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Preface

The joint REU program between DIMACS and DIMATIA started back in
1999 with the exchange of 5 US and 3 Czech students. Since then, the
program has taken place every single year without any interruptions. From
2019 the program is receiving funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sk lodowska-Curie
grant agreement No. 823748. In this age of rapid changes in the research and
funding landscape, it takes a lot of effort for any activity to survive for more
than 20 years, especially an activity focused on bringing together students
from different continents. I think that the success and the durability of
the program is a testament to the care and commitment of everyone at
Charles University and at Rutgers University to offer this opportunity to
our students.

During this period, 127 American REU students have studied in Prague
with a similar number of Czech students working at Rutgers. For the major-
ity of the students, this program is their first real step in conducting original
research. These first steps can be daunting, but the students greatly benefit
by the one-to-one mentoring plan by Rutgers faculty at DIMACS and by
Charles University. The role of the (volunteer!) mentors cannot be stressed
enough in this process. Students know that they will have the full attention
of their mentors for the entire duration of the program and the mentors
are committed to helping them grow as scientists. I believe that the key
aspect of the program is that everyone is invested in the students’ success.
We want to make sure that any issue is immediately solved and that all
students feel welcome and supported in their work and social environment.

Our students consistently praise this experience and the multitude of
benefits they get out of it. Listening to lectures in Charles University,
participating in international research workshops, visiting the Art Museum
in Prague, and bonding with their Czech peers are always mentioned in the
student reports as transformative experiences. Most of them also mention
that they acquire a new understanding of how research transcends national
or language borders and have a deeper appreciation for the power of ideas
and of scientific thinking.
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On a personal note, I always know that no matter what problem may
arise, our collaborators (and friends!) in Prague will make sure that it is
quickly resolved. I owe a big Thank You to Professors Nesetril, Loebl, and
Fiala, among others, together with their staff and the Czech students, for
taking such good care of our students and of all aspects of the program in
Prague. Děkuji!

Lazaros Gallos,
DIMACS REU director
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Charles University in Prague and particularly Department of Applied
Mathematics (KAM) and Computer Science Institute of Charles University
(IÚUK) are very happy to host one of the very few International REU
programmes which were established and are in long term supported by the
National Science Foundation.

On the Czech side, the programme has been the first time financed by
the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No. 823748. We are
grateful and proud to receive such major sponsorship of our unique activity.

Since the establishment of DIMACS–DIMATIA REU in 1999, it has
been awarded for its accomplishments and educational excellence.

This booklet reports just the activities and the programme that have
been conducted in 2019. In particular I thank to Pavel Dvořák, and Jakub
Pekárek the Czech mentors of this year, for a very good work both during
the programme itself and afterwards.

Prague, February 25
Martin Loebl,

The senior organizer of the Czech REU part
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Thanks to the EU grant, there were 10 Czech participants (3 gradu-
ate and 7 undergraduate students) of the REU 2019 program at DIMACS.
The students were divided into 4 groups and worked with 3 mentors Bhar-
gav Narayanan, Periklis Papakonstantinou and Sophie Spirkl on various
projects. The topics of projects were part of theoretical computer science
and discrete math like graph theory, probability theory and computational
complexity. This booklet contains papers which cover the work of Czech
students from summer 2019. In time of publishing this booklet, the paper by
M. Beliayeu, P. Chmel and J. Petr, supervised by B. Narayanan (Part IV),
was already published in Electronic Communications in Probability and re-
sults of P. Pelikánová, and A. Št’astná, supervised by S. Spirkl (Part II),
were presented at workshop Cycle and Colourings 2019. The booklet also
contains one note about a project of two US students who were part of the
group which spent a part of the REU program in Prague.

Pavel Dvořák,
Charles University
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A Graph Game from Extremal

Combinatorics

Jan Soukup, Andrej Ded́ık

Abstract

A game Gi(n, k,H) is played by two players on initially empty
graph with n vertices. In every round player A selects a stable set of
size k and Player B adds some new edges to this stable set. Player A
is trying to force an appearance of an induced sub-graph isomorphic
to H while Player B ’s effort is to not allow this to happen.

Chudnovsky et al. [3] showed that for every k and H, Player A
have winning strategy for every game Gi(n, k,H) with sufficiently
large n. We look in the asymptotic of the minimal n for which Player
A has a winning strategy. We prove that for certain well-known fam-
ilies of graphs, we can get polynomial bounds (with respect to k and
size of H). In particular, the growth of n is at most polynomial for
paths, trees and cycles.

1 Introduction

The graphs in this paper are finite, without loops and multiple edges be-
tween vertices. We denote the vertex set of a graph G by V (G) and the
edge set of a graph G by E(G). The graph G[X] is a graph induced by a
vertex set X. ω(G) is the size of the the largest clique in G and α(G) is
the size of the maximal stable set (also known as the maximal independent
set). The eccentricity of a vertex v in a graph G, denoted by exG(v), is a
maximum distance from v to any vertex of G. The diameter of G, denoted
by diam(G), is a maximum eccentricity of vertices of G.

We say that G contains (induced) H if some (induced) sub-graph of G
is isomorphic to H. If G does not contain (induced) H we say that G is
(weakly) H-free.
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Definition 1.1. Let H be a graph, k, n be integers and k ≥ 2. A game
Gi(n, k,H) is game played by two players on an initially empty graph G
with n vertices by two players Player A and Player B. The goal of Player A
is to force G to contain induced H. The goal of Player B is to not allow this
to happen. The game is played in rounds. Each round proceeds as follows:

• Player A selects a stable set S ⊆ V (G) of size k. If there is no stable
set of size k and G does not contain induced H, then Player B wins.

• Player B adds at least one edge into the stable set S. If G contains
induced H after addition of new edge(s), then Player A wins.

For convenience we also define a game G(n, k,H) the same way as
Gi(n, k,H), with only difference that Player A is trying to force an ap-
pearance of H as a sub-graph (not as an induced sub-graph) in G.

Definition 1.2. For a graph H we say that (induced) H is (n, k)-forcible if
there is a strategy for Player A to always win game G(n, k,H) (Gi(n, k,H)).
Alternatively we say that Player A can (n, k)-force (induced) H.

Chudnovsky et al. [3] proved the following.

Theorem 1.3. For every graph H and every k ≥ 2 there exists n ≥ k such
that induced H is (n, k)-forcible.

As a consequence of this, we know that for each H and k ≥ 2 there
exists minimal integer m such that induced H is (m, k)-forcible. Call this
number m(H, k). One can deduce the upper bound for m(H, k) from the
proof of Theorem 1.3, which would bound m(H, k) by double exponential
function in |E(H)| and k.

The game was initially introduced as a tool in a work analyzing weakly
H-free graphs. Namely,Chudnovsky et al. [3] strengthen in several different
ways the following theorem by Erdő et al. [8]

Theorem 1.4. For every graph H there exists ε > 0 such that for every
weakly H-free graph G with n > 1 vertices, there are disjoint A,B ⊆ V (G)
such that |A|, |B| ≥ εnε and either every vertex of A is adjacent to every
vertex of B, or every vertex of A is non-adjacent to any vertex of B.

This problem itself can be used as a step in partial proof of Erdős-
Hajnal Conjecture [6]. The best general bound for this conjecture to date
was proved by Erdős and Hajnal [7], namely:
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Theorem 1.5. For every graph H, there exists ε > 0 such that for every
H-free graph G with n > 0 vertices, some clique or stable set of G has
cardinality at least 2ε

√
logn.

This result was not improved in general case despite much attention. For
partial results see e.g. [9, 4, 1, 11]. We refer to the survey of Chudnovsky [2]
for more details. Another result of this type is due to Prömel and Rödl [12].

Theorem 1.6. For each C there is c > 0 such that every graph on n vertices
contains every graph on at most c log n vertices as an induced sub-graph or
has a clique or independent set of size at least C log n.

For an exhaustive survey of the whole Ramsey theory we refer to survey
by Conlon et al. [5].

Even though we investigate the game independently, it is closely con-
nected to other Ramsey type results. Special case, already noted by Chud-
novsky et al. [3], is that m(Kt, k) = R(t, k), where R(t, k) is a Ramsey
number. The upper bound follows from the fact that Player A can force
a graph with small stable set. The lower bound follows from the fact that
there exist a graph G on R(t, k) vertices without big stable set and big
clique. Therefore, player B can keep the game graph isomorphic to some
sub-graphs of G during the whole game.

We believe this game can help in understanding of other Ramsey related
questions.

Main results of our paper are regarding about paths, trees and cycles. In
order to get polynomial bounds for m(k,H), we first derive bounds effective
for small k, namely that m(Pn, k) ≤ kdlogne and m(Pn, k) ≤ 2kn and nice
bound for trees with maximal degree d giving us m(T, 3) ≤ n + 1 + (d +
1)(n− 2). Next results show that the bounds are polynomial for paths and
trees in general case, O((max{n, k})4) and O((max{n, k})12) respectively.
We use this results to get polynomial bounds for cycles in the last section.

2 Bounds for small k

This section presents basic results for paths and trees. These results are
effective as long as k is ”small”, more general theorems are in the next
section.

By Pn we denote a path on n vertices.
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Theorem 2.1. For each path Pn, n ∈ N, m(Pn, k) ≤ kdlogne.

Proof. Let us prove one auxiliary result first:

1. Let x ∈ N. Then m(P2x , k) ≤ kx.

We prove this by induction on x. For x = 0 it is trivial. By induction,
Player A can (kx−1, k)-force P2x−1 . Thus he can (kx, k)-force k independent
copies of P2x−1 . The endpoints of these paths are independent, hence Player
A can select a stable set of size k consisting of the endpoints of these k
paths. Two of these path will be connected by new edge. So the forced
graph contains an induced P2·2x−1 , proving (1).

Following this result Player A can (kdlogne, k)-force path on 2dlogne ver-
tices, which contains an induced path on n vertices.

While this result cuts down the exponential part of the original result
significantly, it is still not polynomial. The next result becomes linear for
constant k.

Theorem 2.2. For each path Pn on n vertices, n ∈ N, m(Pn, k) ≤ 2k+1n.

Proof. With sufficient amount of vertices Player A is able to keep k com-
ponents of the game graph G such that their diameters are large compared
to the number of vertices (we will state this precisely later).

Let Gs = {Gs1, Gs1, ..., Gsk} be a set of these k components of G after
s-th step of the game (initially each consists of single vertex). In every

step Player A selects stable set S =
⋃k
i=1 vi where vi ∈ Gsi such that

∀w ∈ Gsi : exGi
(vi) ≥ exGi

(w) (and so exGi
(vi) = diam(Gi)). Player B

then connects some of these components into new ones. Then Player A will
form Gs+1 as follows:

• Each maximal set of components
{
Gsi1 , G

s
i2
, . . . , Gsih

}
, with indices or-

dered as i1 < · · · < ih, connected by Player B into a single component
becomes the componentGs+1

ih
. Additionally, for each such set and each

j ∈ {i1, ..., ih−1} assign singletons to Gs+1
j (except for the last step).

See Figure 1.

Now we show that for each s and each component Gsi the following
statement holds:

V (Gsi ) ≤ 2i−1 (diam(Gsi ) + 1) (1)
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Gs
1 Gs

2 Gs
kGs
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Gs+1
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Gs+1
1 Gs+1

3

Gs+1
k

Gs

Gs+1

Figure 1: Rearranging Gs into Gs+1

We proceed by induction. Suppose the statement holds for s (clearly state-
ment holds for s = 0 since all components are singletons). For Gs+1

i formed
by a singleton it clearly holds. Otherwise Gs+1

i is not a singleton, so
component Gs+1

i = Gs+1
ah

was formed with Player B joining components
Gsa1 , ..., G

s
ah

where h ≥ 2 and ah is the greatest index from among them.
Since Player A selected vertices with maximum eccentricity from the com-
ponents, then clearly

diam(Gs+1
ah

) ≥ diam(Gsah) + max
j∈[h−1]

{diam(Gsaj ))}+ 1.

Using this and the induction hypothesis, we see that

V (Gs+1
ah

) =

h∑
i=1

V (Gsai) ≤
h∑
i=1

2ai−1(diam(Gsai) + 1)

≤ 2ah−1
(
diam(Gsah) + 1

)
+

(
h−1∑
i=1

2ai−1

)
max
j∈[h−1]

{diam(Gsaj ) + 1}

≤ 2ah−1
(
diam(Gsah) + 1

)
+ 2ah−1 max

j∈[h−1]
{diam(Gsaj ) + 1}

= 2ah−1
(
diam(Gsah) + 1 + max

j∈[h−1]
{diam(Gsaj ) + 1}

)
≤ 2ah−1

(
diam(Gs+1

ah
) + 1

)
,

which proves equation 1
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We now show that for some s the graph formed by components Gs con-
tains induced Pn. It easy to see that the value

∑n
i=1 2i (diam(Gsi )) increases

in each step, and therefore the diameter of some Gs will eventually be larger
than n and so the statement follows.

It remains to bound the number of vertices in the graph in the end.
Let Gs be the components after the last step. Clearly all the vertices of
the graph are the vertices of all the components in Gs−1 since there are no
vertices added in the last step. Each component from Gs−1i has diameter at
most n− 2 (does not contain induced Pn), therefore has at most 2i · (n− 1)

vertices (by Equation 1). Thus, there are at most
∑k
i=1 2i ·(n−1) ≤ n ·2k+1

vertices in total.

The next step would be to show that we can bound the amount of
vertices needed to force a tree for a small k, since, as we will see later on,
we can force several graphs stemming from trees. This approach, however,
works only for k of fixed size of three.

Theorem 2.3. For each tree T on n vertices with maximal degree d it
holds that m(T, 3) ≤ n+ 1 + (d+ 1)(n− 2).

