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Abstract

The reconfiguration graph Rk(G) of the k-colourings of a graph G contains as
its vertex set the k-colourings of G and two colourings are joined by an edge if they
differ in colour on just one vertex of G.

We answer a question of Bonamy, Johnson, Lignos, Patel and Paulusma by con-
structing for each k ≥ 3 a k-colourable weakly chordal graph G such that Rk+1(G)
is disconnected. We also introduce a subclass of k-colourable weakly chordal graphs
which we call k-colour compact and show that for each k-colour compact graph G
on n vertices, Rk+1(G) has diameter O(n2). We show that this class contains all k-
colourable co-chordal graphs and when k = 3 all 3-colourable (P5, P5, C5)-free graphs.
We also mention some open problems.

1 Introduction

Let G be a graph, and let k be a non-negative integer. A k-colouring of G is a function
f : V (G)→ {1, . . . , k} such that f(u) 6= f(v) whenever (u, v) ∈ E(G). The reconfiguration
graph Rk(G) of the k-colourings of G has as vertex set the set of all k-colourings of G and
two vertices of Rk(G) are adjacent if they differ on the colour of exactly one vertex (the
change of the colour is the so called colour switch). For a positive integer `, the `-colour
diameter of a graph G is the diameter of R`(G).

In the area of reconfigurations for colourings of graphs, one focus is to determine the
complexity of deciding whether two given colourings of a graph can be transformed into one
another by a sequence of recolourings (that is, to decide whether there is a path between
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these two colourings in the reconfiguration graph); see, for example, [8, 7, 5, 3]. Another
focus is to determine the diameter of the reconfiguration graph in case it is connected or
the diameter of its components if it is disconnected [2, 6, 1, 4, 9]. We refer the reader
to [13, 11] for excellent surveys on reconfiguration problems. In this note, we continue
the latter line of study of reconfiguration problems. In Section 3, we shall answer in the
negative a question of Bonamy, Johnson, Lignos, Patel and Paulusma [2] concerned with
the (k+1)-colour diameter of k-colourable perfect graphs by showing that it can be infinite.
On the positive side, in Section 4, we shall consider two specific subclasses of k-colourable
perfect graphs and show that their (k+ 1)-colour diameter is quadratic in the order of the
graph.

2 Preliminaries

For a graph G = (V,E) and a vertex u ∈ V , let NG(u) = {v : uv ∈ E}, A separator
of a graph G = (V,E) is a set S ⊂ V such that G − S has more connected components
than G. If two vertices u and v that belong to the same connected component in G are in
two different connected components of G − S, then we say that S separates u and v. A
chordless path Pn of length n− 1 is the graph with vertices v1, . . . , vn and edges vivi+1 for
i = 1, . . . , n− 1. It is a cycle Cn of length n if the edge v1vn is also present.

The complement of G is denoted G = (V,E). It is the graph on the same vertex set as
G and there is an edge in G between two vertices u and v if and only if there is no edge
between u and v in G. A set of vertices in a graph is anticonnected if it induces a graph
whose complement is connected. A clique or a complete graph is a graph where every pair
of vertices is joined by an edge. The size of a largest clique in a graph G is denoted ω(G).
The chromatic number χ(G) of a graph G is the least integer k such that G is k-colourable.

A graph G is perfect if ω(G′) = χ(G′) for every (not necessarily proper) subgraph G′

of G. A hole in a graph is a cycle of length at least 5 and an antihole is the complement
of a hole. A graph is weakly chordal if it is (hole, antihole)-free. A graph is co-chordal if it
is (C4, anti-hole)-free. Every weakly chordal graph is perfect. Every co-chordal graph and
(P5, P5, C5)-free graph is weakly chordal.

A 2-pair of a graph G is a pair {x, y} of nonadjacent distinct vertices of G such that
every chordless path from x to y has length 2. We often use the following well-known
lemma:

Lemma 2.1 (Hayward et al. [10]). A graph G is weakly chordal graph if and only if every
subgraph of G is either a complete graph or it contains a 2-pair.

3 Weakly chordal graphs

In this section, we consider a question from [2] which asks whether the (k + 1)-colour
diameter of k-colourable perfect graphs is quadratic. We answer this question in the
negative in the following theorem.
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Figure 1: The graph Gk. Each gray area corresponds to a clique.

Theorem 3.1. For each k ≥ 3 there exists a k-colourable weakly chordal graph G such
that Rk+1(G) is disconnected.

