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Preface

Dear participants,

welcome to the 8th Czech-Slovak International Symposium on Combinatorics, Graph The-
ory, Algorithms and Applications which is organized by the Department of Applied Mathe-
matics of the Charles University in Prague, in cooperation with the universities from Bra-
tislava, Brno, Ko²ice, Ostrava, and Plze¬. We are happy to see so many registered parti-
cipants from all around the world. And we are happy that after the two years a�ected by
COVID-19 we can host an (almost) fully physical on-site event.

With its 60 years long tradition, the Czech-Slovak Graph Theory belongs to the lon-
gest running mathematical conference series, having been organized every year since its
�rst issue in Smolenice in 1963. Roughly every 8 years the event is organized as a large
international symposium. And one of these is this year conference which o�ers you 11
plenary and 70 contributed talks.

Our conference is dedicated to the memory of Robin Thomas, one of the most celebrated
Czech mathematicians. Robin graduated from Charles University in 1985, received the
Fulkerson Prize twice, was named the SIAM fellow and a fellow of AMS. Being a�liated
with Georgia Institute of Technology in Atlanta, he has kept strong links with the Czech
and Slovak graph theory communities, e.g., delivered plenary lectures at the Conference
of Czech Mathematicians in 2002 and at the 6th CSGT in 2006. Robin passed away in
the spring of 2020. The choice of plenary speakers includes Robin's students, frequent
collaborators, and his former advisor. Jaroslav Ne²et°il and Paul Wollan will deliver special
Bor·vka and Jarník lectures organized in the historial building of Charles University on
Wednesday afternoon.

A special issue of Discrete Mathematics stemming from the symposium will be guest
edited by Jan Kratochvíl, Martin Loebl and Jaroslav Ne²et°il. Selected contributions based
on original so far unpublished results will be solicited during the symposium.

Last but not least, we would like to thank the partners of the symposium, RSJ �nancial
group and Avast, for substantial �nancial help, and to our sponsor Znovín Znojmo for a
liquid contribution to the conference dinner.

We hope that you will have a good time in Prague, and fully enjoy the scienti�c and
social program of the symposium, as well as the atmosphere of the city of Prague.

Jan Kratochvíl and Martin Loebl
Organizing committee and Program committee chairs
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Life and Work of Robin Thomas

Robin Thomas studied at the Faculty of Mathematics and Physics, Charles University,
where he completed a master's degree in Mathematical Analysis in 1985 and earned his
doctorate in 1992. His course of study was greatly in�uenced by his advisor, Prof. Jaroslav
Ne²et°il.

Shortly before the Velvet Revolution in 1989, he took a position at Ohio State University
in Columbus, and after two years moved to Georgia Institute of Technology in Atlanta.
Georgia Tech became his home institution for the rest of his life.

Robin Thomas did not con�ne his scienti�c work to a narrow �eld, studying as he did
questions in combinatorics, algebra, geometry, topology, and theoretical computer science.
But the core of his research lay in structural graph theory. It was in this area that he
published most extensively, solving many of its famous problems and in�uencing its deve-
lopment as a discipline. He was, for example, instrumental in verifying the solution of the
Four Color Theorem for planar graphs in the 1990s. As a teacher, he raised many excellent
mathematicians who now work at prestigious universities worldwide.

Robin Thomas received major international honors for his research. He was twice awar-
ded the Fulkerson Prize for outstanding papers in the area of discrete mathematics, in
1994 and in 2009. In 2012 he was named Fellow of the American Mathematical Society
(AMS), and in 2018 he was named Fellow of the Society for Industrial and Applied Mathe-
matics (SIAM). He gave many invited lectures at international conferences, including the
International Congress of Mathematicians in Madrid, 2006. His work was recognized in his
home country, too. As a coauthor, he received the Prize of the Rector of Charles University
for the Best Publication in the Natural Sciences in 2006, and in 2011 he was awarded the
Neuron Prize for Contribution to World Science in Mathematics.

Robin Thomas never lost contact nor ceased cooperation with his former teachers and
classmates (now professors and teachers themselves) back in the Czech Republic. Several
of our colleagues spent a study visit or a postdoc under his supervision. These include
Daniel Krá©, now professor at the Faculty of Informatics of Masaryk University in Brno,
and Zden¥k Dvo°ák, professor at the Computer Science Institute of Charles University,
both of whom continued to work closely with him after the end of their stays at Georgia
Tech and were among his most frequent coauthors.

Robin Thomas was an outstanding scienti�c personality and an outstanding human
being.

Jan Kratochvíl, Martin Loebl, Jaroslav Ne²et°il
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Induced subgraphs and small tree

decompositions

Maria Chudnovsky

Princeton University, Princeton, NJ, USA

Tree decompositions are a powerful tool in structural graph theory; they are traditio-
nally used in the context of forbidden graph minors. Connecting tree decompositions and
forbidden induced subgraphs has until recently remained out of reach.

Tree decompositions are closely related to the existence of "laminar collections of sepa-
rations"in a graph, which roughly means that the separations in the collection �cooperate�
with each other, and the pieces that are obtained when the graph is simultaneously de-
composed by all the separations in the collection �line up� to form a tree structure. Such
collections of separations come up naturally in the context of forbidden minors.

In the case of families where induced subgraphs are excluded, while there are often
natural separations, they are usually very far from forming a laminar collection. However,
under certain circumstances, these collections of natural separations can be partitioned
into a small number of laminar collections (in this context "small"means either constant
or logarithmic in the number of vertices of the graph). This in turn allows us to obtain a
wide variety of structural and algorithmic results, which we will discuss in this talk.
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Flows and coloring of near-quadrangulations

Zden¥k Dvo°ák

Charles University, Prague

The near-quadrangulations of surfaces (graphs where almost all faces have length four)
play an important role in the theory of 3-colorability of triangle-free graphs on surfaces. We
present a powerful approach to coloring near-quadrangulations using nowhere-zero �ows
and explore its applications.
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Recent progress on Directed Graph Minor

Ken-ichi Kawarabayashi

National Institute of Informatics and U. Tokyo

Graph Minor project by Robertson and Seymour is perhaps the deepest theory in Graph
Theory. It gives a deep structural characterization of graphs without any graph as a minor.
It also gives many exciting algorithmic consequences.

10 years ago, with Stephan Kreutzer (and his students/PDs), we start extending Graph
Minor Theory to directed graphs. There is some progress, but many things are to be done.
In this talk, we present some progress report. Topics include

1. The directed grid theorem

2. The directed �at wall theorem

3. Tangle tree decomposition

4. Variant of the directed disjoint paths problems

5. Testing �atness

6. Toward the structure (and decomposition) theorem for H-minor-free digraphs.
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Common structures in combinatorics

Daniel Král'

Faculty of Informatics, Masaryk University, Brno

Ramsey's Theorem guarantees the existence of monochromatic substructures in su-
�ciently large colored combinatorial structures, e.g., graphs. We consider the following
quantitative version of this problem: a combinatorial structure is common if the random
coloring minimizes the number of its monochromatic copies. The notion of common graphs
can be traced back to the work of Erd®s from the 1960s. In particular, Erd®s conjectured
that every complete graph is common, which was disproved by Thomason in the 1980s.

A classi�cation of common graphs remains a challenging open problem. Sidorenko's
Conjecture, one of the most signi�cant open problems in extremal graph theory, implies
that every 2-chromatic graph is common. While examples of 3-chromatic common graphs
were known for a long time, the existence of a 4-chromatic common graph was open until
2012, and no common graph with a larger chromatic number is known.

In this talk, we will survey some recent results on common combinatorial structures,
speci�cally focusing on common graphs. In particular, we will discuss a construction of
connected common graphs with arbitrarily large chromatic number, the notion of locally
common graphs studied by Csóka, Hubai and Lovász, the notion of common structures in
algebraic settings, and extensions to colorings with more than two colors.

The talk will include results obtained with di�erent groups of collaborators, including
Robert Hancock, Matjaº Krnc, Ander Lamaison, Jonathan A. Noel, Sergey Norin, Péter
Pál Pach, Jan Volec and Fan Wei.
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Building the hierarchy of graph classes

Sang-il Oum

IBS Discrete Mathematics Group, Daejeon and KAIST, Daejeon

We will give a survey on the classi�cation of graph classes in terms of the transductions
in monadic second-order logic. Blumensath and Courcelle [1] characterized that every class
of graphs is equivalent by transductions of the monadic second-order logic of the second
kind to one of the following: class of all trees of height n for an integer n, class of all trees,
class of all paths, and class of all grids. They conjectured that there is a similar linear
hierarchy of graph classes in terms of the monadic second-order logic of the �rst kind. We
will discuss how a recent theorem of the speaker with O-joung Kwon, Rose McCarty, and
Paul Wollan [3] on the vertex-minor obstruction for shrub-depth and a theorem of the
speaker with Bruno Courcelle [2] on graphs of large rank-width and logical expression of
vertex-minors solve some subproblems of their conjecture.

Reference

[1] A. Blumensath and B. Courcelle. On the monadic second-order transduction hierarchy.
Log. Methods Comput. Sci., 6(2):2:2, 28, 2010.

[2] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a conjecture
by Seese. J. Combin. Theory Ser. B, 97(1):91�126, 2007.

[3] O. Kwon, R. McCarty, S. Oum, and P. Wollan. Obstructions for bounded shrub-depth
and rank-depth. J. Combin. Theory Ser. B, 149:76�91, 2021.
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Perfect matchings in cubic graphs

Edita Má£ajová

Comenius University, Bratislava

It is known that many important conjectures in graph theory are equivalent to their
restrictions to cubic graphs. For better understanding of this family, perfect matchings
turn out to be of vital importance.

In this talk, we provide general background concerning the most important conjectures
that involve perfect matchings in cubic graphs and their interactions. These conjectures
include (1) conjectures about covering the edge set of a cubic graph with a certain constant
number of perfect matchings (Berge conjecture), (2) conjectures about covering the edges
of a cubic graph with perfect matchings in such a way that every edge is in the same
number of perfect matchings (Fulkerson conjecture), (3) conjectures about the existence
of a certain constant such that every graph admits this number of perfect matchings with
empty intersection (Fan-Raspaud conjecture).

We discuss a special family of subcubic graphs not containing a perfect matching and
its consequences for cubic graphs. We also sketch the proof of the statement that every
bridgeless cubic graph contains two perfect matchings whose complement is bipartite. This
statement is implied by the Fan-Raspaud conjecture and was conjectured to be true 10
years ago by Giuseppe Mazzuoccolo.

This talk is based on joint works with Karabá², Kardo², Nedela, �koviera, Zerafa.
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Tree models for graphs

Jaroslav Ne²et°il

Computer Science Institute, Faculty of Mathematics and Physics, Charles University

We survey various tree models starting with Tremaux and Boruvka and ending with
shrub depth and tree models for permutation and twin width classes.
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Approximation of Submodular Minimum

Linear Ordering Problems

Prasad Tetali

Carnegie Mellon University, Pittsburgh

The minimum linear ordering problem (MLOP) generalizes well-known combinatorial
optimization problems such as minimum linear arrangement and the minimum sum set
cover. MLOP seeks to minimize an aggregated cost f(·) due to an ordering σ of the items
(say [n]), i.e., minσ

∑
i∈[n] f(Ei,σ), where Ei,σ is the set of items mapped by σ to indices

[i]. Besides reviewing past results on the problem and its special cases due to Feige, Iwata,
Lovasz, and the speaker, we will outline new results. These include a new combinatorial
algorithm for approximating monotone submodular MLOP, using the theory of principal
partitions, resulting in a 2− 1+`f

1+|E| approximation for monotone submodular MLOP, where

`f = f(E)
maxx∈E f({x}) satis�es 1 ≤ `f ≤ |E|. Our theory provides new approximation bounds

for special cases of the problem, in particular a 2− 1+r(E)
1+|E| approximation for the matroid

MLOP, where f = r is the rank function of a matroid. We further observe that the minimum
latency vertex cover is 4

3
approximable, by which we also lower bound the integrality gap

of its natural LP relaxation. These are obtained in joint work with Majid Farhadi, Swati
Gupta, Shengding Sun and Michael Wigal, all colleagues from Georgia Tech.
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From even-hole free graphs to treewidth

Nicolas Trotignon

CNRS, ENS de Lyon, Lyon

A hole in a graph is a chordless cycle of length at least 4. A graph is even hole free if
it does not contain a hole of even length. Even-hole-free graphs attracted some attention
because of their anology with perfect graphs (where holes of odd length together with their
complements are excluded). We will survey some results about the structure of even-hole-
free graphs, and explain why their structure is so mysterious : on the one hand, the general
theorems that are known about them are not strong enough to provide polynomial time
algorithms to color or �nd a maximum stable set; one the other hand, it is quite hard to
exhibit example of even hole free that are �complex� in any way.

