◦ fM(za) = ξ ◦ TypeMr2−a(za)
= ξ ◦ πr2−a ◦Υ(va)

= πr2−a−1 ◦Υ ◦ fF(va)

Thus we can let zk+1 = fM(za).
ii) Spoiler chooses vk+1 ∈ F , there exists 0 ≤ a < k + 1 such that

fF(vk+1) = va, and for every 0 ≤ i < a it holds fF(vi) 6= va.
Let b1 < b2 < · · · < b`+1 = k + 1 be such that f−1

F (va) ∩
{v0, . . . , vk+1} = {vb1 , . . . , vb`+1

}. Note that b1 > a by assumption.
For 1 ≤ i ≤ `+1, let ρi = r2−bi and ti = πρi◦Υ(vbi). Let D be the

set of pairs (i, 1) for 2 ≤ i ≤ `+ 2, and let θ(x) be the characteristic
formula of ((ρi)i∈[`+1], (ti)i∈[`+1], D). This formula has rank at most

ρ1 + 1 ≤ r2− a so it holds that θ(x) ∈ πr2−a ◦Υ(va) = TypeMr2−a(za).

Thus there exist z′b1 , . . . , z
′
b`
, z′k+1 in f−1

M (za) \ {za}, such that

TypeMρi(z
′
bi

) = πr2−bi ◦Υ(vbi) (1 ≤ i ≤ `+ 1). (18)

If z′bi is not equal to zbi for every 1 ≤ i ≤ `, let i be minimum such

that z′bi 6= zbi .

• If zbi = z′bj for some j > i then it holds that

tj = TypeMρj (zb′j ) = TypeMρj (zbi) ⊆ TypeMρi(zbi) = ti

and we deduce that (19) still holds after exchange of z′bi and

z′bj .

• Otherwise, we let z′bi = zbi and remark that (19) still holds.

We repeat this process until we get z′bi = zbi for every 1 ≤ i ≤ `.

Then we let zk+1 = z′k+1.
iii) Spoiler chooses vk+1 ∈ F , there exists 0 ≤ a < k + 1 such that

fF(vk+1) = va, and there exists 0 ≤ i < a such that it holds that
fF(vi) = va.

Let b1 < b2 < · · · < b`+1 = k + 1 be such that f−1
F (va) ∩

{v0, . . . , vk+1} = {vb1 , . . . , vb`+1
}.

Note that there can be only one 0 ≤ i < a s.t. fF(vi) = va, as
otherwise the two vertices would not be connected before step a, so
b1 < a < b2.

For 1 ≤ i ≤ ` + 1, let ρ1 = r2 − a, t1 = πr2−a ◦ Υ(va), and
ρi = r2 − bi, ti = πρi ◦Υ(vbi) for 2 ≤ i ≤ `+ 1.

Let D be the set of pairs (i, 2) for i ∈ {1, . . . , `+ 2} \ {2}, and let
θ(x) be the characteristic formula of ((ρi)i∈[`+1], (ti)i∈`+1, D). This
formula has rank at most ρ1 + 1 ≤ r2 − a + 1 ≤ r2 − b1 so it holds
that θ(x) ∈ πr2−b1 ◦ Υ(vb1) = TypeMr2−b1(zb1). Thus, there exists
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z′a, z
′
b2
, . . . , z′b` , z

′
k+1 ∈ f−1

M ◦fM(zb1), all distinct, such that fM(zb1) =
za and

TypeMρi(z
′
bi

) = πr2−bi ◦Υ(vbi) (2 ≤ i ≤ `+ 1). (19)

As in the previous case, we can assume z′bi = zbi for 2 ≤ i ≤ ` and

let zk+1 = z′k+1.
iv) Spoiler chooses zk+1 ∈M , and there exists 0 ≤ a < k + 1 such that

fM(za) = zk+1.
As in Case i), TypeMr2−a(za) = πr2−a ◦Υ(va) implies

TypeMr2−a−1 ◦ fM(za) = πr2−a−1 ◦Υ ◦ fF(va).

