ITI Series (IUUK) Institut teoretické informatiky Institute for Theoretical Computer Science Informatický ústav Univerzity Karlovy Computer Science Institute of Charles University 2025-689 Andrew Goodall, Jaroslav Nešetřil ## The Making of a New Science the early history of theoretical computer science Institute for Theoretical Computer Science (ITI) Charles University Computer Science Institute of Charles University (IUUK) Malostranské náměstí 25 118 00 Praha 1 Czech Republic # The Making of a New Science the early history of theoretical computer science Exhibition 18 June – 21 September 2025 at Galleria Chodba, MFF UK, Malostranské náměstí 2/25, Praha 1 Andrew Goodall and Jaroslav Nešetřil We could perceive that a new science was being born, arising from the roots of mathematical logic and projecting its light on the future of computers and computer programming. — Giorgio Ausiello, *The Making of a New Science* ## Exhibition guide It is very rare that one can make an exhibition tracing the entire history of an established scientific discipline. Theoretical Computer Science (TCS for short) – which only emerged in the 1970s as a recognized field per se out of its origins in logic, mathematics and engineering – has developed and matured so quickly that this is possible; or, better, we can at least try to present the history of the field in a concise and yet uncrowded way. TCS (or the Theory of Computing, Computability Theory, or even Algorithms and Complexity, to give just a few of the several names that are used to refer to the discipline) develops the abstract concepts and mathematical models that underpin computation, with a particular focus on the design, analysis, and efficiency of algorithms. It has developed in the last few decades from humble origins into a field which is taught at most universities worldwide, and which spans a large part of technological development today. One can say even more: perhaps nowhere in contemporary science is there such a direct line from theory to development and then to praxis and its consequent impact on everyday life. Our aim here can only be to sketch parts of this evolution of TCS. We concentrate on the early origins in the 1920s to c. 1990 (with occasional glimpses beyond); we thereby also limit our scope by concentrating on the theory that established itself in the twentieth century, omitting some trends which have proved to be very active more recently. This is more concretely described below. We are fortunate that we can build our exhibition around two earlier instances. One is the excellent book *The Making of a New Science* (Springer 2023) by Giorgio Ausiello. This book, by one of the pioneering leaders and organizers of the development of TCS in Europe, is both a factual report of the history of TCS until 1980 and a memoir replete with personal details, making it fascinating reading for non-specialists and specialists alike. Prof. Ausiello put us in contact with the people behind our second source, the exhibition *50 Years of Theoretical Computer Science* shown at the ICALP '22 conference in Paris. We thank Sandrine Cadet and Sylvain Schmitz, organizers of this exhibition, for allowing us to use and modify their material. Here we give a panel-by-panel overview of our exhibition. The first panel (bearing the title of the exhibition, **The Making of a New Science**) pays tribute to Prof. Giorgio Ausiello, featuring a brief quotation from his book along with quotes from other recognized computer scientists, and two of Vera Molnár's digital plotter drawings (from the series Letters from my mother). The second panel (**On the shoulders of giants**) picks out some of the major milestones and key figures in the theory of computation. This of course goes back to star mathematicians (and scientists) of the early twentieth century (we omitted traces of the field to be found in previous centuries). This earlier history is recorded in the reels of black-and-white "film" while more recent names are recorded in the array of colour "polaroids". The panel is complemented by a list of awardees of the Nevanlinna-Abacus medal of the International Mathematical Union (established in 1982 and given at the International Congress of Mathematicians ever since). The next panel **Pioneers in TCS** continues the focus on key figures of the field, featuring a spotlight on Maurice Nivat (transferred directly from the Paris exhibition 50 Years of Theoretical Computer Science), whose individual story has counterparts for each and every one of the notable figures in TCS listed in the remainder of the panel. These lists give in chronological order all the winners of four major annual international prizes: the A. M. Turing Award, Gödel Prize, EATCS Award and Donald E. Knuth Prize. Seeing these lists, one gets a better feeling of how the development of TCS has been a product of collective endeavour by a remarkable and numerous set of individuals. **Brussels, 1972** reworks a panel from the Paris exhibition 50 Years of Theoretical Computer Science, supplementing it by facsimiles of key documents reproduced in the appendix to Ausiello's The Making a New Science. Described are the key events leading to the creation of the European Association of Theoretical Computer Science (EATCS), highlighting the role played by Maurice Nivat and others in bringing it to fruition. The foundation of new institutions led to the creation of a new type of conference, one with refereed contributions selected by a programme committee. Such conferences became the dominant medium for scientific communication in TCS, and a (non-exhaustive) selection of the most long-running, active and prestigious are displayed in the panel **Early conferences in TCS**. The penultimate panel of the exhibition (see below) features an editorial by Moshe Vardi discussing the role of conferences in computer science, which is very different from mathematics. The next five panels are devoted to particular areas of TCS in their early development. The choice of topics is of course rather arbitrary as current TCS is a very broad field. But on the history there is a consensus. We included material from the Paris panels on computational complexity, logic and complexity, automata and a schematic overview of algorithms that have shaped the world; on the other hand, we left out the Paris material on zero-knowledge proofs, fine-grained complexity, model checking, the science of programming, machine-checked proofs, and quantum computing. We are limited to thirteen panels and some of these topics will be treated in a follow-up exhibition. With these constraints, our panels are Automata theory, describing the development area from Alan Turing Computational complexity (I), describing the birth of complexity classes and "complexity" as we know it today; Computational complexity (II), describing the influence of logic and the logical side of TCS; and Algorithms (I), representing some of the plethora of beautiful algorithms from which the theory of algorithms has evolved. These four panels are adapted from the Paris panels, to which we have added photographs of some of the key figures involved. Additionally, in the Algorithms (I) panel we highlighted seven major algorithms from those "shaping the world", while, in the Automata theory panel we included diagrams illustrating the evolution of a pair of elementary cellular automata (rules 30 and 110). The next two panels are the only panels devoted to specific problems. **Algorithms (II)** treats a topic dear to all Czech mathematicians and computer scientists as it describes the role of Borůvka and Jarník in the development of the minimum spanning tree algorithm (as well as the Steiner tree algorithm). The panel **Advanced graph theory in TCS** describes the story of expanders — another TCS saga. Expanders represent a key structure in the theory of algorithms and their construction involves beautiful and difficult mathematics. The last two panels document some of the bewilderingly extensive activity in TCS. The panel **Publishing research** includes material from the Paris exhibition panel focusing on ICALP publications, to which we have added a discussion about the distinctive practice of theoretical computer of using conferences and their proceedings the primary as mode rather than journals: communication reproduce an editorial by Moshe Vardi in Communications of the ACM, concerning a still very current topic of debate. The final panel **Selected** textbooks in TCS, 1966-1999 gives of various twentieth panorama century textbooks, both basic and advanced, many appearing in new editions to the present day, and all of them influential in directing the course of TCS as it entered the twenty-first century. We expect that many of our viewers may have remarks or questions related to this exhibition: please send them to our address galleriachodba@iuuk.mff.cuni.cz ## **Acknowledgments** We thank Giorgio Ausiello for alerting us to the exhibition 50 Years of Theoretical Computer Science shown at the ICALP '22 conference in Paris and for putting us in touch with its coordinators, Sandrine Cadet and Sylvain Schmitz, who generously allowed us to use their material as a basis for our own exhibition. We are grateful to the School of Computer Science of the Faculty of Mathematics and Physics for supporting Galleria Chodba as well as the UNCE project 'Language, image, gesture: forms of discursivity' (a joint project with the Faculty of Arts, Charles University). Andrew Goodall, Jarik Nešetřil Curators, Galleria Chodba ## Catalogue As students, through Corrado's lectures, we could perceive that a new science was being born, arising from the roots of mathematical logic and projecting its light on the future of computers and computer programming — Giorgio Ausiello In the 1980s, we the theoreticians owned the field of computer science in the sense that we knew how compilers should be designed, how operating systems should work, how databases should be organized for efficient access. Our responsibility and main mission was to outfit all areas of computer science with rigor and the power of mathematics. In a sense, we were exercising complete intellectual hegemony over the rest of computer science. We knew it. Then the internet happened. — Christos Papadimitriou # The Making of The best practice is inspired by theory. — Donald Knuth ... Computer science is no more about computers than astronomy is about telescopes. There was this realization: a new science is emerging. The name may not be well chosen, but it is a new science. — Jacques Arsac A theoretical computer scientist will have the same aim as any other computer scientist namely to understand, analyse and hopefully clarify the fascinating concept of computation. The theoretical computer scientist distinguishes himself by his choice of the ways to achieve such an understanding and clarification—the choice being, after proper models have been formalized, to prove theorems that are meaningful. With the mathematician and logician, the theoretical computer scientist has in common the knowledge that sometimes the solution to a problem has to be obtained at some distance from the problem itself, and that an extensive knowledge of the relevant objects and concepts has to be developed before any major question can be answered. — Maurice Nivat We are fortunate to have been helped by two sources in