This remark lead researchers to investigate widths of even-hole-free graphs (treewidth,
cliquewidth, rankwidth), with the hope that in some way their width might be restricted.
This study failed in the sense that very restricted classes of even-hole graphs turned out
to have unbounded width. But it was a success in the sense it lead to several conjectures
about a possible version of the celebrated grid-minor theorem of Roberston and Seymour,
with �minor� replaced by �induced subgraph�. It turns out that all these conjectures are
now either proved or disproved. We will survey these recent progress.

10



Linear programming and

the circuit imbalance measure

László Végh

London School of Economics

The existence of a strongly polynomial algorithm for linear programming (LP) is a
fundamental open question in optimization. Given an LP in the standard equality form

〈c, x〉 s.t. Ax = b , x ≥ 0 ,

for A ∈ Rn×n, b ∈ Rm, c ∈ Rn, such an algorithm would perform poly(n,m) arithmetic
operations. Strongly polynomial algorithms are known for a range of network optimization
problems. Two signi�cant steps towards general LP are Tardos's poly(n,m, log ∆A) algo-
rithm from 1986 and a poly(n,m, log χ̄A) interior point method by Vavasis and Ye from
1996. Here, ∆A is the maximum subdeterminant of the integer constraint matrix, and χ̄A
is a geometric condition number associated with the matrix A.

We give an overview of recent developments that strengthen and extend these results.
A key object of our study is the circuit imbalance measure κA that bounds the ratios
of the entries of support-minimal vectors in the kernel of A. We exhibit combinatorial
properties and proximity results of linear programs that can be used to design new exact
LP algorithms. In particular, we present new circuit augmentation algorithms, and derive
improved bounds on the circuit diameter of polyhedra.

The talk is based on joint works with Daniel Dadush, Sophie Huiberts, Cedric Koh,
and Bento Natura.
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Explicit bounds for graph minors

Ken-ichi Kawarabayashi, Robin Thomas, Paul Wollan

Sapienza University of Rome, Rome

Robertson and Seymopur proved a theorem approximately characterizing all graphs
excluding some �xed graph H as a minor, a result which has had an enormous impact
on the �eld with numerous applications in graph theory and theoretical computer science.
The proof is notable for its complexity, stretching over a series of sixteen papers. Moreover,
the proof does not yield explicit bounds on the parameters involved.

We present recent work which for the �rst time gives explicit bounds on the parameters
involved through a new proof of the main results in the graph minors series.

12
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From domination to isolation of graphs

Peter Borg

University of Malta, Malta

In 2017, Caro and Hansberg [6] introduced the isolation problem, which generalizes the
domination problem. Given a graph G and a set F of graphs, the F-isolation number of
G is the size of a smallest subset D of the vertex set of G such that G−N [D] (the graph
obtained from G by removing the closed neighbourhood of D) does not contain a copy of
a graph in F . When F consists of a 1-clique, the F -isolation number is the domination
number. Caro and Hansberg [6] obtained many results on the F -isolation number, and
they asked for the best possible upper bound on the F -isolation number for the case where
F consists of a k-clique and for the case where F is the set of cycles. The solutions [1, 3]
to these problems will be presented together with other results, including an extension of
Chvátal's Art Gallery Theorem. Some of this work was done jointly with Kurt Fenech and
Pawaton Kaemawichanurat.

Reference

[1] P. Borg, Isolation of cycles, Graphs and Combinatorics 36 (2020), 631�637.

[2] P. Borg, Isolation of connected graphs, arXiv:2110.03773.

[3] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques, Discrete Mathe-
matics 343 (2020), paper 111879.

[4] P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques II, Discrete Mathe-
matics 345 (2022), paper 112641.

[5] P. Borg and P. Kaemawichanurat, Domination and partial domination of maximal
outerplanar graphs, arXiv:2002.06014.

[6] Y. Caro and A. Hansberg, Partial domination - the isolation number of a graph, Filo-
Math 31:12 (2017), 3925�3944.
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Geometry meets Topology

at Optimal RAC Graphs

Franz J. Brandenburg

Passau, Germany

A drawing of a graph in the plane is right angle crossing (RAC ) if the edges are drawn
straight line and may cross at a right angle. A drawing or embedding is 1-planar if each
edge is crossed at most once. A graph is 1-planar (RAC) if it admits a 1-planar (RAC)
drawing.

It is known that an n-vertex graph has at most 4n-8 edges if it is 1-planar and at most
4n-10 edges if it is RAC. Both bounds are tight. An n-vertex 1-planar (RAC) graph is
optimal if it has 4n-8 (4n-10) edges.

It has been shown that there are optimal 1-planar graphs for n = 8 and for every
n ≥ 10, that optimal 1-planar graphs can be recognized in linear time, and that every
optimal RAC graph is 1-planar.

Our contribution: We call a graph almost optimal RAC if it admits a 1-planar dra-
wing such that the restrictions to straight-line edges and right angle crossings are relaxed.
We show that there are (almost) optimal RAC graphs for every n ≥ 4. Every (almost)
optimal RAC graph has a unique 1-planar embedding except for so called doubly linked
paths, K4 and K5. Almost optimal RAC graphs can be recognized in cubic time, whereas
the recognition problem for optimal RAC graphs remains open.

Acknowledgement. Supported by Deutsche Forschungsgemeinschaft (DFG) Br835/20-1.
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Generalizing nowhere dense graph classes

Samuel Braunfeld, Michael Laskowski

Charles University

Nowhere dense graph classes, introduced by Ne²et°il and Ossona de Mendez, have
proven to be a key dividing line separating tame from wild behavior in monotone (i.e.
closed under subgraph) graph classes. We will discuss ongoing work to generalize this
dividing line to hereditary classes of relational structures, guided by model theory.

Reference

[1] Samuel Braunfeld and Michael C. Laskowski, Characterizations of Monadic NIP,
Transactions of the AMS, Series B 8 (2021), 948�970.
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Counting well-quasi-ordered down-sets

Rutger Campbell, Dillon Mayhew

Institute for Basic Science, Daejeon, South Korea

For a poset consisting of combinatorial objects under some substructure relation, we
characterize when there are countably many well-quasi-ordered down-sets.
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On the Hyperopic Version of the Cops and

Robber Game

Nancy E. Clarke, Stephen Finbow, Margaret-Ellen Messinger, Amanda Porter

Acadia University, Wolfville, Canada

We consider the hyperopic version of the Cops and Robber game introduced by Bo-
nato et al. [1], a variation in which the robber is invisible to the cop side unless outside
the neighbourhood of a cop. The hyperopic copnumber is analogous to the copnumber.
We present a variety of results on this parameter for various classes of graphs, including
Cartesian products and graphs of diameter 2.

Reference

[1] A. Bonato, N.E. Clarke, D. Cox, S. Finbow, F. Mc Inerney, M.E. Messinger, Hyperopic
cops and robbers, Theoretical Comp. Sci. 794 (2018) 59�68.
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Graphs with every hole the same length

Linda Cook, Jake Hors�eld, Myriam Preissmann, Cléophée Robin, Paul
Seymour, Ni Luh Dewi Sintiari, Nicolas Trotignon, and Kristina Vu²kovi¢

Institute for Basic Science, Daejeon, Republic of Korea

We call an induced cycle of length at least four a hole. The parity of a hole is the parity
of its length. Forbidding holes of certain types in a graph has deep structural implications.
In 2006, Chudnovksy, Seymour, Robertson, and Thomas famously proved that a graph is
perfect if and only if it does not contain an odd hole or a complement of an odd hole. In
2002, Conforti, Cornuéjols, Kapoor, and Vu²kovíc provided a structural description of the
class of even-hole-free graphs. I will describe the structure of all graphs that contain only
holes of length ` for every ` ≥ 7.

This is joint work with Jake Hors�eld, Myriam Preissmann, Paul Seymour, Ni Luh Dewi
Sintiari, Cléophée Robin, Nicolas Trotignon, and Kristina Vu²kovi¢ [2]. Note that Jake
Hors�eld, Myriam Preissmann, Ni Luh Dewi Sintiari, Cléophée Robin, Nicolas Trotignon,
and Kristina Vu²kovi¢ also wrote up their version of the proof in [1].

Reference

[1] Jake Hors�eld, Myriam Preissmann, Cléophée Robin, Ni Luh Dewi Sintiari, Nicolas
Trotignon, and Kristina Vu²kovi¢. "When all holes have the same length."arXiv preprint
arXiv:2203.11571 (2022).
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Some Applications of Voltage Graphs in

Computer Science

Peter Czimmermann

University of �ilina, �ilina

A uniformly deployed set (UDS) with parameters (n, p, t) is the set that contains n-bit
binary words with weights p. Each pair of such words has at most t overlapping ones. It has
been shown that UDS can be used in various heuristic algorithms for searching a weighted
p-median or p-center. In our previous work, we suggested a fast algorithm for construction
of UDS with given parameters. This algorithm uses abelian lifts from voltage graphs for
the construction of large digraphs with given properties. Rows of the adjacency matrix of
such digraphs are the elements of UDS.

In our contribution, we show the construction of the family of UDS for p = 1, 2, . . . , n−1
(where n is given). We study usage of this collection in heuristic algorithms that are used
to �nd suboptimal solutions of some NP -hard problems (for example covering problem).
We also introduce applications of collections of UDS in some areas of computer science �
in reliability theory and arti�cial neural networks.
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On necessary and su�cient condition for the

existence of properly colored regular factors

Roman �ada, Michitaka Furuya, Kenji Kimura, Kenta Ozeki,
Christopher Purcell, Takamasa Yashima

University of West Bohemia, Plze¬

Let r ≥ 2 be an integer, and G be a graph. A spanning subgraph of G is called a
factor F of G, and if F is r-regular, then we call it r-factor. Tutte [1] gave a necessary and
su�cient condition for the existence of an r-regular factor in G.

Let now G be an edge-colored graph. A subgraph is called properly colored if for each
x ∈ V (G), no pair of colors on the edges incident with x are the same. As a generalization
of the Tutte's result we give a necessary and su�cient condition for the existence of a
properly colored r-factor in edge-colored graphs. We will also discuss some related results.
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[1] W. T. Tutte, The factors of graphs, Can. J. Math., 4 (1952), 314�328.
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Light graphs in essentially-highly-connected

polyhedral graphs

Katarína �ekanová, Tomá² Madaras

P. J. �afárik University, Ko²ice, Slovakia

A k-connected graph is called essentially (k+1)-connected if each its vertex k-cut leaves
at most one nontrivial component. We say that graph H is light in a graph family G if
there exist �nite number k such that each G ∈ G which contains H as a subgraph, also
contains its isomorphic copy K with

∑
x∈V (K)

degG(x) ≤ k.

We explore the structure of light graphs in essentially 4- and 5-connected plane graphs,
focusing on existence of small clusters of faces of small sizes as well as the small subgraphs
(or sets of subgraphs) having vertices of degrees upper bounded by small constants; as
an application, we show that the cyclic edge connectivity of essentially 5-connected plane
graphs is �nite.
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Complexity of Ordered Homomorphisms

Michal �ertík, Jaroslav Ne²et°il

Computer Science Institute, Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic

Ordered Homomorphism f< of Ordered Graphs, graphs with linearly ordered set of
vertices, G< = (V,E,<G) and H< = (V,E,<G) is a homomorphism f : G→ H, for which
v <G u =⇒ f(v) <H f(u). This homomorphism can be seen as a decomposition of
vertices of G< into k intervals in the order <G, where each interval is independent set.

Let χ<(G<) = min(i| there exists f< : G< → K<
i ), where K<

i is (ordered) complete
graph on i vertices. It is easy to see that determining the χ<(G<) is in P . This is contrary
to the similar concept of standard graphs coloring, where for i ≥ 3 the problem is NP-
complete. χ<(G<) can be moreover obtained by a greedy algorithm.

As for graphs [2], one can consider H<-coloring problem as a question whether for a
given G< there exists f< : G< → H<. Note that for every H<, the problem is in P .

Thus, we consider more general problem which we call H<-coloring as the following
problem.

� Instance: Ordered graph G<.

� Question: Does there exist H< ∈ H< and homomorphism f< : G< → H<?

We prove the following two results related to the (parameterized) complexity of this
problem (see [3]).

Theorem 1. There exists H< such that H<-coloring is NP − complete.

Theorem 2. There exists parameter k such that H<
k -coloring is in XP and W[2]-hard.