Thus we can let vk+1 = fF(va).
v) Spoiler chooses zk+1 ∈ M , there exists 0 ≤ a < k + 1 such that

fM(zk+1) = za, and for every 0 ≤ i < a it holds fM(zi) 6= za.
Let τ = Υ(va), let t = TypeMr2−(k+1)(zk+1), and let p be the number

of elements of f−1
M (za)∩{z0, . . . , zk+1} with rank (r2− (k+ 1)) local

type t.
By assumption, it holds that TypeMr2−a(za) = πr2−a(τ). Thus∑

t′≺t
adm−(τ, t′) ≥ p,

where the sum is over local types t′ ∈ Tr2(σ3) such that t′ ≺ t.
According to Property 4, it holds that∑
t′≺t

adm−(τ, t′) = |{u ∈ f−1
F (va) : πr2−(k+1)(Υ(u)) = t}|.

It follows that there exists vk+1 ∈ f−1
F (va), distinct from v0, . . . , vk,

such that πr2−(k+1)(Υ(vk+1)) = TypeMr2−(k+1)(zk+1).

vi) Spoiler chooses zk+1 ∈ M , there exists 0 ≤ a < k + 1 such that
fM(zk+1) = za, and there exists 0 ≤ i < a such that it holds that
fM(zi) = za.

This case is solved similarly, by considering the element zi such
that fM(zi) = za, and showing that the number of elements of
f−1
F (vi) with same rank (r2 − (k + 1)) local type as zk+1 is at least

equal to the number of elements of f−1
F (zi)∩{z0, . . . , zk+1} with same

rank (r2 − (k + 1)) local type as zk+1.

�

Lemma 13. Let r3 > 2r2 be positive integers, and let µ̂ be a rational prob-
ability measure on Tr3(σ3), such that

(1) µ̂ is clean: for every τ ∈ Tr3(σ3) with µ̂(τ) > 0 and for every t ∈
Tr3−1(σ3), if φt(f(x)) ∈ τ then

∑
τ ′≺t µ̂(τ ′) > 0;

(2) for every 1 < i ≤ r3 the formula f i(x) = x does not belong to any
τ ∈ Tr3(σ3) with positive µ̂-measure;



APPROXIMATIONS OF MAPPINGS 27

(3) the measure µ̂ satisfies the (r3, r2)-restricted MTP.

Then there exists a finite σ3-mapping F3 such that for every local formula
φ ∈ FOlocal

1 (σ3) with local rank at most r2 it holds that

〈φ,F3〉 =
∑
τ3φ

µ̂(τ). (20)

Proof. Let Tr3 = {τ ∈ Tr3(σ3) : µ̂(τ) > 0} and Tr2 = {πr2(τ) : τ ∈ Tr3}.
Let N2 ∈ N be such that N2 µ̂ is integral, and let ζ : [N2] → Tr3 be such

that for every τ ∈ Tr3 it holds |ζ−1(τ)| = N2 µ̂(τ).
We construct a (partial) mapping g : [N2] → [N2] inductively. We start

with an empty domain. For each i ∈ [N ] (not yet in the domain), let
t = πr(ζ(i)). We consider the elements of [N2] such that adm−(ζ(j), t) is
either r2 + 1, or greater than the number of k ∈ g−1(j) such that ζ(k) ≺ t.
Among these elements, we choose one element j such that adm−(t, ζ(j) is
minimal, and let g(i) = j.

Now we prove that the above construction never gets stuck and that, at
the end of the day, for every j ∈ [N2] and every t ∈ Tr2(σ3) it holds that

min
(
r2, adm−(ζ(j), t)

)
= min

(
r2, |{k ∈ g−1(j) : ζ(k) ≺ t}|

)
. (21)

Assume for contradiction that the construction gets stuck when trying to
extend the domain of g to some i ∈ [N2]. Let τ = ζ(i), let t1 = πr2(τ),
and let t2 be the unique rank r2 local type such that ϕt2(f(x)) ∈ τ1. By
assumption, for every τ2 ∈ Tr3 with τ2 ≺ t2 it holds that adm−(τ2, t1) ≤ r2.
Hence, by the (r3, r2)-restricted MTP, it holds that∑

τ1≺t1

adm+(τ1, t2)µ(τ1) =
∑
τ2≺t2

adm−(τ2, t1).

Thus

|{i : πr2(ζ(i)) = t1}| =
∑
j

|{k ∈ g−1(j) : ζ(k) ≺ t1}|,

which contradicts the hypothesis that the construction gets stuck.
Now assume for contradiction that (21) does not hold. Then there exists

t1 and j0 such that

|{k ∈ g−1(j0) : ζ(k) ≺ t1}| < min
(
r2, adm−(ζ(j0), t1)

)
.

