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Abstract. We study automorphism groups of sparse graphs from the
viewpoint of topological dynamics and the Kechris, Pestov, Todorčević
correspondence. We investigate amenable and extremely amenable sub-
groups of these groups using the space of orientations of the graph and
results from structural Ramsey theory. Resolving one of the open ques-
tions in the area, we show that Hrushovski’s example of an ω-categorical
sparse graph has no ω-categorical expansion with extremely amenable
automorphism group.
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1. Introduction

1.1. Overview. If k is a natural number, we say that a graph is k-sparse
if, for every finite subgraph, the number of edges is bounded above by k
times the number of vertices. Classes of such graphs arise in model theory
in Hrushovski’s predimension constructions and are an important source
of counterexamples to many questions and conjectures in model-theoretic
stability theory. The main aim of this paper is to study these classes from
the twin viewpoints of structural Ramsey theory and topological dynamics.
As we shall see, Ramsey expansions of these classes exhibit rather differ-
ent behaviour from that of classes studied previously and, correspondingly,
the automorphism groups of the Fräıssé limits of these classes exhibit new
phenomena in topological dynamics.

The symmetric group S∞ (on a countably infinite set M) can be consid-
ered as a Polish topological group by giving it the topology of pointwise
convergence. With this topology, a subgroup of S∞ is closed if and only if
it is the automorphism group of a first-order structure with domain M . A
subgroup G of S∞ is oligomorphic if G has finitely many orbits on Mn for all
natural numbers n. It is well known that, by the Ryll-Nardzewski Theorem,
the closed, oligomorphic subgroups of S∞ are precisely the automorphism
groups of ω-categorical structures with domain M .

Recall that a topological group G is extremely amenable if whenever X
is a G-flow, that is, a non-empty, compact Hausdorff G-space on which G
acts continuously, then there is a G-fixed point in X. The starting point
for this paper is the following question, raised in [7] and [29, Question 1.1].

Question 1.1. Suppose G is a closed, oligomorphic permutation group on a
countable set. Does there exist a closed, extremely amenable, oligomorphic
subgroup of G?

The question can be formulated in other ways. For example, it asks, given
a countable ω-categorical structure M , does there exist an ω-categorical
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expansion of M whose automorphism group is extremely amenable? Using
the Kechris, Pestov, Todorčević (KPT for short) correspondence from [24],
the question can be phrased in terms of Ramsey classes and Ramsey lifts,
and in this form, it was asked by the third author as a question about the
characterisation of Ramsey classes [31]. More precisely, suppose L is a first-
order language and K is a Fräıssé class of finite L-structures. Thus there is
a countable homogeneous L-structure with K as its class of (isomorphism
types of) finite substructures. Suppose L+ ⊇ L is a language extending
L. We say that a class K+ of finite L+ structures is an expansion (lift in
[20]) of K if the L-reducts (L-shadow in [20]) of the structures in K+ form
the class K; it is a Ramsey expansion (or Ramsey lift) if additionally it is
a Ramsey class. The above question is then asking, in the case where K
has only finitely many isomorphism types of structure of each finite size,
whether there is a Ramsey expansion K+ of K with the same property.

We discuss below some of the motivation for this question, but first we
state some of our main results, showing that Question 1.1 has a negative
answer in general.

Theorem 1.2. There exists a countable, ω-categorical structure M with the
property that if H ≤ Aut(M) is extremely amenable, then H has infinitely
many orbits on M2. In particular, there is no ω-categorical expansion of
M whose automorphism group is extremely amenable.

Using [40], or [4], we then have the following corollary, answering Ques-
tion 1.5 in [29]:

Corollary 1.3. There is a closed, oligomorphic permutation group G on a
countable set whose universal minimal flow M(G) is not metrizable.

As a direct corollary to the results in Section 5, we also show:

Corollary 1.4. There is a closed, oligomorphic permutation group G which
has a metrizable minimal flow where all G-orbits are meagre.

The example which gives these results is Hrushovski’s construction of
an ω-categorical pseudoplane from [18]. This is one of a variety of con-
structions of countable structures M which we shall refer to as Hrushovski
constructions. Details will be given later in this paper (in Section 4; also
Section 3.4). One feature that all of the variations on the construction have
is that M interprets a sparse graph Γ. In this case, Aut(M) has a con-
tinuous action on the compact space XΓ of all orientations of this graph
(see Definition 3.5). This is the main tool and object of study in this pa-
per. In Section 3, we describe XΓ and use it to prove Theorem 1.2 (in the
more general form of Theorem 3.7). As an additional benefit, we also use
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it (in Section 3.3) to give a simple proof of a general result (Theorem 3.8)
about non-amenability of Aut(M) which generalises results in [15]. The
argument we use shows that in Theorem 1.2 we may take M also having
the property that there is no ω-categorical expansion of M with amenable
automorphism group (Corollary 3.11). In Theorem 5.2, we give examples
where every minimal subflow of XΓ has all orbits meagre, thereby proving
Corollary 1.4.

The results of Kechris, Pestov and Todorčević in [24] make a strong con-
nection between the study of continuous actions of automorphism groups
G of countable structures on compact spaces (‘topological dynamics’) and
Ramsey properties of classes K of finite structures (‘structural Ramsey the-
ory’). In particular, if G = Aut(M) preserves a linear ordering on M and
the language for M is such that two tuples are in the same Aut(M)-orbit
iff they have the same quantifier free type (that is, M is homogeneous),
then G is extremely amenable if and only if the class K = Age(M) of finite
substructures of M is a Ramsey class.

More generally, say that a subgroup H ≤ G = Aut(M) is a co-precompact
subgroup of G if, for every n ∈ N, every G-orbit on Mn is a union of
finitely many H-orbits. If H is closed, co-precompact in G and extremely

amenable, then ([24, 37]) the completion Ĝ/H of the quotient space G/H
with respect to the right uniformity on G is compact and the universal
minimal flow M(G) of G is isomorphic to a minimal subflow of this. Thus,
if one has a co-precompact, extremely amenable subgroup of G, then one
has control over the universal minimal flow of G. Question 1.1 asks whether
one is guaranteed such a subgroup in the case where M is ω-categorical.

The above analysis shows that if G has a co-precompact extremely
amenable subgroup, then its universal minimal flow M(G) is metrizable.
In fact, the converse is also true: if M(G) is metrizable, then there is a
comeagre G-orbit on M(G) and the stabilizer of a point in this orbit is
extremely amenable and co-precompact in G. This is proved by Zucker
in [40] and, independently, by Ben Yaacov, Melleray and Tsankov in [4].
(The latter builds on work in [29] and proves the result for arbitrary Polish
groups G.)

Most proofs that a particular subgroup H ≤ Aut(M) is extremely
amenable make use of structural Ramsey theory. One identifies H as the
automorphism group of a homogeneous structure N and shows that Age(N)
is a Ramsey class (of ordered structures). Many examples of this can be
found in the paper [20] and in the surveys [5, 35].

The question of finding extremely amenable subgroups of Aut(M), or
equivalently, finding good Ramsey expansions of M , also has applications
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in the study of reducts of M (see [6]) and hence to classifying constraint
satisfaction problems with template M . The paper [23] by Ivanov also
mentions the question of whether, if Aut(M) is amenable, then it has a
precompact extremely amenable subgroup.

Our results show that the general problem of describing the universal
minimal flow (and hence, all minimal flows) of a closed subgroup G of S∞
is more complicated than the above picture suggests, even in the case where
the subgroup is the automorphism group of an ω-categorical structure (and
therefore Roelcke precompact). In our examples, G does not necessarily
have the co-precompact extremely amenable subgroup needed to make the
machinery work. Moreover, we show in Section 5 that for our examples,
again in contrast to the above picture, minimal subflows of the space XΓ of
orientations have all orbits meagre. So there are metrizable G-flows which
have no comeagre orbit.

It should be noted that Question 1.1 remains open for G = Aut(M) where
M is a structure which is homogeneous for a finite relational language (the
Hrushovski constructions require an infinite language for homogeneity).

In the Section 6 we prove some positive results for our examples. We
study two versions of the Hrushovski construction. The more technically
challenging of these is the ω-categorical case considered in Section 6. Whilst
this is perhaps the more important case from the point of view of Ques-
tion 1.1, the other case is natural and of interest in its own right. In each
case, we have an amalgamation class (C;≤) of finite sparse graphs and
a distinguished notion ≤ of ‘strong substructure’. There is an associated
Fräıssé limit M and, in each case, for G = Aut(M) we identify a maximal
extremely amenable closed subgroup H of G, corresponding to an ‘optimal’
Ramsey expansion of (C;≤) (Theorem 6.9).

These positive results raise the possibility that there might still be a
weaker statement than the KPT correspondence in [37] which holds more
generally. But in any case, the whole KPT-type correspondence for ex-
pansions is more complicated than perhaps was thought. The Hrushovski
construction leads to interpreting classes of structures which display a com-
plicated behaviour and interplay of related notions: Ramsey classes, the
Expansion Property (Definition 2.17) and EPPA (Definition 2.25).

Acknowledgements: The first author thanks Todor Tsankov for numerous
helpful discussions about the material in this paper, particularly about the
proof of Theorem 3.8.
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2. Background

For the convenience of the reader, we provide some background mate-
rial on homogeneous structures, automorphism groups and Ramsey classes.
Although we work with more general classes of finite structures than the
Fräıssé classes in, for example, [24, 37], there is little that is new here and
the reader who is familiar with this type of material can proceed to the
following sections, referring back to this section where necessary.

We briefly review some standard model-theoretic notions. Let L be a first-
order relational language involving relational symbols R ∈ L each having
associated arities denoted by a(R). An L-structure A is a structure with
domain A, and relations RA ⊆ Aa(R), R ∈ L. The elements of the domain
will often be referred to as vertices of the structure.

The language is usually fixed and understood from the context (and it
is in most cases denoted by L). If the set A is finite we call A a finite
structure. We consider only structures with finitely or countably infinitely
many vertices.

A homomorphism f : A → B is a mapping f : A → B such that for
every R ∈ L we have (x1, x2, . . . , xa(R)) ∈ RA =⇒ (f(x1), f(x2), . . . ,
f(xa(R))) ∈ RB. If f is injective, then f is called a monomorphism. A
monomorphism f is an embedding if the implication above is an equivalence.
If f is an embedding which is an inclusion then A is a substructure of B.
For an embedding f : A → B we say that A is isomorphic to f(A) and
f(A) is also called a copy of A in B.

Finite structures will often be denoted by capital letters such as A, B,
C etc. and infinite structures by M,N, . . .. We use the same notation
for a structure and its domain and all substructures considered will be
full induced substructures. The automorphism group of a structure M is
denoted by Aut(M).

2.1. Fräıssé classes. Suppose L is a first-order relational language. A
countable L-structure M is called (ultra)homogeneous if isomorphisms be-
tween finite substructures extend to automorphisms of M . If M is ω-
saturated, this is equivalent to the theory of L having quantifier elimi-
nation. A homogeneous structure M is characterised by its age, the class
Age(M) of isomorphism types of its finite substructures. This class satisfies
the hereditary, joint embedding and (using the homogeneity) amalgamation
properties. Conversely, if K is a class of countably many isomorphism types
of finite L-structures which has these properties, then there is a countable
homogeneous structure whose age is K. All of this is the classical Fräıssé
theory, initiated in [13].
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In one direction, this result can be seen as a method for constructing ho-
mogeneous structures from amalgamation classes of finite structures. There
are several generalisations of this method and we shall state one of these,
mostly following the presentation of Section 3 of [3] and the notes [9]. Es-
sentially, we take Fräıssé’s original construction, but instead of working
with all substructures (equivalently, all embeddings between structures) we
work with certain distinguished substructures, which we will call strong
substructures. Embeddings with strong substructures as their image will
be called strong embeddings. Other generalisations are possible (though
the basic structure of the proof is always the same). For example, general
category-theoretic versions of the Fräıssé construction can be found in [8]
and [26].