The proofs are contained in the forthcoming article [1].
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Group supermagic labelings of

Cartesian product of cycles

Dalibor Froncek, Peter Paananen, Lincoln Sorensen

University of Minnesota Duluth

There is a close connection between Abelian groups and Cartesian products of cycles,
since every Cartesian product Cn1�Cn2� · · ·�Cnt can be viewed as the Cayley graph of the
group Zn1⊕Zn2⊕· · ·⊕Znt with generating set {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

A graph G = (V,E) is Γ-supermagic if there exists a bijection f from E to a group Γ
of order |E| (called a Γ-supermagic labeling) such that the weight w(x) of each vertex x,
de�ned as the sum of labels of all edges incident with x, is equal to the same magic element
µ. That is, there exists µ ∈ Γ such that for all x ∈ V ,

w(x) =
∑
xy∈E

f(xy) = µ.

It was proved by DF, McKeown, McKeown, and McKeown ([1], [2]) that a Z2mn-
supermagic labeling of Cm�Cn exists for allm,n ≥ 3. We prove that whenm ≡ n (mod 2),
then Cm�Cn allows a Γ-supermagic labeling by any Abelian group Γ of order 2mn. We also
present some preliminary results on labelings of Cm�Cn by non-Abelian groups, namely
dihedral groups Dmn.

Reference

[1] D. Froncek, J. McKeown, J. McKeown, M. McKeown. Z2nm-supermagic labeling of
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Stable graphs of bounded twin-width

Jakub Gajarský, Michaª Pilipczuk, Szymon Toru«czyk

University of Warsaw

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé and Watri-
gant [1] in 2020. During the short time since its introduction, it has attracted considerable
attention, and its various structural, algorithmic, combinatorial and model theoretic pro-
perties have been established.

Intuitively, a graph has twin-width d if it can be constructed by merging larger and
larger parts (starting from parts being single vertices) so that at any moment during the
construction, every part has a non-trivial interaction with at most d other parts (trivial
interaction between two parts means that either no edges, or all edges span across the two
parts).

In our work we consider classes of graphs of bounded twin-width from the perspective
of monadic stability. Class C of graphs is monadically stable if there is a bound on the size
of largest half-graph contained in any G ∈ C as a semi-induced subgraph. We prove that
every class of graphs C that is monadically stable and has bounded twin-width can obtained
from some class with bounded sparse twin-width (a class of graphs of bounded twin-width
which also has bounded expansion) by a �rst-order transduction. This generalizes analogous
results for classes of bounded linear clique-width [2] and of bounded clique-width [3]. It
also implies that monadically stable classes of bounded twin-width are linearly χ-bounded.

Reference

[1] É Bonnet, E. Kim, S. Thomassé, R. Watrigant. Twin-width I: Tractable FO Model
Checking, J. ACM (2022).
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Sum Labelling Graphs of Maximum Degree two

Henning Fernau, Kshitij Gajjar

National University of Singapore, Singapore

There is a vast body of literature on graph labelling, as testi�ed by a dynamic survey
on this topic maintained by Gallian [1]. The 553-page survey mentions over 3000 papers
on di�erent ways of labelling graphs. We study one such type of graph labelling that was
introduced in 1990 by Harary [2], known as sum labelling.

A graph is called a sum graph if its vertices can be labelled by distinct positive integers
such that there is an edge between two vertices if and only if the sum of their labels is the
label of another vertex of the graph. Every graph can be transformed into a sum graph
by adding some isolated vertices to the graph; the minimum number of isolated vertices
needed for this is known as the sum number of the graph.

The sum number of most prominent graph classes (cycles, trees, complete graphs, etc.)
is already known. However, beyond these graphs, it is extremely di�cult to pin down the
sum number of even the most simplistic graph classes. In this work, we examine the e�ect
of taking the disjoint union of graphs on the sum number. In particular, we provide an
almost complete characterization of the sum number of graphs of maximum degree two, as
every such graph is the disjoint union of paths and cycles.

Reference

[1] J. A. Gallian. A dynamic survey of graph labeling, version 23. The Electronic Journal
of Combinatorics, DS 6, 2020.

[2] Frank Harary. Sum graphs and di�erence graphs. Congressus Numerantium,
72:101�108, 1990.
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Product structure of graph classes

with bounded treewidth

Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin,
Kevin Hendrey, Robert Hickingbotham, Tony Huynh,

Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood

Institute for Basic Science, Daejeon, South Korea

We show that many graphs with bounded treewidth can be described as subgraphs of
the strong product of a graph with smaller treewidth and a bounded-size complete graph.
To this end, we de�ne the c-tree-partition-width of a graph G as the smallest integer w for
which G is isomorphic to a subgraph of H �Kw where the treewidth of H is at most c,
and we de�ne the underlying treewidth of a graph class G to be the minimum non-negative
integer c such that, for some function f , for every graph G ∈ G has c-tree-partition-width
at most f(tw(G)). We introduce a notion of disjointed partitions to characterise when a
graph of treewidth k has bounded c-tree-partition-width and use this concept to compute
the underlying treewidth of several graph classes of interest. As an example, we show that
the class of planar graphs has underlying treewidth 3.
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The Hamilton compression of highly

symmetric graphs

Petr Gregor, Arturo Merino, Torsten Mütze

Charles University, Prague

We say that a Hamilton cycle C = (x1, . . . , xn) in a graph G is k-symmetric, if the
mapping xi 7→ xi+n/k for all i = 1, . . . , n, where indices are considered modulo n, is an
automorphism of G. In other words, if we lay out the vertices x1, . . . , xn equidistantly on
a circle and draw the edges of G as straight lines, then the drawing of G has k-fold rotati-
onal symmetry, i.e., all information about the graph is compressed into a 360◦/k wedge of
the drawing. We refer to the maximum k for which there exists a k-symmetric Hamilton
cycle in G as the Hamilton compression of G. We investigate the Hamilton compression
of four di�erent families of vertex-transitive graphs, namely hypercubes, Johnson graphs,
permutahedra and Cayley graphs of abelian groups. In several cases we determine their
Hamilton compression exactly, and in other cases we provide close lower and upper bounds.
The cycles we construct have a much higher compression than several classical Gray codes
known from the literature. Our constructions also yield Gray codes for bitstrings, combi-
nations and permutations that have few tracks and/or that are balanced.
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On multichromatic numbers of widely colorable

graphs

Anna Gujgiczer, Gábor Simonyi

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

and
MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Budapest

A coloring of a graph is called s-wide if no walk of length 2s − 1 connects vertices
of the same color. A graph is s-widely colorable with t colors if and only if it admits
a homomorphism into a universal graph W (s, t). The talk is about the multichromatic
numbers of these universal graphs. We determine the rth multichromatic number ofW (s, t)
whenever r ≤ s. The resulting value matches a lower bound proved by Tardif in [2] and
answers a question he asked in the same paper. We also discuss our (lack of) knowledge in
the r > s case.

The talk is based on the paper [1].
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Oriented expressions of graph properties

Santiago Guzmán-Pro, César Hernández-Cruz

Facultad de Ciencias, UNAM, Mexico City

The Roy-Gallai-Hasse-Vitaver Theorem asserts that a graph G is k-colourable if and
only if it admits and orientation with no directed walk on k+ 1 vertices. This implies that
if Fk is the set of homomorphic images of the directed path on k+ 1 vertices, then a graph
is k-colourable if and only if it admits an Fk-free orientation, that is, an orientation with no
induced oriented subgraph in Fk. We say that a class of graphs P is expressible by forbidden
orientations if there is a �nite set F of oriented graphs such that P is the class of graphs
that admit an F -free orientation. Skrien [3] shows that some of these classes include proper
circular arc graphs, nested interval graphs and the so-called perfectly orientable graphs.
We are interested in the following motivating question: Which graph classes are expressible
by forbidden orientations? There are two ways to tackle this question. The �rst one is to
�x a �nite set F of oriented graphs and characterize the class of graphs that admit an
F -free orientation; we do so in [1] by considering sets of oriented graphs on three vertices.
Secondly, we can �x a class of graphs P and �nd a �nite set of oriented graphs F such that
P is the class of graphs that admit an F -free orientation; we do so in [2] where we show
that for every odd cycle C the class of C-colourable graphs is expressible by forbidden
orientations. In this talk we present some limitations of this expression system. We do
so by exhibiting some necessary conditions upon certain graph classes to be expressible
by forbidden orientations. Consequently, we exhibit an uncountable family of hereditary
classes for which no such �nite set exists. In particular, we show that the class of even
hole-free graphs is not expressible by forbidden orientations.
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Extremal bipartite biregular bi-coset graphs

�tefan Gyürki, Robert Jajcay, Pavol Jáno²,
Martin Ma£aj, Jozef �irá¬, Yan Wang

Slovak University of Technology, Bratislava

Let G be a �nite group and H,K be its subgroups such that H ∩K = {1}. The bi-coset
graph Γ(G;H,K) is the bipartite graph whose vertices are the left cosets of H and K in G,
and the adjacency relation is de�ned via non-empty intersection.

Biregular (m,n; g)-graphs are graphs that consist of vertices of two degrees, m and n
(with both of the degrees present) and which are of girth g. Bipartite biregular (m,n; g)-
graphs are bipartite (m,n; g)-graphs with the additional property that the two partite sets
consist of vertices of the same degree (di�erent for each set). For a given triple (m,n; g)
a smallest (with respect to the order) bipartite biregular (m,n; g)-graph is called a bipar-
tite biregular (m,n; g)-cage. In the talk we present a construction of bipartite biregular
(3, 3k; 6)-cages which are bi-coset graphs and work when k is odd and 6k + 1 is a prime.

An edge-girth-regular egr(v, k, g, λ)-graph Γ is a k-regular graph of order v and girth g
in which every edge is contained in λ distinct g-cycles. The smallest graphs among all
edge-girth-regular graphs for given parameters (k, g, λ) are called extremal. Similarly, the
smallest bipartite graph among all edge-girth-regular graphs for given parameters (k, g, λ)
is called extremal bipartite edge-girth-regular. A few in�nite families of extremal bipartite
edge-girth-regular graphs will be presented that were obtained as bi-coset graphs of matrix
groups.

Acknowledgement. The author acknowledges support from the APVV Research
Grants 17-0428 and 19-0308, and from the VEGA Research Grants 1/0206/20 and 1/0567/22.
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Twin-width of Planar Graphs is at most 11

Petr Hlin¥ný

Faculty of Informatics, Masaryk University, Brno

Twin-width is a new and very successful structural width measure of graphs, which can
be seen as �measuring the distance from a cograph�. Essentially, it measures how similar are
neighbourhoods of the vertices in a graph; by recursively identifying (contracting) similar
pairs of vertices and marking di�erences (�errors�) in their neighbourhood by red edges,
while keeping the maximum red degree low at all times.

Already the �rst paper on twin-width by Bonnet et al. [FOCS 2020] included an
asymptotic argument bounding the twin-width of planar graphs by a non-explicit con-
stant. Quite recently, we have seen �rst small explicit upper bounds of 183 by Jacob
and Pilipczuk [arXiv:2201.09749, January 2022] (to appear at WG 2022), 583 by Bon-
net et al. [arXiv:2202.11858, February 2022], and of 37 by Bekos et al. [arXiv:2204.11495,
April 2022].

We prove that the twin-width of planar graphs is at most 11; which means that every
planar graph can be brought down to a single vertex by successively identifying pairs of
vertices and never having the red degree more than 11. Unlike the previously mentioned
results, our proof technique is not directly related to the product structure of planar graphs,
but still inspired by the former approaches. We also expect further slight improvement of
this bound in the near future. Details can be found in [arXiv:2205.05378].
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Gadget construction for elementary

convergence of relational structures

David Hartman, Tomá² Hons, Jaroslav Ne²et°il

Computer Science Institute of Charles University, Prague

There are multiple ways to de�ne convergence of graphs and corresponding graph limits.
One of them, called structural convergence, proposed by Ne²et°il and Ossona de Mendez [1],
de�nes convergence of relational structures using logical formulas in a way generalizing
some other approaches to graph convergence, such as dense graph limits and Benjamini-
Schramm convergence. By restricting to sentences, we get a case of structural convergence
called elementary convergence: A sequence of relational structures is elementary convergent
if for each �rst order sentence there exists an index from which on all the structures model
the sentence or none of them does.

We consider the gadget (indicator) construction (see e.g. [2]) applied entry-wise on a
series of structures and systems of series of gadgets. Our interest lies in the case when
(some of) these sequences converge. One of our main results can be described as follows.

For an elementary convergent series of structures and an elementary convergent system of
gadgets the resulting series created using the gadget construction is elementary convergent.

This construction enables us to generate various examples of convergent series. In ad-
dition, we can describe the limit object of sequences created by this method as a countable
relational structure. This together with other results will appear in [3].

This work is part of a project that has received funding from the European Research Council
(ERC) under the European Union's Horizon 2020 research and innovation programme
(grant agreement No 810115 � Dynasnet).
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On the maximum number of perfect matchings

Peter Horak

University of Washington

This presentation will consists of two parts. The �rst part will discuss a joint result
with Dongryul Kim, a graduate student at Stanford; the second part is devoted to my
reminiscences of Robin Thomas.