Let t2 = πr2(ζ(j0)). According to the construction of g, it holds for every j
such that ζ(j) ≺ t2 that

|{k ∈ g−1(j) : ζ(k) ≺ t1}| ≤ min
(
r2, adm−(ζ(j), t1)

)
.
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Hence we have∑
τ2≺t2

min
(
r2, adm−(ζ(j), t)

)
µ̂(τ2)

>
1

N2

∑
τ2≺t2

∑
j:ζ(j)=τ2

|{k ∈ g−1(j) : ζ(k) ≺ t1}|

=
1

N2

∑
τ1≺t1

∑
i:ζ(i)=τ1

adm+(ζ(i), t2)

=
∑
τ1≺t1

adm+(τ1, t2) µ̂(τ1)

which contradicts the (r3, r2)-restricted MTP. Thus (21) holds.
The σ3-mapping F3 has domain [N2]. For every unary relation symbol

S ∈ σ3 we let S(F3) = {i ∈ F3 : S(x) ∈ ζ(i)}, and define fF3 = g.
Note that F has no cycle of length ` with 1 ≤ ` ≤ r4: as f(x) ∧ Ui(x)→

U(i+1) mod r4(f(x)) holds with probability 1. Hence, all the cycles have their
length a multiple of r4.

That TypeFr2(v) = πr2(ζ(v)) holds for every v ∈ F3 then follows from
Lemma 12. �

As a consequence of Lemma 11 and Equation 20 it holds that

Distlocal
1,r2 (F3,L3) < ε5. (22)

3.6. From F3 to F2: Rewiring short cycles. We now let F2 = I2(F3).
Every local formula φ ∈ FOlocal

1 (σ2) with local rank at most 2r1 corresponds

(for the I2 interpretation) to a local formula φ̂ with local rank at most
2r1(2r1 − 1) < r2. Then it holds that

|〈φ,F2〉 − 〈φ, L̃2〉| = |〈φ̂,F3〉 − 〈φ̂,L3〉|.
Thus

Distlocal
1,2r1(L2,F2) ≤ Distlocal

1,2r1(L2, L̃2) + Distlocal
1,2r1(L̃2,F2) < ε5. (23)

3.7. The mapping E1: A finite model. A terminal of TR is a type τ such
that if t′ is such that adm+(τ, t′) = 1 then

∑
τ ′≺t′ µ(τ ′) = 0. Importance of

terminal types will be a consequence of the following useful fact:

Claim 1. Let τ1 be such that µ(τ1) > 0, and let t2 be such that adm+(τ1, t2) =
1.

Then at least one of the following holds:

(1) there exists τ2 ≺ t2 such that µ(τ2) > 0;
(2) there exists τ2 ≺ t2 such that adm−(t1, τ2) > r.

Proof. Let t1 be such that τ1 ≺ t1. Assume that for every τ2 ≺ t2 such that
adm+(τ1, t2) = 1 it holds adm−(t1, τ2) ≤ r. Then, according to the FMTP,
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it holds

r
∑
ϑ2≺t2

µ(ϑ2) ≥
∑
ϑ2≺t2

adm−(ϑ2, t1)µ(ϑ2)

=
∑
ϑ1≺t1

adm+(ϑ1, t2)µ(ϑ1)

≥ µ(τ1) > 0

Thus there exists τ2 ≺ t2 such that µ(τ2) > 0. �

A type τ ′ is a hub type if there exists τ ≺ t such that τ is a terminal and
adm−(τ ′, t) > r. Let τ1, . . . , τk be the terminal types of L, and let τ ′1, . . . , τ

′
k

be associated hub types.

Lemma 14. There exists a finite mapping M such that M ≡r5 L, and such
that there are elements

h1,1, . . . , h1,N1 , . . . , hk,1, . . . , hk,N1 ∈M,

pairwise at distance at least 2r, such that TypeMr2(hi,j) = τ ′i .

Proof. We consider the formula ζ with free variables

x1,1, . . . , x1,N1 , . . . , xk,1, . . . , xk,N1 ,

defined by

ζ :=
( ∧

(i,j)6=(i′,j′)

dist(xi,j , xi′,j′) > 2r1

)
∧
( ∧

1≤i≤k

∧
1≤j≤N1

ϕτ ′i (xi,j)
)

and the sentence

θ := (∃x1,1, . . . , x1,N2 , . . . , xk,1, . . . , xk,N1)ζ

The hub types can be chosen in such a way that θ is satisfied in L. Indeed,
for each τ ′ < t′ such that adm(τ, t′) = 1 the connected component of any
v ∈ φτ ′(L) has measure 0 (as L is residual) hence it is possible, for each
terminal τ to choose τ ′ in such a way that there are in L uncountably many
connected components with an element in φτ ′(L). �

3.8. From E1 and F2 to F1: Merging. Let S = {v1, . . . , vk} be the set of
all terminal elements of F2, and let γ(vi) be the rank r-type corresponding
to elements of L having type Υ(vi) in L1.