Definition 2.1. Suppose L is a first-order language and K is a class of
finite L-structures, closed under isomorphisms. Suppose S is a distinguished
class of embeddings between elements of K. Assume that S is closed under
composition and contains all isomorphisms. Furthermore, suppose that
(K;S) has the following property:

(*) whenever A,C ∈ K and f : A → C is in S and B ∈ K is a
substructure of C which contains the image of f , then the map
g : A→ B with g(a) = f(a) for all a ∈ A is in S.

Then we say that (K;S) is a strong class and refer to the elements of S
as strong embeddings. If A is a substructure of B ∈ K and the inclusion
map A → B is in S, then we say that A is a strong substructure of B and
write A ≤ B. Thus an embedding f : B → C between structures in K
is in S if and only if f(B) ≤ C. Henceforth, we suppress the notation S
and refer to the strong class as (K;≤). We sometimes refer to the strong
embeddings of this class as ≤-embeddings. In this notation the condition
(*) says that if A,B,C ∈ K satisfy A ≤ C and A ⊆ B ⊆ C, then A ≤ B.

If S consists of all embeddings between structures in K, then we write
(K;⊆) for the class, instead of (K;≤).

Note that if A,B,C are in a strong class (K;≤), then A ≤ A and A ≤
B ≤ C implies that A ≤ C.

Definition 2.2. Suppose (K;≤) is a strong class of finite L-structures and
the L-structure M =

⋃
i<ω Ai is the union of a chain of finite substructures

A1 ≤ A2 ≤ A3 ≤ . . .. If A is a finite substructure of M , we write A ≤M to
mean that A ≤ Ai for some i ≤ ω, and say that A is a strong substructure
of M .

Remark 2.3. It is important to note that the above definition does not
depend on the choice of the sequence of Aj. Indeed, suppose also that M is
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the union of the finite substructures B1 ≤ B2 ≤ B3 ≤ . . .. Suppose A ≤ Ai.
There exist j, k with Ai ⊆ Bj ⊆ Ak; as Ai ≤ Ak, the condition (*) implies
that Ai ≤ Bj and so A ≤ Bj. Note that this also shows that if g ∈ Aut(M)
then A ≤M if and only if gA ≤M .

We also note that when we come to consider specific examples of strong
classes, the definition of the strong embeddings will extend naturally to
maps between arbitrary structures. We will usually omit the verification
that the extension agrees with that in the above definition.

Definition 2.4. Suppose (K;≤) is a strong class of finite L-structures. An
increasing chain

A0 ≤ A1 ≤ A2 ≤ A3 ≤ · · ·
of structures in K is called a rich sequence if:

(1) for all A ∈ K there is some i < ω and a strong embedding A→ Ai;
(2) for all strong f : Ai → B there is j ≥ i and a strong g : B → Aj

such that g(f(a)) = a for all a ∈ Ai.

A Fräıssé limit of (K;≤) is an L-structure which is the union of a rich
sequence of substructures.

Definition 2.5. We say that the strong class (K;≤) has the amalgamation
property (for strong embeddings), AP for short, if whenever A0, A1, A2 are
in K and f1 : A0 → A1 and f2 : A0 → A2 are strong, there is B ∈ K and
strong gi : Ai → B (for i = 1, 2) with g1 ◦ f1 = g2 ◦ f2. The class has the
joint embedding property, JEP for short, if for all A1, A2 ∈ K there is some
C ∈ K and strong f1 : A1 → C and f2 : A2 → C.

If ∅ ∈ K and ∅ ≤ A for all A ∈ K, then the JEP is a special case of the
AP.

Theorem 2.6. Suppose (K;≤) is a strong class of L-structures which sat-
isfies:

(1) There are countably many isomorphism types of structures in K.
(2) The class K has the Joint Embedding and Amalgamation Properties

with respect to strong embeddings.

Then rich sequences exist and all Fräıssé limits are isomorphic. Moreover,
if M is a Fräıssé limit and f : A → B is an isomorphism between strong
finite substructures of M , then f extends to an automorphism of M .

We refer to the last property in the above as ≤-homogeneity (or strong-
map homogeneity) and say that the strong class (K;≤) is an amalgamation
class (for strong maps) if conditions (1, 2) hold. Note that in the case where
K is closed under substructures and S consists of all embeddings between
structures in K, this result is the classical Fräıssé Theorem.
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Remarks 2.7. Many of the examples of amalgamation classes (K;≤) of
relational structures in this paper will be free amalgamation classes. If
A ≤ B1, B2 are structures in K, then by the free amalgam of B1 and B2

over A we mean the structure F whose domain is the disjoint union of B1

and B2 over A and in which the relations RF (for R in the language) are
just the unions RB1 ∪RB2 of the the relations on B1 and B2. If F is always
in K and Bi ≤ F , then we say that (K;≤) is a free amalgamation class.

Remarks 2.8. Suppose K in Theorem 2.6 has only finitely many isomor-
phism types of structure of each finite size. Suppose also that there is a
function F : N → N such that if B ∈ K and A ⊆ B with |A| ≤ n, then
there is C ≤ B with A ⊆ C and |C| ≤ F (n). Then the Fräıssé limit M is
ω-categorical.

To see this we note that Aut(M) has finitely many orbits on Mn. Indeed,
by ≤-homogeneity there are finitely many orbits on {c̄ ∈ MF (n) : c̄ ≤ M}
and any ā ∈Mn can be extended to an element of this set.

Much of this paper will be concerned with expansions of Fräıssé limits,
or their corresponding amalgamation classes. The following notions will be
useful.

Definition 2.9. Suppose that L ⊆ L+ are first-order languages and
(K+;≤+), (K;≤) are strong classes of finite L+- and L-structures respec-
tively. We say that (K+;≤+) is a strong expansion of (K;≤) if K is the
class of L-reducts of the structures in K+ and:

(i) whenever f : A+ → B+ is a strong map in (K+;≤+), the map
between the L-reducts f : A→ B is strong in (K;≤);

(ii) if g : A→ B is a strong map in (K;≤) and A+ ∈ K+ is an expansion
of A, then there is an expansion B+ of B such that g : A+ → B+ is
strong in (K+;≤+).

Theorem 2.10. Let L ⊆ L+ be first-order languages. Suppose that
(K+;≤+) is an amalgamation class of finite L+-structures which is a strong
expansion of the strong class (K;≤) of L-structures. Then (K;≤) is an
amalgamation class. Moreover, if N , M denote the Fräıssé limits of
(K+;≤+) and (K;≤) respectively, then the L-reduct of N is isomorphic
to M .

Proof. Suppose fi : A → Bi are strong embeddings in (K;≤), for i = 1, 2.
We can expand A,B1 to structures A+, B+

1 in K+ so that f1 : A+ → B+
1 is

strong. We can then expand B2 to a structure B+
2 in K+ so that f2 : A+ →

B+
2 is strong. The amalgamation property in (K;≤+) gives that there exist

D+ ∈ K+ and strong gi : B+
i → D+ with g1 ◦ f1 = g2 ◦ f2. Passing to the
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L-reducts, we obtain the amalgamation property for (K;≤). So this is an
amalgamation class.

Similarly, supposeA+
1 ≤+ A+

2 ≤ A+
3 ≤ · · · is a rich sequence for (K+;≤+).

Then the sequence of L-reducts A1 ≤ A2 ≤ A3 ≤ · · · is easily seen to be
rich for (K;≤). The result follows. �

Examples of such strong expansions will be found in later sections (for
instance, see Section 3.4).

2.2. Ramsey classes. Throughout this subsection, L will be a first-order
language and we work with strong classes (K;≤) of finite L-structures as
in Section 2.1. We shall say what it means for (K;≤) to be a Ramsey class
and in the next subsection,we state the KPT correspondence and associated
results in this context. Similar statements (about special class of maps) can
be found in the paper of Zucker [40] and in [15]. In the case whereK is closed
under substructures and ≤ is just the usual notion of substructure, this is
just the usual notion of Ramsey class and the KPT correspondence. The
statements which we give can all be deduced from this case either by simple
adaptations of the proofs, or, more directly, by expanding the language in
a suitable way. Indeed, the latter is the approach taken by the second and
third authors in [20], where the results are stated for classes of structures
with closures. This latter paper is the main source of the Ramsey results
which we will use in the later sections, so we will state its results in detail.

Suppose L is a first-order language and that (K;≤) is a strong class of
finite L-structures. For A,B ∈ K we denote by

(
B
A

)
the set of all strong

substructures of B which are isomorphic to A. Note that by the condition
(*) in Definition 2.1, if B ≤ C ∈ K and A ∈ K, then

(
B
A

)
=
(
C
A

)
∩ P(B),

that is, the strong copies of A in B are precisely the strong copies of A in
C whose domains are subsets of B.

We say that (K;≤) is a Ramsey class if it is a strong class and for all
r ∈ N and all A,B ∈ K, there is a structure C ≥ B in K such that the
following Ramsey property holds: whenever

(
C
A

)
is partitioned into r classes

(‘colours’), there is B′ ∈
(
C
B

)
such that the elements of

(
B′

A

)
all lie in the

same class (that is, they have the same colour). In this case, we write:

C −→ (B)Ar .

Note that here we are restricting to strong substructures throughout (with-
out incorporating this into the notation) and it is of course enough to con-
sider this in the case r = 2.

More generally, we say that A ∈ K has finite Ramsey degree if there is a
natural number k such that for all B ∈ K with A ≤ B and all r ∈ N, there



11

is C ≥ B in K such that whenever
(
C
A

)
is coloured with r colours, there is

B′ ∈
(
C
B

)
such that

(
B′

A

)
is coloured with at most k colours. The least such

k is then the Ramsey degree of A in (K;≤). Note that if this is equal to 1
for all A ∈ K, then (K;≤) has the Ramsey property.

The Ramsey property is sometimes defined with respect to colourings of
embeddings from A to B and C. If the structures in K are rigid (that is,
have trivial automorphism group), then there is no difference between these
notions. This is the case if, for example, each structure in K has a linear
ordering as part of the structure.

In the case where all substructures are strong, it is a well known obser-
vation of the third author (cf. [36], for example) that (under mild extra
conditions) Ramsey classes are amalgamation classes. We note that the
usual argument also applies in our current context (of strong maps).

Theorem 2.11. Suppose that L is a first-order language and (K;≤) is a
Ramsey class of finite, rigid L-structures with the joint embedding property.
Then (K;≤) has the amalgamation property.

Proof. Let fi : A → Bi be strong embeddings forming our amalgamation
problem. As the structures are rigid, it is enough to find E ∈ K which
contains strong copies of B1, B2 having a copy of A as a common strong
substructure.

There is some D ∈ K which contains strong copies of B1 and B2 (using
JEP). Find E ∈ K with E → (D)A2 . Colour the elements of

(
E
A

)
according

to whether or not they are contained in a strong copy of B1 in E. There
is a monochrome copy D′ of D. As it contains a strong copy of B1, all the
strong copies of A in it are in a strong copy of B1 in E. But this includes
the A which is in the copy of B2 in D′. �

We now state, using this terminology, the general Ramsey result which
we need. While the original Fräıssé construction (where all embeddings
are strong) generalises naturally to strong amalgamation classes, it is the
essence of our examples to show that this is not the case for the construction
of Ramsey objects. For this reason, the papers [20, 12] use an alternative
approach, representing strong substructures by means of functions which
are part of the structures themselves instead of by an external family of
strong embeddings. We review the main terminology and results of [12]
(using several results of [20]) which will be needed here.

First we introduce a notion of structure involving functions in addition
to relational symbols. Unlike the usual model-theoretic functions, functions
used here are partial, multi-valued and symmetric. Partial functions allow
the easy definition of free amalgamation classes and the symmetry makes
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it possible to explicitly represent strong embeddings within the structure
itself, while keeping all automorphisms of the original structure.

Let L = LR ∪ LF be a language involving relational symbols R ∈ LR
and function symbols F ∈ LF each having associated arities denoted by
a(R) for relations and domain arity, d(F ), range arity, r(F ), for functions.
Denote by

(
A
n

)
the set of all subsets of A consisting of n elements. An L-

structure A is a structure with domain A, functions FA : dom(FA)→
(

A
r(F )

)
,

dom(FA) ⊆ Ad(F ), F ∈ LF and relations RA ⊆ Aa(R), R ∈ LR. The set
dom(F ) is called the domain of the function F in A.