In 2008 Alon and Friedland showed that a simple cubic graph G on 2n vertices has at
most 6n/3 perfect matchings, and this bound is attained by taking the disjoint union of
bipartite complete graphs K3,3. In other words, the above theorem says that the complete
bipartite graph K3,3 has the highest �density� of perfect matchings among all cubic graphs.
However, this result does not provide any insight into the structure of extremal connected
cubic graphs. The main result of this part claims that, for n ≥ 6, the number of perfect
matchings in a simple connected cubic graph on 2n vertices is at most 4fn−1, with fn being
the n-th Fibonacci number, and a unique extremal graph will be characterized as well.

Robin Thomas has proved seminal and acclaimed results in a wide range of mathema-
tical �elds. In my reminiscences of Robin, I recall a one that is probably not as well known.
Robin proved this math gem when he was still an undergraduate, and likely it was his very
�rst result.
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Rainbow bases in matroids

Florian Hörsch, Tomá² Kaiser, Matthias Kriesell

Technische Universität Ilmenau, Germany

Recently, it was proved by Bérczi and Schwarcz that the problem of factorizing a mat-
roid into rainbow bases with respect to a given partition of its ground set is algorithmically
intractable, leaving many special cases open.

We �rst show that the problem remains hard if the matroid is graphic, answering a
question of Bérczi and Schwarcz. Solving another special case, we show that the problem
of deciding whether a given digraph can be factorized into subgraphs which are spanning
trees in the underlying sense and respect upper bounds on the indegree of every vertex is
also hard. This answers a question of Frank.

Further, we deal with the relaxed problem of covering the ground set of a matroid by
rainbow bases. Among other results, we show that there is a linear function f such that
every matroid that can be factorized into k bases for some k ≥ 3 can be can be covered by
f(k) rainbow bases if every partition class contains at most 2 elements.
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Extension property for partial automorphisms:

cobinatorial constructions and open problems

Jan Hubi£ka, Mat¥j Kone£ný, Jaroslav Ne²et°il

Department of Applied Mathematics (KAM), Charles University, Prague

In 1992 Hrushovski shown that for every �nite graph G there exists �nite graph H con-
taining G as an induced subgraph such that every isomorphism of two induced subgraphs
of G extends to an automorphism of H [3]. This property (of the class of �nite graphs)
is called the Extension Property for Partial Automorphisms (EPPA) or the Hrushovski
property and has several implications to the properties of the automorphism group of the
countable random graph (Rado graph). In fact, it was formulated in order to solve the
(group-theoretic) small index property conjecture [2].

Hrushovski's proof uses group-theoretic tools. An elementary combinatorial proof, based
on the intersection graphs, was given by Herwig and Lascar [2]. In the same paper they
proved the Herwig and Lascar theorem (one of deepest results in the area), which gives
a structural condition for a class of structures to have EPPA. This gives many additional
classes with EPPA and is again proved using group theoretic methods.

We show di�erent elementary combinatorial construction which generalizes to new proof
of the Herwig-Lascar theorem and its strengthening for classes of structures with unary
functions [4].

Reference

[1] B. Herwig, D. Lascar, Extending partial automorphisms and the pro�nite topology on
free groups, Transactions of the American Mathematical Society 5 (2000), 985�2021

[2] W. Hodges, I. Hodkinson, D. Lascar, S. Shelah, The small index property for ω-stable
ω-categorical structures and for the random graph, Journal of the London Mathematical
Society 2 (1993): 204�218.

[3] E. Hrushovski, Extending partial isomorphisms of graphs, Combinatorica 4 (1992),
411�416.

[4] J. Hubi£ka, M. Kone£ný, J. Ne²et°il, All those EPPA classes (Strengthenings of the
Herwig-Lascar theorem), arXiv:1902.03855, Transactions of the American Mathemati-
cal Society, in print, 67 pages.
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Counting Circuit Double Covers

Radek Hu²ek, Robert �ámal

Faculty of Information Technology, Czech Technical University in Prague*

We study a counting version of Cycle Double Conjecture:

Conjecture 1 (Szekeres '73 [1]). Every bridgeless graph has a circuit double cover.

We count circuit double covers1 instead of k-cycle double covers because the number
of k-CDC heavily depends on k. We show almost exponential lower bound for graphs with
a nice embedding on surfaces and exponential lower bound for planar graphs:

Theorem 2. Every bridgeless cubic graph with embedding into a surface of Euler charac-
teristic χ with representativity at least 4 has 2Ω( 3√n+2χ) circuit double covers.

Theorem 3. Every bridgeless cubic planar graph has at least (5/2)n/4−1/2 circuit double
covers.

Based on conducted experiments, we also present a strengthening of CDC conjecture:

Conjecture 4. Every bridgeless cubic graphs with n vertices has at least 2n/2−1 circuit
double covers.

We know that the hypothetical minimal counterexample is cyclically 4-edge-connected,
does not contain C4 and has at least 22 vertices. This conjecture is tight for graphs obtained
fromK4 by expanding vertices to triangles. On the other hand, it might not be the strongest
possible for cyclically 4-edge-connected graphs.

Reference

[1] George Szekeres. Polyhedral decompositions of cubic graphs. Bulletin of the Australian
Mathematical Society, 8(3):367�387, 1973. doi: 10.1017/S0004972700042660.

*Large part of the work was done during my Ph.D. study at Faculty of Mathematics and Physics,
Charles University, Prague.

1Circuit is a graph isomorphic to Ck for some k. Cycle is graphs with all degrees even (i.e., edge-disjoint
union of circuits).

37



A connection between G-graphs and lifting

construction

�tefan Gyürki, Pavol Jáno², Jana �iagiová, Jozef �irá¬

Slovak University of Technology, Bratislava

The problem of �nding (k, g)-cages is to �nd the smallest (in terms of the number
of vertices) k-regular graphs of girth g. One of the approaches of �nding small k-regular
graphs of given girth are constructions based on groups; a prominent example are lifting
constructions, which can be regarded as a generalisation of the well known Cayley graphs.
Bretto and Faisant presented in [1] another construction of graphs related to groups and
having highly regular properties, called G-graphs.

In the talk we compare these two constructions and derive a su�cient condition pro-
viding when the G-graphs can be obtained as lifts of dipoles. We also provide the lifting
constructions of near-cages of girth 6 and 8, originally constructed in [2] as p-regular G-
graphs for an arbitrary prime p, which we were able to extend for prime powers.

The second author acknowledges support from the APVV Research Grants 17-0428 and
19-0308, and from the VEGA Research Grants 1/0206/20 and 1/0567/22.

Reference

[1] A. Bretto and A. Faisant, A new way for associating a graph to a group, Math. Slovaca
55(1) (2005), 1�8.

[2] A. Bretto, A. Faisant and L. Gillibert, New graphs related to (p, 6) and (p, 8)-cages,
Comput. Math. Appl. 62 (2011), 2472�2479.
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Twin-width and Transductions of Proper

k-Mixed-Thin Graphs

Jakub Balabán, Petr Hlin¥ný, Jan Jedelský

Masaryk University, Brno

Twin-width is a graph parameter recently introduced by Bonnet, Kim, Thomassé and
Watrigant [1]. Since classes of bounded twin-width admit �xed-point tractable �rst-order
model checking given a suitable vertex ordering, it is interesting to study them.

One of the natural classes of graphs of bounded twin-width are proper interval graphs, a
class generalized to proper k-mixed-thin graphs by Bonomo and Estrada [2]. We generalize
this class even further and de�ne proper k-mixed-thin graphs.

We show that the twin-width of proper k-mixed-thin graphs is linear in k (and give the
appropriate vertex ordering), using an approach called red-potential which was developed
by Balabán and Hlin¥ný [3] to improve bound on twin-width of posets of bounded width.

Boundedness of twin-width is preserved by transductions, making the transduction
hierarchy of bounded twin-width classes also interesting. We show that posets of bounded
width are transduction equivalent to a subclass of proper k-mixed-thin graphs.

Reference

[1] Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO model
checking. In: FOCS. pp. 601�612. IEEE (2020)

[2] Bonomo, F., de Estrada, D.: On the thinness and proper thinness of a graph. Discret.
Appl. Math. 261, 78�92 (2019)

[3] Balabán, J., Hlin¥ný, P.: Twin-width is linear in the poset width. In: IPEC. LIPIcs,
vol. 214, pp. 6:1�6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
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List homomorphism problems for signed graphs

Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell,
Nikola Jedli£ková, and Arash Ra�ey

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Prague

We consider homomorphisms of signed graphs from a computational perspective. In
particular, we study the list homomorphism problem seeking a homomorphism of an input
signed graph (G, σ), equipped with lists L(v) ⊆ V (H), v ∈ V (G), of allowed images, to a
�xed target signed graph (H, π). The complexity of the similar homomorphism problem
without lists (corresponding to all lists being L(v) = V (H)) has been previously classi�ed
by Brewster and Siggers, but the list version remains open and appears di�cult. We will
summarise the results towards a dichotomy. First, we classify the complexity of the problem
when H is a tree (with possible loops). Kim and Siggers have conjectured a structural
classi�cation in the special case of the so called weakly balanced signed graphs, and proved
it for re�exive signed graphs. We con�rm the conjecture for irre�exive signed graphs; this
generalizes previous results on weakly balanced signed trees, and weakly balanced separable
signed graphs.
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Hamilton cycles in line graphs of hypergraphs

Tomá² Kaiser, Petr Vrána

University of West Bohemia, Plze¬

Interest in Hamilton cycles in line graphs has been largely motivated by the conjecture
of Thomassen [3] which states that all 4-connected line graphs are Hamiltonian. While the
conjecture remains open, it is known to hold with 4 replaced by 6 (cf. [2]). In contrast, no
similar result is known for line graphs of hypergraphs of rank r ≥ 3.

In this talk, we outline a �rst step in this direction and show that 52-connected line
graphs of rank 3 hypergraphs are Hamiltonian. The proof uses a result on the packing of
T -connectors in graphs due to DeVos et al. [1] (see also [4]). Joint work with Petr Vrána.

Reference

[1] M. DeVos, J. McDonald and I. Pivotto, Packing Steiner trees, J. Combin. Theory Ser.
B 119 (2016), 178�213.

[2] T. Kaiser and P. Vrána, Hamilton cycles in 5-connected line graphs, European J. Com-
bin. 33 (2012), 924�947.

[3] C. Thomassen, Re�ections on graph theory, J. Graph Theory 10 (1986), 309�324.

[4] D. B. West and H. Wu, Packing of Steiner trees and S-connectors in graphs, J. Combin.
Theory Ser. B 102 (2012), 186�205.
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Metric and non-metric hypergraphs

Va²ek Chvátal, Ida Kantor

IÚUK, Charles University, Prague

In a metric spaceM = (X, d), we say that b is between a and c if d(a, c) = d(a, b)+d(b, c).
Taking all triples {a, b, c} such that a is between b and c, one can associate a 3-uniform
hypergraph HM with each �nite metric space M . An e�ort to solve some basic open
questions regrading �nite metric spaces has motivated an endeavor to better understand
these associated hypergraphs. We present results in this direction, most notably some
simple families of hypergraphs that are non-metric, i.e., they don't arise from any metric
space.
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Minimally t-tough graphs in special graph

classes

Gyula Y. Katona

Budapest University of Technology and Economics, Budapest, Hungary

A graph G is minimally t-tough if the toughness of G is t and the deletion of any edge
from G decreases the toughness. Kriesell conjectured that for every minimally 1-tough
graph the minimum degree δ(G) = 2. It is natural to generalize this for other t values:
Every minimally t-tough graph has a vertex of degree d2te.

In the present talk we investigate di�erent questions related to this conjecture.
The conjecture seems to be hard to prove, so we tried to prove it for some special graph

classes. It turned out, that in some cases the conjecture is true because there are very
few or no graphs that satisfy the conditions. On the other hand, we have evidence using
complexity theory, that this is not the situation for some other graph classes.

We investigate the minimum degree and the recognizability of minimally t-tough graphs
in the classes of chordal graphs, split graphs, claw-free graphs, and 2K2-free graphs.

One of the most interesting results is that there is no minimally t-tough strongly chordal
graph for t > 1/2. This is proved by a powerful necessary and su�cient condition we proved
for a graph being minimally t-tough. For t ≤ 1/2 on the other hand there exists minimally t-
tough chordal graphs, moreover we can characterize them, they have very special structure.

We conjecture that there is no minimally t-tough chordal graph for t > 1/2. Many other
open question remain.