Proof. Strategy for Player A is constructing one tree A and one forest B
simultaneously such that to following conditions hold.

• Tree A and forest B are not connected via edge nor vertex.

• Initially A is singleton and B is a forest consisting of |V (T )| isolated
vertices.

• The tree A is isomorphic to induced sub-graph of T and B is isomor-
phic to T with some removed edges. For each vertex v ∈ V (A) we
denote the corresponding vertex in V (T ) by vT . And for each vertex
v ∈ V (B) we denote the corresponding vertex in V (T ) by vT .

Player A proceeds as follows.

• As the stable set Player A always selects one vertex v from tree A and
two vertices u,w from forest B, such that dA(v) < dT (vT ), uTwT ∈
E(T ) and uw /∈ E(B).

• If Player B adds only the edge uw then the conditions are still sat-
isfied. Otherwise Player B connects vertex u or w to the vertex v.
Without loss of generality suppose he connects at least u to v. If that
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is the case, Player A considers the vertex u a part of tree A (that
is, he removes it from B and add it to A) and then removes all the
neighbors of u in forest B, and if vertex w is connected to either u or
v he removes w from forest B as well. Then he replaces all removed
vertices from forest B by new isolated vertices.

Once Player A cannot select such a stable set, either tree A or forest B is
clearly isomorphic to T . Initially there are n + 1 vertices. For each vertex
added to auxiliary tree A, Player A has to replace at most d+ 1 vertices in
forest B. He needs to do this at most n−2 times (Since the replacement step
is not needed in the very last step). So he needs at most n+1+(d+1)(n−2)
vertices in total.

3 Paths and trees on polynomial number of
vertices

In the previous section we obtained polynomial bounds for paths when k
is fixed. In this section we describe a way to force paths and trees in
polynomial time in both the number of vertices and k, but the polynomial
bounds are worse.

Parameter m(H, k) is clearly increasing in k. Since we want polynomial
bound in both n (n = V (H)) and k, we can assume that k = n (otherwise
we use either larger k or force a larger tree that contains induced former
one).

3.1 Paths

We say that Player A saturates a vertex set V of a graph G by selecting
arbitrary stable set within V for as long as stable set of size k exists within
V . We call vertex set k−saturated if there is no stable-set of size k present.

We use well known Turán’s theorem and one more easy observation.

Lemma 3.1 (Turán’s theorem). For every graph G it holds that α(G) ≤
n

1+davg(G) where davg is the average degree of G.

Lemma 3.2. For every graph G there exists an induced sub-graph H such

that dmin(H) ≥ davg(G)
2 .

Proof. Inductively remove vertices with minimal degree.
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We show how to force paths in two steps. First we force non-induced
paths. Then we build a ”grid” from them and use it to force an induced
path in it.

Lemma 3.3. For every n ∈ N Player A can (2n2, n)-force a graph contain-
ing a path Pn.

Proof. Let G be a graph on 2n2 vertices. Assume Player A saturates V (G).
Thus by Turán’s theorem and the fact that V (G) is saturated

davg(G) ≥ 2n2

α(G)
− 1 >

2n2

n
− 1 ≥ 2n.

By Lemma 3.2 we immediately obtain H a sub-graph of G with minimal
degree n. Such H surely contains n-vertex path.

Theorem 3.4. m(Pn, n) ≤ 2n4.

Proof. By iterating Lemma 3.3 Player A can (2n4, n)-force a graph contain-
ing n2 independent non-induced paths of size n.

Therefore this graph contains induced grid with n rows and n2 columns
where there are no edges in between vertices from different columns and
every vertex is connected with the vertex directly above it. Then let Player
A saturate every row of this grid independently. Note that the only edges
in this grid are within columns or rows. We call this grid D. We show that
this grid, and consequently the whole graph, contains induced P2n−1.

We call a vertex directly above a vertex u in D a parent of u. And a
right-neighbors of a vertex v in D are neighbors of v that are in the same
row to the right from v. We call a vertex of the grid good if it is either in
the first row and has a right-neighbor, or if it has a right-neighbor that has
has a good parent.

We will prove that there exists a good vertex v in the last row. If this
holds, then we can find by induction an induced path on 2n vertices in D
starting in v alternating between going right (possibly by more than one
column) and up by one row: We start in such vertex v. Suppose the path
ends in some good vertex w. By definition, every good vertex that is not in
the first layer has a right-neighbor z that has a good parent u. Since every
two consecutive vertices in columns are connected, u is connected to z and
we can extend the path from w by z and then by good vertex u. Any good
vertex in the first layer has a right-neighbor, therefore we can also extend
the path by such vertex. Clearly the resulting path alternates between going
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right and up by one row, hence consists of 2n vertices in total. Since D does
not contain any diagonal edge the resulting path is induced.

Therefore it suffice to prove that D contains a good vertex in a last
row. We show by induction that i-th row contains at least n2 − i · (n − 1)
good vertices. It holds for the first row because otherwise there would be at
least n bad vertices and they would form an independent set (because bad
vertices does not have right-neighbors) which is not possible since all rows
are saturated. Suppose that there are at least n2 − i · (n− 1) good vertices
in the i-th row. Look at the vertices right bellow them and denote them by
S. By the similar argument as for the first row at most n− 1 vertices from
S has no right-neighbor in S (otherwise the row would not be saturated).
Therefore at least n2 − i · (n − 1) − (n − 1) vertices from S are good and
we are done since the last row contains at least n2 − n · (n − 1) = n good
vertices.

3.2 Trees

The approach for paths can be generalized for trees. The foundation for
paths were non-induced paths, for trees we use locally induced trees.

Definition 3.5. Let T be a rooted tree and G be a graph. We say that G
contains locally induced T if there is a sub-graph S of G isomorphic to T
such that the sons of each vertex of S are not connected by any edge in G.

To find locally induced trees in graphs, a large average degree is not
sufficient. Therefore we use a different kind of saturation.

Player A saturates family F of stable vertex subsets of graph G by
selecting stable sets containing at most one vertex from each set in F for as
long as there is one within the graph. We call F k-saturated if there is no
such stable-set of size k present.

Lemma 3.6. In every n-saturated family F of size at most 2n3 consisting
of disjoint independent sets of size at most 2n3, there are at most 4n5 − 1
vertices that has less than n neighbors in every vertex set of F .

Proof. Suppose there would be more than 4n5 − 1 vertices that has less
than n neighbors in every vertex set of F . Denote the set of these vertices
by A. Since every vertex u from A has at most 2n3 · (n− 1) neighbors, we
can inductively find an independent set of size n as a subset of A: In each
step simply pick any remaining vertex u from A, remove all neighbors of u

18



and remove all vertices from the set from F the vertex u is in. We remove
2n3 · (n − 1) + 2n3 vertices in each step and so we can do at least n steps
since |A| ≥ 4n5 − 1.

Such independent set cannot exists since F is n-saturated, a contradic-
tion.

Lemma 3.7. Let T be an arbitrary rooted tree on n vertices. Then Player
A can (4n6, n)-force a graph containing locally induced T .

Proof. Let G be a graph on 4n6 vertices without edges. Let Player A
saturate a family F0 consisting of 2n3 disjoint independent subsets of V (G)
of size 2n3. By Lemma 3.6 at most 4n5 − 1 vertices from V (G) has less
than n neighbors in all sets from F0. Denote such vertices by B0 and let
F1 = {S \ B0 : S ∈ F0}. By the same argument at most 4n5 − 1 vertices
from

⋃
F1 has less than n neighbors in all sets from F1. Inductively we

can form sets Bi and families Fi as long as there are vertices left. Since we
remove at most 4n5−1 vertices in each step, we can perform at least n such
steps.

Now we can find a locally induced tree starting with the root. Let
root be an arbitrary vertex from an arbitrary set in Fn. It has at least n
pairwise non-adjacent neighbors from one of the sets in Fn−1, so we can
select children of the root. We can proceed in similar fashion for the rest
of the vertices: Select one leaf l of the partially completed tree that is still
missing its children. Such leaf is in some vertex set from i-th family Fi. It
has n pairwise not-adjacent neighbors (denote this vertex set by K) in some
vertex set from Fi−1. Select children of l from the vertex set K such that
they are disjoint with partially completed tree. Since T has n vertices (and
so at most n layers), it is always possible and the construction works.

Now it’s time to use the similar grid construction we used for paths.
Previously, we found a path that has every even edge in a column and odd
one in a row. We proceed similarly for trees. We just use different column
and row structure.

Theorem 3.8. Let T be an arbitrary rooted tree on n vertices. Then
m(T, n) ≤ 16 · n12.

Proof. Let S be an auxiliary tree formed from T by preserving exactly
vertices in odd layers (root is in the first layer) of T and adding edges
connecting vertices with their grandchildren in T (in other words we contract
all edges in between vertices from even layers and their parents), see Figure 2
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for an example. Define function f : V (S)→ V (T ) mapping vertices of S to
their original position in T . Additionally, we order vertices of S by breath-
first-search (it is only important that sons have higher number than their
parents).

T S

Figure 2: Auxiliary tree S.

By iterating Lemma 3.7 Player A can (16n12, n)-force a graph containing
an induced grid with 4n6 columns and |V (S)| rows where there are edges
only in between vertices from same columns and every column contains
locally induced S with vertices ordered decreasingly (since there are |V (S)|
rows, every columns contains only vertices of its copy of S. Therefore roots
of copies of S are in the last row). Then, let Player A for every row n-
saturate a partition of vertices of the row into 2n3 sets of size 2n3. The
only edges in this grid are within columns or rows. We call this grid D.
For every vertex u of D, we call vertices above u in the same column a
predecessors of u, and we call neighbors of u from the same row siblings of
u.

Similarly as for paths, we call a vertex of the grid good if it is either in
the first row and has at least n independent siblings, or if it has at least n
independent siblings so that all predecessors of these siblings and of v are
good. We show that there exists a good vertex in the last row and that we
can find an induced copy of T in D.

Using Lemma 3.6 for induction on layers it follows immediately that
i-th row contains at least 4n6 − i · (4n5 − 1) good vertices (we used similar
approach in the proof of Lemma 3.4).

To find an induced copy of T in D, we construct a function g : V (T )→
V (D) mapping tree T to its induced copy in D so that for every vertex v
from odd layer of T it hold that g(v) is good and f(g(v)) = v (when we
look at a vertex g(v) as a vertex of S). We proceed by induction on T .

Firstly, we know that there exists a good vertex v in the last row of D.
We set g(r) = v where r is a root of T . Clearly v is good and f(g(r)) = r
because we are in the last row. Suppose there is some vertex v from an
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odd layer of T for which g is defined on v and g(v) is good but g is not
defined on the sons of v. Since g(v) is good, it has at least n independent
siblings such that all predecessors of these siblings are good. Thus we can
define g for every son u of v so that g(u) is in among these siblings and the
image of g does not contain two vertices in a same columns (there are at
least n siblings and only n vertices of T ). Moreover, every column is a copy
of S and for every g(u) it holds that f(g(u)) = v, thus we can define g for
every son w of every u such that g(w) lies in the same column as g(u) and
f(g(w)) = w (also note that g(w) is good because v is good). See that each
such g(w) lies in a unique row, because the row corresponds to w in S. The
found tree is induced because it is locally induced and every vertex with its
sons lies in a unique row or column.

4 Cycle Strategies

In this section we present several strategies that force cycles of given length
which gives us upper bounds on m(Cn, k). Surprisingly the case of C4 had
to be solved differently.

For integers m,n let PS(m,n) be a graph obtained from K1,m by sub-
dividing all edges n− 2 times. We denote PSend(m,n) ⊆ V (PS(m,n)) the
set of m vertices corresponding to the original partity of size m in K1,m.
Note that the number of vertices in PS(m,n) is equal to (n− 1)m+ 1 and

since it is a tree, Player A can
(

16 ((n− 1)m+ 1)
12
, (n− 1)m+ 1

)
-force

it.

Theorem 4.1. For every n, k ∈ N : n ≥ 3, it holds that m(C2n−1, k) ≤
nO(1)kO(1).

Proof. By theorem 3.8 Player A can (O((n(k − 1) + 1)12), k)-force induced
PS(k, n). In the next step Player A selects PSend(k, n) as the stable set.
This connects endpoints of two paths in PS(k, n), forming an induced
C2n−1.

The proof for odd cycles can be generalized for even cycles, with the
exception of C4, while still keeping the bound polynomial.

Theorem 4.2. For every n ∈ N : n ≥ 3, it holds that m(C2n, k) ≤
nO(1)kO(1).
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Proof. In order for Player A to force an even length cycle, he can force an
induced path on three vertices in between the endpoints PSend(p, n− 1) of
path star PS(p, n− 1) where p = m(P3, k). By Theorem 3.4 p ≤ O(k4) and
by Theorem 3.8 we know that m(PS(p, n− 1), k) ≤ O((n · k4)12).

Theorem 4.3. For the cycle of length four it holds that m(C4, k) ≤ k4.

Proof. Gyárfás et al. [10] proved that for any weakly C4-free graph the
following property holds:

α(G)2ω(G) ≥ V (G) (2)

Meaning any graph without induced C4 contains either a big clique or a big
stable set.