Given two L-structures A and B, we say that A is a substructure of B
and write A ⊆ B if the following holds:

(1) the domain of A is a subset of domain of B,
(2) for every relation R ∈ LR it holds that RA is the restriction of RB

to A, and,
(3) for every function F ∈ LF it holds that dom(FA) is the restriction

of dom(FB) to A and moreover for every t ∈ dom(FA) it holds that
FA(t) = FB(t).

Embeddings are defined analogously (a substructure then expresses the fact
that inclusion is an embedding).

If A,B1, B2 are L-structures and αi : A → Bi are embeddings, then an
L-structure C together with embeddings βi : Bi → C is called an amalga-
mation of B1 and B2 over A if β1(α1(a)) = β2(α2(a)) for all a ∈ A. It is a
free amalgamation of B1 and B2 over A if β1(b1) = β2(b2) only if bi ∈ αi(A)
and moreover there are no tuples in any relations RC of C and no tuples in
dom(FC) (with R ∈ LR and F ∈ LF) using vertices of both β1(B1 \α1(A))
and β2(B2 \ α2(A)), and C = β1(B1) ∪ β2(B2).

In the case where L consists only of relation symbols, note that this
coincides with the usual notion of free amalgamation (as in Remarks 2.7).

Suppose now that (K0;≤) is a strong class of L0-structures. Suppose,
moreover, that strong substructures are closed under intersections (and
therefore there is an associated notion of closure). Then there is a standard
way to turn this class into amalgamation class (K,⊆) which is closed for
substructures: We can expand L0 to a language L by adding partial func-
tions Fk,n, for every 1 ≤ k ≤ n, from k-tuples to subsets of size n. On a
structure A ∈ K0, map every set of elements S ⊆ A to the smallest strong
substructure B of A containing S, that is F|S|,|B|(S) = B and leave the
functions undefined otherwise. Note that doing this does not affect the au-
tomorphisms of A. The resulting class (K;⊆) is then a strong class (where
strong maps are all embeddings) and if (K0;≤) is an amalgamation class,
then so is (K;⊆).
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Observe that even if (K0;≤) is a free amalgamation class, then (K;⊆)
constructed in this standard way is not necessarily a free amalgamation
class. However in cases discussed here we will be able to omit some of the
functions to obtain (K′;⊆) which is closed for free amalgamation. This will
allow us, in Section 6 to apply the following theorem to show that such a
class has an easy Ramsey expansion.

Given a class K of L-structures, denote by K≺ the class of all structures
(A;≺) where A ∈ K and ≺ is a linear ordering of the domain of A. The
following is combination of Theorems 1.3 and 1.4 of [12] which will be
applied in Section 6.3. The Expansion Property is defined in Definition 2.17
below.

Theorem 2.12. Let L be a language (involving relational symbols and par-
tial functions) and let (K,⊆) be a free amalgamation class. Then (K≺,⊆)
is a Ramsey class and moreover there exists a Ramsey class O ⊆ K≺ such
that (O,⊆) is a strong expansion of (K,⊆) having the Expansion Property
with respect to (K,⊆).

2.3. The KPT correspondence. The fundamental connection between
Ramsey classes and topological dynamics is the following result of Kechris,
Pestov and Todorčević which we formulate in the following way in the
context of strong maps. Recall that an amalgamation class (K;≤) is a
strong class satisfying the conditions (1,2) of Theorem 2.6.

Theorem 2.13 ([24], Theorem 4.8; [37], Theorem 1). Let L be a first-order
language and (K;≤) an amalgamation class of finite, rigid L-structures.
Let N be the Fräıssé limit of the class. Then Aut(N) is extremely amenable
if and only if (K;≤) is a Ramsey class.

Now we modify this for expansions.

Definition 2.14. Suppose that L ⊆ L+ are first-order languages and L+\L
consists of relation symbols. Let (K;≤) be an amalgamation class of finite
L-structures with Fräıssé limit M . Suppose that D is a class of finite L+-
structures with the properties:

(i) the class of L-reducts of D is K;
(ii) each structure in K has finitely many isomorphism types of expan-

sions in D;
(iii) if B+ ∈ D and A+ is a substructre of B+ with A+ ≤ B+ (that is,

the corresponding L-reducts A,B satisfy A ≤ B), then A+ ∈ D;
(iv) if f : A→ B is strong in (K;≤) and A+ ∈ D is an expansion of A,

then there is an expansion B+ ∈ D of B such that f : A+ → B+ is
an embedding.
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Then we say that D as a reasonable class of expansions of (K;≤).

The above terminology follows [40]. Note however that we include (ii)
as part of the definition rather than referring to it as ‘precompactness’.
We remark that if (K+;≤+) is a strong expansion of K;≤) as in Definition
2.9, then K+ satisfies conditions (i), (iii) and (iv) in the above. To see
that (iii) holds, suppose B+ ∈ K+ and A+ ≤ B+. Let A,B be the L-
reducts of A+, B+. So A ≤ B and by (ii) in Definition 2.9, there is an
expansion B+

1 ∈ K+ of B in which the induced substructure on A is A+

and A+ ≤+ B+
1 . It follows that A+ ∈ K+ as (K+;≤+) is a strong class.

Suppose that D is a reasonable class of expansions of (K;≤) as in the
above definition and M is the Fräıssé limit of (K;≤). We shall consider the
set X(D) of L+-expansions M+ of M which have the property that for every
finite A ≤M , the L+-structure AM+

induced on A in M+ is in the class D.
This is a topological space where a basic open set is given by considering
the expansions M+ in which AM+

is a fixed structure in D (for a finite
A ≤ M). The property (ii) in the definition implies that X(D) is compact
and it follows from properties (iii) and (iv) that X(D) is non-empty. Note
that if L+ \ L consists of finitely many relation symbols Ri of arities ni

(for i ≤ m), then X(D) can be identified with a subset of
∏

i≤mM
ni with

the product topology. In general, X(D) embeds in an inverse limit of such
spaces, by the property (ii) in Definition 2.14.

With this notation, we have the following, summarising the above and
statements in [24, 37]:

Theorem 2.15. Suppose D is a reasonable class of L+-expansions of the
amalgamation class (K;≤) of finite L-structures. Let M denote the Fräıssé
limit of (K;≤). Then the space X(D) is a non-empty, compact space on
which Aut(M) acts continuously. 2

Lemma 2.16. Let (K;≤) be an amalgamation class with Fräıssé limit M
and G = Aut(M). Let D be a reasonable class of expansions of (K;≤) and
suppose Y ⊆ X(D) is a subflow of the G-flow X(D). Then there is D1 ⊆ D
which is a reasonable class of expansions of (K;≤) such that Y = X(D1).

Proof. Let D1 consist of isomorphism types of structures induced on A by
expansions in Y , for all finite A ≤ M . Then D1 ⊆ D clearly satisfies
properties (i), (ii) in the definition of reasonableness. Property (iii) follows
from the ≤-homogeneity of M .

Clearly we have Y ⊆ X(D1). We claim that X(D1) ⊆ Y . Let N be an
expansion of M in X(D1). We show that N is in the closure in X(D) of Y
and this will be enough. Suppose A ≤ M is finite. There is N1 ∈ Y and
B ≤M and an isomorphism from BN1 (the induced structure on B in N1)
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to AN . By ≤-homogeneity of M , there is g ∈ G which extends this map.
By considering N g

1 ∈ Y we obtain N2 ∈ Y with AN2 = AN1 . This gives
what we need. �

The following (from [37], Theorem 4; see also Proposition 5.5 in [40])
gives a criterion for minimality of the Aut(M)-flow X(D). It relates to the
notion of Expansion Property defined as follows:

Definition 2.17. Let D be a reasonable class of expansions of the amal-
gamation class (K;≤). We say that D has the Expansion Property (EP for
short, or Lift Property in [20]) with respect to (K;≤) if, for every A ∈ K
there is B ≥ A in K with the property that for any expansions A+, B+ of
A,B in D, there is an embedding f : A+ → B+ which is ≤-strong. (If the
extra structure imposed by L+ is a total order, this is usually called the
Ordering Property (cf. [35]).)

Theorem 2.18. With the above notation, suppose that D is a reasonable
class of expansions of the amalgamation class (K;≤) and M is the Fräıssé
limit of (K;≤). Then the Aut(M)-flow X(D) is minimal if and only if D
has the Expansion Property with respect to (K;≤). 2

Remarks 2.19. Note that as every G-flow has a minimal subflow, it fol-
lows from the above that if D is a reasonable class of expansions of the
amalgamation class (K;≤), then there is a reasonable sub-class D1 ⊆ D
which has the Expansion Property with respect to (K;≤).

Suppose, as in Theorem 2.10, that L ⊆ L+ are first-order languages with
L+ \ L relational. Suppose (K+;≤+) is an amalgamation class of finite
L+-structures which is a strong expansion of the strong class (K;≤) (cf.
Definition 2.9). The latter is also an amalgamation class, by Theorem 2.10
and its Fräıssé limit M is the L-reduct of the Fräıssé limit N of (K+;≤+).
Thus Aut(N) is a closed subgroup of Aut(M). We will say that (K+;≤+) is
a precompact strong expansion of (K;≤) when Aut(N) is a co-precompact
subgroup of Aut(M). This means that every Aut(M)-orbit on Mn (for
n ∈ N) splits into finitely many Aut(N)-orbits. This is a stronger condition
that property (ii) in Definition 2.14 and so, by previous remarks, K+ is a
reasonable class of expansions of (K;≤) and we can consider the Aut(M)-
flow X(K+).

By the homogeneity of the structures M,N , co-precompactness of
Aut(N) in Aut(M) translates into the following condition on the classes:

Precompactness: If A ∈ K, there are finitely many B+
1 , . . . , B

+
r ∈ K+ and

strong ≤-embeddings fi : A → B+
i (preserving the L-structure) such that

whenever C+ ∈ K+ and f : A → C+ is an ≤-embedding (preserving the



16 DAVID M. EVANS, JAN HUBIČKA, AND JAROSLAV NEŠETŘIL

L-structure), then there is i ≤ r and a ≤+-embedding g : B+
i → C+ such

that f = g ◦ fi.
We then have the following version of [24], Theorem 10.8 and [37], The-

orem 5. See also [40], Theorem 5.7.

Theorem 2.20. Let L ⊆ L+ be first-order languages with L+ \ L rela-
tional. Suppose (K;≤) is a strong amalgamation class of finite L-structures
with Fräıssé limit M . Suppose that (K+;≤+) is a precompact strong expan-
sion of (K;≤) consisting of rigid L+-structures. If (K+;≤+) is a Ramsey
class and K+ has the Expansion Property with respect to (K;≤), then the
Aut(M)-flow X(K+) is the universal minimal flow for Aut(M). It has a
comeagre orbit consisting of expansions of M isomorphic to the Fräıssé limit
of (K+;≤+).

We note a group-theoretic consequence of the above. Suppose G is a
closed permutation group on a countable set. We can regard G as the
automorphism group of some homogeneous structure M . Suppose H is a
closed, extremely amenable subgroup of G. We can consider this as the
automorphism group of a homogeneous expansion M∗ of M . If this is a
precompact expansion and Age(M∗) has the Expansion Property with re-
spect to Age(M) (abusing terminology, we will say that H has EP as a
subgroup of G), then the above result gives a description of M(G), the
universal minimal flow of G. Consider the quotient space G/H with the

quotient of the right uniformity on G and denote by Ĝ/H the completion.
By precompactness, this is compact, metrizable and embeds G/H homeo-
morphically as a comeagre set. It is a G-flow which, by the EP, is minimal.

Extreme amenability of H then implies that Ĝ/H is isomorphic to M(G)
as a G-flow. This then yields the following result.

Theorem 2.21. Suppose G is a closed permutation group on a countable set
and H1, H2 ≤ G are closed, extremely amenable, co-precompact subgroups
of G with EP. Then H1, H2 are conjugate in G. Moreover, H1 is maximal
amongst extremely amenable subgroups of G.