All results are joint work with various subsets of the following coauthors: C. Dallard,
B. Fernández, H. Khan, M. Milani£, K. Varga.
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Minimally tough chordal graph with small

toughness

Gyula Y. Katona, Humara Khan

Budapest University of Technology and Economics, Budapest, Hungary

Let t be a real number. A graph is called t-tough if the removal of any vertex set S
that disconnects the graph leaves at most |S|/t components. The toughness of a graph is
the largest t for which the graph is t-tough. A graph is minimally t-tough if the toughness
of the graph is t and the deletion of any edge from the graph decreases the toughness. A
graph is chordal if it does not contain an induced cycle of length at least 4. We will call a
graph a TT-graph if it can be obtained from a tree of maximum degree ∆ > 3 by removing
some (or all) of its vertices with degree 3 whose neighbors have degree ∆, and joining these
neighbors with triangle. For ∆ ≤ 3 the de�nition is similar, but slightly more complicated.

Kriesell's conjectured [1] that every minimally 1-tough graph has a vertex of degree 2.
This conjecture can be naturally generalized: every minimally t-tough graph has a vertex
of degree d2te. Gyula Y. Katona and Kitti Varga [3], showed that the conjecture is true
for chordal graphs when 1/2 < t ≤ 1.

In this paper we show that the Generalized Kriesell's Conjecture for chordal graphs with
toughness ≤ 1/2 by giving a characterization of such graphs. We show that for t ≤ 1/2
a chordal graph is minimally t-tough if and only if it is a TT-graph. As a corollary, a
characterization of minimally t-tough interval graphs is obtained for t ≤ 1/2, as well.

Reference

[1] Mathias Kriesell, In: Ed. T. Kaiser, Problems from the Workshop on dominating cycles,
Hájek, Czech Republic, 2003.
http://iti.zcu.cz/history/2003/Hajek/problems/hajek-problems.ps

[2] C. G. Lekkerkerker and J. Ch. Boland, Representation of a �nite graph by a set of
intervals on the real line, Fund. Math., 51 (1962), pp. 45�64.

[3] Gyula Y. Katona, Kitti Varga, Minimally toughness in special graph classes, ar-
Xiv:1802.00055 [math.CO] 2018.
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Domination in regular graphs

Martin Knor, Riste �krekovski, Aleksandra Tepeh

Slovak University of Technology in Bratislava, Bratislava

Let G be a graph. A set S ⊆ V (G) is dominating if N [S] = V (G). If S is also inde-
pendent, then it is an independent dominating set. Dominating number γ(G) (independent
dominating number i(G)) is the minimum cardinality of an (independent) dominating set
in G.

Babikir and Henning conjectured that if G is a k-regular graph then

i(G)

γ(G)
≤ k

2

with equality if and only if G = Kk,k. We proved this conjecture.
This research was partially supported by Slovak research grants APVV-17-0428, APVV-

19-0308, VEGA 1/0206/20 and VEGA 1/0567/22.
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Grid Induced Minor Theorem for Graphs of

Small Degree

Tuukka Korhonen

University of Bergen, Norway

A graph H is an induced minor of a graph G if H can be obtained from G by vertex
deletions and edge contractions. We show that there is a function f(k, d) = O(k10 + 2d

5
)

so that if a graph has treewidth at least f(k, d) and maximum degree at most d, then
it contains a k × k-grid as an induced minor. This proves the conjecture of Aboulker,
Adler, Kim, Sintiari, and Trotignon [1] that any graph with large treewidth and bounded
maximum degree contains a large wall or the line graph of a large wall as an induced
subgraph. It also implies that for any �xed planar graph H, there is a subexponential time
algorithm for maximum weight independent set on H-induced-minor-free graphs.

The full version of this paper is available at [2].

Reference

[1] Pierre Aboulker, Isolde Adler, Eun Jung Kim, Ni Luh Dewi Sintiari, and Nicolas Tro-
tignon. On the tree-width of even-hole-free graphs. Eur. J. Comb., 98:103394, 2021.

[2] Tuukka Korhonen. Grid Induced Minor Theorem for Graphs of Small Degree. arXiv
preprint, arXiv:2203.13233, 2022.
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Vertex in-out-antimagic total labeling

of digraphs

Martin Ba£a, Petr Ková°, Tereza Ková°ová, Andrea Semani£ová-Fe¬ov£íková

VSB � Technical University of Ostrava, Ostrava

A vertex in-out-antimagic total labeling of a directed graph (digraph) D = (V,A) with
n vertices and m arcs is a bijection from the set of vertices and edges to the set of the �rst
m + n integers such that all n vertex in-weights are pairwise distinct and simultaneously
all n vertex out-weights are pairwise distinct, where the vertex in-weight is the sum of the
vertex label and the labels of all incoming arcs and the vertex out-weight is the sum of the
vertex label and the labels of all outgoing arcs.

It was conjectured that all digraphs allow such labeling. A general way how to label
dense digraphs was provided. The real challenge is in labeling sparse digraphs. We provide
some new results concerning balanced digraphs and regular digraphs.
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Recent Progress in the Computational

Complexity of Graph Covers

Jan Bok, Ji°í Fiala, Nikola Jedli£ková, Jan Kratochvíl, Michaela Seifrtová

Charles University, Prague

The notion of graph covers stems from topological graph theory, but has found its
applications in Computer Science in the theory of local computation. In the realm of simple
connected undirected graphs this notion coincides with the notion of a locally bijective
homomorphism, i.e., an adjacency preserving vertex mapping which is a bijection between
the neighborhoods of a vertex and of its image, for every vertex of the source graph. Modern
topological graph theory and mathematical physics prefer to work with multigraphs with
loops and also so-called semi-edges (a semi-edge is an edge incident to a single vertex only,
but contributing only 1 to the degree of this vertex, while a loop contributes 2). In case of
such generally de�ned graphs, a graph covering projection from a graph G to a graphs H
is a pair of mappings (fv : V (G) −→ V (H), fe : E(H) −→ E(H)) such that for any two
vertices x, y ∈ V (H),

- a loop incident with a vertex x ∈ V (H) is mapped onto a loop incident with fv(x);
- a semi-edge incident with a vertex x ∈ V (H) is mapped onto a semi-edge incident

with fv(x);
- a normal edge incident with two distinct vertices x, y ∈ V (H) is mapped onto a normal

edge incident with the vertices fv(x), fv(y) (if fv(x) 6= fv(y)) or onto a loop or semi-edge
incident with fv(x) = fv(y);

- for every vertex x ∈ V (G) and every normal edge or semi-edge β ∈ E(H), there exists
exactly one edge α of G such that fe(α) = β; and

- for every vertex x ∈ V (G) and every loop β ∈ E(H), there exist exactly two edges of
G that are mapped onto β by fe.

In 1991, Abello et al. initiated the quest for cataloging the complexity of deciding if
an input graph G covers a target graph H, parameterized by the target graph H. Taking
the semi-edges into account is enriching and dramatically changing the (so far very incom-
plete) catalog. We will survey the most recent results in this area, including a complete
characterization for graphs H with at most two vertices per equivalence class in the degree
partition of the graph, or the list-covering version of the problem.

It is worth noting that all cases in which the computational complexity is known to us,
the question is either polynomial time solvable for arbitrary inputs, or it is NP-complete
for simple input graphs. This phenomenon has been conjectured to hold true for all �xed
target graphs in one of our recent papers, and we refer to it as the Strong Dichotomy
Conjecture for Graph Covers.
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Aspects of Kasteleyn Orientations

Martin Loebl

Charles University, Prague

The theory of Kasteleyn orientation is a fundamental computational and strategic tool
for theoretical physics, discrete mathematics and computer science. This theory was one of
the favourite topics of Robin Thomas. In my lecture, I will recall the history and then point
out parts of the theory perhaps less known to the graph theory community such as the
determinantal complexity, holographic algorithms and the discrete Ihara-Selberg function.
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Circular �ows and balanced valuations

Robert Luko´ka

Comenius University, Bratislava

An r-balanced �ow is an assignment b of values to the vertices of G, and an orientation
O and assignment φ of values to the edges of G such that

� b(v) ≡ deg(v), for each vertex v,

� 0 ≤ φ(e) ≤ r−2
r
, for each edge e,

�
∑

e∈O+ φ(e)−
∑

e∈O+ φ(e) = b(v), for each vertex v.

We show that this concept coincides with the concept of balanced valuations introduced
by Jaeger [1] and thus it coincides with circular nowhere-zero r-�ows. This de�nition gives
an practical approach to compute circular �ow number graphs on up to approximately 100
vertices using state of the art ILP solvers. We discuss how similar ideas could be used for
dual concept of circular colourings.

Reference

[1] F. Jaeger, Balanced valuations and �ows in multigraphs, Proceedings of the American
Mathematical Society 55 (1976), 237�242.
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Robust Connectivity of Graphs on Surfaces

Peter Bradshaw, Tomá² Masa°ík, Jana Novotná, Ladislav Stacho

University of Warsaw, Warsaw, Poland

Let Λ(T ) denote the set of leaves in a tree T . One natural problem is to look for a
spanning tree T of a given graph G such that Λ(T ) is as large as possible. This problem is
calledmaximum leaf number, and it is a well-known NP-hard problem. Equivalently, the
same problem can be formulated as the minimum connected dominating set problem,
where the task is to �nd a smallest subset of vertices D ⊆ V (G) such that every vertex
of G is in the closed neighborhood of D. Throughout recent decades, these two equivalent
problems have received considerable attention, ranging from pure graph theoretic questions
to practical problems related to the construction of wireless networks.

Recently, a similar but stronger notion was de�ned by Bradshaw, Masa°ík, and Sta-
cho [2]. They introduced a new invariant for a graph G, called the robust connectivity and
written κρ(G), de�ned as the minimum value |R∩Λ(T )|

|R| taken over all nonempty subsets
R ⊆ V (G), where T = T (R) is a spanning tree on G chosen to maximize |R∩Λ(T )|. Large
robust connectivity was originally used to show �exible choosability in non-regular graphs.

In this paper, we investigate some interesting properties of robust connectivity for gra-
phs embedded in surfaces. We prove a tight asymptotic bound of Ω(γ−

1
r ) for the robust

connectivity of r-connected graphs of Euler genus γ. Moreover, we give a surprising con-
nection between the robust connectivity of graphs with an edge-maximal embedding in a
surface and the surface connectivity of that surface, which describes to what extent large
induced subgraphs of embedded graphs can be cut out from the surface without splitting
the surface into multiple parts. For planar graphs, this connection provides an equivalent
formulation of a long-standing conjecture of Albertson and Berman [1], which states that
every planar graph on n vertices contains an induced forest of size at least n/2.

Reference

[1] Michael O. Albertson and David M. Berman, A conjecture on planar graphs, Graph
theory and related topics 357 (1979), 1.

[2] Peter Bradshaw, Tomá² Masa°ík, and Ladislav Stacho, Flexible list colorings in graphs
with special degeneracy conditions, accepted in Journal of Graph Theory (2022+).
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Cut-through-paths in simple 4-regular plane

graphs

Tomá² Madaras, Daniela Matisová, Juraj Valiska

Pavol Jozef �afárik University, Ko²ice

Let G be a 4-regular graph with prescribed rotation system and let e1, e2, e3, e4 be
edges incident with a vertex v in that order. The pairs e1, e3 and e2, e4 are called CT -
adjacent in G. A CT -path (CT -trail) is a path (trail) in which every two consecutive edges
are CT -adjacent. Simple 4-regular plane graphs consisting of a single closed CT -trail are
called knots; if every closed CT -trail of a simple 4-regular plane graph is a CT -cycle, then
the graph is called Grötzsch-Sachs graph.

In this talk, we show that the longest CT -path in an n-vertex knot has at most n− 2
vertices, and give construction of knot with longest CT -path with that number of vertices
for every n ≥ 8; also we prove that the longest CT -path in an n-vertex Grötzsch-Sachs
graph has at most 2n

3
vertices. Next, we show that there exists in�nitely many simple 4-

regular plane graphs whose longest CT -paths contain just eight vertices; we conjecture that,
apart of the single exception, all graphs with longest 8-vertex paths are Grötzsch-Sachs
graphs. In addition, we provide an analogous construction yielding knots with longest 16-
vertex paths. In the case when the longest CT -path has less than eight vertices, we pose a
conjecture (supported by computer simulations generating the list of feasible graphs) that
there is only �nitely many corresponding 4-regular plane graphs; we have con�rmed its
validity for longest CT -paths on four and �ve vertices.
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1-designs and related combinatorial structures

and linear codes

Vedrana Mikuli¢ Crnkovi¢, Ivona Traunkar

Faculty of Mathematics, University of Rijeka, Rijeka, Croatia

Let G be a transitive group acting on a set Ω, P a subgroup of G and ∆ be a union
of some P orbits on Ω. Then ∆ is the base block of a 1-design. We will apply this known
method of construction of 1-designs to construct t-designs, regular graphs, and digraphs
on which the group G acts transitively as an automorphism group.