In other words, Theorem 3.1 states that for each k ≥ 3 the (k + 1)-colour diameter of
k-colourable weakly chordal graphs can be infinite. Since the class of weakly chordal graphs
is a proper subclass of the class of perfect graphs, Theorem 3.1 answers their question in
a strong form. It is worth mentioning that the case k = 2 is already known [2] as the class
of 2-colourable weakly chordal graphs is precisely the class of chordal bipartite graphs.

Proof of Theorem 3.1. It suffices to construct for each k ≥ 3 a k-colourable weakly chordal
graph Gk and a (k + 1)-colouring of G such that each of the k + 1 colours appear in the
closed neighbourhood of every vertex of Gk, as then no vertex of Gk can get recoloured.

Such graph is depicted in Figure 1. It is formed from the disjoint union of four complete
graphs Kk−1, one on vertices ui for i ∈ {1, . . . , k− 1}, the other three on vertices vi, wi, zi,
respectively, and two further vertices x and y. These parts are joined together by additional
edges such that x and y are connected to each ui and to each vi; u1 and v1 are connected
to each zi and to each wi; and finally, Gk contains two further edges xz1 and yw1.

A possible k-colouring of Gk is schematically shown on the left side of Figure 1; in
both pictures each 4-tuple ui, vi, wi, zi for i ∈ {2, . . . , k − 2} receives a unique colour. On
the other hand, in the (k + 1)-colouring depicted on the right, every vertex of Gk has its
neighbours coloured by the k remaining colours, hence no vertex can be recoloured. Hence,
this colouring corresponds to an isolated vertex in the reconfiguration graph, and thus the
reconfiguration graph Rk+1(Gk) is disconnected.

It remains to show that Gk is weakly chordal. Observe first that any distinct ui, uj
with i, j ∈ {2, . . . , k−1} have the same neighbourhood, hence no hole and no antihole may
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contain both of them. The same holds for vertices vi, wi, zi, respectively. Hence without
loss of generality we may assume that no vertex with index at least three participates in
a hole nor in an antihole. In other words, it suffices to restrict ourselves only to the graph
G3 to show that it is weakly chordal.

By examining possible paths, one can also realise that vertices x, y as well as u1, v1 form
a 2-pair. Since no hole may contain a 2-pair, we may assume without loss of generality
that a possible hole does not contain y and v1. The vertex x separates v2 and also the
vertex u1 separates w1, w2 from the rest in the graph G3−{y, v1}, hence v2, w1, w2 also do
not belong to a hole. We were left with five vertices x, u1, u2, z1, z2 which do not induce a
hole, hence G3 does not contain a hole at all.

Now assume for a contradiction that G3 contains an antihole on at least 6 vertices. The
graph G3 contains only 6 vertices of degree at least 4, hence the antihole contains exactly 6
vertices. The neighbourhood of u2 induces a diamond (a K4 minus an edge), hence it does
not belong to the antihole as no diamond is an induced subgraph of C6. The same holds
for v2, z2, w2. We are left with vertices x, y, u1, v1, w1, z1 which do not induce an antihole
in G3, hence G3 does not contain an antihole at all.

Since G3 is weakly chordal, we have shown that Gk is also weakly chordal for each
k ≥ 4.

4 Quadratic diameter

In this section, we introduce a subclass of k-colourable weakly chordal graphs that we call
k-colour compact graphs. We show in Theorem 4.1 that for each k-colour compact graph
G on n vertices the diameter of Rk+1(G) is O(n2). We then show in Lemma 4.1 that
k-colourable co-chordal graphs are k-colour compact and in Lemma 4.2 that 3-colourable
(P5, P5, C5)-free graphs are 3-colour compact.

For a 2-pair {u, v} of a weakly chordal graph G, let S(u, v) = NG(u) ∩ NG(v). Note
that, by the definition of a 2-pair, S(u, v) is a separator of G that separates u and v. Let
Cv denote the component of G \ S(u, v) that contains the vertex v.

Definition 4.1. For a positive integer k, a k-colourable weakly chordal graph G is said to
be k-colour compact if every subgraph H of G either

(i) is a complete graph, or

(ii) contains a 2-pair {x, y} such that NH(x) ⊆ NH(y), or

(iii) contains a 2-pair {x, y} such that Cx ∪ S(x, y) induces a clique on at most three
vertices.

Theorem 4.1. Let k be a positive integer, and let G be a k-colour compact graph on n
vertices. Then Rk+1(G) has diameter O(n2).
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Figure 2: For the proof of Theorem 4.1. The component Cy contains further vertices and
edges outlined in gray.

Proof. It suffices to show that we can recolour a (k + 1)-colouring α of G to a (k + 1)-
colouring β by recolouring every vertex at most 2n times.