Proof. The universal minimal flow M(G) is isomorphic to Ĝ/Hi and G/Hi

is a comeagre G-orbit in this completion.

So there is homeomorphism Ĝ/H1 → Ĝ/H2 which is a G-morphism. This
must map the comeagre orbit to the comeagre orbit, so maps the coset H1

to some coset gH2. The stabilisers of these points must be identical, so
H1 = gH2g

−1, as required.
For the maximality part, we first observe that if H1 ≤ Hg

1 , then Hg
1 = H1.

By precompactness each G-orbit on n-tuples splits into a finite number
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of H1-orbits, and the same number of Hg
1 -orbits. It follows that H1, H

g
1

have the same orbits on n-tuples and so are equal. Now suppose that
H1 ≤ H ≤ G and H is closed and extremely amenable. Clearly H is
co-precompact in G and the G-map gH1 7→ gH extends to a continuous

surjection Ĝ/H1 → Ĝ/H. It follows that Ĝ/H is a minimal G-flow and so
H has EP. From the above, we obtain H = H1 as required. �

Remarks 2.22. By Theorem 6 of [37], we know that if a closed permu-
tation group G on a countable set has a closed, co-precompact, extremely
amenable subgroup, then it has one satisfying EP. By the above, the latter
is maximal amongst extremely amenable subgroups. In this case, is it also
true that every maximal co-precompact, closed, extremely amenable sub-
group of G satisfies EP? In other words, are the maximal, co-precompact,
closed extremely amenable subgroups of G all conjugate in G?

2.4. Comeagre orbits and the weak amalgamation property. Sup-
pose that (K;≤) is an amalgamation class of L-structures and D is a rea-
sonable class of expansions of (K;≤). Then (D;≤) is still a strong class,
but of course it need not be an amalgamation class. Following [25] we say
that (D;≤) has the weak amalgamation property if for all A ∈ D, there
is B ∈ D and a strong map f : A → B such that for all strong maps
fi : B → Ci ∈ D (for i = 1, 2), there exist D ∈ D and strong maps
gi : Ci → D with g1(f1(a)) = g2(f2(a)) for all a ∈ A. A similar property
(the almost amalgamation property) is introduced by Ivanov in [22]. We
then have:

Lemma 2.23. Suppose that D is a reasonable class of expansions of the
amalgamation class (K;≤). Let M be the Fräıssé limit of (K;≤), let G =
Aut(M) and consider the G-flow X(D). If (D;≤) does not have the weak
amalgamation property, then all G-orbits on X(D) are meagre.

Proof. Suppose that A ∈ D witnesses that (D;≤) does not have the weak
amalgamation property. Let t ∈ X(D) (so we think of this as the ‘extra
structure’ on M for a particular expansion in X(D)) and let H denote the
pointwise stabiliser in G of A. We claim that the H-orbit H · t containing t
is nowhere-dense in X(D). As H is of countable index in G, it then follows
that the G-orbit G · t is a meagre subset of X(D).

So suppose for a contradiction that H · t is dense in the open set O. We
may assume that there is a finite B ≤ M with A ≤ B and (B, sB) ∈ D
such that O = {s ∈ X(D) : s|B = sB}. (Again, by the notation (B, sB)
we mean the structure B together with the additional structure it has as a
member of D.) Clearly we have that t|A, the induced structure on A in t,
is equal to sB|A.
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Note that, by reasonableness of D, if (B, sB) ≤ (C, sC) ∈ D, then there
is s ∈ O and a ≤-embedding f : (C, sC) → (M, s) which is the identity
on B. As H · t is dense in O, there is h ∈ H such that h · t ⊇ s|C.
Then h−1 ◦ f : (C, sC)→ (M, t) is a ≤-embedding which is the identity on
A. It follows that (D;≤) has the weak amalgamation property over A: a
contradiction. �

Remarks 2.24. Arguments in [25, 22] show that, with the above notation,
if (D;≤) has the joint embedding property and the weak amalgamation
property, then there is a comeagre Aut(M)-orbit on X(D).

2.5. EPPA and amenability. The following is a modification of a well-
known definition.

Definition 2.25. Suppose (K;≤) is a strong class of finite structures (as
in Section 2.1). A strong partial automorphism of A ∈ K is an isomorphism
f : D → E for some D,E ≤ A. We say that (K;≤) has the extension
property for strong partial automorphisms (sometimes called the Hrushovski
extension property or EPPA) if whenever A ∈ K there is B ∈ K with
A ≤ B and such that every strong partial automorphism of A extends to
an automorphism of B.

Recall that a topological group G is amenable if, whenever Y is a G-
flow, then there is a Borel probability measure µ on Y which is invariant
under the action of G. Thus, if C ⊆ Y is a Borel set and g ∈ G, then
µ(C) = µ(gC). Of course, if G is extremely amenable, then it is amenable
(if y ∈ Y is fixed by G, then take for µ the probability measure which
concentrates on y).

The following is due to Kechris and Rosendal ([25], Proposition 6.4). The
terminology is as in Section 2.1 here.

Theorem 2.26. Suppose (K;≤) is an amalgamation class of finite struc-
tures with Fräıssé limit M . Let G = Aut(M). Suppose (K;≤) has the
extension property for strong partial automorphisms (EPPA). Then:

(i) There exist compact subgroups G1 ⊆ G2 ⊆ · · · of G such that
⋃

iGi

is dense in G.
(ii) G is amenable.

Note that (ii) follows from (i) by standard results on amenability.

3. k-Sparse graphs and their orientations

3.1. The space of orientations. In this section, the structures we work
with are graphs and directed graphs (digraphs), so we use notation which is
closer to standard graph-theoretic notation. Note that our directed graphs
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will be asymmetric: we do not allow loops nor vertices a, b where both
a→ b and b→ a are directed edges.

An undirected graph will be denoted as Γ = (A;R), R ⊆ [A]2; if B ⊆ A
then RB = [B]2 ∩R; so (B;RB) is the induced subgraph of Γ on B.

A digraph will be denoted as ∆ = (A;S), where S ⊆ A2.

Definition 3.1. Let k ∈ N. We say that a graph Γ = (A;R) is k-sparse if
for all finite B ⊆ A we have |RB| ≤ k|B|. An infinite graph is sparse if it
is k-sparse for some k ∈ N.

Note that this differs from the use of “sparse” in, for example, [32].

Remark 3.2. We could consider the more general notion of a sparse re-
lational structure. For example, if n ≥ 2 and R1 ⊆ An is an n-ary rela-
tion on A, then we say that (A;R1) is k-sparse if for all B ⊆ A we have
|R1 ∩ Bn| ≤ k|B|. However, we can then consider the graph (A;R) which
has edges {a, b} where a, b ∈ {s1, . . . , sn} for some (s1, . . . , sn) ∈ R1. This
graph is

(
kn
2

)
-sparse. Thus, the results below apply more generally to sparse

relations. Of course, dealing with graphs simplifies the reasoning.

Definition 3.3. Let k ∈ N. A graph Γ = (A;R) is k-orientable if there
is a digraph ∆ = (A;S) in which the out-valency of each vertex of ∆ is at
most k and such that for all a1, a2 ∈ A,

{a1, a2} ∈ R⇔ (a1, a2) ∈ S or (a2, a1) ∈ S (but not both).

In this case, we refer to ∆ (or S) as a k-orientation of Γ.

So, informally, a k-orientation of Γ is obtained by choosing a direction on
each edge of Γ in such a way that no vertex has more than k directed edges
coming out of it. Note that if a graph Γ = (A;R) is k-orientable, then its
edge-set can be decomposed into subsets R1, . . . , Rk such that each graph
(A;Ri) is 1-orientable. Moreover, a graph is 1-orientable if and only if each
of its connected components is a ‘near-tree’: a tree with at most one extra
edge. Thus, k-orientability is closely related to k-arboricity. The following
is well-known to graph-theorists [30], but we include a proof.

Theorem 3.4. A graph Γ = (A;R) is k-orientable if and only if it is k-
sparse.

Proof. If Γ = (A;R) is k-orientable and B is a finite subset of A, then then
the number of edges in RB is (at most) the number of directed edges in the
induced sub-digraph on B in a k-orientation of Γ. Clearly this is at most
k|B|.

Note that by a compactness (or König’s Lemma) argument, it suffices to
prove the converse in the case where A is finite, so we now assume this. For
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a k-orientation of Γ we need to choose, for each edge e = {a, b} ∈ R one of
the vertices a, b to be the initial vertex of the directed edge. We need to do
this so that the resulting digraph has out-valency at most k.

Consider k copies A × [k] of the vertex set A (where [k] = {1, . . . , k})
and form a bipartite graph B with parts R and A × [k]. We have an edge
(e, (a, l)) (where e ∈ R and a ∈ A, l ≤ k) in this bipartite graph if and only
if a ∈ e. We show that the condition of Hall’s Marriage Theorem holds and
hence there is a matching of R into A× [k]. Indeed, if I ⊆ R, let C ⊆ A be
the union of the edges in I. Then the number of vertices in A× [k] adjacent
to I is k|C| and k|C| ≥ |RC | ≥ |I|, as required.

Fix a matching in B. We orient an edge e = {a, b} of Γ by taking the
directed edge (a, b) precisely when e is matched with some (a, l) under the
matching. This is a k-orientation. �

We use the following special case of the construction in Theorem 2.15.

Definition 3.5. Suppose that Γ = (A;R) is a k-sparse graph. We let

XΓ = {S ⊆ A2 : (A;S) is a k-orientation of Γ}

be the set of k-orientations of Γ. Identifying S ∈ XΓ with its characteristic
function, we can view XΓ as a subset of {0, 1}A2

. We give the latter the
product topology (where {0, 1} has the discrete topology). We give XΓ the
subspace topology and refer to it as the space of k-orientations of Γ. Note
that the automorphism group Aut(Γ) acts continuously on {0, 1}A2

via its
diagonal action on A2 and XΓ is invariant under this action.

Of course, this depends on the particular k, but we omit this dependence
in the notation.

Lemma 3.6. Suppose Γ = (A;R) is a k-sparse graph. Then XΓ is an
Aut(Γ)-flow.

Proof. By Theorem 3.4, XΓ is non-empty. We know that XΓ is an invariant
subspace of the Aut(Γ)-flow Y = {0, 1}A2

, so it suffices to observe that it is
a closed subspace. But if S ∈ Y \XΓ is not a k-orientation of Γ, then this
is witnessed on some finite subset C of A. So if S ′ ∈ Y agrees with S on
C2, then S ′ 6∈ XΓ. Thus Y \XΓ is open and XΓ is closed. �

3.2. Extremely amenable subgroups. Suppose G is a topological group
acting by automorphisms on a discrete structure M . The action G×M →
M is continuous if and only if stabilizers in G of points of M are open in
G. Equivalently, the induced homomorphism G → Aut(M) is continuous.
In this case, we say that G is acting continuously (by automorphisms) on
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M , often omitting the phrase ‘by automorphisms’. Note that in this case,
the induced action of G on a space such as {0, 1}M2

is also continuous.
The following is the first main, new result of the paper and leads quickly

to Theorem 1.2.

Theorem 3.7. Suppose k ∈ N and Γ = (M ;R) is a k-sparse graph in
which all vertices have infinite valency. Suppose G is a topological group
which acts continuously (by automorphisms) on Γ. If H ≤ G is extremely
amenable, then H has infinitely many orbits on M2.

Proof. Consider G acting on the space XΓ of k-orientations of Γ. This is a
G-flow and so, as H is extremely amenable, there is some S ∈ XΓ which
is fixed by H. So H is acting as a group of automorphisms of the digraph
(M ;S).