Let Player A (k4, k)-force a graph containing k3 independent induced
copies of P2 (he needs at most k vertices for each path). Let

X = {x1, x2, ..., xk3}

be the set consisting of one endpoint from each forced path, and

Y = {y1, y2, ..., yk3 : xiyi ∈ E(G)}

be the set of the remaining endpoints. Let Player A saturate X. The
resulting graph on X does not contain stable set of size at least k. Therefore
by Property 2, either induced C4 appears in G[X] or ω(G[X]) ≥ k, hence
some clique Kω of size at least k would be present on the vertices of set
X. Let {xa1 , ..., xak , ..., xaω} be the vertex set of this clique. Now Player A
selects the stable set {ya1 , ..., yak}, which forces some edge yamyal . And so
there is induced cycle xamyamyalxal .
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Notes about Rainbow Cycles

Petra Pelikánová, Sophie Spirkl, Aneta Št’astná

Abstract

Caccetta-Häggkvist conjecture claims that a directed cycle of
length at most ≤ dn

k
e can be found in a digraph D on n vertices with

minimal output degree at least k. There exists a generalization of
this conjecture by Aharoni, which takes undirected graph G with an
edge coloring using n colors such that each color is used on at least
k edges and says that then exists a cycle of length at most ≤ dn

k
e in

G, which does not repeat colors. We prove that Aharoni conjecture
holds if we are guaranteed to have at least O(k6) edges of each color.

Conjecture 1 (Caccetta-Häggkvist). Let D be a directed graph on n ver-
tices with minimal output degree at least k. Then there exists a directed
cycle of length at most ≤ dnk e in D.

Caccetta-Häggkvist conjecture is proven for k ≤ 5 and there are many
approximate results, which are described in a summary article by Sulli-
van [3]. Shen [2] proved that with output degree at least k there is oriented
cycle of length at most ≤ dnk e+ 73.

Aharoni came up with a generalization of this conjecture with substi-
tuting the orientation by a coloring of edges. In an edge colored graph we
say that a cycle is rainbow if all edges of the cycle have distinct colors.

Conjecture 2 (Aharoni). Let G be an undirected graph G on n vertices
with edges colored by n colors such that each color is used on at least k
edges. Then, there is a rainbow cycle of length at most ≤ dnk e in G.

Caccetta-Häggkvist conjecture is a special case of Aharoni conjecture,
which can be observed by coloring all edges going out of a vertex by a
unique color. The obtained graph is an instance of Aharoni conjecture,
where a subgraph induced by edges of one color is always a star.
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Aharoni conjecture is proven for k = 2 by Caccetta and Häggkvist [1],
but no other results are known. When trying to prove the general case, one
might want to ask: What if we had more than k edges of each color? How
many would be enough to have a rainbow cycle of length ≤ dnk e? It can be
proven that O(k6) edges of each color suffices for any k, as will be shown in
the rest of this article.

First thing which will be useful to know is that there exists a function
f of k such that if G has n vertices and n+ f(k) edges, then there exists a
cycle of length at most dnk e.

Lemma 3. Let G = (V,E), |V | = n, |E| = n+ f(k), where f(k) = 128k3.
Then there exists a cycle of length at most ≤ dnk e in G.

Proof. Pick G0 a spanning tree of graph G and count its potential function
P0 =

∑
u,v∈V (G) distG0

(u, v) ≤ n3 for distG0
(u, v) the distance between u

and v in the spanning tree G0. The upper bound holds because maximum
distance between two vertices is n and there are n2 pairs of vertices. If
this lemma does not hold, all cycles in G are longer than n

k . Now take the
shortest cycle in G and denote it Cl, where l > n

k is the length of the cycle.
Among all spanning trees of G we choose G0 such that it contains Cl \ e for
some edge e.

We create G1 by adding edge e to G0 and denote P1 the potential of
G1. How do P1 and P0 differ? An estimate can be done by looking at
the segments of Cl of length 1

8 ·
n
k next to the edge e, as in Figure 3. The

combined length of the segments and edge e is 1
4 ·

n
k + 1 ≤ 1

4 · l. So when
we take vertices u, v from segments on opposite sides of edge e,

distG0
(u, v) >

3

4
l

distG1
(u, v) ≤ 1

4
l

distG0
(u, v)− distG1

(u, v) ≥ 1

2
l >

n

2k

As there are
(
n
8k

)2
such tuples u, v, we get

P1 ≤ P0 −
( n

8k

)2
· n

2k
= P0 −

n3

128k3

If there is a cycle of length ≤ n
k in G1, then it was enough to add one edge.

Otherwise we take the shortest cycle in G, from which one edge f is missing
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Figure 3: Illustration of which points are used to estimate the change in
potential.

in G1. Note that as it does not have any chord, it has to be included in
G0 up to one edge, and thus at most one edge from it is missing in G1.
We construct G2 by adding f to G1 and again observe the potential, which

decreases by the same amount. In general, Pi ≤ Pi−1 − n3

128k3 .
How many times we can repeat this until all edges of G are in some Gi?

In each step the potential shrinks by n3

128k3 , P0 ≤ n3 and potential cannot
be negative as it is a sum of non-negative distances. Thus, we have to stop
after

n3

n3

128k3

= 128k3

steps and we need to add at most 128k3 edges to create a cycle of length at
most n

k .

We will say that a color is removed from G if there is no edge of this
color in G. We denote the number of colors on edges of G by c(G) and set
of edges of color c by Ec. Note that E(G) ≥ c(G).

For a vertex v, the color degree of v for color c, denoted by degc(v), is
the number of edges of color c incident to v.

Lemma 4. If we remove f(k) = 128k3 vertices from G edge colored by n
colors without removing any color from G, then G contains a rainbow cycle
of length at most dnk e.
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Proof. By removing the subset of vertices of size f(k) without removing any
color, we obtain G′, where |V (G′)| = n−f(k) and c(G) = n. In this case we
can take a subgraph G′′ of G′ with only one edge (chosen arbitrarily) of each
color. Then |V (G′′)| = n − f(k) = n′′, |E(G′′)| = c(G′) = n = n′′ + f(k).
By Lemma 3, the graph G′′ contains a cycle of length at most dnk e and from
the construction it contains only one edge of each color, so the cycle has to
be rainbow.

But what if there is no such subset of f(k) vertices which is needed in
assumptions of Lemma 4? Here more edges of each color will be useful, so
suppose |Ec| ≥ (f(k) + ε)2 for each color c, where ε will be defined later.
Taking a color c, we can ask:

Question 5. Is there a subset S of f(k) vertices such that all edges of color
c are incident to it?

a) No. In this case color c remains in G after removing any subset of
vertices of size at most f(k), so we call these colors irremovable. If
the answer is no for all colors, then we get short rainbow cycle from
Lemma 4 by picking any subset of vertices of size f(k).

b) Yes. We call such colors removable. In this case exists a vertex vc
from the following Lemma 6.

Lemma 6. If |Ec| ≥ (f(k) + ε)2 and there is a subset S of vertices such
that |S| = f(k) and all edges from Ec are incident to S, then there exists a
vertex vc with degc(vc) ≥ f(k) + ε.

Proof. We consider an average color degree of a vertex from S.

number of edges of color c incident to S

|S|
≥ (f(k) + ε)2

f(k)
≥ f(k) + ε

The average degc(v) of v in S is f(k) + ε. Thus, there exists a vertex vc,
such that degc(vc) = f(k) + ε.

The need for |Ec| being quadratic with respect to f(k) stems from
Lemma 6, otherwise we could not assure that such a vertex exists. Note
that there may be more vertices with degc(vc) ≥ f(k) + ε. In such case we
choose exactly one such vertex vc for each c. Then, for such fixed choice of
vc’s we say that a color j has a center vcj if and only if there exists vcj 6= vck
for all k ∈ {1, . . . , n} \ {j}. For such colors we can take their centers and
apply the Caccetta-Häggkvist conjecture, as we will see later.
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Lemma 7. Let G be an edge colored graph with c(G) = |V (G)| = n. If
there exists ε > k such that each vertex is incident with at least ε edges of
some color c, which is unique for every vertex, then we can find a rainbow
cycle of length at most dnk e.

Proof. If we remove all edges of color c, which are not adjacent to the fixed
vertex v with degc(v) ≥ ε for all colors, we get a graph G′′ where each
subgraph induced by one color is isomorphic to a star. In such graph we
can give orientation to all edges of one color to go from the center of the star.
Finally, we can use Caccetta-Häggkvist conjecture to find a short directed
cycle which is equivalent to a rainbow cycle in G.

The only drawback is that Caccetta-Häggkvist has not yet been proven
in general. Currently best general result is by Shen [2], who proved that
if we have output degree k, then we can find a directed cycle of length at
most dnk e+ 73. However, we can have ε = k + δ, δ > 0 such that⌈ n

k + δ

⌉
+ 73 ≤

⌈n
k

⌉
.

As trivially
⌈

n
k+δ

⌉
+ 73 ≤ n

k+δ + 74 and n
k ≤

⌈
n
k

⌉
, we can set δ such that

the following stronger inequality holds.

n

k + δ
+ 74 ≤ n

k

nk + 74k · (k + δ) ≤ n · (k + δ)

nk + 74k2 + 74kδ ≤ nk + nδ

74k2 ≤ δ · (n− 74k)

74k2

(n− 74k)
≤ δ

Thus it is enough to pick δ ≥ 74k2, which means ε ≥ k+74k2 to get a short
rainbow cycle.

Theorem 8. Let G be a graph on n vertices with edge coloring using n
colors such that each color is used on at least (f(k) + ε)2 edges. Then there
exists a rainbow cycle of length at most dnk e in G.

Proof. We apply Lemma 6 on every removable colors. For each removable
color fix exactly one vertex vc such that degc(vc) ≥ f(k)+ε. As the number
of colors is the same as number of vertices, each color which does not have a
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unique center vc causes existence of at least one vertex x which is not vc for
any color c. Note that some vertices x exist due to the irremovable colors.
Let t be a number of such vertices x. We consider two cases.

• t ≥ f(k): In this case we can delete exactly f(k) vertices which are not
vc for any color c. We deleted exactly f(k) vertices without removing
any vc. The number of edges of color c incident to vc decreased at
most by f(k) ≤ f(k) + ε. Thus, we did not remove any removable
color. Clearly, we also did not remove any irremovable color. As a
result, we did not remove any color and thus Lemma 4 can be applied
to find a short rainbow cycle.

• t < f(k): In this case we just remove all t vertices, which are not vc for
any c. All remaining vertices are vc for some color c and furthermore
they have lost at most t ≤ f(k) edges of this color c. Now we obtained
a graph G′ where each vertex has been a center for some color c in
original graph and so degcG′(v) ≥ ε. Thus, we can apply Lemma 7.

Now it can be concluded that the total number of edges of each color
which we need to obtain a rainbow cycle of length at most dnk e in G is

(f(k) + ε)2 = (128k3 + 74k2 + k)2 ∈ O(k6)
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On Time of Turing Machines and

Depth of Circuits

Pavel Dvořák, Kyle Hess, Lukáš Ondráček, Periklis
Papakonstantinou, Jakub Pekárek

Abstract

We simulate Turing machines with running time T by circuits of
polynomial size and depth as small as possible. If the depth is o(T )
it can be seen as space compression, because of the relation between
space of Turing machines and circuits depth. In 1977 Hopcroft et al.
[J. ACM 24, 2] proved that any Turing machine with running time T
can be simulated by a Turing machine using space O(T/ log T ). Since
then, only small progress was done. We break the barrier O(T/ log T )
and prove that any Turing machine with a slight restriction on writing
can be simulated by a polynomial size circuit of depth Õ(T/ log3/2 T ),
where Õ hides log log T factor.

We also present a simulation of a Turing machine by a circuit of
bounded fan-in, size O(T log T ) and depth O(T ). This improves the
previous simulation by a circuit of size and depth O(T log T ).

1 Introduction

In this paper we study relations between two standard computational mod-
els: Turing machines and circuits1. There are two basic algorithm resources:
time and/or space, i.e. how many steps an algorithm does to compute the
result and how big memory an algorithm needs. More formally, let M be a
Turing machine and n be a length of the input. Running time T = T (n) of
M is how many steps the machine M does before it halts. Space S = S(n)
of M is a number of cells visited by heads of M during the computation.
Clearly, if M has k tapes then M cannot use more space than k ·T (in each

1If you are not familiar with these models see [1] or other complexity book.
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step, it can visit only k cells). Thus, S ≤ O(T ), but is it really necessary or
can we simulate M by a machine M ′ which uses only o(T ) space? Hopcroft
et al. [4] proved that any Turing machine M running in time T can be simu-
lated by a Turing machine M ′ using space O(T/ log T ) (however with huge
running time – exponential in T ). They use a pebbling game on a configu-
ration graph of M to get the space compression. However, there is a lower
bound against this method [7], so there is no hope to improve the result
without a new method. Dymond and Tompa [3] used stronger machines
(models) to speedup the computation. They proved that a Turing machine
of running time T can be simulated by PRAM2 running in time

√
T and by

alternating Turing machine running in time T/ log T , which improves the
result of Hopcroft et al. [4].

Another popular computation model are circuits. There are again two
basic measures of circuits: size and depth, i.e., how many gates the circuit
has and the length of the longest path from input to output. Circuits form
a non-uniform model of computation, i.e., we can have for each input size
a different circuit (not as Turing machines where we have only one Turing
machine for all input size). However, in this paper we study uniform circuit
classes. Circuit class is uniform, if there is a Turing machine M such that
on input n it generates a circuit for input size n and running time of M is
polynomial in n.

If we simulate a Turing machine M by a circuit C or vice versa the
size of C polynomially corresponds to the time of M and the depth of C
polynomially corresponds to the space of M . We present basic results about
the relation between time of Turing machines and circuits size in the next
section. Borodin [2] proved that a Turing machine using space S can be
simulated by a circuit of depth O(S2). On the other way, it is not hard to
see that a uniform circuit of depth d can be simulated by Turing machines
using space O(d). Thus, simulating Turing machines by low-depth circuits
can be seen as space compression. Williams [8] proved that random access
Turing machine of running time T can be simulated by circuits of depth
O(T/ log T ) and size poly T .