putting together this exhibition on the history of theoretical computer science in the twentieth century. The first is Giorgio Ausiello's excellent The Making of a New Science (Springer 2018). This book – a memoir of one of the pioneering leaders and organizers in the development of theoretical computer science – gives a factual account of the burgeoning new science in Italy, Europe, and the US. A history filled with personal recollections by one of the key eyewitnesses, and fascinating reading for outsiders. The second source is thanks again to Prof. Ausiello, who put us in contact with the coordinators of the exhibition 50 Years of Theoretical Computer Science at ICALP'122 on July 6–8, 2022 at Université Paris Cité, devised for the occasion of the 50th anniversary of the ICALP conference and the creation of EATCS. The Making of a New Science Giorgio Ausiello and Jarik Nešetři ## On the shoulders of giants David Hilbert's 23 Mathematical Problems In the 2nd Hilbert called for a mathematical ### 1907, 1912 ### Leonardo Torres Ouevedo introduces a formal language for the description of mechanical drawings; builds the first decision- inherent limitations to formal systems and what can be proved within them. Emil Post develops, independently of Turing, a mathematical model of computation rewrite technique is widely used in programming language specification and design. Alonzo Church proves undecidability of arithmetic 1951 Claude Shannon's Mathematical theory of communication lays the groundwork Stephen Kleene invents regular expressions to describe McCullough- Alan Turing in 'On computable numbers' introduces the Turing machine, providing Warren McCulloch and Walter Pitts describe a simplified neural network architecture for intelligence. John von Neumann, Theory of Games and Economic Behavior, written with Oskar Morgenstern (in 1928 he had instigated the theory of games, proving the minimax theorem). 1952 2-D cellular automata. Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine Boris Trakhtenbrot 'The impossibility of an algorithm for the decidability problem on finite classes.' In 1964, proves the Gap Theorem – there are arbitrarily Edward McCluskey develops the first algorithm for designing combinational circuits – the Quine-McCluskey logic minimization procedure. Tony Hoare develops Quicksort. John Tukey and James Cooley 'An algorithm for the machine calculation of complex Fourier series' Donald Knuth, The Art of Computer Programming Marvin Minsky and Seymour Papert Perceptrons, cause of a long-standing controversy in the study of artifical intelligence Shafi Goldwasser Robert Tarjan Leonid Levin Whitfield Diffie Barbara Liskov Józef Gruska ### Abacus Medal - Leslie Valiant - **Alexander Razborov** - Avi Wigderson - 2002 Madhu Sudan - Daniel Spielman 2014 - 2018 Constantinos Daskalakis - 2022 Mark Braverman ## **Pioneers in TCS** ## Turing and EATCS Awards, Gödel and Knuth Prizes ### Turing Award 1966 Alan Perlis Richard Hamming 1969 Marvin Minsky 1970 James (Jim) Hardy Wilkinson 1971 John McCarthy 1972 Edsger Dijkstra 1974 Donald Knuth 1975 Allen Newell, Herbert Simon 1976 Michael Rabin, Dana Scott 1977 John Backus 1978 Robert Floyd Kenneth Iverson 1980 C.A.R. Hoare 1981 Edgar Codd 1982 Stephen Cook 1983 Dennis Ritchie 1984 Niklaus Wirth 1986 John Hopcroft 1987 John Cocke 1988 Ivan Sutherland 1989 William Kahan 1990 Fernando Corbato 1992 Butler Lampson 1993 Juris Hartmanis 1994 Edward Feigenbaum, Raj Reddy 1995 Manuel Blum 1996 Amir Pnuel 1997 Douglas Engelbart 1998 Jim Gray 1999 Frederick Brooks 2000 Andrew Chi-Chih Yao 2001 Ole-Johan Dahl, Kristen Nygaard 2002 Leonard Adleman, Ronald Rivest, Adi Shamir 2004 Vinton Cerf, Robert Kahn 2005 Peter Naur 2006 Frances Allen 2007 Edmund Clarke, Joseph Sifakis 2008 Barbara Liskov 2009 Charles Thacker 2010 Leslie Valiant 2011 Judea Pearl 2012 Shafi Goldwasser, Silvio Micali 2013 Leslie Lamport 2014 Michael Stonebraker 2015 Whitfield Diffie, Martin Hellman 2016 Tim Berners-Lee 2017 John Hennessy, David Patterson 2018 Yoshua Bengio, Geoffrey Hinton, Yann LeCun 2019 Edwin Catmull, Patrick Hanrahan 2020 Alfred Vaino Aho, Jeffrey David Ullman 2021 Jack Dongarra 2022 Robert Melancton Metcalfe 2023 Avi Wigderson 2025 2024 Andrew Barto, Richard Sutton ### **Maurice Nivat** As a mathematician, Nivat applied rigorous algebraic approaches to numerous domains, from formal languages to program semantics, from concurrent processes to discrete geometry. As a scientific leader, he undertook with incredible energy the mission of promoting study and research in the theory of computing. ### Early years - 1956 Enters École Normale Supérieure. His broad-mindedness and originality flourish, and he is the leader of a group of merry fellows which calls itself "Praesidium du Bordel Suprême"; he gets married and has his first son - 1959 Begins work at Institut Blaise Pascal and gets acquainted with computers and programming languages. 1969 Becomes professor at Université de Paris. ### Founding the EATCS - With Louis Nolin and Marcel-Paul Schützenberger, presents a "charter" of universities and research centres. - 1972 Organizes the first International Colloquium on Automata, Languages and Programming (ICALP). He and Alfonso Caracciolo organize the Brussels - meeting where the creation of the EATCS is approved. 