Let N3 = d |E1|
|F2|ε2 e, and let F1 be the disjoint union of E1 and F2 × [N3]×

[N1]. If v ∈ M , we define fF1(v) = fE1(v). Otherwise, if (v, i, j) ∈ F2 ×
[N3]× [N1] we define

fF1(v, i, j) =

{
(fF2(v), i, j) if v /∈ S
ha,i if v = va ∈ S

(See Fig. 3.)

We consider the finite mapping Ẽ obtained from E1 as follows: For 1 ≤
i ≤ k and 1 ≤ j ≤ N3, and every z ∈ E1 such that fE1(z) = hi,j and
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∼ 1

ε

∼ |E1|
|F2|ε

F2

E1

Figure 3. Merging M with copies of F

TypeE1
r1 (z) = γ(vi), we mark z by mark Ai,j and let f

Ẽ
(z) = z. For all

other elements z ∈ E1 we let f
Ẽ

(z) = fE1(z). Moreover, each hi,j receives
mark Bi,j . There is an easy basic quantifier-free interpretation I such that

I(Ẽ) = E1.

Now we consider the disjoint union F̃ of Ẽ and N1N3 copies of F2, such

that terminal vi in copy (j, k) is marked Ai,j , and we let F1 = I(F̃).

Lemma 15. The finite mappings E1 and F1 are r1-equivalent.

Proof. It is a direct consequence of Hanf’s locality theorem that F̃ is r1-

equivalent to Ẽ. It follows that F1 = I(F̃) is r1-equivalent to E1 = I(Ẽ). �

Lemma 16. Each element (v, i, j) in a copy of F2 in F1 is such that

TypeF1
r1 (v, i, j) = γ(v).

Proof. This follows easily from an Ehrefeucht-Fräıssé game. �

Lemma 17.
〈[dist(x1, x2) ≤ 2r1,F1〉 < ε2

Proof. Every ball of radius 2r1 contains less than |E1| + N3|F2| elements.
Thus the probability 〈[dist(x1, x2) ≤ 2r1,F1〉 that two random elements in

F1 are at distance at most 2r1 is less than |E1|+N3|F2|
|E1|+N1N3|F2| < ε2. �

Lemma 18. It holds that

Distlocal
1,r1 (F1,L1) < ε3. (24)
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Proof. Let φ ∈ FOlocal
1 be a formula with local rank at most r1. Let ψ =∨

t3φRt, where the disjunction is over rank r1-local types. Then 〈φ,L1〉 =

〉ψ,L2〉. According to Lemma 16 it holds that

|〈φ,F1〉 − 〈ψ,F2〉| ≤
|E1|
|F1|

≤ 1

1 +N1N3
|F2|
|E1|

≤ 1

1 + 2
ε22

<
ε22
2
.

Thus

|〈φ,F1〉 − 〈φ,L1〉| ≤ |〈φ,F1〉 − 〈ψ,F2〉|+ |〈ψ,F2〉 − 〈ψ,L2〉|

<
ε22
2

+ ε5 < ε3.

�

3.9. From F1 to F: approximation of the original mapping. At this
stage, we have constructed a finite mapping F1 such that L1 ≡r1 F1 and
|〈ψ,L1〉 − 〈ψ,F1〉| < ε3 for every ψ ∈ FOlocal

1 with rank at most r1.
Let F = I(F1), where I1 is the interpretation defined in Section 3.1. The

following lemma ends the proof of Theorem 3.

Lemma 19. For every formula φ with p free variables and rank at most r
it holds that

|〈ϕ,L〉 − 〈ϕ,F〉| < ε.

Proof. Let φ be a local formula with at most p free variables and rank at
most r1.

As L1 is ε2-residual, according to Lemma 3, it holds that

Distlocal
p,r1 (L1,F1) ≤ 2pDistlocal

1,r1 (L1,F1) +

(
p

2

)
(〈δ2r1 ,L1〉+ 〈δ2r1 ,F1〉)

< 2pε3 +

(
p

2

)
ε2 < ε1.