Another important parameter of circuits is boundedness of fan-in, i.e.,
if input size of circuit gates is bounded by some constant. Note that any
boolean function can be computed by a circuit of depth 2 and unbounded
fan-in (and exponential size).

Computation of Turing machine is local, i.e., a content of a cell s in time

2Parallel random-access machine.
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t depends only on content of three cells in time (t−1) – the content of s and
its two neighboring cells. We can generalize this property that a content of
cell s in time t depends only on content of O(k) cells in time t−k for k < t.
This locality can be transferred to circuits which simulate Turing machines.

Definition 1.1. Let C be a circuit simulating a Turing machine such that
gates of C are divided into layers L1, . . . , Ld and inputs of gates in a layer
Li are only gates in a layer Li−1. We say that C satisfies linear-dependency
property if for every i and k < i each gate in a layer Li depends only on
O(k) gates in a layer Li−k.

We use the linear-dependency property in Section 4 to compress circuits,
which allow us to prove the following theorem.

Theorem 1.2. Any multitape Turing machine running in time T can be
simulated by an unbounded circuit of polynomial size and depthO(T/ log T )
satisfying linear-dependency property.

Theorem 1.2 is stronger than the result of Hopcroft et al. [4], since the
circuit from our proof has polynomial size. However, it is weaker than the
result of Williams [8], because random access Turing machine is a stronger
model than standard Turing machine. Still, our proof is much simpler than
the proof of Williams [8].

By a construction using oblivious machines [1] (as we mention in the next
section), we would get a simulation of a Turing machine by a bounded circuit
of size and depthO(T log T ). We improve this simulation in Section 3, where
we prove the following theorem.

Theorem 1.3. Any multitape Turing machine running in time T can be
simulated by a bounded circuit of size O(T log T ) and depth O(T ) satisfying
linear-dependency property.

As far as we know all space compression or simulating by depth-bounded
polynomial size circuits does not break the barrier O(T/ log T ). In Section 5

and 6 we break this barrier for restricted Turing machines to Õ(T/ log3/2 T )
where Õ hides log log T factor. The first result is for singletape Turing
machines with restricted number of reversals, i.e., the changing of head
moving direction.

Definition 1.4. A reversal of a singletape Turing machine is a step in
which the head moved in the opposite direction than its last movement.
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Theorem 1.5. Let M be a singletape Turing machine running in time T
which performs at most T/ log T reversals. Then, the machine M can be
simulated by an unbounded circuit of polynomial size and depth

O(T/ log3/2 T ).

We note that singletape machines are very weak. Paterson [6] proved
that even a non-deterministic singletape Turing machines with running time
T ≥ n2 can be simulated by a deterministic Turing machines using space
O(
√
T ). Maass and Shorr [5] proved that any singletape Turing machine

with running time T ≥ n3 can be simulated by Σ2-Turing machine with run-
ning time O(T 2/3 log2 T ). Thus, if we combine Paterson simulation [6] with
the result of Borodin [2] we would not get a circuit of o(T ) depth because of
quadratic overhead of Borodin’s simulation. Still, it is plausible that single-
tape Turing machines can be simulated by circuits of much smaller depth.
However, in a proof of Theorem 1.5 we present our ideas which we use in
a proof of our main result, which is very technical. Our main result is for
multitape machines where we restricted the number of writes on all but one
tape.

Theorem 1.6. Let M be a multitape Turing machine running in time T
with one main tape and other tapes performing at most

T√
log T · log log T

writes. Then, the machineM can be simulated by an unbounded polynomial
circuit of depth Õ(T/ log3/2 T ).

2 Cook-Levin Tableau

In this section we quickly recapitulate the standard simulation of Turing
machines by circuits. We use some presented ideas in proving our results.
For more details about relations between Turing machines and circuits and
proofs of results in this section, see [1]. Let M be a Turing machine running
in time T . A timeslice of a computation of M is a content of the first T
cells of the tape with one cell marked with a state of M , indicating the
current position of head and the state of the machine. We arrange all T
timeslices of the computation into a matrix of size T ×T , where each row is
a timeslice, and two consecutive rows represent consecutive timeslices. As
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a convention, we set the top row to represent the initial configuration, with
time going downward. We call this matrix a computation matrix.

By locality of Turing machine computation, a content of every cell within
the matrix depends only on the three cells in the previous timeslice. This
dependence can be expressed as a circuit gadget of constant size and con-
stant depth, encoding the Turing machine transition function. We refer to
this gadget, and gadgets with similar semantic function as transition gadget.

Using the previous observation, we can directly construct a circuit. For
every cell of the computation matrix we use a copy of the same transition
gadget representing the transition function of M , except for the borders of
the matrix. In the side borders, we adjust the transition gadget to accept
less inputs. The top border is adjusted to a function as an input of the whole
circuit, and at the bottom border we may either add a constant amount of
gates to check if the simulated machine accepted its input, or use the data
on the tape as an output. As a consequence we obtain the following lemma.

Lemma 2.1. Any singletape Turing machine running in time T can be
simulated by a bounded circuit of size O(T 2) and depth O(T ) satisfying
linear-dependency property.

Consider a multitape Turing machine M . In a similar manner we can
represent the computation matrix as a 3-dimensional matrix, where each cell
in the matrix corresponds to a specific tape cell of a specific tape in a specific
time. The important difference is, that each cell can still be determined by
at most 3 cells of the same tape from the previous timeslice, but also by any
cells of the other tapes, depending on the positions of their respective heads
in given time. Following the construction above, each gadget needs to first
obtain the relevant data from the other tapes, which requires an unbounded
OR gate (of fan-in O(T )), or a binary tree of OR gates of depth O(log T ).

Lemma 2.2. Any multitape Turing machine running in time T can be
simulated by an unbounded circuit of size O(T 2) and depth O(T ) or a
bounded circuit of size O(T 3) and depth O(T log T ).

Another approach is to create a more complex circuit, where each point
in time can be represented by multiple timeslices, depending on the position
of the heads. To do this, we create one timeslice for every point in time
and a k-tuple of positions of head (where k is the number of tapes). Since
every k-tuple of head positions can result from only a constant number of
k-tuples in the previous timestep, cells in each timeslice are determined by
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constant number of cells spread across a constant number of timeslices. The
total number of timeslices is T k+1 (the k for number of tapes and +1 for
time coordinate). This gives us a bounded circuit of size O(T k+2) (each
time-slice has kT gadgets of constant size) and depth T .

Lemma 2.3. Any k-tape Turing machine running in time T can be sim-
ulated by a bounded circuit of size O(T k+2) and depth O(T ) satisfying
linear-dependency property.

These approaches used a computation matrix. There is also another
approach using oblivious machines, i.e., such machines where position of
their heads depend only on the size of input and an actual time step of the
computation. It is easy to see that each Turing machine M with running
time T can be simulated by an oblivious Turing machine with running time
O(T 2). We just replace each step of M by reading all tapes. However, there
is more involved construction which has only logarithmic overhead.

Lemma 2.4. Each Turing machine M with running time T can be simu-
lated by an oblivious Turing machine with running time O(T log T ).

In the next section we design an improvement of such simulation which
we use to prove Theorem 1.3. Oblivious Turing machines can be simulated in
much smarter way than using the computation matrices. Instead of having
gates for a content of each cell in each time step, in this construction the
gates represent snapshots. A snapshot is a machine state and symbols read
by all heads. By careful inspection of how snapshots depend on each other,
one can prove the following result.

Lemma 2.5. Each Turing machine M with running time T can be simu-
lated by a bounded circuit of depth and size O(T log T ).

3 Oblivious Machines

In this section we use a more careful approach to the ideas from the previous
section. In Lemma 2.2, the resulting circuit is not bounded (unless we
pay by increased depth) and lacks the linear dependency property and in
Lemma 2.3 the circuit size depends on the number of tapes non-linearly.
In both cases the cause of the undesired effects stems from the need to
account for all possible positions of the head on various tapes. To improve
Lemma 2.5, first we follow the naive “quadratic” oblivious construction.
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Lemma 3.1. Any multitape Turing machine running in time T can be
simulated by a bounded circuit of size O(T 2) and depth O(T ) satisfying
linear-dependency property.

Proof. Let M be the initial Turing machine and M ′ be an oblivious Tur-
ing machine with running time O(T 2) simulating M – the simulation was
sketched in the previous section. We construct a circuit analogue of M ′.
We imagine M ′ as having all tapes of size 2T + 1, T cells in each direction
from the origin with the heads starting in the center. We represent each
timeslice of such machine as O(T ) gates. We use transition gadget of M to
represent the computation with heads always standing on the central cell.
In every slice we use the output of the gadget to determine the movement
of each head, and wire the information to each cell of the respective tape in
the next timeslice. The cells in the next timestep are constructed as con-
stant size circuits, copying the data either from the cell directly above, or
one step to the side, depending on the received signal describing movement
of the respective head in the respective timestep. We handle the tape cells
around origin in the natural way.

This construction can be improved by taking standard Turing machine
oblivious construction [1] and redesigning it in a non-trivial way, so that all
data movement can be parallelized based on local rules. The main idea is
that “we do not move the heads, but the tapes under the heads”. We split
the tapes to blocks of exponentially growing size in both directions from the
head positions and we move the content of large blocks rarely. Thus, there is
only logarithmic overhead. However, in the standard oblivious construction
when we move a content of some block it can be spread over many blocks
after the moving. We introduce new rules for moving data to be more local,
i.e., the content of moving block ends in up to two different blocks, which
are next to the original block. These new rules are much more “friendly”
to the circuit simulation and they allows us to design a small circuit.

Theorem. Any multitape Turing machine running in time T can be sim-
ulated by a bounded circuit of size O(T log T ) and depth O(T ) satisfying
linear-dependency property.

Proof. First, we describe an oblivious Turing machine M ′ simulating a fixed
Turing machine M . After that, we design a circuit C (which simulates the
machine M ′), exploiting some properties of circuits such as parallel handling
of different parts of the tape. We begin the construction by redesigning
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the way in which we interpret the data stored on the tape. We extend the
alphabet to allow for storing two symbols per cell, including special symbols
of “blank” and “void”. We refer to the two symbols as top and bottom. We
split the tape into blocks, growing exponentially (by factor of two) in both
directions from the starting head position. We refer to the starting head
position of M ′ as to the origin cell, and to the symbols stored in the top or
bottom part of cells of each block as a slot. For convenience we number the
blocks to the left and right from the origin cell, starting with 0. Therefore
both left and right side blocks with number 0 have size 1 (each containing
two slots storing exactly 1 symbol), and the blocks with number k (or k-
block for short) in general consist of two slots storing exactly 2k symbols
each.

The crucial property of the construction is that one block, consisting of
its top and bottom slot, fits exactly into a single slot of the next (bigger)
block, and vice versa. For technical reasons, the origin cell represents only
a single symbol of M , which is the symbol under the head of M . To the
left and right of the origin cell we have blocks of size 1. This allows us to
technically extend the previous rule, where the whole content of the origin
cell fits exactly into one slot of the blocks on either side.

We represent the content of M in M ′ as follows. We define an order of
slots on the right side of the origin cell (and analogously on the left side)
so that slots of smaller blocks precede slots of bigger blocks, and each top
slot precedes bottom slot of the same size. The content of the tape to
the right of the head of M is represented by the slots to the right of the
origin. Similarly for the left side. The content of the tape of M to the
left of its head is obtained by a concatenation of all slots in the specified
order, skipping the void symbols. The blank symbols represent the cells of
M that are empty, and the void symbols are parts of the tape of M ′ not
representing any part of the tape of M . We keep the invariant that each
slot is either empty (containing only void symbols) or full (containing only
non-void symbols, but including blanks).

The simulation proceeds as follows. In order to represent all 2T +1 cells
of M which can in theory be accessed by M , we use blocks up to number
dlog T e on either side. The input is stored only in the top slots of the
closest right-side blocks, with the first symbol stored in the origin cell. All
the top symbols containing no symbols of the input are blank symbols and
all bottom slots contain only void symbols. In the origin cell we have the
symbol underneath the head of M . In each step, the transition function of
M is used to replace the symbol in the origin cell, and to decide whether
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the head of M moves to the left or right (or not at all). Without loss of
generality let us assume the case where the head moves to the right. We
rearrange the representation of the tape of M so that the current content
of the origin cell is shifted into the slots on the left, and a new symbol from
the slots on the right enters the origin cell (maintaining consistency and
invariants of the representation). By doing so we obtain a representation
of the next configuration of M (assuming we also store the new state), and
can continue with the next step of the computation. We want to achieve
this using only local rules. That is, the movement of slot contents is only
influenced by a constant number of surrounding slots. Therefore all of these
movements can then be simulated in parallel by circuits of constant fan-in.

The movement rules are following. Suppose we want to simulate step
c · 2`−2 of M for c odd. For each 0 ≤ k ≤ ` we consider the blocks with
numbers k, k + 1, k + 2 on each side. Note that for small values of k ≤ 1,
we repeat the rules several times between each step of simulation. The
general idea is that we want to prevent the k-block and (k + 1)-block to
be either both completely empty or both completely full. When both are
full (all four slots are full), we take data from both slots of the (k + 1)-
block and store them in an empty slot of the (k + 2)-block (if such empty
slot exists). Similarly if both are empty, we take a full slot of the (k + 2)-
block (provided it exists), and use it to fill both slots of the (k + 1)-block.
In the following lemma we prove that these rules guarantee that no three
consecutive blocks are either all full or all empty after the application of the
rules. This means that whenever the conditions of the rules are satisfied,
the corresponding empty/full blocks needed to apply the rules always exist.
Even more crucially, the rule only affect the (k+1)- and (k+2)-blocks and it
is not possible for rules to affect the same block twice during the simulation
of one step of M .