To finish the proof, it will suffice to show that K = Aut(M ;S) has
infinitely many orbits on M2. Suppose not. Then K has finitely many
orbits on M and for every a ∈M the pointwise stabiliser Ka of a in K has
finitely many orbits on M . Furthermore, if b ∈ M and there is a directed
path of length r from a to b in (M ;S), then b lies in an orbit of size at
most kr under Ka. It follows that there is a bound l, independent of a,
on the size of the set of vertices reachable by a directed path starting from
a. Take the smallest such l and suppose a realises this: so the set A of
vertices reachable by a directed path from a (including a) is of size l. As A
is finite and a has infinite valency in (M ;R), there is a vertex c 6∈ A which
is adjacent to a. In (M ;S) this edge must be directed from c to a. So the
set of vertices which are reachable by a directed path starting at c has size
at least l + 1: contradiction. �

Proof of Theorem 1.2. We note that the variation on the Hrushovski con-
struction in Section 4.2 produces a countable, sparse, ω-categorical graph.
It is easy to see that all vertices in this graph have infinite valency, so
Theorem 3.7 gives the required result. �

3.3. Non-amenability. In the following, if G is a group acting on a set
M and a ∈M , then Ga = {g ∈ G : ga = a}, the stabilizer of a in G.

Theorem 3.8. Suppose k ∈ N and Γ = (M ;R) is a k-sparse graph and
G is a topological group which acts continuously (by automorphisms) on
Γ. Suppose there are adjacent vertices a, b in Γ such that the Ga-orbit
containing b and the Gb-orbit containing a are both infinite. Then G is not
amenable.

Proof. The following is based on an argument of Todor Tsankov and re-
places our original, less general argument.
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We show that there is no G-invariant Borel probability measure on the
G-flow XΓ. Suppose, for a contradiction, that µ is such a measure.

Let a, b be as in the statement and consider the open set Sab = {S ∈
XΓ : (a, b) ∈ S}, the orientations in which this edge is directed from a to
b. As Sab ∪ Sba = XΓ we may assume that µ(Sab) = p 6= 0. For r ∈ N, let
b1, . . . , br be distinct elements of the Ga-orbit containing b. So µ(Sabi) = p
for each i ≤ r.

Let si be the characteristic function of Sabi . Then for every k-orientation
S ∈ XΓ we have ∑

i≤r

si(S) ≤ k.

Thus ∫
S∈XΓ

∑
i≤r

si(S) dµ(S) ≤ k.

On the other hand we have∫
S∈XΓ

si(S)dµ(S) = p,

therefore rp ≤ k. As p 6= 0 and r is unbounded, this is a contradiction. �

Corollary 3.9. Suppose k ∈ N and (K;≤) is an amalgamation class of k-
sparse graphs (possibly carrying extra structure). Let M denote the Fräıssé
limit of (K;≤) and G = Aut(M). Suppose there are adjacent vertices a, b
in M such that the Ga-orbit of b and the Gb-orbit of a are both infinite.
Then (K;≤) does not have EPPA.

Proof. Note that the graph on M is sparse, so by Theorem 3.8, G is not
amenable. It then follows from Theorem 2.26 that (K;≤) does not have
EPPA. �

Remark 3.10. We could rephrase the assumption on G in the above as
a condition on (K;≤) and in general, it is a straightforward matter to
check this. We will illustrate this below where (K;≤) will be a Hrushovski
amalgamation class of sparse graphs.

We note that the arguments in Theorem 3.7 and 3.8 can be combined to
show the following strengthening of Theorem 1.2.

Corollary 3.11. Suppose k ∈ N and Γ = (M ;R) is a k-sparse graph in
which all vertices have infinite valency. Suppose G is a topological group
which acts continuously (by automorphisms) on Γ. If H ≤ G is amenable,
then H has infinitely many orbits on M2. In particular, there is a countable
ω-categorical structure M such that Aut(M) has no co-precompact amenable
subgroup. 2
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3.4. Key Examples. To illustrate further the method used in the above
results, we describe the amalgamation class (C0;≤s) of k-sparse graphs and
the associated class (D0;vs) of k-orientations (k is fixed and understood
from the context). In the next section, we will see (following [10]) that
(C0;≤s) can also be understood as a special case of Hrushovski’s predimen-
sion construction. The Fräıssé limit M0 of (C0;≤s) is not ω-categorical.
However, by using a version of the predimension construction, we can de-
fine a strong class (CF ;≤d) of k-sparse graphs where the Fräıssé limit is
ω-categorical.

Fix an integer k ≥ 2. Formally, we can consider structures in C0 as L-
structures where L is a language with a binary relation symbol R for the
edges. We consider structures in D0 as structures in the expanded language
L+ which also has a binary relation symbol S for the directed edges (and
R still records the undirected edges).

Definition 3.12. Let D0 consist of the finite k-oriented digraphs, that
is, directed graphs where the out-degree of every vertex is at most k. If
A ∈ D0 and B ⊆ A, we write B vs A to mean that if b ∈ B and b → a
is a directed edge in A, then a ∈ B (so B is closed under successors in A).
If C ⊆ A ∈ D0, we write sclA(C) for the successor-closure of C in A. So
sclA(C) is the smallest subset B of A containing C with B vs A.

We let C0 be the class of k-sparse graphs. By Theorem 3.4, this is the
class of undirected reducts of D0.

Definition 3.13. For A ⊆ B ∈ C0 we write A ≤s B if there is a k-
orientation B+ of B in which A vs B

+.

It is easy to see that (C0;≤s) is a strong class: essentially we need to
verify that if A ≤s B ≤s C ∈ C0 then A ≤s C. To see this, note that
there is a k-orientation C+ of C in which B is a successor-closed subset. If
we replace the induced orientation on B by any other k-orientation of B,
the result is still a k-orientation of C. So we choose an orientation of B in
which A is successor-closed and obtain an orientation of C in which both
A and B are successor-closed.

In the terminology of Theorem 2.10, the same argument shows:

Theorem 3.14. The class (D0;vs) is a strong expansion of the class (C0;≤s

). Both of these are free amalgamation classes.

Proof. It is clear that (D0;vs) is a free amalgamation class. It then follows
from Theorem 2.10 that (C0;≤s) is a free amalgamation class. �

Definition 3.15. Let M0 and N0 denote respectively the Fräıssé limits of
(C0;≤s) and (D0;vs).
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Note that by Theorem 2.10, M0 is the undirected reduct of the k-oriented
digraph N0, so Aut(N0) is a subgroup of Aut(M0). However, it is not a co-
precompact subgroup. Each A ∈ C0 has only finitely many expansions in
D0, but there is no bound on the size of the successor-closure of f(A) in N0

for ≤s-strong embeddings f : A→ N0. We also note that D0 is a reasonable
class of expansions of (C0;≤s).

Theorem 3.16.

(1) The group Aut(M0) has no co-precompact extremely amenable sub-
group. Equivalently, there is no precompact Ramsey expansion of
the strong class (C0;≤s).

(2) The group Aut(M0) is not amenable and the strong class (C0;≤s)
does not have EPPA.

Proof. To reduce notation, let M denote M0 and G = Aut(M). Let (C;≤)
denote (C0;≤s).

(1) Let A ∈ C consist of two non-adjacent vertices and P be the set of
≤-copies of A in M . So this is an Aut(M)-orbit on M2. Consider the
G-flow of k-orientations of M . As every extremely amenable subgroup of
Aut(M) must fix some element of this, it is enough to show that if N is a
k-orientation of M , then Aut(N) has infinitely many orbits on P . Suppose,
for a contradiction, that there are only a finite number t of Aut(N)-orbits
on P .

Suppose m ∈ N is arbitrary. By considering a tree of height m and
non-leaf vertices having valency k + 1 as a ≤-substructure of M , there
is a directed path Qm ≤ N of length m + 1. Label the vertices as a =
a0, a1, . . . , am (with ai → ai+1 a directed edge in N). If i ≥ 1 then (a, ai) ≤
Qm, so (a, ai) ∈ P .

We show that if m is large enough in relation to t, then the ai lie in more
than t different orbits under the stabiliser K of a in Aut(N). This is a
contradiction.

Let B(a; i) denote the set of vertices b in N for which there is a directed
path of length at most i from a to b. Thus a0, . . . , ai ∈ B(a; i) and |B(a; i)| ≤
ki+1 − 1. Let s(1) = 1 and s(n + 1) = ks(n)+1, for n ∈ N. We show that if
m ≥ s(t) then the points a1, . . . , am lie in at least different K-orbits. We
prove this by induction on t, the case t = 1 being trivial. If the result holds
for t but not for t + 1 then each of as(t)+1, . . . , as(t+1) is in the same orbit
as one of the points a1, . . . , as(t). Thus {a1, . . . , as(t+1)} ⊆ B(a; s(t)). As
s(t+ 1) > |B(a; s(t))|, this is a contradiction.

(2) Let {a, b} ≤ M with a adjacent to b. The Ga-orbit containing b
and the Gb-orbit containing a are both infinite. To see this, note that
the graph Bn with vertices a, b1, . . . , bn and edges abi is in the class C and
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{a} ≤ {a, bi} ≤ Bn (where n is arbitrary). So we can regard Bn as a
subgraph of M . By the ≤-homogeneity of M , the vertices b1, . . . , bn are
in the same Ga-orbit as b. As n is arbitrary here, the Ga-orbit of b is
infinite. Similarly, the Gb-orbit of a is infinite. The result now follows from
Theorem 3.8 and Corollary 3.9. �

Remarks 3.17. (1) By the above result and Theorem 1.2 of [40], we know
that some structure in (C0;≤s) has infinite Ramsey degree (as defined in
Section 2.2). In fact, the argument in the proof of part (1) above shows
that, in the notation used there, A has infinite Ramsey degree in (C0;≤s).
A longer argument can be used to show that the structure consisting of a
single vertex also has infinite Ramsey degree in (C0;≤s).

(2) It would be interesting to know whether the argument can be extended
to show that Aut(M0) has no amenable co-precompact subgroups, as in
Corollary 3.11.

4. Hrushovski’s predimension construction

In this section we give a short account of Hrushovski’s predimension con-
struction of an ω-categorical sparse graph from [18, 19]. We will make use
of and extend the connection with orientations as in [10]. More traditional
approaches to the construction can be found in [9], or Wagner’s article [39].

4.1. Predimension and roots. Let k ≥ 2 be a fixed integer and let (C0;≤s

) be the class of all finite k-sparse graphs as in Section 3.4. If A ∈ C0, the
predimension of A is

δ(A) = k|A| − |RA|.
Note that for a graph in C0, this predimension is always non-negative. In

fact, a graph is in C0 precisely when δ(A) ≥ 0 for all finite subgraphs A.
The following extension of Theorem 3.4 is from [10].

Lemma 4.1. Suppose A ⊆ B ∈ C0. Then A ≤s B if and only if δ(A) ≤
δ(C) whenever A ⊆ C ⊆ B. 2

The following gives another way of thinking about predimension.

Definition 4.2. If A ∈ D0 is a k-oriented digraph, we say that a vertex
v ∈ A is a root in A if its out-degree r in A is less than k (of course, k is
understood from the context here). The multiplicity of v is then k − r.

Note that if B ∈ D0 and A vs B, then a vertex in A is a root in A if and
only if it is a root in B.

A simple counting argument gives:

Lemma 4.3. Given a k-oriented graph A, its predimension δ(A) is equal
to the sum of the multiplicities of its roots in A. 2



26 DAVID M. EVANS, JAN HUBIČKA, AND JAROSLAV NEŠETŘIL

For Hrushovski’s construction of a sparse ω-categorical structure we will
need the following definition.

Definition 4.4. Suppose that A ⊆ B ∈ C0. We write A ≤d B (and say
that A is d-closed in B) if δ(A) < δ(C) whenever A ⊂ C ⊆ B.

Definition 4.5. Given a k-orientation A and a subdigraph B we denote
by rootsA(B) the set of elements of the successor-closure sclA(B) of B in
A which are roots in A. The successor-d-closure of B in A, denoted by
sdclA(B), is the set of all vertices v ∈ A such that rootsA(v) ⊆ rootsA(B).
If B is successor-d-closed in A we write B vd A.

The terminology is justified by the following lemma.

Lemma 4.6. Suppose A ∈ D0 and B ⊆ A. Then sdclA(B) is the smallest
substructure of A that is both successor-closed and d-closed.