1973 Elected President of EATCS and edits the first Bulletin of the EATCS; ## Gödel Prize L. Babai, S. Moran, S. Goldwasser, S. Micali, C. Rackoff Mark Jerrum, Alistair Sinclair Seinosuke Toda Peter W Shor Moshe Y. Vardi, Pierre Wolper S. Arora, U. Feige, S. Goldwasser, C. Lund, L. Lovász, R. Motwani, S. Safra, M. Sudan, M. Szegedy M. Herlihy, N. Shavit, M. Saks, F. Zaharoglou Noga Alon, Yossi Matias, Mario Szegedy Alexander A. Razborov, Steven Rudich Daniel A. Spielman, Shang-Hua Teng Omer Reingold, Salil Vadhan, Avi Wigderson Johan T. Hastad E. Koutsoupias, C. Papadimitriou, T. Roughgarden, E. Tardos, N. Nisan, A. Ronen Antoine Joux, Dan Boneh, Matthew K. Franklin Ronald Fagin, Amnon Lotem, Moni Naor Daniel A. Spielman, Shang-Hua Teng S Brookes PW O'Hearn C.Dwork, F. McSherry, K. Nissim, A. Smith **Oded Regev** Irit Dinu Robin A. Moser, Gábor Tardos S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. de Wolf, T. Rothvoss Eshan Chattopadhyay, David Zuckerman ### EATCS Award Richard Karp Corrado Böhm Maurice Nivat **Grzegorz Rozenberg** Robin Milner Mike Paterson Leslie G. Valiant Boris (Boaz) Trakhtenbrot Moshe Y. Vardi Gordon Plotkin **Christos Papadimitriou** **Dexter Kozen** Éva Tardos Noam Nisan Thomas Henzinger Mihalis Yannakakis Patrick Cousot Amos Fiat Samson Abramsky Rajeev Alur ### **Knuth Prize** Andrew Yao Leslie Valiant László Lovász Jeffrey Ullman Christos Papadimitriou Miklós Ajtai Mihalis Yannakakis Nancy Lynch David Johnson Ravi Kannan Leonid Levin Richard Lipton Noam Nisar Oded Goldreich Johan Håstad Avi Wigderson Cynthia Dwork Noga Alon Éva Tardos Rajeev Alur Micha Sharii ## Brussels, 1972 ## Where, when and why EATCS and ICALP started farcel-Paul Schützenberger at the first ICALP conference, July 3-7 1972. The first page of columns and an amount of the columns and a column ## First European report on the field of Theoretical Computer Science Rapport préliminaire sur l'Informatique Théorique (M. Nivat. L. Nolin, M.-P. Schützenberger, 1971) outlines the main pillars of the new science and, for each pillar, describes the research subject addressed, with reference to specific authors: — Algorithms, in particular those concerning arithmetic operations (Winograd), sorting (Knuth, Floyd), graph algorithms (Rabin), — Automata and formal languages, with reference to equations on the free monoid (Lentin), codes, finite automata and regular languages (Ricene, Krohn & Rhodes), push-down automata and context-free languages (Schützenberger), tree automata; — Formal semantics of programming languages is definition of Algol 68, the need to provide precise formulations of the semantics of programming languages is discussed, based on the early works on axiomatic semantics (Floyd), operational semantics (McCarrby), approaches to semantics (Boyd), operational semantics (McCarrby), approaches to semantics based on lambda-calculus (Scott) and combinatory logic (Wollin), and the theory of program schemes (lanov, Luckham, Park & Paterson, and Strong). concurrent and cooperating processes, and of the corresponding computation models (Dijkstra, Naur, Wirth) expected to play an important role in the future. ### First Bulletin On December 1973, Maurice Nivat prepares the first Bulletin of EATCS at IRIA, Rocquencourt. The bulletin includes the minutes of the first general assembly and council meeting: reports on the second MFCS; and provides activity reports of the Mathematisch Centrum, Amsterdam, the Technological University, Delft, the Technological University, Temene, the Istituto di Scienza dell'Informazione, Università di Torino and the Institut de Programmation, Università Paris VI. Informatics or computer science was seen by other disciplines and by many politicians as simply a technology to support other enterprises. It was already clear, however, that to improve the correctness and efficiency of large-scale programs, theoretical studies were needed to investigate the principles and properties of computing. At the time, such work in Europe tended to be local and national. New funding for inter-European collaboration would be required. There was a very special spirit in the air; we knew that we were witnessing the birth of a new scientific discipline centered on the computer. – R. Karp There was absolutely no appreciation of the work on the issues of computing. Mathematicians did not recognize the emerging new field. – M. Rabin ### Foundation of the EATCS A meeting on January 27-28, 1972 at the Berlaymont building of the EU Commission in Brussels, chaired by Alfonso Caracciolo, is attended by M. Nivat. L. Nolln, M. Gross (f), H. Langmack, K. H. Böhling (D), I. Verbeek, J. de Bakker (NL), M. Paterson (UK), M. Sintzoff (B), C. Böhm, U. Montanari, and G. Ausiello (I), After presenting the report of M. Nivat. L. Nolln and M.-P. Schützenberger threy approve the proposal prepared by Maurice Nivat on cooperation among European universities, which leads in September to the creation of the European Association for Theoretical Computer Science (EATCG). ## COLLOQUES IF Théorie des automates langages et de la program 3-7 juillet 1972 ## First ICALP On July 3-7, 1972, at IRIA (Rocquencourt, Paris) the first ICALP takes place. The Program Committee of C. Böhm, S. Elienberg, P. Fischer, S. Ginzburg, G. Hotz, M. Nivat, L. Nolin, D. Park, M. Rabin, A. Salomaa, and A. van Wijingaarden is chaired by M.-P. Schutzenberger. The programme includes 45 accepted papers (29 in English, 14 in French, 2 in German) on automata theory, theory of programming, theory of formal languages, and complexity of algorithms. association européenne d'informatique théorique | | Hull | | |------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | | TABLE DES MATIERES | | | | THEORIE DES AUTOMATES | , | | | Alternates et bascules, S. F. Joshi L.S. Lery, M. Tolished | 5 | | - 11 | Albertairs of bascoles, G. Flywood, | 15 | | - 1 | Electronic property of regular languages, H. Linne. Finite power property of regular languages, H. Linne. Finite Orbit relations for sequential conditions, F.A. Electronic | 26 | | - 1 | L.R. Londrecht.