Additionally, a 1-design is weakly self-orthogonal if all the block intersection numbers
have the same parity. If both k and the block intersection numbers are even then 1-design is
called self-orthogonal and its incidence matrix generates a self-orthogonal code. We analyze
extensions of the incidence matrix and an orbit matrix of a weakly self-orthogonal 1-design
that generates self-orthogonal or LCD code over an arbitrary �eld.
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Graphs and vertex orders

in Discretizable Distance Geometry

Antonio Mucherino

IRISA, University of Rennes 1, Rennes, France

Given a simple weighted undirected graph G = (V,E, d) and a positive integer K, the
Distance Geometry Problem (DGP) asks whether a realization x : V → <K exists such
that the distances between embedded vertices u and v ∈ V coincide with the weights du,v,
when available. While the DGP search space is in general continuous, the subclass of DGP
instances for which this search space can be reduced to a tree is of particular interest.
In such a case, in fact, the complete enumeration of the DGP solution set is potentially
possible. We refer to this subclass as the Discretizable DGP (DDGP) [2], and to DGP
instances belonging to this class as discretizable instances.

Graphs are involved in both the de�nition of DGP instances (so that the properties
of a graph actually allow us to decide whether a DGP instance is discretizable or not),
and in the construction of the DDGP search space. In this work, we focus our attention
on the latter, and in particular on the possibility to reduce the size of the tree structure
(in terms of nodes) when speci�c vertex orders are associated to the vertex set V [1, 3].
Vertex orders are in fact able to de�ne the dependency of every vertex v ∈ V with a subset
of its precedessors in the given ordering. Recent insights seem to suggest that globally
optimal vertex orders can be identi�ed for each DDGP instance, even when the distance
information (given through the weight function d) is imprecise.

This work is partially supported by the ANR project ANR-19-CE45-0019.
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E�cient generation of elimination trees and

Hamilton paths on graph associahedra

Jean Cardinal, Arturo Merino, Torsten Mütze

University of Warwick
and

Charles University Prague

An elimination tree for a connected graph G is a rooted tree on the vertices of G obta-
ined by choosing a root x and recursing on the connected components of G−x to produce
the subtrees of x. Elimination trees appear in many guises in computer science and discrete
mathematics, and they are closely related to centered colorings and tree-depth. They also
encode many interesting combinatorial objects, such as bitstrings, permutations and bi-
nary trees. We apply the recent Hartung-Hoang-Mütze-Williams combinatorial generation
framework (SODA 2020) to elimination trees, and prove that all elimination trees for a
chordal graph G can be generated by tree rotations using a simple greedy algorithm. This
yields a short proof for the existence of Hamilton paths on graph associahedra of chordal
graphs. Graph associahedra are a general class of high-dimensional polytopes introduced
by Carr, Devadoss, and Postnikov, whose vertices correspond to elimination trees and
whose edges correspond to tree rotations. As special cases of our results, we recover several
classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new
Gray code for partial permutations. Our algorithm for generating all elimination trees for
a chordal graph G can be implemented in time O(m + n) per generated elimination tree,
where m and n are the number of edges and vertices of G, respectively. If G is a tree, we
improve this to a loopless algorithm running in time O(1) per generated elimination tree.
We also prove that our algorithm produces a Hamilton cycle on the graph associahedron
of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreo-
ver, our algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph
associahedron of G if and only if G is chordal. Implementations of these algorithms are
available for experimentation on the Combinatorial Object Server: www.combos.org/elim
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Short chains in poset-free families

József Balogh, Dániel Gerbner, Abhishek Methuku, Dániel T. Nagy,
Balázs Patkós, Ryan R. Martin, Máté Vizer

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Let F be a family of sets and P be a partially ordered set (poset). We say that F is
P -free if there is no injective map f : P → F such that f(a) ⊂ f(b) holds for all pairs
a, b ∈ P , a < b. The problem of �nding the largest P -free family formed by subsets of
[n] = {1, 2, . . . , n} is solved for certain classes of posets, but open for general P . Inspired
by this problem, we investigated a variant of it asking for the largest number of k-chains
A1 ⊂ A2 ⊂ · · · ⊂ Ak in a P -free family of subsets of [n].

In [1] we proved bounds on this quantity depending on the length of the longest chain
in P . This establishes the solution's order of magnitude for many (P, k) pairs.

In [2] we proved that for all s, t and k, a Ks,t-free family (a family without sets
A1, . . . , As, B1, . . . , Bk such that Ai ⊂ Bj for all i, j) contains at most O(n

(
n
bn/2c

)
) k-chains.

The maximal number of 2-chains in aK2,2-free family was exactly determined as dn
2
e
(

n
bn/2c

)
,

given by the family of all subsets of size dn
2
e − 1 and dn

2
e.

In the talk I will summarize the results of these papers and present a few open questions.

Reference

[1] D. Gerbner, A. Methuku, D.T. Nagy, B. Patkós, M. Vizer, On the number of contain-
ments in P-free families, Graphs and Combinatorics 35 (2019), 1519�1540.

[2] J. Balogh, R.R. Martin, D.T. Nagy, B. Patkós, On generalized Turán results in height
two posets, SIAM Journal on Discrete Mathematics (accepted)
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Decycling 3-connected cubic graphs

Michaela Seifrtová, Roman Nedela, Martin �koviera

University of West Bohemia, Pilsen

A set of vertices of a graph G is said to be decycling if its removal leaves an acyclic
subgraph. The size of a smallest decycling set is the decycling number of G. Generally, at
least d(n+2)/4e vertices have to be removed in order to decycle a cubic graph on n vertices.
In 1979, Payan and Sakarovitch proved that the decycling number of a cyclically 4-edge-
connected cubic graph of order n equals d(n + 2)/4e. In addition, they characterised the
structure of minimum decycling sets and their complements. If n ≡ 2 (mod 4), then G has
a decycling set which is independent and its complement induces a tree. If n ≡ 0 (mod 4),
then one of two possibilities occurs: either G has an independent decycling set whose
complement induces a forest of two trees, or the decycling set is near-independent (which
means that it induces a single edge) and its complement induces a tree. In this paper we
strengthen the result of Payan and Sakarovitch by proving that the latter possibility (a near-
independent set and a tree) can always be guaranteed. Moreover, we relax the assumption of
cyclic 4-edge-connectivity to signi�cantly weaker odd cyclic 4-edge-connectivity, and even
further. Our methods substantially use a surprising and seemingly distant relationship
between the decycling number and the maximum genus of a cubic graph. The statement
that a cyclically 4-connected cubic graph admits a partition A∪ J of the vertex-set, where
J is (near) independent and A induces a tree can be used to prove existence of hamilton
cycles or paths for several interesting classes of cubic graphs including leapfrog fullerines or
cubic Cayley graphs de�ned by generating sets 〈x, y〉, where y2 = (xy)3=1, or by generating
sets 〈a, b, c〉, where a2 = b2 = c2 = (ab)3 = (bc)3 = 1.
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Maximal Independent Sets in Clique-free

Graphs

Xiaoyu He, Jiaxi Nie, Sam Spiro

Max Plack Institute for Mathematics in the Sciences, Leipzig

Nielsen proved that the maximum number of maximal independent sets (MIS's) of size
k in an n-vertex graph is asymptotic to (n/k)k, with the extremal construction a disjoint
union of k cliques with sizes as close to n/k as possible. In this paper we study how many
MIS's of size k an n-vertex graph G can have if G does not contain a cliqueKt. We prove for
all �xed k and t that there exist such graphs with nb

(t−2)k
t−1

c−o(1) MIS's of size k by utilizing
recent work of Gowers and B. Janzer on a generalization of the Ruzsa-Szemerédi problem.
We prove that this bound is essentially best possible for triangle-free graphs when k ≤ 4.
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Incidence, a scoring positional game on graphs

Quentin Deschamps, Éric Duchêne, Bastien Durain,
Brice E�antin, Valentin Gledel, and Nacim Oijid

Univ. Lyon, Université Lyon 1, LIRIS UMR CNRS 5205, F-69621, Lyon, France

Positional games have been introduces by Erdös and Selfridge in 1973 [1]. Thoses games
are playing on a hypergraph: two players select turn by turn an unclaimed vertex of it.
In the Maker-Breaker convention, if Maker manages to take fully a hyperedge, he wins,
otherwise, Breaker is the winner. In the Maker-Maker convention, the �rst player to take
a hyperedge wins, if no one manage to do it, the game ends by a draw. Therefore, in both
cases the game stops as soon as Maker has taken a hyperedge. Theses games do not handle
scores, and cannot represent games in which players want to maximize a quantity. We here
introduce a scoring version of positional games where the game ends when all vertices have
been claimed. The score is then de�ned as the number of hyperedges Maker manages to
take. A Maker player will try to maximize this number, while Breaker aims to minimize
it. Usually, Maker-Breaker games are easier to handle than Maker-Maker as in the former,
both players can focus only on one goal, while in the later, they need both to try to take
an hyperedge and in the same time prevent their opponent to take one.

In this work, we introduce Incidence, which consists in playing this game on a 2-regular
hypergraph, i.e. an undirected graph. Two players, namely Alice and Bob, take turn by turn
the vertices of a graph, and score the number of edges whose both end vertices are owned
by the same player. In the Maker-Breaker version, Alice aims at maximizing the number
of edges she owns, while Breaker aims at minimizing it. In the Maker-Maker version, both
players try to take more edges then their opponent.

We prove that surprisingly, computing the score in the Maker-Breaker version is Pspace-
complete whereas in the Maker-Maker version, the relative score can be solved in polyno-
mial time. In addition, for the Maker-Breaker version, we give some bounds on the score
with an Erdös-Selfridge like proof, and we prove that the score on paths and cycles can be
computed in polynomial time.

Reference

[1] P Erdös and J.L Selfridge, On a combinatorial game, Journal of Combinatorial Theory,
Series A, 1973,
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Edge-colored graphs without color-rich cycles

Tomá² Madaras, Alfréd Onderko

Pavol Jozef �afárik University, Ko²ice

Let K◦i (G) be the maximum number of colors in an edge-coloring of a graph G such that
each its cycle is colored with at most i colors. We give greedy-based degree-related general
lower bounds on K◦i (G) when i ≥ 3 and discuss their sharpness. In particular, we provide
exact values of K◦3(G) and K◦2(G) in the case when G is a 5-connected and a 3-connected
graph, respectively. Furthermore, we show that the exact value of K◦2(G) can be found by
maximizing the number of components after deleting a 2-cut whenever κ(G) = 2, while
K◦2(G) = 2 if G is highly connected. We also discuss the e�ectiveness of upper bounds on
K◦i (G) given by anti-Ramsey numbers for the cycles of length i+ 1.
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Transducing paths in graph classes with

unbounded shrubdepth

Patrice Ossona de Mendez, Michaª Pilipczuk, Sebastian Siebertz

CAMS CNRS/EHESS, Paris

Transductions are a general formalism for expressing transformations of graphs (and
more generally, of relational structures) in logic. We prove that a graph class C can be
FO-transduced from a class of bounded-height trees (that is, has bounded shrubdepth) if,
and only if, from C one cannot FO-transduce the class of all paths. This establishes one of
the three remaining open questions posed by Blumensath and Courcelle in [1] about the
MSO-transduction quasi-order, even in the stronger form that concerns FO-transductions
instead of MSO-transductions.

The backbone of our proof is a graph-theoretic statement that says the following: If a
graph G excludes a path, the bipartite complement of a path, and a half-graph as semi-
induced subgraphs, then the vertex set of G can be partitioned into a bounded number of
parts so that every part induces a cograph of bounded height, and every pair of parts semi-
induce a bi-cograph of bounded height. This statement may be of independent interest; for
instance, it implies that the graphs in question form a class that is linearly χ-bounded.

Reference

[1] A. Blumensath and B. Courcelle, On the monadic second-order transduction hierarchy,
Logical Methods in Computer Science 6 (2010), no. 2.
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Invertible and pseudoinvertible simple

connected graphs

So¬a Pavlíková, Daniel �ev£ovi£

Alexander Dub£ek University, Tren£ín

In our talk we will analyse the Moore-Penrose pseudoinversion of block symmetric
matrices. We will present su�cient conditions on the elements of a block matrix yielding
an explicit block matrix form of its Moore-Penrose inversion. We will apply the explicit
form for the spectral gap maximization with respect to o�-diagonal elements of a given
block matrix and we will use the results in the spectral graph theory where maximization
of the spectral gap plays an important role in computational chemistry and analysis of
stability of organic molecules.