Proof. It is easy to see that E = sdclA(B) is successor-closed in A; we show
that it is d-closed in A. Suppose E ⊂ C ⊆ A. Then E vs C and so by
Lemma 4.3, we have δ(E) ≤ δ(C). If δ(E) = δ(C), then no vertex x ∈ C\E
is a root in C, and therefore all such vertices have out-valency k in C. It
follows that C vs A. But then rootsA(x) = rootsC(x) ⊆ E for all x ∈ C
and therefore C = E, a contradiction. Thus E ≤d A, as required.

Now suppose B ⊆ F vs A and F ≤d A. If x ∈ sdclA(B) then rootsA(y) ⊆
F for all y ∈ sclA(x). Thus, by Lemma 4.3, δ(F ∪ sclA(x)) = δ(F ) and so
x ∈ F . �

Note that for a digraph in D0, the property of a subset being d-closed is
determined by the undirected reduct.

We also have:

Lemma 4.7. Suppose A ⊆ B ∈ C0. Then A ≤d B if and only if there is a
k-orientation B+ ∈ D0 of B where A vd B

+.

Proof. Suppose A vd B. It is enough to show that δ(A) > δ(B), assuming
A 6= B. Let b ∈ B\A. Then rootsB(b) 6⊆ A, so δ(B) > δ(A), by Lemma 4.3.

Conversely, suppose A ≤d B. By Lemma 4.1, there is a k-orientation
B+ of B in which A vs B

+. We claim A vd B
+. Indeed, if b ∈ B and

rootsB(b) ⊆ A, then δ(sclB(b) ∪ A) = δ(A), so b ∈ A. �

Lemma 4.8. Let B ∈ C0 and let ≤ denote either ≤s or ≤d.

(1) If A ≤ B and X ⊆ B, then A ∩X ≤ X.
(2) If A ≤ C ≤ B, then A ≤ B.
(3) If A1, A2 ≤ B, then A1 ∩ A2 ≤ B.
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Proof. We verify these in the case of ≤d. For (1), by Lemma 4.7, there is
an orientation B+ of B with A vd B

+. If b ∈ X and rootsX(b) ⊆ X ∩ A,
then every vertex c ∈ sclX(b) \ (X ∩ A) has out-valency k in X. Thus its
successors in B are in X. It follows that rootsB(b) ⊆ A, so b ∈ A ∩X, as
required. Similarly, for (2), there is an orientation B+ of B with A vd B

+

and an orientation C+ of C in which B vd C
+. Replacing the structure on

B in C+ by B+, we obtain a k-orientation C++ of C in which B+ vd C
++.

But then A vd C
++. So A ≤d C. (3) follows from (1) and (2). �

As in Section 3.4, we then have:

Lemma 4.9. The classes (D0;vd) and (C0;≤d) are strong classes. More-
over, (D0;vd) is a strong expansion of (C0;≤d). 2

The fact that both ≤s and ≤d give rise to closures follows from
Lemma 4.8. We shall be particularly concerned with d-closure.

Definition 4.10. With this notation, if B ∈ C0 then Lemma 4.8 (3) shows
that if A ⊆ B and S = {A1 : A ⊆ A1 ≤d B}, then

⋂
S ≤d B. So there is a

smallest ≤d-subset of B which contains A: denote it by cldB(A). It is easy
to see that cldB is a closure operation on B.

Lemma 4.11. For A ⊆ B ∈ C we have δ(A) ≥ δ(cldB(A)).

Remarks 4.12. As we already mentioned, the original approach to this
works with a more general predimension. Let α be a positive real number
and for a graph A = (A;RA) let δ(A) = α|A|−|RA|. Note that for B,C ⊆ A
we have δ(B ∪C) ≤ δ(B) + δ(C)− δ(B ∩C). Using this, one can prove all
of the above properties of ≤s and ≤d.

4.2. The ω-categorical case. Following [18], we will consider subclasses
of (C0;≤d) in which d-closure is uniformly bounded. More precisely we use
the following definition.

Definition 4.13. Let F : R≥0 → R≥0 be a continuous, increasing function
with F (x)→∞ as x→∞, and F (0) = 0. Let

CF = {B ∈ C0 : δ(A) ≥ F (|A|) for all A ⊆ B}.

Theorem 4.14.

(1) If B ∈ CF and A ⊆ B then

|cldB(A)| ≤ F−1(k|A|).

(2) If (CF ;≤d) is an amalgamation class, then its Fräıssé limit MF is
ω-categorical.
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Proof. (1) By Lemma 4.11 we have δ(cldB(A)) ≤ δ(A) ≤ k|A|. Thus (by
definition of CF ) we have |cldB(A)| ≤ F−1(k|A|).

(2) This follows from Remarks 2.8. �

We now provide some examples (taken from [18]) where (CF ;≤d) is a free
amalgamation class (in the sense of Remarks 2.7).

Example 4.15. Let F as in Definition 4.13 be such that:

• F is piecewise smooth;
• the right derivative F ′ is non-increasing;
• F ′(x) ≤ 1/x for all x > 0.

Then we claim that (CF ;≤d) is a free amalgamation class.
Indeed, suppose A ≤d B1, B2 ∈ CF and let E be the free amalgam of B1

and B2 over A. We need to show that E ∈ CF . Clearly we may assume
A 6= Bi.

Suppose X ⊆ E. We need to show that δ(X) ≥ F (|X|). Now, X is the
free amalgam over A∩X of B1 ∩X and B2 ∩X and A∩X ≤d Bi ∩X (by
Lemma 4.8(1)). So we can assume X = E and check that δ(E) ≥ F (|E|).

Note that δ(E) = δ(B1) + δ(B2)− δ(A) and |E| = |B1|+ |B2| − |A|.
The effect of the conditions on F is that for x, y ≥ 0

F (x+ y) ≤ F (x) + yF ′(x) ≤ F (x) + y/x.

We can assume that

δ(B2)− δ(A)

|B2| − |A|
≥ δ(B1)− δ(A)

|B1| − |A|
and note that the latter is at least 1/|B1| (as δ is integer-valued and A ≤d

B1).
Then

δ(E) = δ(B1) + (|B2| − |A|)
δ(B2)− δ(A)

|B2| − |A|
≥ F (|B1|) + (|B2| − |A|)/|B1|
≥ F (|E|)

(taking x = |B1| and y = |B2| − |A|).
This concludes the proof of the claim (see Figure 1).

Example 4.16. In order to illustrate the flexibility of this, we use the
construction to produce an example of a connected ω-categorical graph
whose automorphism group is transitive on vertices and edges, and whose
smallest cycle is a 5-gon.
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A

δ(A)

|A|

B1

B2

E

F (|A|)

Figure 1. Predimension of the free amalgamation of B1 and
B2 over A.

Let k = 2. So we are working with 2-sparse graphs and the predimension:

δ(A) = 2|A| − |RA|.

Take

F (1) = 2;F (2) = 3;F (5) = 5;F (k) = log(k) + 5− log(5) for k ≥ 5.

Then one can check that:

• The smallest cycle in CF is a 5-gon.
• If a ∈ A ∈ CF then {a} ≤d A.
• If {a, b} ⊆ B ∈ CF is an edge then {a, b} ≤d B.
• (CF ;≤d) is an amalgamation class (the proof of the amalgamation

property in the previous example applies if at least one of B1, B2

has size ≥ 5; the other cases can be checked individually).
• The Fräıssé limit MF is connected. Given non-adjacent a, b ∈ MF

consider A = cld({a, b}). As δ(A) ≤ δ({a, b}) = 4 we have |A| ≤ 3.
So either A is a path of length 2 (with endpoints a, b) or A = {a, b},
so {a, b} ≤d MF . In the latter case, consider a path B of length 3
with end points a, b. Then {a, b} ≤d B so there is a ≤d copy of B
in MF over {a, b}. In particular, a, b are at distance 3 in MF .

Note that the Ramsey properties of classes of graphs with large girth are
a difficult combinatorial problem (cf. [35]).

Remark 4.17. Consider an arbitrary graph G and a 2-orientation Ĝ cre-
ated by subdividing every edge {a, b} of G by a new vertex va,b and orienting

the subdivision as v{a,b} → a, v{a,b} → b. It is easy to see that for A ⊆ Ĝ,

δ(A) >
√
|A| and thus there are choices of F such that for every finite

graph G it holds that Ĝ ∈ CF . The class of (D;vd) of such representations
of graphs is a free amalgamation class and is bi-definable with the class of
all graphs. (This is not the case with C0.)
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4.3. Results in the ω-categorical case. We can now conclude the proof
of:

Theorem 1.2. There exists a countable, ω-categorical structure M with
the property that if H ≤ Aut(M) is extremely amenable, then H has infin-
itely many orbits on M2. In particular, there is no ω-categorical expansion
of M whose automorphism group is extremely amenable.

Proof. Let MF be the ω-categorical 2-sparse graph constructed in Exam-
ple 4.16. All vertices of MF are of infinite valency (as in the proof of
Theorem 3.16), so the result follows from Theorem 3.7. �

We also note that, as in the proof of Theorem 3.16:

Corollary 4.18. The group Aut(MF ) is not amenable and the class (CF ;≤d

) does not have EPPA.

All that we require of our free amalgamation class CF is that it contains
an ‘edge’ {a, b} (with R(a, b) holding). In this case, {a}, {b} ≤d {a, b} and
the argument of Theorem 3.16 applies.

Remarks 4.19. in [14], Zaniar Ghadernezhad gives a direct argument to
show that the class (C0;≤s) fails to have EPPA. It would be interesting to
have a similar direct proof for the failure of EPPA in (CF ;≤d).

We note that all of this can be carried out with more general versions
(as in [39]) of the predimension construction. Non-existence of precompact
expansions; non-amenability and failure of EPPA all follow in the same
way, assuming minor non-triviality conditions. In particular, Hrushovski’s
strictly stable ω-categorical structures from [18] show that the structure
M in Theorem 1.2 may also be taken to be stable. By contrast, note
that if M is a stable structure which is homogeneous for a finite relational
language, then M is ω-stable and, by the strong structure theory of ω-
categorical, ω-stable theories, it follows that Aut(M) is amenable and has
a co-precompact, extremely amenable subgroup (cf. Corollary 3.9 in [5]).

5. Meagre orbits

Notation 5.1. In this section, (C;≤) will denote one of the amalgamation
classes (C0;≤s) or (CF ;≤d) of k-sparse graphs from the previous sections.
In the latter case, we assume that (CF ;≤d) is a free amalgamation class
and that all vertices are d-closed in all structures in CF . In both cases, we
denote by (D;v) the corresponding class of orientations, together with the
appropriate notion of closure, clv. So, respectively, (D;v) is (D0;vs) or
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(DF ;vd), where DF is the class of all k-orientations of graphs in CF . We
will take k = 2, to simplify the notation.

We let M denote the Fräıssé limit (that is, M0 or MF respectively) and
G = Aut(M). The space of orientations of M is denoted by X(D), as in
Section 2.3.

The G-flow X(D) is not minimal. Nevertheless, we prove:

Theorem 5.2. With the above notation, if Y is a minimal G-subflow of
X(D), then all G-orbits on Y are meagre in Y .

This is in sharp contrast to what happens when G has a co-precompact
extremely amenable subgroup, where every minimal G-flow has a comeagre
orbit.

We begin the proof by noting:

Lemma 5.3. Suppose Y is a minimal G-subflow of X(D). Then there is
D′ ⊆ D which is a reasonable class of expansions of (C;≤) and is such
that Y = X(D′). The class D′ has the Expansion Property with respect to
(C;≤).

Proof. The first point is by Lemma 2.16 and the second follows from mini-
mality of Y and Theorem 2.18. �

Now let D′ be as in the above. By Lemma 2.23, the theorem will follow if
we show that (D′;≤) does not have the weak amalgamation property. We
will prove:

Proposition 5.4. Let A0 = {a} ∈ D′. Then there does not exist A0 ≤ A ∈
D′ such that whenever fi : A → Ci ∈ D′ are ≤-embeddings (for i = 1, 2)
with f1(a) = f2(a), there is D ∈ D′ and ≤-embeddings gi : Ci → D such
that g1(f1(a)) = g2(f2(a)).