Une familie de compraences de THEE, pour lesquelles le problème
de l'Équivalence et décidable. Application à l'équivalence des
grammaires alpanées. P. Betthech. | | | - 1 | de l'Equivalence est decidable. Application à l'Equivalence des | 13 | | - 1 | THEORIE DE LA PROGRAMMATION | 17 | | - 1 | | 11 | | ıs | Les oppes et les appets de procéderes, G. Angele.
Comparing algebraie structure op to algorithmic depárationes. | | | • | D.J. Kliner) | 47 | | - | | | | ••• | -490th-t- | 64 | | - 1 | Zoweisungs programmer, C. non Folker | 67 | | - 1 | THEORIE DES LANGAGES FORMERS. | 87 | | - 1 | | 49 | | - 1 | Assemble with modern P. Mais, P. Yell. Connex Languages, G. Televisie | 95 | | - 1 | | - 99 | | - 1 | Nagrhade puring techniques for content free grammers, G. 4. Aloys,
O.F. Sonne, S.J. None. | 293 | | - 1 | Context-sociative grammers providing, context-free languages,
S.S. Baker, R.F. Book | 111 | | - 1 | | | | - 1 | A files | 112 | | - 1 | COMPLEXITÉ DES ALGORITANES. | 117 | | - 1 | Decoporation of according touch accommon practical and analysis | | | - 1 | CP Schoot | 119 | | - 1 | Complexity classes of formal languages, E.F. Zool. As approach to mothernatical complexity as infinite biassesby of | 123 | | - 1 | Som Languages, E. Timera
Collect von L.R. (co.) - Adaptative, P. L. ray | 127 | | - 1 | | 135 | | atio | defined by automate, F. H. v. Ronie, A. Fullymore, E. Ferbranch
The functions computed by a monadic pospers schema with one | | | 771 | Investor, A. Zichendy | 143 | | - 1 | THEORIE DE LA PROGRAMMATION | 549 | | - 1 | Fixed point approach to the theory of competition, J. Alexan. | 144 | | - 1 | | | | - 1 | Induction rates and proofs of invariantius, P. 200-0-101, D. Park. Retirempers our la singulary des solutions de programmes, J. Zolo | 191 | | - 1 | Analysis their approach to the accountry of programming languages. | | | - 1 | THROUGH DES ALTOMATES | 101 | | - 1 | See the Languer efelface des houstons any consulnes. S. Con. | 292 | | -1 | | | | -1 | Napari
Translateurs unitation concernate l'imprimitatio des sissis de | 209 | | - 1 | Lingup d'antoire, C. Cling'ine:
Linear automaia, approximation problème, 4. Par. M. Antonomico. | 213 | | - 1 | | 121 | | - 1 | Learning treatmentage ages and seeing supp. 1" And to to. | | | - 1 | CONFLORMED AGGREGATION | | | - 1 | Relation between size and storage complexity via purblows
machines, E. Flores | | | - 1 | A T (a) line-bounded Turing machine may be attended by a day
T (a) ² tape-bounded decorations: Turing machine, it. Abstra. | 227 | | - 1 | T Into tope-bounded determinate Tasing machine, it. Alutina. A generalization of a theorem of specker and come applications, E. Olive. | 231 | | - 1 | | 237 | | - 1 | Complexité des problèmes de décision néarife seu problèmes de la
P. Physics, J.M. Steparet. | 201 | | -1 | Complexity problems related to the assertionation of orelabilities
languages and events by delerministic machines. A. discour. | 100 | | | THROUGH SES LENGAGES | | | | | 269 | | - 1 | On a family of determinating gramman, M.A. Harrison, J.M. Marci,
On a structured similarity of phase-structure framework, S.T. Garcelo. | 278 | | -1 | On a structural similarity of phase-structural impages, i. C. F. Association I I I I I I I I I I I I I I I I I I I | 111 | | - 1 | non harabe, J.F. Occide | 279 | | - 1 | Approximation of phonomadors, S. Coupl Register, P. Duto-
Fience | 255 | | | Paintive deseasements of regular sets and progenishe wer. M. Telestadi. | 701 | ## Early conferences in TCS Annual European Symposium on Algorithms (ESA) ## **Automata theory** ## Abstract machines and their computational power Automata theory is one of the oldest research areas in computer science. Historically, it developed with the theory of formal languages, since automata were classified by classes of languages they can recognize. Today, automatabased formalisms are widely applied in modern computing. Indeed, every computing device has "automata inside"! Automata theory concerns abstract computing devices and their computational power. It emerged from Turing's study of the power of general-purpose computation and from Kleene's formalization of an earlier proposal by McCulloch and Pitts, the latter motivated by the study of networks of neurons. Automata theory permeates computer science. Initially their study was motivated by, and has an immediate application in, fields such as computer design, compilation of programming languages, and search and pattern matching. Their use then spread across the whole field Automata theory uses increasingly sophisticated mathematical techniques to study the power of abstract computational devices. It has close connections with classic and novel fields of mathematics such as group theory and the theory of algebraic structures, logic, (finite) model theory, number theory, (automatic) real function theory, symbolic dynamics, and topology. A weighted word automaton for part-of-speech tagging in English ## Selected key milestones in automata theory 1936 A. Turing: Turing machines 943 W. McCulloch, W. Pitts: J. von Neumann: The general and logical theory of automata 1 SC Kleene Regular expressions, Kleene's Theorem 1955 M.P. Schützenberger: Algebraic theory of automata: Syntactic semigroups and variable-length codes 1956 E.F. Moore: Minimal automata A. Nerode: Non-deterministic automata and determinisation. Nerode