The �rst author acknowledges support from the APVV Research Grants 17-0428 and
19-0308, and from the VEGA Research Grants 1/0206/20 and 1/0567/22.
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Bisimplicial separators

Martin Milani£, Irena Penev, Nevena Piva£, Kristina Vu²kovi¢

Computer Science Institute of Charles University, Prague

A minimal separator of a graph G is a set S ⊆ V (G) such that there exist vertices
a, b ∈ V (G) \ S with the property that S separates a from b in G, but no proper subset of
S does. For an integer k ≥ 0, we say that a minimal separator is k-simplicial if it can be
covered by k cliques, and we denote by Gk the class of all graphs in which each minimal
separator is k-simplicial. A 2-simplicial separator is also called bisimplicial. Obviously,
G0 ⊆ G1 ⊆ G2 ⊆ . . .. Classes G0 and G1 are well understood: G0 is the class of all disjoint
unions of complete graphs, and by a classical result of Dirac [1], G1 is precisely the class of
all chordal graphs. In this talk, we present a number of structural and algorithmic results
about classes Gk (k ≥ 2), with a particular emphasis on G2.

We show that for each k ≥ 0, the class Gk is closed under induced minors, and we
also give a complete list of minimal forbidden induced minors for G2. We further show
that, for k ≥ 1, every nonnull graph in Gk has a k-simplicial vertex, i.e. a vertex whose
neighborhood is the union of k cliques. We also present a decomposition theorem for
diamond-free graphs in G2 (the diamond is the graph obtained from the complete graph
on four vertices by deleting one edge, and a graph is diamond-free if none of its induced
subgraphs is isomorphic to the diamond).

Relying on our structural results, as well as results from the literature, we obtain a
number of algorithmic consequences, summarized in the table below (as usual, n is the
number of vertices and m the number of edges of the input graph).

diamond-free
graphs in G2 G2 Gk (k ≥ 3)

recognition O(n(n+m)) ? NP-hard
Maximum Weight Clique O(n(n+m)) O(n4) NP-hard
Maximum Weight Stable Set O(n2(n+m)) O(n6) O(n2k+2)
Vertex Coloring O(n(n+m)) NP-hard NP-hard

Reference

[1] G.A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg (1961), 25:71�76.
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Twin-width and Limits of Tractability of FO

Model Checking on Geometric Graphs

Petr Hlin¥ný, Filip Pokrývka

Masaryk University, Brno

The complexity of the problem of deciding properties expressible in FO logic on graphs
� the FO model checking problem (parameterized by the respective FO formula), is well-
understood on so-called sparse graph classes, but much less understood on hereditary dense
graph classes. Regarding the latter, a recent concept of twin-width [Bonnet et al., FOCS
2020] appears to be very useful. For instance, the question of these authors [CGTA 2019]
about where is the exact limit of �xed-parameter tractability of FO model checking on
permutation graphs has been answered by Bonnet et al. in 2020 quite easily, using the
newly introduced twin-width. We prove that such exact characterization of hereditary
subclasses with tractable FO model checking naturally extends from permutation to circle
graphs (the intersection graphs of chords in a circle). Namely, we prove that under usual
complexity assumptions, FO model checking of a hereditary class of circle graphs is in FPT
if and only if the class excludes some permutation graph. We also prove a similar excluded-
subgraphs characterization for hereditary classes of interval graphs with FO model checking
in FPT, which concludes the line a research of interval classes with tractable FO model
checking started in [Ganian et al., ICALP 2013]. The mathematical side of the presented
characterizations � about when subclasses of the classes of circle and permutation graphs
have bounded twin-width, moreover extends to so-called bounded perturbations of these
classes.
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Minimal induced subgraphs of two classes of

2-connected non-Hamiltonian graphs

Joseph Cheriyan, Sepehr Hajebi, Zishen Qu, Sophie Spirkl

University of Waterloo

Finding su�cient conditions for a class of graphs to be Hamiltonian is an old problem,
with a wide variety of conditions such as Dirac's degree condition and Whitney's theorem
on 4-connected planar triangulations. We discuss some past results on su�cient conditions
for Hamiltonicity involving the exclusion of �xed induced subgraphs, and some properties
of the graphs involved in such results. In 1981 Du�us, Gould, and Jacobson showed that
any connected graph that does not contain a claw or a net as an induced subgraph has a
Hamiltonian path. We aim to �nd an analogous result for Hamiltonian cycles. In particular,
we would like to �nd a set of graphs S which are 2-connected, non-Hamiltonian, and every
proper 2-connected induced subgraph is Hamiltonian such that every 2-connected S-free
graph is Hamiltonian. In joint work with Joseph Cheriyan, Sepehr Hajebi, and Sophie
Spirkl, we show that the classes of 2-connected split graphs and 2-connected triangle-free
graphs can be characterised in this fashion.
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On d-dimensional nowhere-zero r-�ows
on a graph

Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli

Comenius University, Bratislava

A d-dimensional nowhere-zero r-�ow on a graph G, an (r, d)-NZF for short, is a �ow
where the value on each edge is an element of Rd whose Euclidean norm lies in the interval
[1, r − 1]. Such a notion is a natural generalization of the well-known concept of circular
nowhere-zero r-�ow (i.e. d = 1). In this talk, we mainly consider the parameter φd(G),
which is the minimum of the real numbers r such that G admits an (r, d)-NZF. For every
bridgeless graph G. The 5-�ow Conjecture claims that φ1(G) ≤ 5, while a conjecture by
Kamal Jain suggests that φd(G) = 1, for all d ≥ 3 [1].

Here, we address the problem of �nding a possible upper-bound in the case d = 2. We
show that, for all bridgeless graphs, φ2(G) ≤ 1 +

√
5 and that the oriented 5-Cycle Double

Cover Conjecture implies φ2(G) ≤ Φ2, where Φ is the Golden Ratio. Moreover, we discuss
some connections between this problem and some other well-known conjectures. Finally,
we focus our attention on the cubic case: we propose a geometric method to describe an
(r, 2)-NZF of a cubic graph in a compact way, and we apply it in some instances.

Reference

[1] http:garden.irmacs.sfu.ca?q=op/unit_vector_�ows. Reference posted by M. DeVos on
March 7th, 2007. Reference accessed on January 15, 2022.
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Forbidden subgraphs implying

Hamilton-connectedness

Zden¥k Ryjá£ek, Petr Vrána

University of West Bohemia, Pilsen

We consider the question for which pairs of connected graphs X, Y , every 3-connected
(X, Y )-free graph G is Hamilton-connected (i.e., contains a hamiltonian path between any
two vertices). The question has been studied since the early 90's, and known previous
results imply that if X, Y are such graphs, then one of them, say X, is the claw K1,3, and
Y belongs to the following list: Pi for i ≤ 9, Ni,j,k for i + j + k ≤ 7, Bi,j for i + j ≤ 7, Zi
for i ≤ 6 or i = 7 and |V (G)| ≥ 21, Γ1, Γ3, and Γ5 for |V (G)| ≥ 21 (for these graphs, see
the �gure below). There are many previously known partial results, however, among them,
results for Γ1, P9 and N1,2,3 are the only sharp ones; all the other known results deal with
smaller values of i, j, k.
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We �rst develop techniques that allow to handle the sharp version of the problem, and
then we settle the question in the a�rmative for the graphs Ni,j,k with i+ j + k = 7, Bi,j

with i + j = 7, and Z7 with one exceptional graph. All these results are sharp. Since the
graphs Γ1 and P9 are already done, the only remaining candidates for Y are the graphs Γ3

and Γ5 for |V (G)| ≥ 21.
The �rst part of the work (the results for the graphs Ni,j,k with i+ j + k = 7) is also a

joint work with X. Liu, L. Xiong and X. Yang (Beijing).
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Finding a Non-Shortest Path

Vibha Sahlot, Youngho Yoo

Charles University, Prague

Shortest Path is a well-studied problems with its many variants where the graph can
be directed, undirected, with/ without negative edge weights, etc. We de�ne this problem
as follows. Given an unweighted graph1 G(V,E) and vertices s, t ∈ V , we �nd a minimum
length path from s to t. This is in P using BFS.

We are interested in Non-Shortest Path (NSP). Given a graph G(V,E) and s, t ∈ V ,
here we �nd a non-shortest path from s to t. It is inspired by the work of Bezáková et al.
[1] where the authors try to �nd if any given undirected graph has an (s, t)-path of length
at least dG(s, t) + k (dG(s, t) is the length of a shortest path from s to t). We name it
Above Guarantee Path (AGP). They proved that AGP is in FPT. Hence NSP is in
P. But the complexity of NSP is open for directed graphs (DNSP). Fomin et al. [2] studied
directed version of AGP (DAGP) and proved that if 3−Disjoint Path (3-DP) is in P
for a graph class (like DAGs, directed planar graphs, etc.), then DAGP is also FPT on
that graph class. Hence, DNSP is in P on these graph classes. We re�ne it to a proposition
that if 2−Disjoint Path (2-DP) is in P for a graph class then the NSP is also in P on
that. We prove that given three pair of vertices and disjoint paths between every two pair,
computing 3-DP is still NP-hard. Further we show if DNSP is in P then DAGP is in XP.

Working in a similar direction, we would like to �nd the class of graphs such that
between any pair of vertices there are exactly k many paths that are of di�erent lengths.
For example, in undirected graphs, k = 1 for trees and k = 2 for odd cycles. This can
also be asked for directed graphs, which can be further re�ned into all directed pairs or all
pairs. We conjecture that no such graph exists for k = 2 in the �rst case. Similar questions
can be asked for the case where between any pair of vertices there are at least k many
paths of di�erent lengths.

Reference

[1] Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin, Finding detours is
�xed-parameter tractable, SIAM J. Discret. Math., 33 (2019), pp. 2326�2345.

[2] Fedor V. Fomin, Petr A. Golovach, William Lochet, Danil Sagunov, Kirill Simonov,
Saket Saurabh, Detours in Directed Graphs, STACS 2022, pp. 29,1-29,16.

1All the graphs considered are without parallel edges and self-loop.
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The maximum number of copies of an even

cycle in a planar graph

Zequn Lv, Ervin Gy®ri, Zhen He, Nika Salia, Casey Tompkins, Xiutao Zhu

Alfréd Rényi Institute of Mathematics

We resolve a conjecture of Cox and Martin [1] by determining asymptotically for every
k ≥ 2 the maximum number of copies of C2k in an n-vertex planar graph [2].

Reference

[1] C. Cox and R. R. Martin. Counting paths, cycles and blow-ups in planar graphs. Journal
of Graph Theory, 10.1002/jgt.22838 (2022).

[2] Z. Lv, E. Gy®ri, Zh. He, N. Salia and C. Tompkins, X. Zhu, The maximum number of
copies of an even cycle in a planar graph, arXiv:2205.15810, 2022.
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Geodesic transversal problem

Iztok Peterin, Gabriel Semani²in

Institute of Computer Science, Faculty of Science, P.J. �afárik University, Ko²ice,
Slovakia

A set S of vertices of a graph G is a geodesic transversal of G if every maximal geodesic
of G contains at least one vertex of S. The minimum cardinality of a geodesic transversal
of G is denoted by gt and is called geodesic transversal number. These concepts were
independently introduced in [1] and [2].

We describe fundamental properties of geodesic transversals and for two graphs G and
H we deal with the behaviour of this invariant for the lexicographic product G◦H and join
G ⊕ H. We determine gt(G ⊕ H) in terms of structural properties of the original graphs
and describe gt(G◦H) as a solution of an optimization problem concerning speci�c subsets
of V (G).

For details see [1] and [3].

Reference

[1] I. Peterin, G. Semani²in, On the Maximal Shortest Paths Cover Number. Mathematics.
2021; 9(14):1592. https://doi.org/10.3390/math9141592

[2] P. Manuel, B. Bre²ar, S, Klavºar, The geodesic-transversal problem. Appl Math Com-
putat 2022: 413:126621. https://doi.org/10.1016/j.amc.2021.126621

[3] I. Peterin, G. Semani²in, Geodesic transversal problem for join and lexicographic pro-
duct of graphs. Comp. Appl. Math. 41, 128 (2022). https://doi.org/10.1007/s40314-
022-01834-1
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Graph burning and non-uniform k-centers
for small treewidth

Matej Lieskovský, Ji°í Sgall

Computer Science Institute of Charles University, MFF UK, Praha

In an instance of the (uniform) k-center problem we are given a set of n nodes, a metric
d de�ning distances between the nodes, and parameters k and r that tell us how many
centers we are allowed to use and the radius of every center's reach, respectively. We must
then decide if a set of k nodes can be selected as centers so that every node will be within
distance r of some center. When minimizing r for a given k, 2-approximation algorithm is
known and this is optimal unless P=NP.

A common generalization is the non-uniform k-center (NUkC) problem, where each of
the k centers has its own radius. Current techniques work only with a limited number of
di�erent radii. The special case known as k-center with outliers uses only two radii r and
0; in this case there exists a 2-approximation algorithm (to minimize r) and this is optimal
unless P=NP.