Now, we describe a circuit C simulating M ′. As in the tableau construc-
tion we use T layers of circuits of size O(T ) to represent the tape of M ′

in individual steps of the simulation as timeslices. We use the transition
gadget for M ′ to represent the operations on the origin cell in each step. It
remains to show that the slot movements using the rules can be simulated
by a constant depth and bounded fan-in circuits between each two steps,
and that the total size of the circuit is O(T log T ). In each step when a rule
is to be considered for a block of given number, we can use a constant-size
circuit to decide whether a rule is going to be applied or not (as it is enough
to test a single cell of any involved slot to decide whether it is empty or
full, or we can use auxiliary indicator for each slot), and to decide on the

38



specific movement of data. Each cell in each block can receive its content
from only constantly many cells from the previous timeslice. Therefore the
circuits generating the next timeslice are of constant depth and fan-in.

To check that the size of the circuit is as promised, we consider which
cell can change their content in each timeslice. Each rule affecting (k + 1)-
and (k+ 2)-blocks is potentially applied (and therefore implemented in the
circuit) only once every 2k−2 steps. The total number of affected cells is
3 · (2k+3). On average that is a constant number of gates per timeslice, (per
rule) per block. There is a total number of O(log T ) blocks, so the total
number of gates to implement the slot movements is O(T log T ).

Lemma 3.2. The movement rules guarantee that no three consecutive
blocks are all full or all empty after application of the rules.

Proof. First we show that each block of size k cannot have its slot filled
from the lower block twice in less then 2k steps, unless the (k + 1)-block
pushed its slot back into the k-block between the occurrences. We proceed
by induction. The origin cell pushes its symbol into the 0-block at most
once every step of the simulation. For an induction step, let us assume that
the claim is true for a k-block. In order for a k-block to push its content into
a slot of a (k + 1)-block twice, both slots of the k-block must be filled. For
contradiction let us assume the slots are filled by data pushed from (k− 1)-
block. By the induction hypothesis at least 2k+1 steps are required for this
to happen, and so the required amount of steps is met for the (k+ 1)-block,
or it pushes its data back into the k-block.

At the beginning of the simulation each block is exactly half-full. For
contradiction, let us consider the earliest timeslice t2 in which the guarantee
is broken by three consecutive blocks getting full, and let k be largest such
that the k-, (k + 1)- and (k + 2)-blocks are full. To simplify the argument,
let us assume the k ≥ 2. Let t0 be the last timeslice (no later than t2) in
which the (k + 2)-block was at most half-full. Note that if before the next
timeslice the (k + 2)-block receives data from the (k + 1)-block, then the
(k + 1)-block is empty in the timeslice (t0 + 1). Similarly if it receives data
from the (k + 3)-block, then by the conditions of the rule, (k + 1)-block
must be empty in t0, and therefore at most half-full in t0 + 1. Let t1 be the
last step before t2 when the (k+ 1)-block is at most half-full. By the choice
of t1 and t2, the (k + 1)-block cannot receive data from the (k + 2)-block
between timeslices t1 and t2. Therefore, the remaining slot in (k+1)-block is
filled from k-block, which is empty in the timeslice t1 + 1. By the previous
claim, it takes at least 2k+1 steps for the k-block to get full without the
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(k + 1)-block becoming half-full again. However, every 2k steps, the rules
are applied which consider the block triplet of k+1, k+2, k+3 and shift the
data from (k + 2)-block to (k + 3)-block before the timeslice t2, unless the
(k + 3)-block is also full. In the latter case, we get contradiction with the
minimality of both k and t2 and in the former case we get contradiction with
the choice of t2. Note that for the case where k ≤ 1, the argument holds
the same, with the numbers of steps involved being fractions (multiples of
quarters), in which case we reinterpret these as number of timeslices.

We proceed analogously to show that no three consecutive blocks can
be empty. First we show that for a k-block to have one of its slots pulled
into a lower block twice in a row, at least 2k steps must pass. We follow the
same inductive argument beginning with the fact that the origin cell pulls
a symbol from 0-block at most once per step. Then using an analogous
argument we show that before any triplet of consecutive blocks (starting on
minimal position k) empties completely, a corresponding rule pulling new
data from higher blocks must trigger. This again contradicts the emptying
of the triplet unless the higher block is also empty. In both cases we get a
contradiction with the choices made of k and/or the timeslice.

4 Circuit Compression

Every boolean function can be expressed as a formula in CNF, which is
equivalent to a circuit of unbounded fan-in, constant depth and size 2n + 1
where n is the number of inputs.

Following the same concept, let C be a layered bounded fan-in circuit of
depth d and size s. Let us denote L1, L2, . . . , Lbd/kc every k-th layer of C.
Every gate in Li depends on some g(k) gates in the layer Li−1, where g(k)
can be in general bounded from above by 2O(k). If we understand each gate
in Li as a boolean function of these g(k) gates in Li−1, we can equivalently
compute its value by an unbounded circuit of O(1) depth and size O(2g(k)),
independently of the other gates in Li.

Applying the idea above, we may replace the circuit C by an equivalent
circuit C ′ in which only the values of gates in layers Li are computed as
described above, and the output is similarly computed from the layer Lbd/kc.
The circuit C ′ is equivalent to C, has unbounded fan-in, depth O(d/k) and
size O(s · 2g(k)).

If the initial circuit C has bounded fan-in, polynomial size and satisfies
the linear dependency property, we can bound g(k) by O(k), and by setting
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k = O(log n) where n is the number of inputs, we obtain an equivalent
circuit of depth O(d/ log n) and polynomial size.

Theorem (Restating of Theorem 1.2). Any multitape Turing machine run-
ning in time T can be simulated by an unbounded circuit of polynomial size
and depth O(T/ log T ) satisfying linear-dependency property.

Proof. For a singletape Turing machine, it suffices to use the circuit con-
structed directly from the Cook-Levin tableau. For multitape case, one of
the oblivious constructions needs to be used to obtain a bounded circuit
satisfying the linear dependency property. The result is then obtained by
the compression described above, setting k = O(log T ).

Note that in the above result, the unboundedness is essential. The re-
sulting circuit has unbounded ANDs of fan-in O(log n) and unbounded ORs
of fan-in 2O(logn). Replacing these with binary trees of bounded ANDs and
ORs would blow up the depth of the circuit by a factor of O(log n) negating
the depth compression. In essence, the construction can be viewed as a
trade-off between depth and (un)boundedness.

5 Singletape Machines

In this section we prove that a singletape Turing machine with bounded
number of reversals can be simulated by an unbounded polynomial circuit
of depth O(T/ log3/2 T ) (Theorem 1.5). To achieve a low-depth circuit, we
split the tape into blocks of fixed suitable size (polylog T ) and design a
small circuits to simulate the blocks in parallel.

5.1 Single-Layer Simulation

For purposes of the following construction, we define a one-layer block sim-
ulation, or just block simulation for short. A one-layer block simulation
represents changes of data within a block happening during one visit of the
head of the machine.

To define the simulation more formally, we need to distinguish between
input and parameters of the simulation. When constructing a circuit, input
is given via input gates, while parameters are hard-wired into the circuit
and can be used to design the circuit in a specific way.

The input of a block simulation is the content of the block, and the
input parameter is an entry configuration of head – entry state of the head
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and the direction (left or right) from which the head enters the block. We
also allow the head to “not enter” the block, or “enter inside” if the input
tape contains specification of a position and state of the head. The block
simulation then represents simulation of the Turing machine from the initial
state given by input and parameters, until certain conditions are met – for
the purposes of this construction, the simulation runs until the head exits
the block. Output of the simulation is the final content of the block, exit
configuration of the head (state with specification if the head exits to the
left or to the right, or exists inside the block) and a validity bit. Validity bit
indicates if the input and parameters are consistent (the input tape should
specify head position if and only if the parameters specify that the head
enters inside the block). Notice that there is no limit on how many steps
there can be in one block simulation.

Observation 5.1. Given tape content, for block of size b = O(log T ), one-
layer block simulations for all settings of parameters can be computed by
a bounded circuit of polynomial size and depth O(log T ), or an unbounded
circuit of polynomial size and constant depth.

Proof. For a block of b cells, a block simulation with fixed parameters can
be viewed as a boolean function from b bits (the tape content) to b+O(1)
bits (the new tape content, the exit configuration, validity bit). Each such
function is expressible as a circuit of described properties. Note that there
are constantly many possible parameter settings, so all possible block sim-
ulations may be computed in parallel increasing the size of the circuit by a
constant factor.

We define glue as the information describing what happens on the bound-
ary of the block simulations. For a one-layered block simulation, the glue
are the entry and exit head configurations.

Lemma 5.2. Given circuits computing block simulations for all parameters
on two neighboring blocks A,B, we can construct a circuit computing all
simulations on the joint block C = A ∪ B by increasing the depth by a
constant (with bounded gates).

Proof. Suppose A is to the left of B. First we construct circuits computing
block simulations of A and B for all sets of parameters. Then for every
set of parameters for C we want to combine block simulations of A and B
describing a block simulation on C. Suppose we want to compute simulation
on C for fixed parameters.
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We create a separate subcircuit for every possible glue of A and B, that
is, for every possible entry/exit configurations of head that may be specified
on the boundary of A and B. For example, a head may enter A from left
in state 1, then exit to the right in state 2 (entering B in the same state)
and then exit back to the left in state 3. There are only constantly many
of these combinations. In each subcircuit we verify for each A and B that
the relevant block simulation with given parameters is valid and its output
exit configuration matches the glue. If successful, the subcircuit outputs the
resulting tape contents of the relevant simulations and the used glue data.
Note that for given entry configuration, the exit configuration is uniquely
determined, and at most one subcircuit is successful.

Knowing the resulting block contents, it remains to determine the exit
head configuration for C. If the head enters C from left, therefore entering
into A, and then continues across B and exits C to the right, we use the
exit configuration given by B. If the head never enters B, we use the exit
configuration given by A. If the head turns and returns from B to A, we
output the information that the head exits inside the block C, and modify
the relevant cell on the output to reflect this. The remaining cases are
handled analogously.

We say two timeslices are separated by a certain event (reversal, number
of steps, . . . ), if simulation of the Turing machine beginning from the first
timeslice eventually yields the second timeslice, but no sooner than the
event happens in the computation. For convenience, if the computation
terminates before the event conditions are met, we allow the second timeslice
to represent the final configuration of the Turing machine.

Lemma 5.3. Given a timeslice of a Turing machine, we can compute a
timeslice separated by a reversal using a bounded circuit of polynomial size
and depth O(log T ).

Proof. First we split the tape into blocks of size b = Θ(log T ) and compute
all block simulations for all parameters, given the input tape data from the
timeslice. Using the previous lemma, we iteratively combine pairs of neigh-
boring blocks into bigger blocks, doubling size every time while increasing
the depth of the circuit by only a constant. Eventually we combine all
Θ(T/ log T ) blocks increasing depth by O(log T ) and obtain block simula-
tions of the whole tape. The block simulation with the initial head config-
uration starting inside the block now contains the output corresponding to
the new timeslice.
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It remains to observe that the simulation contains at least one reversal.
Note that in the original block of size b the head always exits either to the
left or to the right (unless computation terminates). We show by induction,
that the head can only exit inside block after reversing. Suppose that the
head enters A from the left or enters inside and exits A to the right. If we
combine A with block B on the right, the head either leaves B to the right,
or reverses and exits inside A ∪ B. In general, A may be first combined
with block on left, we get a super-block A′ of A which is then combined
with super-block B′ of B. Similarly, either head leaves B′ to the right, or
reverses and exists to the left of B′, or exits inside B′, in which case it also
reversed by induction hypothesis. Since in the final block covering the whole
tape the head cannot exit to either side, at least one reversal has occurred
(or the computation terminated).

Lemma 5.4. Any singletape Turing machine running in time T can be
simulated by a bounded circuit of polynomial size and depth

O
(
min{T, R log T}

)
,

where R is the maximum number of reversals.

Proof. We construct the circuit as follows. We take the initial machine
configuration as the first timeslice and then apply the previous lemma in
sufficiently many rounds to obtain a series of timeslices (separated by re-
versals) so that we are guaranteed that the last one corresponds to the final
state of the computation.

In every round, beginning with a timeslice, we split the tape into blocks
of size log T and follow the previous lemma. Since in the new timeslice
the head is always positioned on one of the boundaries of the blocks (unless
computation terminated), we use a simple trick to improve the construction.
In the next round of simulation we shift the blocks by half of their size.
Therefore, in the next simulation the head of the Turing machine starts
in the middle of a block, and needs to perform at least b/2 = Θ(log T )
steps before reaching the first boundary. Any reversals happening prior
to that are absorbed within a single block simulation, and so this part of
the computation is always simulated. In this way we can guarantee that
each round simultaneously simulates at least Ω(log T ) steps and at least
one reversal. Thus after Θ(min{T/ log T, R}) rounds, the final timeslice
represents the end of the calculations. To justify the depth analysis, note
that both the block simulations and their gluing can be achieved in bounded
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depth O(log T ). The remaining operations introduce only constant increase
of depth per round.

5.2 Multi-Layer Simulation

Building on the previous construction, we define a multi-layer block simu-
lation. For simplicity, we also refer to this as to just a block simulation.
A multi-layer block simulation represents changes of data withing a block
happening during multiple visits of the head of the machine.

The input of an h-layer block simulation with time-limit t is the initial
content of the block. The input parameters are an entry configuration of
head, defined as before, two border configuration vectors of h additional con-
figurations and a bit indication whether head terminates in this block. Each
of border configuration vectors corresponds to one of the block boundaries
(left and right), and each entry represents a head state and information
whether head is entering or leaving the block. In addition, any suffix of the
vector can contain blank entries.