We first suppose that G is a complete graph. In this case, we know from [2] that we can
recolour α to β by recolouring every vertex at most 2n times. We now consider the case
when G is not a complete graph but satisfies condition (ii) of k-colour compact graphs.
We use induction on the number of vertices of G. Let {x, y} be a 2-pair of G such that
NG(x) ⊆ NG(y). From α and β, we can immediately recolour x with, respectively, α(y)
and β(y). Let G′ = G − {x}, and let αG′ and βG′ denote the restrictions of α and β to
G′. By our induction hypothesis, we can transform αG′ to βG′ by recolouring every vertex
at most 2(n − 1) times. We can extend this sequence of recolourings to a sequence of
recolourings in G by recolouring x using the same recolouring as y. Then x gets recoloured
as many times as y as needed.

Suppose that G satisfies condition (iii) of k-colour compact graphs. We use induction
on the number of vertices. If S(x, y) contains exactly two vertices, then Cx = {x} and
hence G satisfies condition (ii) of k-colour compact graphs. So we can assume that S(x, y)
is a single vertex z and Cx consists of x and another vertex w, see Figure 2. From α and β,
we can recolour x and w to another colour either immediately or by first recolouring w and
x, respectively. Let G∗ = G− {x,w}. By our induction hypothesis, we can transform αG∗

to βG∗ by recolouring every vertex at most 2(n − 2) times. We can extend this sequence
of recolourings to a sequence of recolourings in G by recolouring x and w whenever z is
recoloured to their colour. At the end of the sequence we recolour x and w so that they
agree in both colourings. As x and w are recoloured at most two more times as z, this
completes the proof.

Lemma 4.1. Every k-colourable co-chordal graph is k-colour compact.

Proof. Let G be a k-colourable co-chordal graph. If G is a complete graph, then G is
k-colour compact by definition. Otherwise, since G is weakly chordal, G contains a 2-pair
{x, y} by Lemma 2.1. If x has a neighbour x1 that is not a neighbour of y and y has
a neighbour y1 that is not a neighbour of x, then x1 is not adjacent to y1, as otherwise
S(x, y) does not separate x and y. But then the edges xx1 and yy1 form C4, a contradiction.
Therefore, NG(x) ⊆ NG(y) or vice-versa and hence the graph G is k-colour compact as
required.
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Lemma 4.2. Every 3-colourable (P5, P5, C5)-free graph is 3-colour compact.

The proof of this lemma will require a little more work. First, we need some definitions
and auxiliary results. When T is a set of vertices of a graph G, a set D ⊆ V (G) \ T is
T -complete if each vertex of D is adjacent to each vertex of T . Let D(T ) denote the set
of all T -complete vertices.

Lemma 4.3 (Trotignon and Vušković [12]). Let G be a weakly chordal graph, and let
T ⊆ V (G) be a set of vertices such that G[T ] is anticonnected and D(T ) contains at least
two non-adjacent vertices. If T is inclusion-wise maximal with respect to these properties,
then any chordless path of G \ T whose ends are in D(T ) has all its vertices in D(T ).

The following corollary is implicit in [12].

Corollary 4.1. Let G be a weakly chordal graph that contains a chordless path P of length
2. Then there exists an anticonnected set T containing the centre of P , such that D(T )
contains a 2-pair of G.

In particular, the 2-pair can always be found in the neighbourhood of the centre of P .

Proof. We start with the centre of P to build our set T as in Lemma 4.3. Then D(T ) is
not a clique as it contains both ends of P . Hence, by definition of weakly chordal graphs,
D(T ) contains a 2-pair. This 2-pair is also a 2-pair of G by Lemma 4.3.

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Let G be a 3-colourable (P5, P5, C5)-free graph. Suppose towards a
contradiction that G is not 3-colour compact. In particular, G is not a complete graph,
as otherwise G would be 3-colour compact by the definition. Since G is weakly chordal, it
contains a 2-pair {x, y}. We choose {x, y} such that |V (Cx)| is minimum over all 2-pairs
{x, y} of G.

Denote by G′ the subgraph of G induced by the union of S(x, y) and the vertices of
Cx. The subgraph G′ is not complete, as G would be 3-colour compact, hence G′ contains
a chordless path of length 2. Let us argue that G′ contains a chordless path of length 2
whose centre is, in fact, a member of Cx.

If Cx is not complete, then this is immediate. And if S(x, y) is not complete, then it
contains a pair of vertices u and v that are not adjacent, so we take u, x, v to be our path.
Hence we can assume that Cx and S(x, y) are both complete and, as G′ is not complete,
there must be a vertex u of Cx and a vertex v of S(x, y) such that uv 6∈ E(G). Then we
can take u, x, v as our path and our aim is achieved.