equivalence J.R. Büchi, C.C. Elgot, B.A. Trakhtenbrot: Finite automata and monadic second-order logic (MSO) 1959 M.O. Rabin, D. Scott: Finite automata and their decision problems 1963 N. Chomsky, M.P. Schützenberger: Context-free languages and pushdown automata 1965 M.P. Schützenberger: Star-free expressions and group-free monoids K. Krohn and J. Rhodes: Decomposition of automata M.O. Rabin: Automata on infinite trees and MSO 1982 Y. Gurevich, L. Harrington: W. Thomas: Classifying regular events in symbolic logic 1988 N. Immerman, R. Szelepszenyi: Complementation of linear bounded automata Solution of the restricted star-height problem ## Computational complexity (I) Classifying problems by hardness ## Computational complexity (II) ## A perfect match with logic The unity of logic and computation has manifested itself in the development of computability theory from the 1930s onward, and the development of computational complexity from the 1960s onward. Computability theory delineates the boundary between decidability and undecidability; computational complexity that between tractability and intractability. Logic provides prototypical complete problems for complexity classes and led to descriptive complexity, a framework for characterizing complexity classes using logical resources. ### Complete problems ### **Church-Turing Theorem** First-Order Validity is computably enumerable (c.e.)-complete ### **Trakhtenbrot's Theorem** First-Order Finite Satisfiability is computably ### **Cook-Levin Theorem** ### **Descriptive complexity** "machine-free characterisation of NP with no mention of polynomial" Example: SAT is definable by the ESO-formula Immerman-Vardi Theorem P = FO+LFP on classes of ordered finite structures. If ${\bf C}$ is a class of graphs with at least one excluded minor, then on ${\bf C}$ Key Property: Linear order definable in FO + LFP + Counting on C. *on classes of ordered finite structures ## Algorithms (I) ## Shaping the world ## dynamic Distributed Hash Tables The boosting algorithm in machine learning (due to Schapire) Algorithms are the heart of computing systems. They are not usually visible to the user, but they keep the systems going and provide functionality and speed. Without algorithms there would be no systems. Not surprisingly, every computer scientist is taught algorithms. The design and analysis of algorithms is a subject of intellectual depth and beauty with a wide-ranging impact on the real world. Weighted Fair Queueing Balanced Trees Metropolis Algorithm Matching algorithms Ford-Fulkerson May Flow Edmonds Karn ### Jack Edmonds maximum matchings Arjen Lenstra, Henrik Lenstra, László Lovász LLL lattice basis reduction ## George Dantzig simplex method quantum computing inear Programming. Interior Point, Simplex online matching Dijkstra Cole Vishkin elgorithm (mostly theoretically) Heaps Signal Processing imulated Annealing Online algorithms Balanced Trees Edmonds-Karp algorithm longest common subsequence online Shor's factoring algorithm programming Saussian Sanking Saussian Joseph Longest Common Subsequence on Saussian Sanking Saussian Joseph Longest Lon Panking Randomized Incremental Construction in machine learning Brozozowski DFA minimisation algorithm Distributed Hash Tables belief propagation Lamport Clocks Distributed Hash Tables ALI APSP allgorithms ine derivamp-weight quantum computing algorithm error correction rsa Matching algorithms Signal Processing and Communication bipartite FFT and Viterbi (special case of dyna latching algorithms Signal Processing and Communicat bipartite FFT and Viterbi (special case of dyna general programming) earning codes reedy rsa fides approxim christo approximate ISF Gaussian Codes Elimination ant colony systems genetic algorithms Lempel-Ziv matrix multiplication Distributed Hash Tables Codes algorithms, e.g. Euclidean Algorithm Gale-Shapley Error-Correcting Codes Approximation Merkle Trees algori in Reed-Solomon Paxos Ovnamic Edsger Dijsktra shortest path Lester Ford, Delbert Fulkerson approximate TSP CODES Lovasz Depth-First-Search Balanced Tre Sorting, Quickso Page rank Hashing Dijkstra LLL Leonid Khachiyan ellipsoid method for LP Michel Goemans. **David Williamson** approximate max cut ## Algorithms (II) ## Minimum spanning tree: Borůvka and Jarník 1926 O. Borůvka, Příspěvek k otázce ekonomické stavby elektrovodných síť [Contribution to the solution of a problem of economical construction of electrical networks]. Elektrotechnický obzor 15, 1926, 153–154. O. Borůvka, O jistém problému minimálním. Práce Moravské přírodovědecké společnosti sv. III, spis 3, 1926, 37–58 (in Czech, German summary). 923 scheme of South Moravian electric power line network Borůvka's grave at the Central Cemetery in Brno R.L. Graham and P. Hell, On the history of the minimum apanning tree problem, Ann. Hist. Comput. 7:1 (1985), 43–57 M. Mares, The Saga of Minimum Spanning Trees, Computer Science Review, 2:3, (2008), 165–221 J. Nešteřil and H. Nešteřilová. The Origins of Minimal Spanning Tree Algorithms, Documenta Mathematica, Extra Volume ISMP (2012), 127–141 ## belows \$4 M 1 Spicially class of spice. 