The h-layer block simulation essentially represents a series of one-layer
simulations. First the head enters the block as described in the entry config-
uration and the simulation runs until the head exits the block again (through
the left or right boundary). This exit is recorded in the corresponding vec-
tor as the first element. Then the head enters from the same side in the
state recorded on the same vector as the next element and continues its
path until exiting the block again on either side. Note that although ele-
ments of every vector are in order, we do not know the order in which the
two vectors interleave. If the head does not enter after any exit, then the
rest of the vectors are blank. If the head enters the block, but the exit
information does not fit into the corresponding vector, then the simulation
is terminated, the position and state of the head is recorded on the tape.
Furthermore, whenever the simulation performs t steps, it also terminates
with the head terminating inside the block, recorded on the tape. Output
of the simulation is the final content of the tape, the number of steps per-
formed within the simulation, and a validity bit, defined as before (given
the tape content, entry configuration of the head uniquely determines its
behavior in the block, and the following exit configuration and its location
must be consistent). Note that the parameters of the simulation are of size
O(h) +O(log t) bits.

For multi-layered simulations, the glue consists of all information in the
parameters.
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We define the horizon as a big portion of tape (typically containing a
given number of neighboring blocks) to which a significant portion of the
computation of the machine is constrained. The motivation behind horizon
is that we simulate only small parts of tape of the machine instead of the
whole space to limit degrees of gates by allowing usage of small glues.

Lemma 5.5. Let Turing machine head begin in a given tape cell, and
perform S steps. For any size of block b there exists an offset t such that
if we split the tape into blocks of size b, there are at most S/b instances of
the head crossing between the blocks.

Proof. Consider all b possible offsets 0, 1, . . . , b − 1. Each step of the head
contributes at most one crossing to one of the possible offsets. By Dirichlet’s
principle one of the offsets must have at most S/b crossings.

Observation 5.6. Given tape content, for a block of size b = O(log T ),
an O(log T )-layer block simulations for all settings of parameters can be
computed by a bounded circuit of polynomial size and depth O(log T ), or
an unbounded circuit of polynomial size and constant depth.

Proof. Analogously to the one-layer case, we create separate circuits for all
fixed settings of parameters and view each simulation as a boolean function.
This time we have polynomially many subcircuits of polynomial size and
promised depth.

Lemma 5.7. Given a representation of a timeslice limited to one horizon
of width a = Θ(log3/2 T ) with the head starting in the middle half, we can
compute a portion of new timeslice, limited to the same horizon, separated
from the previous timeslice by at least Ω(

√
log T ) reversals or Ω(log3/2 T )

steps. We achieve this using a bounded circuit of polynomial size and depth
O(log T ), or an unbounded circuit of polynomial size and constant depth.

Proof. We proceed similarly to the previous construction based on one-
layer blocks. We fix the size of blocks to be b = Θ(log T ), and use block
simulations with h = Θ(

√
log T ) layers and time limit t = log2 T . First we

create separate circuits for each of the b possible offsets of splitting horizon
into individual blocks. In each offset we obtain Θ(

√
log T ) blocks of size b.

For each block we enumerate and compute all of the block simulations with
h layers.

Unlike before, we do not combine the blocks sequentially, but rather
guess all of the glue at once, branching the circuit based on all possible glues.
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For a/b = Θ(
√

log T ) block simulations with h = O(
√

log T ) layers, the
overall glue is expressed by O(log T ) bits. For every choice of glue we verify
that the individual block simulations agree with the glue. For at most one
unique choice of glue the verification succeeds. Combining the outputs of the
successfully glued block simulations, we obtain a simulation of the horizon
(for a given offset). Furthermore, each block simulation outputs O(log t) =
O(log log T ) bits describing the number of steps simulated. Together we
have O(

√
log T log log T ) bits, and we can sum these numbers into a single

O(log log T )-bit number, again viewing the problem as a general boolean
function with low number of input bits. We then compare the number with
a fixed constant of size Θ(log3/2 T ).

Once we obtain the outputs for each offset within the area and verify if
at least Ω(log3/2 T ) steps were performed, we choose any offset with positive
verification and use its output. Since the head starts roughly in the middle
on the horizon, it must perform at least a = Θ(log3/2 T ) steps to reach the
boundary of the horizon. Suppose this does not happen. By Lemma 5.5, at
least one setting of the offset simulates at least Θ(log3/2 T ) steps without
any of the border vectors filling completely. The only remaining terminating
condition is the time-limit, in which case O(log2 T ) steps must be simulated
within a single block. In all cases we are guaranteed that the desired number
of steps was simulated by at least one of the subcircuits.

The construction described above can be build using either a bounded
circuit of depth O(log T ), or an unbounded circuit of constant depth (both
of polynomial size).

Now we are ready to prove the following theorem, from which follows
Theorem 1.5.

Theorem 5.8. Any singletape Turing machine running in time T can be
simulated by an unbounded circuit of polynomial size and depth

O(T/ log3/2 T +R/
√

log T ),

where R is the maximum number of reversals, and by a bounded circuit of
polynomial size and depth O(T/

√
log T +R

√
log T ).

Proof. Again we proceed similarly as in the previous construction. We com-
pute a series of timeslices (separated by sufficient number of steps and/or
reversals) to simulate the Turing machine.

Suppose we are given a timeslice. First we define the width of the horizon
to be a = Θ(log3/2 T ). We tile the tape into horizons in two (or generally
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constantly many) ways, so that one set of horizons start at the cell 0, and
the other set of horizons are shifted by a/2 cells. By this we guarantee that
no matter where the head is, it will always be in the middle half of one
horizon while the number of horizons covering any portion of the tape is
constant. To achieve this on the borders of the tape, we allow the borders
to be covered by horizons reaching beyond the tape. For the unbounded
case, we can create a set of horizons for every possible offset.

We simulate every horizon following the previous lemma, so that, if the
head is indeed in the middle half in the beginning, we simulate either at least
Θ(log3/2 T ) steps or Θ(

√
log T ) reversals. To compose the new timeslice,

each tape cell receives its data from all the horizons covering it (constantly
many). To choose the correct data, the horizons without the head starting
in the correct position are ignored (we may define horizons to output a bit
indicating this). If no horizon satisfies this condition, the cell simply copies
data from the previous timeslice. Note that (in the setting with two tiling
sets of horizons), at most one horizon satisfies this condition, and so the
next timeslice differs from the previous by exactly the data computed by
the corresponding horizon simulation.

Based on the guarantees of the simulations, to get a timeslice correspond-
ing to the final configuration we need to compute the following number of
timeslices:

Ω
(
T/ log3/2 T +R/

√
log T

)
.

6 Multitape Machines

In this section we prove Theorem 1.6, i.e., each Turing machine of bounded
number of writes on all tapes but one can be simulated by an unbounded
polynomial circuit of depth Õ(T/ log3/2 T ). The idea extends the ideas from
the previous section to work for multitape Turing machines. For better
understanding we first prove the result for Turing machines where is only
one read-write tape and other tapes are read-only. After that, we will prove
the full result.

6.1 Read-Only Case

As a first step toward our goal we consider a model of a Turing machine
where all except one tape are read-only, and only one main tape is read-
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write. We refer to the tapes as the main tape and the read-only tapes.
High-level idea: We simulate only a part of the tape – a horizon. We

guess enough information about the computation to split the simulation into
smaller blocks on the tape which can be simulated in parallel. This includes
good enough knowledge of the movements of all heads, which allows us to
fetch the necessary read-only data to feed into the individual simulations
without using all of the data (which would mean too many inputs). Since
we want to simulate more than O(log T ) steps in one simulation, the overall
number of read bits may be too high. We further split the simulation of
each block time-wise into chunks, each of which reading at most O(log T )
bits, and then simulate these in parallel as well.

We will require a few parameters:

1. A = log3/2 T/
√

log log T – size of horizon in number of tape cells (also
limit of number of steps of horizon simulation).

2. B =
√

log T log log T – size of a block in number of cells (also limit of
number of steps in one period).

3. C = log T – limit of number of steps of one chunk.

In this construction, a block simulation is defined similarly to the previous
constructions, with more complicated conditions. We set a time-limit of the
block simulation to A steps. We define period of the horizon simulation as
follows. Every time a head crosses a boundary between blocks, a period ends
(and a new one begins). Furthermore, once B steps are performed since
the beginning of the current period, the period also ends. Note that the
boundaries of periods are defined in respect to the whole horizon, however
as a slight abuse of notation, periods can be viewed both as a time-wise
portions of the horizon simulation, as well as time-wise portions of the block
simulations. When we consider periods as parts of blocks, we say a period
is active if the head is inside the given block during this period.

Lemma 6.1. For a given horizon with head starting in the middle, there
exists an offset of blocks such that the first A steps are simulated within at
most O(A/B) periods in every block simulation.

Proof. By Lemma 5.5, there exists an offset such that the first A steps cross
between the blocks at most O(A/B) times. The other way how period may
end is by reaching the limit of B steps, which may happen at most O(A/B)
times.
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We define a computation guide as an extended idea of glue, gluing to-
gether a horizon simulation from smaller individual pieces. For every tran-
sition between periods within a horizon simulation, the computation guide
specifies the state of the head. For every period, and every tape, the compu-
tation guide specifies the relative movement of the head during the period
(the total number of steps to the right minus the total number of steps to
the left) and for the main tape the overall number of steps.

Note that if we know the initial head position, the information from the
computation guide allows us to determine in which block the main head is
located in each of the periods, and the exact locations of all of the heads
at the moment of transition between periods. We do not compute these
by a circuit, but rather as before will hard-wire these parameters into the
simulations and therefore we can assume all of these to be pre-computed by
the construction of the circuit.

We define chunks of computation to be (non-overlapping) groups of C/B
consecutive periods time-wise covering a block simulation. Note that in each
chunk, at most C = O(log T ) steps are performed.

Observation 6.2. There exists a circuit validating chunk of a block simu-
lation given the following:

• Fixed parameters: positions of each head and state of the machine
for every boundary of all active periods and the initial and the final
content of the main tape

• Input: content of C cells around heads on each read-only tape

Proof. In every active period we know the initial positions of head and the
state of the machine. Assuming we successfully simulated all of the previous
active periods, we also know the current content of the block (on the main
tape). Simulating step by step, we know the positions of all heads in every
step, and so we know all of the bits read at those steps from all tapes.
Therefore we have all the information to perform the simulation step by
step.

Lemma 6.3. Given a timeslice representation as an input and computation
guide and the initial and final block contents as fixed parameters, we can
validate chunk using a circuit of unbounded polynomial size and constant
depth.

Proof. According to Observation 6.2, all of the necessary information is
available to us. We only need the B bits from the input representing the
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given block, andO(C) bits from the read-only tapes that may be read during
the given chunk. In total we haveO(log T ) input bits, and therefore, viewing
the computation as a boolean function, the simulation can be computed
using a circuit of the promised properties.

Lemma 6.4. Given a timeslice representation as an input and computation
guide as fixed parameter, we can validate block simulation and compute
the final block content using a circuit of unbounded polynomial size and
constant depth.

Proof. Any block contains at most O(A/B) periods split into at most

O(A/C)

chunks. We simulate all chunks in parallel by guessing all of the remaining
information needed for their validation. We branch the circuit, each branch
corresponding to a guess of content of a block in the beginning of the block,
at the end of the block, and between every two chunks. In total we guess
O(A/C · B) = O(log T ) bits and so we obtain a polynomial number of
subcircuits. Each subcircuit now validates in parallel all chunks, following
Lemma 6.3, and compares the actual initial content of block with the given
content of block.

If exactly one of the possibilities validates successfully, it gives as an
output the guessed final content of the block. The block simulation circuit
simply forwards this content to its output. It remains to see that supposing
the computation guide is valid, exactly one subcircuit succeeds. Given a
timeslice, the following computation is uniquely defined. Let us fix the de-
composition of the block simulation into periods (this is determined uniquely
by the position of the horizon and the offset of the block within horizon).
It is easy to see that given all the information, the simulation behaves in a
unique way and at most one choice of parameters agrees with the definition
of the Turing machine and the enforced conditions. Furthermore, such a
choice always exists.

Lemma 6.5. Given a representation of a timeslice limited to one horizon
of size A with the head starting in the middle cell and fixed positions of
all heads, we can compute a portion of new timeslice, limited to the same
horizon, separated from the previous timeslice by A steps. We achieve this
using an unbounded circuit of polynomial size and constant depth.

51



Proof. Similarly to the previous constructions, we first branch based on a
choice of a suitable block offset. For every offset we branch based on a
choice of computation guide. Given a computation guide, we can validate
all blocks in parallel and by concatenation of the obtained data compose the
final content of the horizon. We only need to wire the relevant data from the
read-only tapes to input gates of the individual circuits. Since we assume
that the initial position of each head is a parameter, we can hard-wire these.

Each branching is at most polynomial, and every subcircuit is of un-
bounded polynomial size and constant depth. As before, for each offset we
also validate the number of steps simulated. For each offset the number of
steps of all blocks are described by a total of

B · logA = O(
√

log T (log log T )3/2)

bits, which can be summed into an O(logA)-bit number when viewed as a
boolean construction. Furthermore, the number of steps for all offsets are
described by B · O(logA) = O(

√
log T (log log T )3/2)-bits in total, and once

again we can pick the best possible offset viewing the choice as a general
boolean function. The output of the chosen offset is then forwarded to the
output of the horizon simulation circuit.

Lemma 6.6. Every multitape Turing machine with one main tape and
other read-only tapes can be simulated by an unbounded polynomial circuit

of depth O(T
√
log log T
log3/2 T

).