We deduce from Lemma 1 and the definitions of r1 and ε1 that |〈ϕ̃,L1〉−
〈ϕ̃,F1〉| < ε holds true for every first-order formula ϕ̃ with at most p free
variables and rank at most r.

Let ϕ be a first-order formula with at most p free variables and rank at
most r. Then there exists a formula ϕ̃ with at most p free variables and
rank at most r such that 〈ϕ̃,L1〉 = 〈ϕ,L〉 and 〈ϕ̃,F1〉 = 〈ϕ,F〉. Hence
|〈ϕ,L〉 − 〈ϕ,F〉| < ε. �

This ends the last reduction step in the proof of Theorem 3. As ex-
plained above (see Fig. 1 and comments preceding it) this finishes the proof
of Theorem 3.
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4. Local approximation

The aim of this section is to prove Theorem 2 by following steps similar
to those we followed to prove Theorem 3.

The first main difference is that we cannot use general first-order inter-
pretations, but only local interpretations. Thus we cannot follow the first
reduction step to reduce to the ε-residual case. Instead, we shall prove
that every connected mapping modeling is close (for the topology of local
convergence) to a connected mapping modeling with the finite model prop-
erty, for which Theorem 3 applies. The strategy will be to consider first
the connected components of L with non-negligible measures, and then the
remaining components of the mapping modeling.

For ε-residual mapping modelings, we can follow the proof of Theorem 3
until Step 8. In this step, the model M will be replaced by the union of
models of the hub local types.

4.1. Connected mapping modelings. Let L be a connected mapping

modeling. We define a directed graph modeling L̂ with countably many
marks M and N as follows:

• The domain of L̂ is L, with same probability measure;
• if Z(L) 6= ∅, we arbitrarily mark a vertex v ∈ Z(L) 6= ∅ with mark
M and its image f(v) with mark N ;

• the arcs of L̂ are the pairs (v, f(v)) for which v is not marked by M .

The following lemma is much stronger than what we need. It would
be sufficient to say that for some d the ball of radius d around the root has
measure at least 1−ε. Now the idea is that the ball B of radius d+r around
the root of L not only has measure close to 1, but also has the property that
less than ε measure of the elements have different rank r local type in L and
L | B. Now L | B has finite height hence enjoys the finite model property.
An FO-approximation of L | B is then an FOlocal-approximation of L.

Lemma 20. Let L be a connected mapping modeling with atomless measure
νL that satisfies the MTP, and let ε > 0 be a positive real.

Then for every r ∈ L there exists d ∈ N such that the the subset A ⊆ L,
defined as the union of the vertex sets of all the (undirected) paths of length

at least d+ 1 in L̂ with endpoint r, has measure at most ε.

Proof. There exists an even integer d such that the ball Bd/2(L̂, r) has mea-
sure at least (1− ε/2). For 0 ≤ i ≤ d, let Si be the set of all vertices of A at
distance exactly i from r. According to the MTP (and uniqueness of paths
from a vertex v to r), and as νL is atomless, it holds that

0 = νL({r}) ≤ νL(S1) ≤ · · · ≤ νL(Sd).
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Thus it holds that

νL

(d/2⋃
i=0

Si
)
≤ νL

( d⋃
i=d/2+1

Si
)
.

That is:

νL(A ∩Bd/2(L̂, r)) ≤ νL(
d⋃

i=d/2

Si)

≤ νL(L \Bd/2(L̂, r)).

Thus

νL(A) ≤ νL(A ∩Bd/2(L̂, r)) + νL(A \Bd/2(L̂, r))

≤ 2νL(L \Bd/2(L̂, r))

< ε

�

Definition 12. Let L be a colored mapping modeling with finite height and

let r ∈ N. We define the standard r-approximation L̂ of L as follows:
Let C = Z(L) and Ci = Zi(L). For x ∈ L let h(x) be the minimum non-

negative integer k such that fkL(x) ∈ C. Note that 0 ≤ h(x) ≤ height(L).
Let p = maxx∈C\C1

h(x). We iteratively define sets Xi for i = p, . . . , 1,

together with an equivalence relation ∼i on h−1(i) ∩ fL(Xi+1) (if i < p).
We start with i = p and define ∼p on L by x ∼p+1 y if x and y have
the same color. For every y ∈ h−1(i − 1) we choose an inclusion maximal
subset I(y) of f−1