214.55 TH OTISK 2 CASOPISE ALEKT POTTERSISTED PROTOSP 214.55 TH OTISK 2 CASOPISE ALEKT POTTERSISTED PROTOSP 214.55 TH OTISK 2 CASOPISE ALEKT POTTERSISTED PROTOSP 215.55 TH OTISK 2 CASOPISE ALEKT POTTERSISTED PROTOSP 216.55 CASOPIS S. STEEL SEETLE Příspěvek k řešení otázky ekonomické stavby elektrovodných síti. irst page of O. Borůvka, Příspěvek k otázce ekonomick JARNÍK = PRIM JARNÍK = STEINER KÖSSLER BORŮNKA = SOLLIN (1962!) > 1930 V. Jarník, O jistém problému minimálním. (Z dopisu panu O. Borůvkovi) (Czech) [On a certain problem of minimization]. Práce moravské přírodovědecké společnosti 6, fasc. 4, 1930, 57–63. While its typical implementation using data structures such as a priority queue does not achieve linear time, variations and improvements have led to algorithms that approach linear time complexity for certain graph structures Linearity of the MST problem is a lone-standing onen problem. ### BUBLINKONÝ BORŮVKŮV POSTUP 4. KAŽOÝ BOD JE BUBLINKA (JE TOLIK BUBLINEK JAKO JE BORŮVEK YLES) 2. SPOJ KAŽDOU BUBLINKU S NEJBLIŽŠÍ BUBLINKOU 3. HAJDI HOYE BUBLINKY. 4. POKUD JSOU ALESPON 2 BUBLINKY OPAKUJ 2. POKUD JE POUZE JEDNA BUBLINKA JSI HOTOV. st page of O. Borúvka, O jistém problému minimálr CASOPIS PRO PĒSTOVĀNÍ MATEMATIKY A PT) minimálních grafech, obsahujících z bodů. Popist Joseit a Milet Kinder. Brille B_0 (B_1) to consider on distincted granters. Negative blocked materials B_1 (B_1) to consider of the state B_1 (B_1) to the state of B_2 (B_2 B irst page of V. Jarník and M. Kössle 1934 V. Jarnik and M. Kössler, O minimálních grafech obsahujících n daných bodú [On minimal graphs containing n given points]. Casopis pro pěstování matematiya n fysik 93.8 (1934), 223–235 Jarnik and Kössler introduce a problem – the first journal publication to do so – later called the Steiner problem, which they solve for regular negons. ## Advanced graph theory in TCS Expander graphs The tension between sparsity and connectivity in expander graphs makes them especially important to computer science, e.g. in constructing good pseudorandom number generators, derandomising probabilistic algorithms, constructing errorcorrecting codes, and in building probabilistically checkable proofs. - SPARSE LARGE GRAPHS. - CONNECTED IS WHAT MAKES THEM 50 USEFUL IN VARIED APPLICATIONS. S. Ramanujan On certain arithmetic functions J. von Neumann Probabilistic logics and the synthesis of reliable organisms from unreliable components On the estimation of Fourier coefficients of modular forms A. Kolmogorov and Y. M. Barzdin On the realization of networks in three-dimensional space J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian M. Fiedler Algebraic connectivity of graphs M. Pinsker On the complexity of a concentrator G.A. Margulis Explicit constructions of concentrators O. Gabber and Z. Galil Explicit constructions of linear size superconcentrators Eigenvalues and expanders A. Lubotzky, R.S. Phillips, P. Sarnak G.A. Margulis Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators O. Reingold, S. Vadhan, A. Wigderson Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors THEY EXIST 1 A GRAPH (SEQUENCE WITH 100) 15 A RAMANUSAN IF FOR (-1)--> 1-1 | 7/(Xn,d) | = 2/d-1 Over a century ago, Ramanujan made a deceptively simple conjecture about modular forms, subsequent work on which led to the development of sophisticated number-theoretic tools, Lubotzky, In 1986-8 Phillips and Sarnak wielded these graphs with optimal sparsity and connectivity. "The existence of expanders is counterintuitive. Very well-known were saying essentially, 'Expanders don't exist.' " - P. Sarnak The notion of an expander can be traced back to J, von Neumann's investigation into fault-tolerant circuits and Y.M. Barzdin and A. Kolmogorov's realization of networks demanding high connectivity subject to sparsity constraints. The latter authors come very close to producing expander graphs of uniformly bounded degree, and show in essence that a random graph is an expander. It wasn't until 1973 that the notion of expander was formally defined by M. Pinsker, who established their existence by a probabilistic argument: for a deterministic construction, Pinsker refers to a paper of G.A. Marsulis that appeared later that year, in which Margulis "gave the first explicit construction of an infinite family of expander graphs. In that paper the proof was based on the theory of discrete subgroups of Lie groups. In particular I used arguments related to Kazhdan's work on property (T). This was probably unexpected for people working in computer science." (At that time Pinsker, Kazhdan, and Margulis were all members of the renowned IPPI in Moscow.) In 1986 N.Alon and R. Boppana, building on the work of Fiedler and Cheeger, reformulated the measure of a graph's expansion properties in terms of its 'spectral gap.' Alon and Boppana showed that this gap was bounded, so the expansion ratio of a family of expanders could not exceed a certain threshold: they asked whether an optimal family of expander graphs could be found. Given this linear algebra reformulation of the graph's expansion measure, Lubotzky suggested that Sarnak and Phillips explore some seemingly apropos methods from number theory; exploiting a series of results related to the Ramanujan conjecture, they were able to produce an infinite family of optimal expander graphs – the Ramanujan graphs. Two years later, Lubotzky, Phillips and Sarnak published their result in *Combinatorica*. At IPPI in the mid 1980s, around the time Margulis was constructing explicit families of expanders using quaternions and looking