Proof. As in the previous constructions we construct a series of circuits gen-
erating timeslices of the Turing machines. For every timeslice, we branch
into individual simulations parameterized by the positions of all heads, this
gives us at most O(T k) different machine simulations. In each simula-
tion we establish a horizon around the known position of the head and
use Lemma 6.5 to perform the horizon simulation. We compose the new
timeslice from the output of the horizon simulation and copy of the rest
of the tape from the previous timeslice. Since every horizon simulation
(except for the last one) is guaranteed to perform Θ(A) steps, we need at
most O(T/A) iterations, each of unbounded constant depth and polynomial
size.

6.2 Read-Write Case

Having constructed the previous machinery for a simple case, next we try
to relax the conditions on the non-main tapes. We define parameter W as
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the number of times the head writes to a non-main tape, that is the number
of steps where the symbols read and written by the machine, according to
the transition function, differ on any of the non-main tapes.

Observation 6.7. Every multitape Turing machine with one main tape and
other tapes performing at most W writes can be simulated by an unbounded
polynomial circuit of depth O(W + T

√
log log T/ log3/2 T ).

Proof. We use exactly the same construction as previously, except whenever
the horizon simulation attempts to write into any of the read-only tapes, we
end the simulation early. This is correct as between any two write events,
the computation behaves in a read-only manner to the non-main tapes. As
each horizon simulation then produces a (the relevant portion of) timeslice
separated from the previous one by either a write event or at least A steps,
the result follows.

To make the construction technically sound, we need to address several
issues. We extend the definition of the computation guide to allow it to
specify less periods (with the rest of the elements being blank), the number
of steps of the last period before it ends interrupted by a write event, and
the description of the write event (a vector of symbols written to each
respective cell, with possibly blank entries). We naturally adjust the block
simulations and chunk verification to allow performing the blank periods
(copying the input data onto the output). Finally, we use time-limited
period simulations wherever in the circuit the period is parameterized to
end after a fixed number of steps. We define a computation guide to be
invalid if a write event happens at any other point during the computation
other than the last specified step, or if the write is specified to occur but
does not.

Note that given the initial timeslice, the valid computation guide is still
unique and always exists. To reconstruct the new timeslice, we obtain
the data from the horizon simulation as previously, and apply the writes
specified by the valid computation guide. The result follows by iteratively
constructing the new timeslices until the obtained timeslice is guaranteed
to be the final configuration.

In general, we can bound W ≤ T , where the equality is easily obtained
by some machines. The previous result then guarantees only depth O(T )
due to the high cost of each write. As a next step we bring down this cost
by allowing the horizon simulations to work with a low number of writes.
Theorem 1.6 is a corollary of the following theorem.
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Theorem 6.8. Every multitape Turing machine with one main tape and
other tapes performing at most W writes can be simulated by an unbounded
polynomial circuit of depth

O
(
W

log log T

log T
+ T

√
log log T

log3/2 T

)
.

Proof. Once again we extend the computation guide to contain also infor-
mation about log T/ logB writes. To compress the description, we describe
the writes in a sequence. We encode every write in respect to a given pe-
riod, specifying a symbols written (to all non-main tapes), time step of the
event and position relative to the initial position of the head within the
given period. In this way every write event is described by O(logB) bits
in total. We encode the sequence to implicitly associate the elements with
the periods correctly. We order the write events in their chronological or-
der. Between every two events we put a single 0 bit, indicating that the
following bits encode a write event. The total number of 0s added does not
increase the size of the string asymptotically. Furthermore, every time a
period ends in the chronological order, we insert a 1 bit. The number of
these 1s determines uniquely the period for each write event. The number of
these 1 bits in the sequence is bounded by the maximum number of periods
O(A/B) = O(log T/ log log T ). In total the bitstring describing the write
events is of length O(log T ).

We extend the definition of validity of the computation guide. A com-
putation guide is valid if the simulation reaches A steps, or the simulation
ends one step before a write event and the computation guide cannot contain
more write events. Note that under this definition, the valid computation
guide always exists and is unique. Both of these conditions can be tested.
Since each horizon simulation outputs the number of steps performed as a
binary string, which can be tested by an appropriate boolean function. Sim-
ilarly we may try to simulate the step following the last step in the horizon
simulation to test whether it indeed performs a write or not.

The information describing write events is hard-wired as a parameter
into the horizon simulation. Within each period simulation it is possible to
deduce the exact step and position in which each write event happens as well
and to account for all of the previous writes affecting the input data from
non-main tapes. Finally, we may use a separate piece of circuit to construct
the new contents of the non-main tapes. Since the writes are hard-coded,
we can simply copy the original content and replace exactly the changed
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cells with their newest values trivially. This way each horizon simulation
can finish after either simulating Θ(A) steps, or after at least log T/ logB
write events in the non-main tapes and outputs the new contents of the
horizon on the non-main tapes. The result is obtained analogously to the
previous constructions.

Note that the previous construction can be slightly improved. In essence,
there is no inherent distinction between the main and non-main tapes, other
than the fact that in the simulation the non-main tapes have a limited num-
ber of writes. We can exploit this and further branch the horizon simulation
circuits, to try in parallel all choices of main tape and then use the simu-
lation which performs the most steps before the simulation limits are met.
Since the number of tapes is constant, this comes at a cost of constant over-
heads in both depth and size. However in general this does not guarantee
any reduction on the number of writes that need to be encoded, as it is
possible for the write events to always happen on all tapes simultaneously.

A write event is said to be authorized if it is recorded in a computation
guide and unauthorized otherwise. In our next construction we adjust the
construction so that there may be unauthorized write events happening
within the horizon simulation. We will make sure that every unauthorized
write event correctly affects the new content of the non-main tapes. However
the unauthorized write events will not affect any of the simulations running
in parallel with the simulation which causes it.

A read event on a given tape is said to be effective if the head reads a
symbol and the output of the transition function depends on this symbol.
A read event is ineffective otherwise.

A write event e is said to be effective, in respect to a computation guide,
if there are two distinct chunk simulations w and r running in parallel, such
that e happens within w and r performs an effective read event on the same
cell in a step following e in a sequential order of the simulated computation
and furthermore no other write event changes the content of the cell between
e and w. The write event is ineffective otherwise.

There are several examples of ineffective write events. If a cell is writ-
ten to, but it is not read again withing the same horizon simulation (or
for at least A steps), then it is clearly ineffective. Similarly, if a cell is
read before the horizon simulation ends, but only within the same chunk,
it is also ineffective. The important nuisance of the definition is that the
(in)effectiveness of a write event depends on the time-wise position of the
horizon, the space-wise position of the horizon, offset of its blocks and gen-

55



erally any movement of the head (dependent on the data on the tapes).
Because of this, the following theorem is only implicitly defined.

Theorem 6.9. Every multitape Turing machine with one main tape can
be simulated by an unbounded polynomial circuit of depth

O
(
F

log log T

log T
+ T

√
log log T

log3/2 T

)
,

where F is the number of effective write events in the non-main tapes.

Proof. Within each horizon simulation there are effective and ineffective
write events. The effective write events must be authorized to maintain
consistency of the parallel simulations, while the ineffective write events
should always be kept unauthorized to increase efficiency of the simulations.

As the first step, we deal with the unauthorized writes. We extend each
active period simulation to also output the new contents of the parts of the
non-main tapes it was presented on input (data vectors). Also for every
tape, the period simulation outputs a triplet of binary mask vectors, indi-
cating which cells were written to, which cells were involved in an effective
read event and which cell were involved in unauthorized write event. Note
that since we understand the chunk simulation as a single unit, the periods
following within the same chunk easily take into account previously per-
formed write events. All of the previously mentioned vectors are forwarded
to the output of chunk simulation.

On the level of horizon simulation, once all chunk simulations provide
their outputs, we use the head position information from the computation
guide to design a circuit which for every cell within the horizon checks re-
ceives all of the relevant bits from all relevant masks and data vectors. Since
every cell receives at most constant amount of bits per (active) period sim-
ulation and there are at most O(A/B) = O(log T ) periods in total, we can
now process all the data of each cell by an arbitrary function and represent
it as a constant depth boolean function. The function we need simply con-
siders all of the information in chronological order (in respect to the order
of active periods within the computation being simulated) to determine the
final content of the cell (based on the last write performed), tests for unau-
thorized effective write events and checks that every authorized write event
was effective.

In this way the horizon simulation outputs the new contents of all tapes,
correct in respect to the unauthorized ineffective write events, and can val-
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idate the computation guide in respect to the following conditions. Ad-
ditionally to the existing conditions, we say that a computation guide is
invalid if unauthorized effective write event or authorized ineffective write
event occurs during the simulation. This is easily tested by the previous
construction. Furthermore, if the simulation is prescribed by the computa-
tion guide to terminate after a specific number of steps smaller than A, the
guide is invalid if performing one more step would not change unauthorized
ineffective write event into an effective one or if the computation guide could
contain all of the additional necessary authorizations within the limit of the
number of authorizations. Note that since the computation guide specifies
the final positions of all heads, we can speculatively simulate the next step
(given the new contents of all tapes), check that effective read events occur
on some of the k relevant cells and that the corresponding cells would indeed
experience new unauthorized effective write events. Note that the number
of potential new effective write events is at most one per cell, and so we
can count all instances and compare to the number of blank spaces taking
space of potential additional authorizations in the computation guide using
a constant size circuit.

We claim that the computation guide is still unique. If the simulation
can successfully reach A steps, then the corresponding computation guide
is clearly unique. If the simulation terminates earlier (exceeding the limit
on authorizations), then the point of termination is uniquely defined by the
above conditions, and so is the relevant computations guide. Furthermore,
in this case the computation guide is missing at most k − 1 authorizations
from the allowed maximum. Only the output of the unique valid computa-
tion guide is considered for every choice of block offset and the choice of the
main tape. Out of these possibilities, the best is chosen based on the highest
number of performed steps, analogously to the previous constructions. As
before, we can see that using the horizon simulation described above, we
may construct a new timeslice separated from the previous one by either
A steps or at least log T

log log T effective write events. The result is obtained as
before.
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Abstract

Given a connected graph G with some subset of its vertices excited
and a fixed target vertex, in the geodesic-biased random walk on G, a
random walker moves as follows: from an unexcited vertex, she moves
to a uniformly random neighbour, whereas from an excited vertex,
she takes one step along some fixed shortest path towards the target
vertex. We show, perhaps counterintuitively, that the geodesic-bias
can slow the random walker down significantly: there exist connected,
bounded-degree n-vertex graphs with excitations where the expected
hitting time of a fixed target is at least exp( 4

√
n/100).

1 Introduction

In this paper, we investigate a model of excited random walk on a connected
graph, namely geodesic-biased random walk, where the excitations are de-
signed to decrease the hitting time of a fixed target vertex. The model
originates in the theoretical computer science and computational biology
communities [8, 7, 5], and was brought to our attention by Sousi [17]. By
way of context, let us mention that various matters relating to hitting times
— recurrence and return times [4, 18, 2, 3], speed [15, 9, 16] and slow-
down [13, 14] — have been investigated in a number of different models of
excited random walk; for a broad overview, see [12, 10].

Geodesic-biased random walk is defined on a connected n-vertex graph
G. Having fixed a starting vertex a ∈ V (G), a target vertex b ∈ V (G)
and a subset X ⊂ V (G) of excited vertices, a random walker walks from a
until she hits b as follows: from an unexcited vertex of G, she moves to a
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uniformly random neighbour, whereas from an excited vertex, she takes one
step along some predetermined shortest path to the target vertex b. Our
focus here is the hitting time τa(b,X ) i.e., the first time at which the walker
hits b starting from a when the set of excited vertices is X .

When every vertex is excited, i.e., X = V (G), the geodesic-biased walk
reduces to a deterministic walk along a shortest path to the target vertex,
in which case we have E[τa(b, V (G))] = O(n). On the other hand, when
no vertices are excited, i.e., X = ∅, the geodesic-biased walk reduces to
the simple random walk on G, and an old result of Lawler [11] gives a
uniform polynomial bound (see also [1, 6]) for the expected hitting time of
E[τa(b, ∅)] = O(n3). Many of the existing results in the literature [8, 7, 5]
show that the expected hitting time of a fixed target in the geodesic-biased
walk, for various graphs G and random choices of the set X of excited
vertices, is significantly smaller than Lawler’s uniform bound. Motivated
by this, we shall investigate how much the geodesic-bias can decrease the
hitting time of a fixed target.

While the geodesic-bias ostensibly aims to decrease hitting times, it is
actually not hard to construct examples where the expected hitting time of
a fixed target in the geodesic-biased walk is slightly larger than the expected
hitting time in the analogous simple random walk. To wit, consider a graph
where two vertices a and b are connected by two paths of lengths 2 and
3, with the middle vertex of the shorter path being attached to a ‘trap’,
say a large clique; here, it is not hard to see that exciting a increases the
expected hitting time of b, since the random walker ends up spending more
time in the ‘trap’. However, the digraph formed by taking a shortest path
from each vertex to a fixed target is acyclic, so one cannot string together
multiple such ‘traps’ in a cyclic fashion; in particular, such constructions
cannot hope to slow the geodesic-biased walk down by more than a constant
factor in comparison to the simple random walk.

In the light of the above discussion, it is natural to ask if the results
in [8, 7, 5] are indicative of a broader phenomenon, and if there is a uniform
polynomial bound for the expected hitting time of a fixed target in the
geodesic-biased walk, much like Lawler’s bound [11] for the simple random
walk. Our first result shows, perhaps surprisingly, that this is not the case:
even a single excitation can cause an exponential slowdown.