In the graph burning problem, each center gets a unique radius. Given an unoriented
graph with unit-length edges and a single parameter g, our task is to cover the entire graph
with g centers, each having a unique integer radius from 0 to g − 1. A 3-approximation
algorithm for g has been given but no better result for general graphs is known. Graph
burning was originally introduced to model the spread of a contagion through a network.
In the original formulation, all nodes start unburned and in every time step �re spreads to
all nodes that neighbour a burning node and then a single additional node is set on �re.
The burning number g of a graph is de�ned as the number of time steps needed for all
nodes to be on �re.

We approach the graph burning problem by restricting the graphs to be burned. For
graph burning of linear forests (unions of disjoint paths) the problem is NP-hard and
a PTAS is known.

We show that the non-uniform k-center problem is polynomial when parametrized by
the number of di�erent radii and treewidth. This extends the known exactly solvable cases
of the non-uniform k-center problem; in particular this also solves the k-center with outliers
on graphs of small treewidth exactly.

We then use this XP algorithm to design a PTAS for burning graphs of a constant
treewidth, with a slight generalization that allows edge lengths. This result signi�cantly
improves previous results, as a PTAS was known only for linear forests, not even for trees.
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Structured codes of graphs

Noga Alon, Anna Gujgiczer, János Körner, Aleksa Milojevi¢, Gábor Simonyi

Alfréd Rényi Institute of Mathematics, Budapest
and

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

We investigate codes the codewords of which are graphs that are identi�ed with 0− 1
sequences on the edge set of a complete graph on n vertices in the natural way. The
"structuredness"in the title refers to various requirements that are expressed by properties
of the graphs we obtain as the symmetric di�erence of (the edge sets of) two graphs that
appear in the code. We �nd the maximum possible size of such codes in various cases and
show connections to such diverse areas of graph theory as perfect 1-factorizations and the
theory of Turán numbers.

The talk is based on the paper [1].

Reference

[1] N. Alon, A. Gujgiczer, J. Körner, A. Milojevi¢, G. Simonyi, Structured Codes of Graphs,
submitted, arXiv:2202.06810 [math.CO] .
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Perfect matchings in regular graphs

Yulai Ma, Davide Mattiolo Eckhard Ste�en, Isaak H. Wolf

Paderborn University, Germany

Thomassen [Problem 1 in [1]] asked whether every r-edge-connected r-regular graph of
even order has r− 2 pairwise disjoint perfect matchings. We show that this is not the case
if r is even.

It turns out that our methods are limited to the even case of Thomassen's problem.
We then prove some equivalences of statements on pairwise disjoint perfect matchings in
highly edge-connected regular graphs, where the perfect matchings contain or avoid �xed
sets of edges.

Based on these results we relate statements on pairwise disjoint perfect matchings of
5-edge-connected 5-regular graphs to well-known conjectures for cubic graphs, such as the
Fan-Raspaud Conjecture, the Berge-Fulkerson Conjecture and the 5-Cycle Double Cover
Conjecture.
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Random embedding of complete graph

Jesse Campion Loth, Kevin Halasz, Tomá² Masa°ík,
Bojan Mohar, Robert �ámal

Computer Science Institute, Faculty of Mathematics and Physics, Charles University,
Praha

A random embedding of a graph is given by choosing randomly and independently a
local rotation of edges incident with each of the vertices. We can then study properties of
the resulting embedding, in particular the number of faces (equivalently, the genus of the
embedding).

Random embeddings appear of su�cient interest not only in topological graph theory
but also within several areas of pure mathematics and theoretical physics. The area was
started by Stahl and Gross in the 80's. Stahl [1] proved that the expected number of faces
of a random embedding of a complete graph Kn is at most n + log n and together with
Mauk [2] they conjectured that the correct bound is 2 log n+O(1). We improve his bound
to 5 log n+O(1) and also give a lower bound of the same asymptotic order.
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Structure of 3-stars in embedded graphs

Katarína �ekanová, Mária Maceková, Roman Soták, Zuzana �áro²iová

P. J. �afárik University, Ko²ice

For integers k ≥ 1 and 1 ≤ t ≤ 3, let g(k, t) be the minimum integer such that every
graph with girth at least g(k, t), minimum degree at least 2 and no (k+ 1)-path consisting
of vertices of degree 2, has a 3-vertex with at least t neighbors of degree 2. For the class
of plane graphs there are many results concerning existence of a 3-vertex with speci�ed
number of 2-neighbors. Recently, Borodin and Ivanova established the value of g(k, t) for
all combinations of k and t (where k ≥ 1 and t ∈ {1, 2, 3}). In the talk we present how the
situation changes for the class of graphs embedded on a surface(s) with non-positive Euler
characteristic.
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Snarks with resistance n and �ow resistance 2n

Imran Allie, Edita Má£ajová, Martin �koviera

Comenius University, Bratislava

We examine the relationship between two measures of uncolourability of cubic graphs
� their resistance and �ow resistance. The resistance of a cubic graph G, denoted by r(G),
is the minimum number of edges whose removal results in a 3-edge-colourable graph. The
�ow resistance of G, denoted by rf (G), is the minimum number of zeroes in a 4-�ow on G.
Fiol et al. [1] made a conjecture that rf (G) ≤ r(G) for every cubic graph G. We disprove
this conjecture by presenting a family of cubic graphs Gn of order 34n, where n ≥ 3, with
resistance n and �ow resistance 2n. For n ≥ 5 these graphs are nontrivial snarks.

Reference

[1] M. A. Fiol, G. Mazzuoccolo, E. Ste�en, Measures of edge-uncolourability of cubic gra-
phs, Electron. J. Combin. 25 (2018), #P4.54.

76



Measure of simplicity of a tournament

Abderrahim Boussaïri, Imane Talbaoui, Sou�ane Lakhli�

Faculty of Science Aïn Chock, Casablanca, Morocco

The simplicity index of an n-tournament T is the minimum number s(T ) of arcs whose
reversal yields a decomposable (non simple) tournament. Recall that an n-tournament T
with vertex set V is decomposable (non simple) if there exist a subset M of V such that
2 ≤ |M | ≤ n − 1 and for every x ∈ V \M , either M → x or x → M . Müller and Pelant
(1974) proved that s(T ) ≤ n−1

2
, and that equality holds if and only if T is doubly regular.

As doubly regular tournaments exist only if n ≡ 3 (mod 4), s(T ) < n−1
2

for n 6≡ 3 (mod 4)
[1]. This property characterizes the class of doubly regular tournaments. In our work, we
studied the class of n-tournaments with maximal simplicity index for n 6≡ 3 (mod 4).
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Erd®s�Szekeres-type problems in the real

projective plane

Martin Balko, Manfred Scheucher, Pavel Valtr

Charles University, Prague

We consider point sets in the real projective plane RP2 and explore variants of classical
extremal problems about planar point sets in this setting, with a main focus on Erd®s�
Szekeres-type problems.

We provide asymptotically tight bounds for a variant of the Erd®s�Szekeres theorem
about point sets in convex position in RP2, which was initiated by Harborth and Möller
in 1994. The notion of convex position in RP2 agrees with the de�nition of convex sets
introduced by Steinitz in 1913.

For k ≥ 3, an (a�ne ) k-hole in a �nite set S ⊆ R2 is a set of k points from S in
convex position with no point of S in the interior of their convex hull. After introducing a
new notion of k-holes for points sets from RP2, called projective k-holes, we �nd arbitrarily
large �nite sets of points from RP2 with no projective 8-holes, providing an analogue of a
classical result by Horton from 1983. We also prove that they contain only quadratically
many projective k-holes for k ≤ 7. On the other hand, we show that the number of k-holes
can be substantially larger in RP2 than in R2 by constructing, for every k ∈ {3, . . . , 6},
sets of n points from R2 ⊂ RP2 with Ω(n3−3/5k) projective k-holes and only O(n2) a�ne
k-holes. Last but not least, we prove several other results, for example about projective
holes in random point sets in RP2 and about some algorithmic aspects.

The study of extremal problems about point sets in RP2 opens a new area of research,
which we support by posing several open problems.
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Coloring ordered graphs with excluded induced

ordered matchings

Marcin Bria«ski, James Davies, Bartosz Walczak

Jagiellonian University, Kraków, Poland

An ordered graph is a graph equipped with a total order on the vertices. We prove
that for every ordered matchingM , the class of ordered graphs excludingM as an induced
ordered subgraph is χ-bounded. This generalizes the known fact that the class of outerstring
graphs is χ-bounded and con�rms a conjecture by István Tomon.

In general, coloring ordered graphs with excluded (induced) ordered subgraphs is an
area that has been little explored so far. Our result is a step towards characterizing ordered
graphs H such that the class of H-free ordered graphs is χ-bounded.
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Circular Flows in Mono-directed Eulerian

Signed Graphs

Jiaao Li, Reza Naserasr, Zhouningxin Wang, and Xuding Zhu

IRIF, Université Paris Cité, Paris

Given positive integers p, q where p is even and p ≥ 2q, a circular p
q
-�ow in a mono-

directed signed graph (G, σ) is a pair (D, f) where D is an orientation on G and f :
E(G)→ Z satis�es that for each positive edge e, q ≤ |f(e)| ≤ p− q and for each negative
edge e, either 0 ≤ |f(e)| ≤ p

2
− q or p

2
+ q ≤ |f(e)| ≤ p − 1, and the total in-�ow equals

the total out-�ow at each vertex. This is the dual notion of circular p
q
-coloring of signed

graphs recently introduced in �Circular chromatic number of signed graphs. R. Naserasr,
Z. Wang, and X. Zhu. Electronic Journal of Combinatorics, 28(2)(2021), #P2.44�.

In this talk, we consider the signed bipartite analogs of Jaeger's circular �ow conjecture
and its dual, Jaeger-Zhang conjecture. We show that every (6k − 2)-edge-connected Eu-
lerian signed graph admits a circular 4k

2k−1
-�ow and every signed bipartite planar graph

of negative-girth at least 6k − 2 admits a circular 4k
2k−1

-coloring. We also provide recent
results about circular �ows in mono-directed signed graphs with high edge-connectivities
and leave some further questions.
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Computational Frameworks for Solving Graph

Pebbling Problems

Oguzhan Colkesen, Dominic Flocco, Hammurabi Mendes,
Jonad Pulaj, Bryce Weidenbeck, Carl Yerger

Davidson College, Davidson, North Carolina, USA

We discuss recent results that extend computational models for computing pebbling
numbers. In particular we will describe a new computational open source codebase for
graph pebbling using a linear programming and weight function framework. We also give a
new characterization of graph pebbling and rubbling as two player Stackelberg games via
bilevel integer programming. Finally, we describe some preliminary results implementing
a computational framework for each of these bilevel integer programming models.
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Hamilton Cycles on Dense Regular Digraphs

and Oriented Graphs

Allan Lo, Viresh Patel, Mehmet Akif Y�ld�z

University of Amsterdam, Netherlands

A (directed) cycle in a (directed) graph traversing all the vertices exactly once is called
a Hamilton cycle. We prove that for every ε > 0 there exists n0 = n0(ε) such that every
regular oriented graph on n > n0 vertices and degree at least (1/4 + ε)n has a Hamilton
cycle. This establishes an approximate version of a conjecture of Jackson from 1981. We
also establish a result related to a conjecture of Kühn and Osthus about the Hamiltonicity
of regular directed graphs with suitable degree and connectivity conditions.
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Optimization of Scheduling of Incomplete

Tournaments

Petr Ková°, Jakub Závada

Department of Applied Mathematics, Faculty of Electrical Engineering and Computer
Science, V�B-TU Ostrava, Ostrava

Methods of graph theory can be used for scheduling of sport tournaments. A tourna-
ment is represented by a graph G. Each participant of the tournament is represented by
one vertex and each game by an edge between participants of the game. Vertex labeling
of graphs is used to describe the strength of each participant. A tournament with n parti-
cipants is called round robin if each participant plays every other in n − 1 games. If each
participant plays k, k < n−1, games, we call such tournament an incomplete tournament.

The focus of the talk is on the optimization of the scheduling of such incomplete tour-
naments, e.g. how to ensure comparable conditions for all participants when we need to
schedule whole tournament ahead. The main part of the talk is focused on edge swapping.
We use edge swapping to improve the properties of the scheduling without a�ecting the
weight of any vertex. Another use of edge swapping is in creating tournaments with lar-
ger number of participant when we have a suitable scheduling for tournament with lower
number of participants. Unfortunately, it is di�cult to �nd a suitable subgraph in which
we can swap edges without a�ecting the weight of any vertex. We show some subgraphs
which make it possible, but also some general theorems describing the conditions under
which such subgraph can/cannot exist.
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