for high girth examples, he "realized, based on some deep work by Deligne, that they were also expander graphs which are in a certain sense better than the previous constructions. Slightly later and completely independently, Lubotzky, Phillips and Sarnak gave basically the same construction, but with some variations. ## **Publishing research** ICALP, a case study I can deall the dates it we do. I can defined to the very may also deal I can defined to the very may also deal I can be seen as the only selected I can be seen as the only selected I can be seen as the only selected I can be seen as the can be seen as the can I can be seen as the can be seen as the can I can be seen as the can be seen as the can I **ICALP** topics (NOMAS), held in San Transcine in April 2004, feesed on the paper selection prevent, which is not marking to well these diegs, encoding to namy people. You can find the proceedings of the control th cost to Internet Scale* by J. Ossewords, S. Koshar, and N. McKoone (p. 27). In this issue, you will find "Program Contradi-tion Coveland in your will read "Program Contradi-tion Coveland in your work of the program o Throughout its fifty-year history, ICALP has provided a broad coverage of topics in or and tenure contraints. The reoring powers portional by programs contrained in done under enterme time of weekload possions, and it does not to the level of careful referencing, here is some experients that coeffers not provide the property of the property property of the Youn aga, I was told that the axioted behind coefference purposes. Your aga, I was told that the axioted behind coefference pulsaries in an it ensures for the internation, but an it was to find the internation, but an it was to find the internation of the action of the property propert ence publication systel 50. I want to raise the quantion 50. I want to raise the quantion 50. I want to raise the work side of the publication rand. I believe that care constructing must have a boad and founk conversation on this topic. This discussion began in earment in a workshop at the 20th region for provided Contre 5 the Process Physical 6 7 the Physical Contre 7 the Physical Contre 6 the Physical Contre 7 Co TAZON : SASSAR F. PAPAS, LUTTOR TO V. ILLE The outlet for computer science research continues to be through conferences and their proceedings: this was the case from the outset, when Theoretical Computer Science was beginning to be recognized as an adademic discipline, up to the present day. "The reason conference publication is preferred to journal publication, at least for experimentalists, is the shorter time to print (7 months vs 1-2 years), the opportunity to describe the work before one's peers at a public presentation, and the more complete level of review (4-5 evaluations per paper compared to 2-3 for an archival journal). Publication in the prestige conferences is inferior to the prestige journals only in having significant page limitations and little time to polish the paper. In those dimensions that count most, conferences are superior." — Computing Research Association, Best Practices Memo, 1999 But this way of doing things has not been without its critics. In 2009, M.Vardi observes in his editorial for the Communications of the ACM that fast dissemination is no longer an issue with on-line archives; the quality of reviewing is higher for journals than for conferences; and other academic fields use journals as their primary publication outlet. ### **ICALP** publications In the fifty years since its inception, the ICALP conference has evolved in pace with the scientific advances and the growth and maturation of the theoretical computer science community. An analysis of DBLP data gives a bird's-eye-view of that evolution. Percentage of ICALP papers whose titles mention ### **ICALP** authorship Like other major conferences in Theoretical Computer Science, the authorship at ICALP tends to stabilise over time Number of authors per year, corresponding to a similar evolution in the number of accepted papers. Number of papers with each co-authorship size, per decade. Papers with two, three, and even four authors have gradually become more common than single-author papers Percentage of new authors per year. Every year, approximately half the authors at TCS conferences are newcomers to the conference. Ratio of women over men among authors. Still below 0.2 for almost all TCS conferences in 2021. ## Selected textbooks in TCS 1966- -1999 ## **Exhibition curators** Dr. Andrew Goodall studied at the University of Oxford and since 2012 has been working at the Computer Science Institute of Charles University at MFF. He works mainly in combinatorics and algebra. He is known also for his photography, having had several exhibitions in Prague. Prof. Jaroslav Nešetril is employed at the Computer Science Institute of Charles University at MFF. He works in many areas of mathematics and computer science. He collaborated with Jiří Načeradský for 20 years and together they created an extensive oeuvre (see, for example, J. Načeradský, J. Nešetřil: Antropogeometrie I, II, Rabasova Galerie 1998, ISBN 80-85868-25-3). This catalogue was published by DIMATIA-IUUK MFF UK on the occasion of the exhibition *The Making of a New Science* held at Galleria Chodba, Malostranské nam. 25, Praha I, from 18 June to 21 September 2025.