Theorem 1.1. For infinitely many n ∈ N, there exists a connected graph
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G on n vertices with a, b ∈ V (G) such that

E[τa(b, {a})] = Ω

(
exp

(
4
√
n log n

100

))
.

The construction proving Theorem 1.1 produces graphs of unbounded
degree. In the context of the simple random walk, bounded-degree graphs
are known to behave somewhat differently from those of unbounded degree;
for example, as shown by Lawler [11], expected hitting times in a bounded-
degree n-vertex graph are O(n2). Our second result, also in the spirit of
Theorem 1.1, shows that exponential slowdown is unavoidable on graphs of
bounded degree as well, though more excitations are required in this case.

Theorem 1.2. For infinitely many n ∈ N, there exists a connected graph
G on n vertices of maximum degree 3 with a, b ∈ V (G) and a set X ⊂ V (G)
of O(

√
n) excited vertices such that

E[τa(b,X )] = Ω

(
exp

(
4
√
n

100

))
.

This paper is organised as follows. We give the proofs of Theorems 1.1
and 1.2 in Section 2. We conclude with a discussion of some open problems
in Section 3.

2 Proofs of the main results

In this section, we prove our two main results. It will be helpful to have some
notation. As is usual, we write [n] for the set {1, 2, . . . , n}. In the geodesic-
biased random walk on a graph G, when the target vertex b and set X
of excited vertices are clear from the context, we abbreviate the expected
hitting time τx(y,X ) of y from x by T (x, y).

We shall make use of a well-known Chernoff-type bound.

Proposition 2.1. Let X = X1 +X2 + · · ·+Xn, where X1, X2, . . . , Xn are
independent Bernoulli random variables. Writing µ = E[X], we have

P(X ≥ (1 + δ)µ) ≤ exp

(
−δ2µ
2 + δ

)
for all δ > 0.
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We also require the following well-known gambler’s ruin estimate.

Proposition 2.2. The probability that the simple random walk on the
interval {0, 1, . . . , n} started at 1 visits n before it visits 0 is 1/n.

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. We build an infinite family of graphs as follows. We
fix k ∈ N, set m = b

√
kc, and consider a graph G as follows: we start with

a path of length m + 1 between a and b, say a, v1, v2 . . . , vm, b, and then
connect each vi to a by k disjoint paths of length i+1 as shown in Figure 1.
Formally, we take

V (G) = {a, b} ∪ {v1, v2, . . . , vm} ∪
m⋃
j=1

j⋃
i=1

Ri,j ,

where Ri,j = {ri,j,l : l ∈ [k]}, and specify E(G) as follows:

• ∀i ∈ [m− 1] : {vi, vi+1} ∈ E(G),

• ∀j ∈ [m],∀i ∈ [j − 1],∀l ∈ [k] : {ri,j,l, ri,j+1,l} ∈ E(G) ∧ {ri,1,l, a} ∈
E(G) ∧ {ri,k,l, vi} ∈ E(G),

• {a, v1} ∈ E(G) and {vm, b} ∈ E(G).

We consider the geodesic-biased random walk on this graph with tar-
get b and X = {a}. The unique shortest path to b from a is the path
a, v1, v2 . . . , vm, b, so the random walker always moves to v1 from a.

Lemma 2.3. For 1 ≤ j ≤ m+ 1, we have T (a, vj) ≥ kj−1

4j−1·(j−1)! .

Proof. We will prove this lemma by induction. For j = 1, we have T (a, v1) =
1 and the bound clearly holds. Now, assume the lemma holds for j and note
that T (a, vj+1) = T (a, vj) +T (vj , vj+1), as we can only reach vj+1 from vj .
We may then bound T (vj , vj+1) by

T (vj , vj+1) = 1 +
T (vj−1, vj+1)

k + 2
+
T (vj+1, vj+1)

k + 2
+
k · T (Rj,j , vj+1)

k + 2

≥ k

k + 2
T (Rj,j , vj+1)
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R1,1

a v2 v3 v5 bv4v1

Figure 1: The construction with m = 5.
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From Proposition 2.2, it follows that the probability of walking from Rj,j to
vj before a is j/(j + 1), and the complementary event has the probability
1/(j + 1). We then see that

T (Rj,j , vj+1) ≥ 1

j + 1
T (a, vj+1) +

j

j + 1
T (vj , vj+1).

Using this bound, we obtain

T (vj , vj+1) ≥ k

k + 2

1

j + 1
T (a, vj+1) +

k

k + 2

j

j + 1
T (vj , vj+1)

k + 2j + 2

(k + 2)(j + 1)
T (vj , vj+1) ≥ k

(k + 2)(j + 1)
T (a, vj+1)

T (vj , vj+1) ≥ k

k + 2j + 2
T (a, vj+1)

Combining the above bound with the bound on T (a, vj+1), we get

T (a, vj+1) ≥ T (a, vj) +
k

k + 2j + 2
T (a, vj+1)

2j + 2

k + 2j + 2
T (a, vj+1) ≥ T (a, vj)

T (a, vj+1) ≥ k + 2j + 2

2j + 2
T (a, vj) ≥

k

4j
T (a, vj)

By the induction hypothesis, we now conclude that

T (a, vj+1) ≥ k

4j

kj−1

4j−1 · (j − 1)!
=

kj

4j · j!
;

the result follows.

From Lemma 2.3, we conclude that T (a, b) ≥ km/4mm!; since m =
b
√
kc, standard bounds for the factorial show that

T (a, b) ≥ 1

4

(√
k

4

)√k−1
and since n = |V (G)| = Θ(m2k) = Θ(k2), we deduce that

T (a, b) = Ω

(
exp

(
4
√
n log n

100

))
,

proving the result.
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Next, we present the (slightly more involved) proof of Theorem 1.2.

Proof of Theorem 1.2. To prove the result, we build an infinite family of
graphs as follows. We fix m ∈ N, and consider a graph G constructed as
follows: as before, we start with a path of length m + 1 between a and b,
say a, v1, v2 . . . , vm, b, and then attach a path of length 2m + 2 to each vi,
and finally chain the ends of these paths to a by another path as shown in
Figure 2. Formally, we set

V (G) = {a, b} ∪ {v1, v2, . . . , vm} ∪ {s1, s2, . . . , sm} ∪
2m+1⋃
j=1

m⋃
i=1

{ri,j}

and specify E(G) as follows:

• ∀i ∈ [m− 1] : {vi, vi+1} ∈ E(G) ∧ {si, si+1} ∈ E(G),

• ∀j ∈ [2m],∀i ∈ [m] : {ri,j , ri,j+1} ∈ E(G) ∧ {ri,1, si} ∈ E(G) ∧
{ri,2m+1, vi} ∈ E(G),

• {a, v1} ∈ E(G), {vm, b} ∈ E(G), and {a, s1} ∈ E(G).

We consider the geodesic-biased random walk on this graph with target b
and X = {a, s1, s2, . . . , sm}. Notice that our choice of path lengths ensures
that the random walker moves deterministically from si to si−1 (or to a in
the case of s1), and from a to v1.

Lemma 2.4. We have T (v1, b) ≥ exp(
√
m/10)/(m3/2 + 1).

Proof. We proceed via a renewal argument. Observe that T (v1, b) ≥ 1 +
q · T (v1, b), where q is the probability of the event that the random walker
visits a before b after leaving v1. It will be more convenient to work with
the complementary event, namely, that the random walker visits b before a
after leaving v1; we write p = 1− q for the probability of this event. From
the previous inequality, we then have T (v1, b) ≥ 1/(1− q) = 1/p.

Now, we shall estimate p, the probability that the geodesic-biased walk
starting at v1 hits b before a. To do so, we consider the Markov chain
(xt)t≥0 induced by the geodesic-biased walk on the states a, v1, . . . , vm, b
with a and b being absorbing; of course, p is exactly the probability that
this induced chain started at v1 reaches the absorbing state b before it hits
the absorbing state a.

For each non-absorbing state vi, there are three possibilities for the next
state of the induced chain hit by the random-walker: vi−1, vi+1 or a. The
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r4,11

r4,10
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r5,11

r5,10

r5,2

r5,1

Figure 2: The bounded-degree construction with m = 5.
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probabilities of these transitions are as follows: we write ε for the probability
of returning to a via si, and note that the other two transitions have the
same probability, i.e.,

P[xt+1 = vi+1 |xt = vi] = P[xt+1 = vi−1 |xt = vi] =
1− ε

2
.

We may calculate ε, the probability of retracing, i.e., returning to a via si,
as follows. The probability of reaching si before vi starting from ri,2m+1 is,
by Proposition 2.2, exactly 1/(2m+ 2). It then follows that ε = 1

3 ( 2m+1
2m+2ε+

1
2m+2 ), from which we get ε = 1/(4m+ 5).

We shall estimate p = ps+pl by separately estimating ps, the probability
of the chain hitting b before a starting from v1 in at most m3/2 steps, and
pl, the probability of the chain hitting b before a starting from v1 and taking
more than m3/2 steps to do so.

First, we dispose of ‘long’ excursions. We claim that pl ≤ (1 − ε)m3/2

;
indeed, if the chain does not hit either of a or b in the first m3/2 steps,
then the chain does not, in particular, retrace on any of the first m3/2 steps.
Thus

pl ≤ (1− ε)m
3/2

≤
(

1− 1

4m+ 5

)m3/2

≤ exp

(
−
√
m

10

)
.

Next, we focus on the ‘short’ excursions. Note that we may write ps =∑m3/2

t=0 p(t), where

p(t) = P[{xt = b} ∧ {∀ 1 ≤ i < t : (xi 6= a ∧ xi 6= b)}].

We may then bound p(t) by conditioning on the chain never retracing to
get

p(t) ≤ P[{xt = b} ∧ {∀ 1 ≤ i < t : (xi 6= a ∧ xi 6= b)} |No Retrace].

This upper bound may be interpreted in terms of the simple random walk on
the integers; indeed, conditional on never retracing, the chain is isomorphic
to the simple random walk on the integer line. Concretely, consider the
simple random walk {yt}t≥=0 on the integers and note that

P[{xt = b} ∧ {∀ 1 ≤ i < t : (xi 6= a ∧ xi 6= b)} |No Retrace]

= P[{y0 = 1 ∧ yt = m+ 1} ∧ {∀1 ≤ i < t : (yi 6= 0 ∧ yi 6= m+ 1)}]
≤ P[{y0 = 1 ∧ yt = m+ 1}] ≤ P[{y0 = 1 ∧ yt ≥ m+ 1}].
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The last probability above is easy to estimate since the simple random
walk on the integers may be viewed as a sum of independent Bernoulli
random variables, so by applying Proposition 2.1 (with δ = m/t) to such a
representation of the random walk on the integers, we obtain

P[{y0 = 1 ∧ yt ≥ m+ 1}] ≤ exp

(
−m2

4t+ 2m

)
≤ exp

(
−
√
m

10

)
,

where the second inequality holds for all t ≤ m3/2. Consequently, we have

ps ≤ m3/2 exp

(
−
√
m

10

)
.

Combining the above estimates for ps and pl and the fact that T (v1, b) ≥
1/(ps + pl) now yields the required bound.

The theorem immediately follows from the above lemma. Indeed,

T (a, b) = 1 + T (v1, b),

and writing the above bound for T (v1, b) in terms of

n = |V (G)| = 2 +m(2m+ 3)

proves the result.

3 Conclusion

Our results raise a few different natural questions; we discuss two such
problems below.

There remains the question of determining the right order of uniform
bound for the expected hitting time of a fixed target in the geodesic-biased
walk: we have shown that on a connected n-vertex graph, this may be as
large as exp(n1/4 log n/100), while it is more or less trivial to show a uniform
upper bound of exp(n log n); it would be interesting to close this gap and
pin down the truth.

Another problem that we have been unable to resolve concerns bounded-
degree graphs. While we have exhibited exponential slowdown for the
geodesic-biased walk on bounded-degree graphs, our constructions nonethe-
less require an unbounded number of excitations, which leads to the follow-
ing: in the geodesic-biased walk on a bounded-degree graph with a bounded
number of excitations, is there a uniform polynomial bound on the expected
hitting time of the fixed target?
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Note about the Project “The

Minimum Circuit Size Problem”

Azucena Garvia-Bosshard, Amulya Musipatla
Mentor: Eric Allender

Our project focus was the Minimum Circuit Size Problem (MCSP), the
problem of determining whether a Boolean function can be computed using
a (Boolean) circuit of a certain size. We also studied a closely related
problem, MKTP, which analyzes Kolmogorov complexity in place of circuit
complexity. These problems have gained attention as promising candidates
for NP-intermediate problems.

Over the summer, we improved the known hardness result for MKTP
by Allender and Hirahara [1], that MKTP is hard for DET (computing
determinant of a matrix) under non-uniform NC0 reductions, and showed
that MKTP is in fact hard for DET under non-uniform projections. In other
words, the existing reduction had each output bit relying on a constant
number of input bits while in our reduction each output bit relies on at
most one input bit. Clearly this type of reduction is much more restrictive
which helps motivate interest in this result.

Proving this relationship required an intermediate step of showing that
Graph Isomorphism (GI) is also hard for DET, and then reducing GI to
MKTP. We showed the first step by modifying the method Torán [2] used to
prove that Graph Isomorphism is hard for DET under log-space reductions,
and showing that every step of this reduction could be simulated with a
projection. This immediately followed for some steps of his reduction but
required a more explicit construction for other parts. We also showed that
the reduction from Graph Isomorphism to MKTP constructed by Allender
and Hirahara is already a projection. Combined with the first step, this
proved our result.

Our improvement in the known reduction gives us more intuition on
the difficulty of MKTP and loosens requirements on separating complexity
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classes. We believe this result should follow for MCSP.
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