We first outline the idea behind the proof of this. Suppose to the contrary
that we do have such an A ∈ D′. Then any finite number of extensions
A ≤ Ci ∈ D′ (for i = 1, . . . , n) can be amalgamated over A0 into some
D ∈ D′. In particular, the successor-closures of a in the Ci all embed (over
a) into the successor-closure of a in D. We then observe that there are too
many possibilities for the successor-closure of a in Ci for this to happen. If
D = D′, then this is very easy to see as we know explicitly the digraphs in
D′. In general, we need a result which guarantees that we can ‘extend’ the
successor-closure of a point a ∈ A in particular ways by taking A ≤ C ∈ D′.
We do this in a series of lemmas. The notation is cumulative.

Suppose that we have {a} ≤ A ∈ D′ contradicting Proposition 5.4. Let
A− ∈ C be the undirected reduct of A. As D′ satisfies the Expansion
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c c

Figure 2. T0 and T1 with orientation away from vertex c.

Property, there is an extension A− ≤ B ∈ C such that every orientation
B+ of B in D′ contains a copy of A as a ≤-substructure. We fix such a
structure B.

For sufficiently large n,m ∈ N, we now describe graphs T0(n), T1(3m)
(depicted in Figure 2) which we will attach to vertices in B to ‘extend’ the
closure of a point in incompatible ways. As T0(n), we take ‘one half’ of a
binary tree of height n together with its root vertex c. (For example, we
can consider sequences in {0, 1}<n which are either the empty sequence or
start with 0 and have edge relation given by the initial segment relation.)
For T1(3m), we choose some m such that C contains an 2m-cycle (this will
be possible for all sufficiently large m) and let T1(3m) be a modification
of T0(3m) obtained by identifying just two vertices at height 2m whose
shortest paths to the root vertex c meet at height m. So in particular,
T1(3m) contains a 2m-cycle. Let T denote one of T0(n), T1(n) (with n a
multiple of 3 in the latter case). Let T ′ denote the orientation of this in
which all edges are directed away from c. Note that the only vertices of
out-valency less than 2 in T ′ are the root c and the leaves.

Let S0 denote the ‘left’ leaves of T and S1 the ‘right’ leaves. So this is a
partition of the leaves of T such that every vertex at height n−1 is adjacent
to one vertex in each of S0 and S1.

Lemma 5.5. We have {c} ≤ T ∈ C and S0, S1 ≤ C.

Proof. This is straightforward. Note that in the orientation T ′ of T the
leaves are the only vertices of out-valency less than 2. With this orientation,
every non-leaf vertex has a descendant in S0 and in S1, so by Lemma 4.6
we obtain Si ≤ T (in the case where C = CF ). �

Take some orientation B+ ∈ D′ of B. Let a1, . . . , ar ∈ B+ be all the
vertices of out-degree less than 2 in B+. Denote the outdegrees of ai by ki.
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At each vertex ai we attach 2−ki copies of T to B, using free amalgamation
identifying ai and c. Call the resulting graph E.

Lemma 5.6. We have that B ≤ E ∈ C.

Proof. Suppose first that C is C0. Note that the orientation B+ of B can
be extended to an orientation of E in D so that B is successor-closed (by
directing all of the edges in the adjoined copies of T towards the ai). This
gives the result. In the case where C is CF , we use the fact that we have cho-
sen F so that vertices are d-closed in all graphs in CF . As E is constructed
from B by free amalgamation over vertices, the result follows. �

Now let S0 be the union of the vertices S0 in the copies of T in E which
we added to B; similarly let S1 be the union of the copies of S1.

Lemma 5.7. We have S0, S1 ≤ E.

Proof. We can extend the orientation B+ of B to an orientation E+ ∈ D of
E so that the added copies of T are directed outwards from the vertices ai.
Then Sj is successor-closed in E+ (for j = 1, 2). So in the case where C is
C0 we obtain Sj ≤ E.

For the case where C = CF , we also note that if x ∈ E+ \ (S0 ∪ S1),
then x has a root in each of S0 and S1. In particular, x is not in the
successor-d-closure of S0 or S1. �

We now show that some re-orientation of E+ ∈ D in the above proof
which preserves the orientation on the added copies of T is actually in D′.

Let E1 consist of a sufficiently large number of copies of E, freely amal-
gamated over S0. Note that (by free amalgamation) each of the copies is
strong in E1. Let S2 be the the union of the sets of vertices corresponding
to S1 in all of these copies of E. By a similar argument to that used in the
lemma, we have that S2 ≤ E1. Now let P consist of the free amalgam of
sufficiently many copies of E1 over S2. Again, note that each copy is strong
in P .

By construction, P ∈ C and therefore it has some orientation P+ ∈ D′.
In P+, one of the copies E ′1 of E1 must be oriented so that the vertices in
S2 have no successors in E ′1 (as long as we took sufficiently many copies
of E1 in P ). Similarly, there is a copy E ′ of E in E ′1 in which the vertices
in S1 have no successors in E ′. Thus, in E ′, the copies of T which were
added to the copy B′ of B are all directed away from the ai. Moreover, by
construction of P , we have E ′ ≤ E ′1 ≤ P+, so E ′ ∈ D′.

Let B′ denote the (oriented) copy of B inside E ′. As B ≤ E, we have
that B′ ∈ D′. Thus, by the Expansion Property, we can regard A as a
≤-substructure of B′. Note that the vertices ai in B′ have the same out-
valency in B′ as they have in B+. By Lemma 4.3 it then follows that
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the ai are the only vertices in B′ which have out-valency less than 2. As
δ(A) ≥ δ(a) > 0, at least one of the vertices ai is in clvB′(a). Without loss
of generality, we may assume that these are a1, . . . , as. Recall that T ′ is the
orientation of T where edges are directed away from c. We then have:

Lemma 5.8. Let C = clvE′(A). Then A ≤ C ∈ D′ and clvC(a) is the free

amalgam of clvB′(a) and copies T ′1, . . . , T
′
s of T ′ over a1, . . . , as, for some

s > 0. The only vertices of out-valency less than 2 in clvC(a) are the leaf-
vertices of the T ′i .

We can now finish the proof of Proposition 5.4 and therefore conclude
the proof of Theorem 5.2.

Recall that T was either T0(n), a binary tree of height n, or T1(3m),
a modification of a binary tree of height 3m containing a 2m-cycle with
vertices at heights between m and 2m. We will choose appropriate n,m in
what follows. The graphs A and B are the same in both cases and do not
depend on m,n, though the orientation B′ of B in Lemma 5.8 may do.

Apply Lemma 5.8 in the cases T = T0(n) and T = T1(3m) to obtain
respectively A ≤ C0 ∈ D′ and A ≤ C1 ∈ D′ with properties as in the
lemma. Suppose that there are D ∈ D′ and ≤-embeddings gi : Ci → D
(for i = 0, 1) with g0(a) = g1(a). Let e = g0(a) = g1(a) and consider the
successor-closure U of e in D. Let Ur denote the vertices in U which are
reachable from e by an outward-directed path of length at most r.

As all vertices in C0 apart from the ‘leaf vertices’ are of out-valency 2, it
follows that g0(sclC0(a)) ⊇ Un: there can be no vertices in D reachable by
a directed path from e of length at most n, other than those already in the
image of such a path from a in C0. Note that any vertex in g0(sclC0(a)∩B)
is in Uq, where q = |B|, therefore Un \ Uq contains no (undirected) cycles.

On the other hand, if we take m ≥ q, then g1(sclC1(a))\Uq contains a 2m-
cycle and is contained in Uq+3m. Thus, if we take m ≥ |B| and n ≥ |B|+3m,
then we obtain a contradiction: Un \Uq contains no cycles, by the previous
paragraph. This finishes the proof of Proposition 5.4. Theorem 5.2 then
follows.

6. Amenable and extremely amenable subgroups

Recall the class (C0;≤s) of finite 2-sparse graphs (from Section 3.4) and
the related class (D0;vs) of 2-oriented finite digraphs. As before, the
Fräıssé-limits of these classes are denoted by M0 and N0 respectively. We
also consider the class (CF ;≤d) given in Section 4.2 and the related class
(DF ;vd) of its 2-orientations. The Fräıssé-limits of these are denoted by
MF and NF . Recall that Aut(MF ) is oligomorphic.



35

In previous sections we showed that Aut(M0) and Aut(MF ) have no
co-precompact extremely amenable subgroups. Moreover, Aut(MF ) has
no co-precompact amenable subgroup. In this section, using work in [12],
we will complement these results by identifying certain closed subgroups
which are maximal amongst the extremely amenable subgroups. Roughly
speaking, these arise as automorphism groups of ordered versions of N0

and NF respectively, but in each case, we need to work with a subclass of
the class of orientations (the fine orientations in Section 6.1). The precise
result is Theorem 6.9.

We also give some partial results about amenable subgroups (Theo-
rem 6.11).

6.1. Fine orientations. We introduce the following notion of fine orien-
tations.

Definition 6.1. Suppose that A,B ∈ D0 are 2-orientations of the same
underlying undirected graph. We say that B is a refinement of A (in the
class (D0;vs)) if every vs–closed subset of A is also vs-closed in B. The
refinement is proper if additionally A is not a refinement of B. We say that
A is fine if it has no proper refinement in (D0;vs).

Similarly, we can make the same definitions for the class (DF ;vd), work-
ing with vd instead of vs. In this case, we refer to d-fine orientations. It is
clear that every structure in (D0;vs) (or in (DF ;vd)) has a fine refinement
(take a refinement with a maximal number of closed subsets).

We thank the Referee for a simplification to the proof of the following:

Lemma 6.2. For every fine A ∈ D0 and B vs A it holds that B is also
fine. Similarly for every d-fine A ∈ DF and B vd A it holds that B is also
fine.

Proof. For the first statement, suppose B vs A has a proper refinement
B′. Consider the 2-orientation A′ created from A by replacing B by B′.
As the successor-closure operation is unary, it follows that A′ is a proper
refinement of A, which is a contradiction.

For the second statement, suppose that B vd A has a proper refinement
B′. We again consider the structure A′ obtained from replacing B by B′ in
A. This is in the class DF and it will suffice to show that it is a refinement
of A.

Suppose that D vd A. Then D is a d-closed subset of A and as this is a
property of the undirected reduct, we therefore have D is d-closed in A′. As
in the previous case, D is successor-closed in A′ and the result follows. �
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We will denote by E0 the class of all fine orientations in D0 and by EF
the class of all d-fine orientations in DF .

Lemma 6.3. The class (E0;vs) is a strong expansion of (C0;≤s), closed un-
der free amalgamation. Similarly (EF ;vd) is a strong expansion of (CF ;≤d)
closed under free amalgamation.

Proof. We prove the statements about EF . The proofs for E0 are analogous.
By Lemma 6.2 we know that EF is closed under taking vd-substructures,

so (EF ;vd) is a strong class. We now verify the conditions (Definition 2.9)
for being a strong expansion. Every structure in CF has a fine orientation
and Condition (i) follows by Lemma 4.6, so it remains to verify Condition
(ii).

Suppose A ≤d B ∈ CF . Then by Theorem 3.4 there is an orientation
B+ ∈ DF with A vd B

+. We may replace B+ here by a fine refinement, and
therefore we may assume that B+ ∈ EF . As in the proof of Lemma 6.2 we
can replace in B+ the induced orientation on A by any other fine orientation
and the resulting structure is still in E+. This gives the Condition (ii).

It remains to verify that EF is closed under free amalgamation. Consider
the free amalgamation C of B1 ∈ EF and B2 ∈ EF over a common successor-
d-closed substructure A. To show that C ∈ EF it remains to verify that C
is d-fine.