L (y) containing no r + 1 ∼i-equivalent vertices. Then we
define Xi =

⋃
y∈h−1(i−1) I(y), and we define the equivalence relation ∼i−1

on h−1(i − 1) ∩ fL(Xi) by y1 ∼i−1 y2 if for every z ∈ f−1
L (y1) ∪ f−1

L (y2) it
holds that

|{x1 ∈ f−1
L (y1) : x1 ∼i z}| = |{x2 ∈ f−1

L (y2) : x2 ∼i z}|.
We now consider the restriction g of fL to C ∪⋃p

i=1Xi. Note that all the
connected components have their size bounded by some fixed function of c

and p. We consider an inclusion maximal union L̂ of connected components

of g containing no r+ 1 isomorphic connected components. The mapping L̂

is then the restriction of L to L̂. Note that L̂ has its size bounded by some
fixed function of c and p.

An alternate construction can be used, which is parametrized by a pair
(r,R) of integers with r ≤ R. The idea is as follows: we start from the stan-
dard R-approximation and then reduce every set of at least k > r equivalent
sons to r if either k < R or some descendent of one of these sons as R equiva-
lent sons. Then, according to MTP, the measure of the types of the vertices
obtained by removing any R equivalent siblings and their descendants is at
most F (r, t)/R. So one should require R > F (r, t)/ε.
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Lemma 21. Every mapping L with finite height is r-equivalent to its stan-
dard r-approximation, hence has the finite model property.

Proof. An easy strategy for the r-round Ehrenfeucht-Fräıssé game shows
that L is r-equivalent to its standard r-approximation. �

4.2. Merging with hub local type models. To each rank r hub local
type τ ′i we associate a finite rooted mapping (Mi, hi) such that TypeMi

r (hi) =
τ ′i . Let M be the disjoint union of the Mi. We proceed to the merge of M
with copies of F as in Step 8 of the proof of Theorem 3.

∼ 1

ε

∼ C

ε

F

Figure 4. Merging small models with many copies of F.

5. Concluding Remarks

In this paper we considered the approximation problem for mapping mod-
elings. It would be interesting to consider the approximation problem where
we have only the probability measure µ corresponding to the satisfaction
probability of first-order formulas.

In such a setting, we shall consider probability measures µ on S(LFO) that
are invariant under the natural action of the infinite permutation group Sω
(acting by permuting the free variables in the formulas), whose support
projects on a single point Th(µ) of S(LFO0). The analogs of the property
we required for modeling mappings are as follows: The condition for the
modeling to be atomless corresponds to the property that the µ-measure of
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the clopen subset K(x1 = k2) of S(LFO) dual to the formula x1 = x2 is zero.
The finite model property of the modeling corresponds to the property that
every sentence in Th(µ) has a finite model. The finitary mass transport
principle for the modeling corresponds to the following property of µ: for
every formulas φ, ψ ∈ FO1 such that ψ(x) entails that there exist exactly
(resp. strictly more than) k elements y1, . . . , yk such that φ(yi) ∧ f(yi) = x
we have µ(K(φ)) = kµ(K(ψ)) (resp. µ(K(φ)) > kµ(K(ψ))).

Admittedly the proofs presented in this paper are technical and complex.
In a way this was expected as approximating modeling structures with two
mappings seem to be fully out of reach. Indeed, the existence of a finite
(local) approximation for modelings consisting into two (bjiective) mappings
f and g with f2 = g3 = Id satisfying the FMTP is equivalent to the general
Aldous-Lyons conjecture.

An interesting question is to solve the inverse problem for acyclic mod-
elings (the modeling equivalent of treeings). This problem has been solved
in the bounded diameter case [20] by a complicated analysis, and in the
bounded degree case by [5]. However the problem for general acyclic mod-
elings remain open.

A way to make the problem simpler is to assume that the acyclic modeling
looks like a directed rooted tree. This is the motivation of the following
problem stated in [18]: if a tree modeling is oriented in such a way that the
root is a sink and non-roots have outdegree one and if any finite subset of
the complete theory of the modeling has a connected finite model, is it true
that the modeling is the FO-limit of a sequence of finite rooted trees?

Finally, we would like to mention that random mappings are not FO-
convergent, as they do not satisfy a 0-1 law (the expected number of cycles
of length r tend to 1/r [6]). However it might be possible that random
mappings are FOlocal-convergent.
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Jaroslav Nešetřil, Computer Science Institute of Charles University (IUUK
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