Applying Corollary 4.1 with P being a chordless path of length 2 whose centre is in Cx,
we find that G′ contains a 2-pair {z, w} that is also a 2-pair of G.

We next want to argue that z, w ∈ S(x, y). For a contradiction, assume without loss
of generality that z belongs to Cx. This implies that S(z, w) ⊆ V (G′). So there must be
a component C1 of G \ S(z, w) such that C1 and S(x, y) do not have a vertex in common
since y is adjacent to every vertex of S(x, y). Therefore, we find that C1 ⊆ Cx. If C1 = Cx,

6



x′ x y y′

w

w′

z

z′b)

x′ x y y′

w

w′

z

z′a)

x′ x y y′

w

w′

z

z′c)

?

Figure 3: The case analysis for the proof of Lemma 4.2. The dotted connections indicate
nonadjacent vertices.

7



then S(x, y) = S(z, w) and hence z, w ∈ C1 which is impossible because S(z, w) separates
z and w. Therefore, |V (C1)| < |V (Cx)| holds, which contradicts our choice of Cx.

Hence we have concluded that z, w ∈ S(x, y). Now the vertices x, z, y, w form a cycle
such that {x, y} and {z, w} are 2-pairs. Since G is not 3-colour compact, NG(x) 6⊆ NG(y),
hence there exists a vertex x′ that is adjacent to x but not to y. Analogously, there are
vertices y′, z′, w′ such that yy′, zz′, ww′ ∈ E, but xy′, wz′, zw′ /∈ E. If x′ = z′, then x′ must
be adjacent to y or w else x′, x, z, y, w form P5. But x′ is not adjacent to y and z′ not
adjacent to w, thus x′ 6= z′. Similarly, y′ 6= w′ and hence x′, y′, w′, z′ are distinct. Moreover,
since S(x, y) is a separator, we get x′y′ /∈ E and analogously w′z′ /∈ E, see Figure 3 a).

If both z′ and w′ are not adjacent to x, then z′, z, x, w, w′ form P5. So we can assume
without loss of generality that z′ is adjacent to x. If z′ is not adjacent to y, then z′, z, x, w, y
would form P5 as w is not adjacent to z′. Thus z′ is adjacent to both x and y.

Similarly, to avoid P5 on vertices x′, x, z, y, y′ either x′ or y′ must be adjacent to z and
hence also to w, so we assume without loss of generality that x′ is adjacent to z and w. If
x′ is adjacent to z′, then x, z, z′, x′ form K4, a contradiction with the assumption the G is
3-colourable, see Figure 3 b).

To avoid a P5 on the vertices x′, x, z′, y, y′, the vertices z′ and y′ are forced to be
adjacent. Similarly x′w′ ∈ E as otherwise z′, z, x′, w, w′ induce a P5. To avoid a K4 on
the vertices z, z′, y, y′, the vertices z and y′ need to be nonadjacent. Similarly xw′ /∈ E as
otherwise x, x′, w, w′ induce a K4.

Now the vertices w′, x′, x, z′, y′ induce either a C5 or a P5, depending whether the edge
y′w′ is present or not, see Figure 3 c). In either case we arrive at a contradiction and the
lemma is proved.

We are aware the the concept of k-colour compact graphs does not fit tight with the
class of (P5, P5, C5)-free graphs, as some of these graphs need not to be k-colour compact
for k ≥ 4. An example of such graph H for k = 4 is depicted in Figure. 4.

Due to symmetries of the graph H it suffices without loss of generality to consider only
the 2-pair {x, y} as other 2-pairs could be mapped onto {x, y} by an automorphism of H.
Observe that this 2-pair violates the conditions of the definition 4.1 for H to be 4-colour
compact.

Any choice of five vertices from H would contain two vertices joined by a horizontal or a
vertical edge, and such edge cannot be extended to an induced P3, hence H is also P5-free.
Also, such choice of five vertices would contain two opposite vertices either of the inner C4

or from the outer one, like the vertices x and y. As such two vertices form an 2-pair, H
contains no C5. Finally, H has only two induced C4 and neither could be completed by
any fifth vertex to a P5.

5 Concluding remarks

We end this note with three open problems.
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Figure 4: A (P5, P5, C5)-free 4-colourable graph H that is not 4-colour compact.

Problem 1. For which integer ` > k + 1 is the `-colour diameter of k-colourable weakly
chordal graphs quadratic?

Problem 2. For which integer ` > k + 1 is the `-colour diameter of k-colourable perfect
graphs quadratic?

Problem 3. Is it true that the (k + 1)-colour diameter of k-colourable (P5, P5, C5)-free
graphs is quadratic for each k ≥ 4?
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