Assume, to the contrary, the existence of a proper refinement C ′ of C and
takeD vd C

′ withD 6vd C. PutD1 = D∩B1 andD2 = D∩B2. Because the
intersection of two successor-d-closed substructures is successor-d-closed, we
get that both D1 and D2 are successor-d-closed in C ′ and because B1 and
B2 are fine, they are also closed in C. Now every vertex v in sdclC(D) \D
is connected by a directed path in C to some roots of C in B1 \ B2 and in
B2 \ B1. But this implies that v ∈ B1 ∩ B2. This contradicts B1 and B2

being fine. �

6.2. Closure reducts. We will determine some amenable and extremely
amenable subgroups of Aut(M0) and Aut(MF ); in some cases proving their
maximality with respect to these properties. These will be associated with
certain (fine) orientations of the structures M0 and MF . However, for the
maximality, we will have to pass to reducts of the oriented structures which
remember only the closures associated to the orientations. In order to do
this, we use partial functions and the notion of substructure introduced in
Section 2.2. This will enable us to apply directly the results of [12].

Definition 6.4. (1) Suppose (A;S) ∈ D0. Denote by A◦ = (A;R; (Fk)1≤k)
the following structure in the language consisting of one binary relation R
and partial functions Fk from vertices to sets of vertices of size k. The
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relation R is the symmetrised (i.e. undirected) S and for a vertex a with
closure C = sclA({a}) we put F|C|(a) = C. The functions Fk are undefined
otherwise.

(2) Suppose (A;S) ∈ DF . We denote by A• = (A;R; (Fk)1≤k, (Fk,n)1≤n,k)
the following structure in the language consisting of one binary relation
R and partial functions Fk from vertices to sets of vertices of size k and
partial functions Fk,n from n-tuples of vertices to sets of vertices of size
k. The relation R is the symmetrised S and for a vertex a with closure
C = sclA({a}) we put F|C|(a) = C. For an n-tuple ~v of distinct root vertices
in A we put Fk,n(~v) = U where |U | = k and U is the set of all vertices u
with the property that ~v consists precisely of the roots of sclA({u}). The
functions Fk and Fk,n are undefined otherwise.

Note that we use successor-closure rather than successor-d-closure in
the definition of A•. Recall that ⊆ is inclusion and by (K;⊆) we denote
strong classes where strong maps are all embeddings. By the definition
of successor-closed and successor-d-closed substructures (Definition 4.5) we
obtain:

Lemma 6.5. For all B ⊆ A ∈ D0, it holds that B vs A if and only if the
vertices of B form a substructure of A◦.

Similarly for all B ⊆ A ∈ DF , it holds that B vd A if and only if B is a
substructure of A•.

We will denote by G0 the class of all structures A◦ where A ∈ E0, and by
GF the class of all structures A•, where A ∈ EF .

Observe that there is important difference between G0 and GF . While all
functions in G0 are unary, the functions in GF have arbitrary arities.

Recall the notion of a free amalgamation class with respect to ⊆ (all
embeddings), introduced prior to Theorem 2.12. We have:

Lemma 6.6. The class (G0;⊆) is a strong expansion of (C0;≤s).
Similarly (GF ;⊆) is a strong expansion of (CF ;≤d). Both classes are free

amalgamation classes.

Proof. This follows by Lemmas 6.3 and 6.5. For the statement about free
amalgamation, one checks, in the case of (GF ;⊆), that if A vd B1, B2 ∈ EF
and C is the free amalgam of B1 and B2 over A (in EF ), then C• is the free
amalgam of B•1 and B•2 over A• (in the sense of Theorem 2.12). The proof
for (G0;⊆) is similar, but more straightforward. �

6.3. Extremely amenable subgroups.
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Theorem 6.7. The class (G≺0 ;⊆) of linear orderings of structures in (G0;⊆)
is Ramsey and moreover it has a subclass (H0;⊆) which is a Ramsey ex-
pansion of (G0;⊆) having the expansion property (with respect to (G0;⊆)).

The class (G≺F ;⊆) of linear orderings of structures in (GF ;⊆) is Ramsey
and moreover it has a subclass (HF ;⊆) which is a Ramsey expansion of
(GF ;⊆) having the expansion property (with respect to (GF ;⊆)).

Proof. This is a direct consequence of Lemma 6.6 and Theorem 2.12. �

Remark 6.8. In [12], subclasses (H0;⊆) and (HF ;⊆) are explicitly de-
scribed by means of special, admissible, orderings. The Ramsey expansion
of (GF ;⊆) is more involved, due to the presence of non-unary functions in
the structures, and needs the full power of [20].

With the notation as in Theorem 6.7, we will denote by P0 the Fräıssé
limit of (H0;⊆) and PF the Fräıssé limit of (HF ;⊆). We also denote by O0

is the Fräıssé limit of (G0;⊆) and by OF is the Fräıssé limit of (GF ;⊆). As
usual, we can regard P0 as an expansion of O0 and PF as an expansion of
OF . Note that these are both precompact expansions. Furthermore, if we
let E0 and EF be the Fräıssé limits of E0 and EF , then we may regard O0

and OF as the closure-reducts E◦0 and E•F of E0 and EF .

Theorem 6.9. The subgroup Aut(P0) is maximal among extremely
amenable subgroups of Aut(M0). Similarly Aut(PF ) is maximal among ex-
tremely amenable subgroups of Aut(MF ).

Proof. Again we give the proof for MF while the statement for M0 follows in
complete analogy. Extreme amenability of Aut(PF ) follows by Theorems 6.7
and 2.13.

Suppose Aut(PF ) ≤ K ≤ Aut(MF ) and K is extremely amenable. We
show that K = Aut(PF ).

Consider K acting on X(DF ), the space of 2-orientations of MF . As K
is extremely amenable, it preserves some element of this. Thus K is acting
as a group of automorphisms of some 2-orientation N of MF . Consider
any finite closed A ⊆ PF (or equivalently, A vd EF ). If b /∈ A then by
the homogeneity of PF , the orbit of b under the pointwise stabiliser of A
in Aut(PF ) is infinite. So b is not in the vd-closure of A in N•. It follows
that A vd N . As EF is a fine orientation of MF , it follows that vd-closure
is the same in EF and in N . So in particular, K ≤ Aut(OF ).

Thus both K and Aut(PF ) are co-precompact, extremely amenable sub-
groups of Aut(OF ). By Theorem 6.7 and Theorem 2.20 it follows that
K ≤ Aut(PF ). �

6.4. Amenable subgroups. The following is a simple generalisation of
Proposition 9.3 of [1].
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Theorem 6.10. Suppose (K;⊆) is a free amalgamation class of structures
in a language with relations and partial functions. Let O be the Fräıssé limit
of (K;⊆). Then G = Aut(O) is amenable.

Proof. By Theorem 2.12, the class (K≺;⊆) of all linear orderings is a Ram-
sey class. Let P be its Fräıssé limit. Then H = Aut(P ) is a co-precompact

extremely amenable subgroup of G and the completion Ĝ/H is isomorphic
(as a G-flow) to the space of linear orderings on O. This has a G-invariant
probability measure. Moreover, as H is extremely amenable and the G-

orbit G/H is dense in Ĝ/H, there is a continuous G-map from Ĝ/H to any
other G-flow. �

Recall the following notation:

(1) N0 is the Fräıssé limit of (D0;vs);
(2) E0 is the Fräıssé limit of the fine orientations (E0;vs);
(3) O0 is the Fräıssé limit of the closure-reducts (G0;⊆);
(4) NF is the Fräıssé limit of (DF ;vd);
(5) EF is the Fräıssé limit of the d-fine orientations (EF ;vd);
(6) OF is the Fräıssé limit of their closure reducts (GF ;⊆).

Each of these, and their closure reducts may be regarded as the Fräıssé
limit of a free amalgamation class (K;⊆) in a language with relations and
partial functions. Thus by Theorem 6.10 we have:

Theorem 6.11. The groups Aut(N0), Aut(N◦0 ), Aut(E0), Aut(O0),
Aut(NF ), Aut(N•F ), Aut(EF ), Aut(OF ) are amenable.

It would be interesting to know whether the subgroup Aut(O0) is maximal
amenable subgroup of Aut(M0) and whether Aut(OF ) is maximal amenable
subgroup of Aut(MF ).

7. Concluding remarks

It would of course be interesting to find other types of counterexamples
for Question 1.1.

As already mentioned, the following question, raised by a number of
authors, remains open:

Question 7.1. Suppose M is a countable structure which is homogeneous
in a finite relational language. Does there exist an ω-categorical expansion
N of M whose automorphism group is extremely amenable? If so, can we
take N homogeneous in a finite relational language?

In view of Theorem 3.7, we ask the following:
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Question 7.2. Does there exist a countable structure M which is homoge-
neous in a finite relational language and in which a sparse graph of infinite
valency can be interpreted?

By Theorem 3.7, such an M would give a negative answer to the first
question.

It is worth remarking that an ω-categorical sparse graph of infinite va-
lency interprets a pseudoplane: a bipartite graph where all vertices are of
infinite valency and in which any pair of vertices have only finitely many
common neighbours. The Hrushovski construction in Section 4 is the only
way of producing ω-categorical pseudoplanes currently known. Moreover,
it is an open question whether there is a pseudoplane which is homogeneous
in a finite relational language (see [38]).

Note that in our examples of groups G for Question 1.1, the obstacle to
having a precompact extremely amenable subgroup, that is, the G-flow of
orientations, is also the obstacle to G being amenable. So the following ver-
sion of Question 1.1 considered by Ivanov in [23] is particularly interesting:

Question 7.3. Suppose M is a countable ω-categorical structure with
amenable automorphism group. Does there exist an ω-categorical expan-
sion of M whose automorphism group is extremely amenable?

The groups Aut(M0) and Aut(MF ) have metrizable minimal flows all of
whose orbits are meagre (Theorem 5.2). The following has been raised by
T. Tsankov (personal communication):

Question 7.4. Does either of these groups have a non-trivial, (metrizable)
minimal flow with a comeagre orbit?

We note that the paper [27] by A. Kwiatkowska has an example of a
countable structure which is not ω-categorical, but whose automorphism
group G is Roelcke precompact and is such that M(G) is non-metrizable
and has a comeagre orbit.

In Theorem 6.10 we gave an easy proof of amenability (modulo a hard
Ramsey result) which did not use EPPA. However, it would still be inter-
esting to have the EPPA results as they imply other properties of auto-
morphism groups, beyond amenability. By Theorem 1.7 of [12] it follows
that class G0 has EPPA. Because the language of GF contains non-unary
functions, we cannot establish the expansion property for partial automor-
phisms by application of [12]. However, it seems reasonable to conjecture
it. Moreover, we also believe that some of the amenable subgroups are
maximal amenable. In particular, we propose:

Conjecture 7.5. The class (GF ;⊆) has EPPA. Moreover, if Aut(OF ) ≤
H ≤ Aut(MF ) and H is amenable, then H ≤ Aut(OF ).



41

Our results can also be formulated in the context of [1]. One can eas-
ily see (implicitly in [1]) that the concepts of excellent pair (K,K∗) and
consistent random K-admissible orderings to classes endowed with strong
mappings and (more complicated) expansions, thus obtaining results analo-
gous to Proposition 9.2 of [1]. This is interesting if we apply this to ordering
theorems for substructures (i.e. to canonical orderings) which were in this
context studied in [34], see also [2] for related research.
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[8] Manfred Droste and Rüdiger Göbel, A categorical theorem on universal objects
and its application in abelian group theory and computer science, Contemporary
Mathematics 131 (1992), 49–74.

[9] David M. Evans, ‘Homogeneous structures, ω-categoricity and amalgamation con-
structions’. Notes on a Minicourse given at HIM, Bonn, September 2013. (avail-
able from: https://www.him.uni-bonn.de/programs/past-programs/past-trimester-
programs/universality-and-homogeneity/mini-courses/).

[10] David M. Evans, ‘Trivial stable structures with non-trivial reducts’, J. London Math.
Soc (2) 72 (2005), 351-363.

[11] David M. Evans, ‘Ample dividing’, J. Symbolic Logic 68 (2003), 1385-1402.
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Ramsey theory, and topological dynamics of automorphism groups,’ Geometric and
Functional Analysis, 15 (2005), 106–189.

[25] Alexander S. Kechris and Christian Rosendal, ‘Turbulence, amalgamation, and
generic automorphisms of homogeneous structures’, Proc. London Math. Soc., 94(2)
(2007), 302-350.
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